
A QoS-Aware IoT Service Placement Mechanism in Fog
Computing Based on Open-Source Development Model

Defu Zhao & Qunying Zou & Milad Boshkani Zadeh

Received: 10 June 2021 /Accepted: 18 March 2022
The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract With rapid developments of the Internet of
Things (IoT) applications in recent years, their use to
facilitate day-to-day activities in various domains for
enhancing the quality of human life has significantly
increased. Fog computing has been developed to over-
come the limitations of cloud-based networks and to
address the challenges posed by the massive growth of
IoT devices. This paradigm can provide better Quality
of Service (QoS) in terms of low energy consumption
and fast response, and cope with latency and bandwidth
limitations. Since IoT applications are offered in the
form of multiple IoT services with different QoS re-
quirements, it is essential to develop an efficient IoT
service deployment mechanism in a fog environment
with distributed fog nodes and centralized fog servers.
This is referred to as the Fog Services Placement (FSP)
problem. Hence, we propose a QoS-aware IoT services
placement policy with different objectives as a multi-
objective optimization problem. Given the proven

effectiveness of meta-heuristic techniques in solving
optimization problems, we have used the Open-source
Development Model Algorithm (ODMA) to deploy IoT
services on fog nodes called FSP-ODMA. FSP-ODMA
uses the service cost, energy consumption, response
time, latency, and fog resource utilization as objective
functions to find the optimal IoT service placement plan.
In addition, we propose a three-layer conceptual com-
puting framework (i.e., cloud-fog-IoT) to describe the
interactions between system components and the FSP
problem-solving policy. The simulation results obtained
demonstrate that the proposed solution increases the
resource usage and service acceptance ratio and reduces
the service delay and the energy consumption compared
with the other metaheuristic-based mechanisms.

Keywords Fog computing . IoT applications . Service
placement . ODMA optimization algorithm

1 Introduction

The Internet of Things (IoT) emerged as a concept in the
early 2000s and is now making headlines around the
world [1]. IoT refers to the billions of devices that are
connected to the Internet around the world and have the
ability to collect and exchange data with each other.
These devices are used in various fields such as industry,
smart homes, smart agriculture, traffic monitoring, ani-
mal tracking, etc. [2]. The number of devices connecting
to the Internet is increasing every day. The number of IoT
devices will reach more than 46 billion in 2021 and is

https://doi.org/10.1007/s10723-022-09604-3

D. Zhao (*)
School of Date Science, Jiangxi Institute of Fashion Technology,
Nanchang, Jiangxi 330201, China
e-mail: aolanzhou@163.com

Q. Zou
Business School, Jiangxi Institute of Fashion Technology,
Nanchang, Jiangxi 330201, China
e-mail: zqywstl@163.com

M. Boshkani Zadeh
Department of Computer Engineering, Tangestan (Ahram)
Branch, Islamic Azad University, Ahram, Iran
e-mail: mboshkanizade@gmail.com

/ Published online: 11 April 2022

J Grid Computing (2022) 20: 12

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-022-09604-3&domain=pdf

projected to increase to more than 75 billion by 2025 [1].
These huge volumes of IoT devices generate a lot of data
that requires a lot of cost, energy and memory to process
in the endpoints. Processing this growing amount of data
poses a major challenge to society.

Cloud computing technology can provide IoT device
services to end users without worrying about storage,
processing power and high costs [3]. In this regard, data
is collected by IoT devices and transferred to cloud
servers, and then activities such as data storage and
processing are performed in the cloud environment in-
stead of the devices themselves [4]. In the last one year,
with the increase of telecommuting and the need to share
data due to the start of the Corona pandemic, the use of
cloud-based software is expanding.

Many IoT applications are based on real-time data
processing and experience high latency when interacting
with centralized cloud servers. This problem is due to the
large distance between IoT devices and cloud servers. In
addition, the massive growth of IoT devices has led to the
cloud facing huge volumes of data for processing. There-
fore, the current cloud infrastructure suffers from the
problem of bandwidth, latency, response time, and net-
work congestion. Hence, a new model called fog com-
puting has evolved to overcome these limitations [5–7].
Fog computing is a distributed computing model that
stores, calculates, and processes data generated by end
users near IoT devices. Therefore, this paradigm provides
cloud services at the edge of the network to reduce the
latency associated with real-time applications. In addition
to reducing latency, fog computing can reduce band-
width through reducing the amount of data transmitted
to the cloud. In general, fog computing provides better
Quality of Service (QoS) in terms of latency, response
time, bandwidth, network congestion, and energy con-
sumption [4]. The main components of fog computing
are IoT devices (service requesters) and fog nodes (ser-
vice providers) [6].

Fog computing is considered complementary to
cloud computing instead of replacement. There are a
large number of heterogeneous nodes in fog computing
(i.e., gateways, routers, set-top-boxes, access points,
switches, etc.) that allow IoT applications (i.e.,
smartphones, vehicles, smartwatches, sensors, cameras,
etc.) to execution near end devices in a decentralized
manner without involving the cloud. However, fog
nodes have limited processing power, storage capacity
and memory compared to cloud servers [9]. Therefore,
resource management in fog computing is challenging

for reasons such as decentralization, heterogeneity, dy-
namics, and variability, and requires efficient orchestra-
tion policies. Orchestration involves activities to effec-
tively manage resources in fog-cloud computing. In the
discussion of resource management, there is a wide
range of issues such as resource forecasting, task sched-
uling, service migration and service location, which we
focused on the issue of services placement.

The problem of resource provisioning, also known as
Fog Placement Services (FSP), refers to how autono-
mous deployment of IoT applications on fog nodes.
Basically, IoT applications are developed based on a
microservice architecture that can better harness the
potential of distributed fog computing. Therefore, IoT
applications include several IoT services with different
QoS requirements that can be deployed on fog nodes
with different resource capabilities [11]. FSP is an NP-
Hard problem in which the state of resources in fog and
the details of IoT services must be considered simulta-
neously [12]. In general, the FSP decides on the map-
ping between IoT services and fog nodes in order to
improve QoS metrics (i.e., reliability, latency, response
time, cost, availability, fog resource utilization, energy)
[13]. Some characteristics of the fog environment such
as decentralized, heterogeneity, limited storage re-
sources and processing can add to the complexity of
solving this problem.

In this paper, we propose a framework for QoS-
aware IoT services placement in fog computing to solve
the FSP problem. This framework formulates the FSP
problem based on the autonomous MADE-k
(monitoring, analysis, decision-making, and execution
control loop with a shared knowledge base) model [14].
According toMADE-k, fog sources and IoT services are
monitored first. Prioritization of services is done based
on the deadline in the analysis phase. The services
placement is determined at the decision-making phase
and finally the decisions made are executed in the fog
environment. In this paper, the FSP problem is solved in
the decision-making phase of the MADE-k model by
the Open-source Development Model Algorithm
(ODMA) [15] as a meta-heuristic algorithm called
FSP-ODMA. ODMA as an evolutionary algorithm fo-
cuses on solving a wide range of optimization problems
and provides high convergence speed and local optimi-
zation avoidance during the search process compared to
other evolutionary algorithms (i.e., Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), etc.). FSP-
ODMA decides on the IoT services placement by

J Grid Computing (2022) 20: 12Page 2 of 2912

compromising between different objectives such as ser-
vice cost, energy consumption, response time, latency,
and the fog resource utilization. Multi-objective FSP
problem solving can improve the performance of
deploying IoT services on fog nodes.

The main contributions to this work can be summa-
rized as follows:

& Design a conceptual framework based on the auton-
omous MADE-k model to demonstrate the interac-
tion between the main components of the system
(i.e., IoT devices, fog nodes and cloud servers) and
efficient resource management

& Development of ODMAmeta-heuristic algorithm to
solve FSP problem in multi-objective form

& Evaluation of the proposed algorithm by simulating
fog environment in terms of various performance
metrics such as service cost, energy consumption,
response time, latency and fog resources utilization

The rest of the paper is organized as follows:
Section 2 discusses a literature review related to the
FSP problem. Section 3 introduces the ODMA meta-
heuristic algorithm. Section 4 presents the proposed
conceptual framework based on the autonomous
MADE-k model. The proposed placement scheme for
solving the FSP problem using ODMA is described in
Section 5. The discussion of simulation is given in
Section 6. Finally, Section 7 concludes this paper.

2 Related Works

Many studies have addressed the FSP problem with
different methodologies to improve processing, load
balance, energy consumption, data transfer speed and
storage [24–30]. According to the studied studies, FSP
problem solving methodologies including approaches
based on graph partitioning [7], graph coloring [13],
greedy algorithm [24], First Come First Served (FCFS)
algorithm [25], Quantum-based approaches [26], math-
ematical model-based approaches [27], fuzzy logic-
based approaches [28], blockchain-based approaches
[29] and techniques based on artificial intelligence
[30]. Because artificial intelligence techniques are more
effective than other techniques [31], we examine the
literature from this perspective. In general, solving
FSP based on artificial intelligence techniques includes

evolutionary algorithms, machine learning algorithms
and hybrid algorithms [31].

Given the widespread acceptance of evolutionary
algorithms for solving FSP as well as its use in this
work, we discuss related studies in this area below.
Common evolutionary algorithms used to solve FSP
include GA, Ant Colony Optimization (ACO), PSO,
Artificial Bee Colony (ABC), Memetic Algorithm
(MA), Differential Evolution (DE), and Taboo Search
(TS). According to evolutionary algorithms, authors try
to optimize one or more performance metrics based on a
set of limitations to perform the process of deploying
applications or services. Performance metrics and prob-
lem limitations can be divided into five general catego-
ries including resources (resource utilization), energy
(energy consumption), network (load scheduling, failure
rate, reliability, load balance and bandwidth), cost (com-
munications, Virtual Machine (VM), migration, execu-
tion, deployment and resource usage) and time (sched-
uling, processing, placement, latency, completion time,
deployment, propagation, deadline, waiting, round trip,
task execution, computation, response time) [31].

Hussein and Mousa (2020) used PSO and ACO algo-
rithms to solve the FSP problem and improve IoT task
scheduling [30]. The authors considered the service rate
and network latency as the objective function and man-
aged to significantly improve the load balance of the fog
nodes and the response time of IoT services. Huang et al.
(2020) introduced the Multi-Replicas Pareto Ant Colony
Optimization (MRPACO) to solve the problem of service
replicas placement in fog environment [32]. MRPACO
formulates the problem as a multi-objective problem
considering services latency and deployment costs. The
results show that by choosing the flow direction greedily,
better quality solutions are obtained. Gill and Singh
(2020) solved the problem of container placement on
VMs in fog computing using ACO [33]. Optimal place-
ment of containers in fog as a lightweight preference can
reduce migration time and improve response time. The
authors solve this problem by minimizing makespan and
guarantee the QoS to end users.

Ghalehtaki et al. (2019) proposed an approach to
solve the problem of micro-cache placement close to
end users on fog-based Content Delivery Networks
(CDNs) [34]. The authors formulated this problem on
Set-Top Boxes (STBs) as an optimization problem and
solved it with ABC algorithm to improve QoS in terms
of cost and latency. Sharma and Saini (2019) proposed a
cost-effective approach that can balance load in a fog

J Grid Computing (2022) 20: 12 Page 3 of 29 12

environment by prioritizing user demand [35]. Here, the
prioritization process is done with ABC based on the
fitness function. The authors considered various QoS-
related objectives (such as VM schedule length, sched-
ule runtime, and energy consumption) in the fitness
function. Nabavi et al. (2022) proposed an ABC-based
multi-objective deployment approach for VMs place-
ment in edge-cloud data centers [36]. This approach is
called TRACTOR. TRACTOR is an energy-efficient
and traffic-aware approach that considers VMs as fog
tasks. The simulation results show that TRACTOR can
significantly reduce energy consumption and network
traffic without affecting other QoS parameters.

Javanmardi et al. (2021) proposed fog task scheduling
for mobile IoT devices by combining PSO and fuzzy
logic algorithms [37]. The authors simultaneously use
network utilization and application loop latency to man-
age resources. Here, PSO is used for placement work and
fuzzy logic is used to calculate the fitness function.
Djemai et al. (2019) used Discrete PSO (DPSO) to solve
the FSP problem [38]. DPSO provides suitable comput-
ing capacity for IoT services in the cloud-fog-IoT eco-
system by considering latency and energy consumption.
In addition, the authors proposed an architecture of in-
frastructures and IoT applications in fog computing to
illustrate the interactions between system components.
Baburao et al. (2021) proposed a PSO-based Enhanced
Dynamic Resource Allocation Method (EDRAM) for
load balancing in fog computing [39]. EDRAM im-
proves resource management in fog by taking into ac-
count bandwidth, latency, and makespan, as well as
eliminating sleepy, unreferred, and inactive services.

Reddy et al. (2020) formulated resourcemanagement in
a fog environment as an optimization problem and solved
it by combining GA and Reinforcement Learning (RL)
[40]. GA is applied to deploy IoT services on theminimum
number of fog nodes and RL to optimize the period of fog
nodes duty cycle by predicting sleep-wake cycles. The
goal of this method is to manage resources in fog by
minimizing latency and energy consumption for context-
aware smart cities. Maia et al. (2021) formulated the FSP
as a multi-objective problem by considering the distribute
workloads of IoT applications [41]. The authors proposed
an improved GA to solve the problem, in which the initial
population is created to overcome the complexity with
random-heuristic solutions. The objectives of this approach
include Service Level Agreement (SLA) violations, avail-
ability of services, operational costs, and response time
deadline violation. Bourhim et al. (2019) proposed a GA-

based approach for containers placement in fog environ-
ment [42]. In this approach, the authors emphasize the
impact of heterogeneous inter-container network commu-
nication technologies on IoT applications in fog comput-
ing. Also, in order to estimate the ensure application
response time requirements, the overlay and host mode is
considered for inter-container communication.

Hussain and Beg (2021) proposed a DE-based com-
putation offloading approach for task allocation for sta-
tionary and mobile fog nodes in Vehicular Fog Comput-
ing (VFC) known as CODE-V [43]. CODE-V dynami-
cally developsmulti-hop computation offloading to select
the optimal path. In addition, the authors formulate the
problem as a Quadratic Integer Problem (QIP), taking
into account the limitations on computing capacity, laten-
cy, hop-limit, task execution (local or remote). Sami et al.
(2020) proposed a Kubeadm clustering approach for
containerized micro-services placement using MA [44].
This approach makes it possible to containers placement
in a distributed, multi-objective, resource-aware, and ef-
ficient context with minimal time and cost. In addition,
the authors introduce a hybrid multi-layered networking
architecture to maintain reachability between available
vehicular fog cluster and the requesting user. Nardelli
et al. (2019) focused on the problem of distributed place-
ment of data stream processing applications in the fog
computing infrastructure [45]. The authors analyze two
solutions to the problem, includingmodel-based and non-
model-based. They used different techniques for the first
solution and compared the three meta-heuristic ap-
proaches for the second solution, including local search,
greedy first-fit, and TS. All of these methods take into
account the heterogeneity of network and computational
resources, even for big data samples. The evaluation
results have proven the efficiency of TS for executing
data stream processing applications. The studies exam-
ined are summarized in Table 1.

3 Background

In this section, we depict a brief overview of the Open-
source Development Model Algorithm (ODMA) tech-
nique and autonomic computing methodology.

3.1 Open-Source Development Model Algorithm

Many decision problems can be expressed as
constrained optimization problems [15]. Basically, there

J Grid Computing (2022) 20: 12Page 4 of 2912

are two classes of algorithms for solving hybrid prob-
lems, including exact and approximate [9]. Exact algo-
rithms guarantee optimal solution finding but are not
satisfactory for solving NP-hard problems. Approxi-
mate algorithms can be used when the optimal solution
cannot be achieved with exact algorithms. Approximate
algorithms seek to find near-optimal solutions and are
commonly known as heuristic algorithms. The twomain
problems of heuristic algorithms are entrapment in local

minima and premature convergence [15]. Meta-
heuristic algorithms have been proposed to solve these
problems and are used in a wide range of problems.
These algorithms significantly increase the ability to
find quality solutions to NP-Hard optimization prob-
lems. Various classes of this type of algorithm have
been developed in recent decades. Examples of meta-
innovative algorithms include Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), Harmonic Search

Table 1 Overview of the analyzed studies

Reference Algorithm Performance metrics Methodology

[30] PSO and ACO Response time,
communication cost and
load balancing

An efficient scheduling model for deploying IoT services on
fog nodes under response time and communication costs

[32] ACO Latency and deployment cost Service replicas placement in fog using Pareto-based ACO and
multi-objective optimization

[33] ACO Completion time (makespan)
and response time

ACO based container placement in fog environment with makespan
minimization to ensure QoS and improve response time

[34] ABC Latency and cost Using ABC to micro-cache placement close to end users on the STBs in
Fog-based CDNs to improve cost and latency

[35] ABC VM schedule length, runtime
and energy consumption

Proposed an ABC-based cost-effective approach to load balancing in fog
environment by considering various QoS parameters and prioritizing user
demand

[36] ABC Energy consumption and
network traffic

Development of an ABC-based approach for VMs placement in edge-cloud
data centers by considering energy and traffic

[37] PSO and fuzzy Latency and network
utilization

Proposed mobility-aware approach to improve the fog tasks scheduling on
IoT devices by combining PSO and fuzzy logic based on latency and
network utilization

[38] PSO Latency and energy
consumption

Proposed a discrete version of PSO to solve the FSP problem and develop an
architecture to describe the interactions between the ecosystem
components

[39] PSO Bandwidth, latency and
makespan

Improving quality of experience (QoE) in fog environment by PSO-based
dynamic resources allocation and removing sleepy, unreferred and
inactive services

[40] GA and RL Latency and energy
consumption

An approach to improve service allocation to fog nodes in context-aware
smart cities by combining GA and RL

[41] GA SLA, cost, response deadline
and service availability

An improved multi-objective GA with random-heuristic initialization for
load distribution and service placement in edge computing by minimizing
SLA violations

[42] GA Response time, resource
utilization and task runtime

A GA-based approach to aware container placement in fog computing based
on the evaluation of inter-container communication

[43] DE Latency, task runtime and
energy consumption

A DE-based multi-hop computation offloading approach to improve task
allocation in VFC by considering the different objectives of QoS

[44] MA Latency, cost and runtime A Kubeadm-based clustering approach to deploy on-demand microservices
with the least time and cost using MA and Docker containerization
technology

[45] TS Resource utilization and
response time

Comparison of meta-heuristic approaches (i.e., local search, greedy first-fit
and TS) to solve the problem of DSP applications placement on fog
infrastructure

J Grid Computing (2022) 20: 12 Page 5 of 29 12

Algorithm (HSA), Whale Optimization Algorithm
(WOA), Cuckoo Search Algorithm (CSA), Gray Wolf
Optimization (GWO), ODMA and so on.

Most current meta-heuristic algorithmsmimic natural
phenomena, for example, GA is inspired by Charles
Darwin’s theory of natural evolution and was proposed
by John Holland (1962) [18]. The PSO proposed by
Kennedy and Eberhart (1995) is a meta-heuristic algo-
rithm based on the concept of swarm intelligence, which
is inspired by groups of birds and fish [19]. Each solu-
tion in the PSO is a particle of the population that
evolves its position based on three different factors,
including the previous position, pbest (best particle per-
sonal experience) and gbest (best whole swarm experi-
ence). HAS is a new meta-heuristic algorithm proposed
by Geem et al. (2001) [20]. This algorithm uses musical
process and perfect state of harmony modeling for opti-
mization. HAS does not require initial values for deci-
sion variables and is derived from a stochastic random
search based on pitch adjusting rate and harmony mem-
ory. WOA is an evolutionary technique based on hunt-
ing behavior of whales that has been introduced by
Mirjalili and Lewis (2016) [21]. This algorithm per-
forms the optimization work using three evolutionary
operators namely encircling prey, exploitation, and ex-
ploration. CSA is an optimization algorithm designed
by Yang and Deb (2009) [22]. This algorithm is inspired
by the obligate brood parasitism of some cuckoo species
by laying their eggs in the nest of host birds of other
species. GWO is one of the newest meta-heuristic algo-
rithms proposed byMirjalili et al. (2014) [23]. The basis
of this algorithm is a hierarchical structure that models
the social behavior of gray wolves during hunting.

ODMA is a new meta-heuristic algorithm for solving
NP-Hard optimization problem proposed by Hajipour
et al. (2016) [15]. This algorithm is inspired by the open-
source development model and communities, which
considers each solution as a software. ODMA takes
advantage of both evolutionary and swarm intelligence
algorithms without worrying about the complications of
combining them. Therefore, every software in this algo-
rithm has memory, data sharing, competition and col-
laboration. The software population in ODMA falls into
two groups: promising and leading. Leading software is
more popularity in user communities than promising
software. The main operations of evolution in this algo-
rithm include (i) moving towards the leading softwares,
(ii) evolution of the leading softwares based on their

history, and (iii) removing weak softwares and forking
new softwares based on the leading softwares [15].

Figure 1 shows the ODMA flowchart [15]. As illus-
trated, the initial population of softwares is first random-
ly assigned. The softwares is then sorted according to a
fitness function, so that the first software has the best
value of the fitness function. After that, three steps
related to softwares evolution are applied. Finally, the
above steps are repeated until the stop condition is
satisfied. This paper uses ODMA to optimize the de-
ployment process of IoT services on fog nodes.

3.2 Autonomous Systems

The autonomic computing paradigm was introduced by
IBM in 2001 to describe the activities of computer
systems, where it was able to adapt to changes in the
environment without user intervention [35]. Autonomic
computing can enable computer systems to manage

Start

End

Initializing the softwares

Calculating the fitness function and sorting all

softwares

Moving toward the leading softwares

Evolution of leading softwares based on their

history

Removing weak softwares and forking new

softwares based on leading softwares

Returning the best solution

No

Yes

Stop condition

satisfied?

Fig. 1 ODMA flowchart

J Grid Computing (2022) 20: 12Page 6 of 2912

independently through self-management. Each auto-
nomic system has the characteristics of self-optimiza-
tion, self-protection, self-healing, and self-configura-
tion. Self-optimization refers to identifying opportuni-
ties to improve QoS according to defined objectives
[36]. Self-protection is related to the privacy and secu-
rity of computer systems by identifying types of attacks.
Self-healing can provide the reliability and availability
of computer systems by detecting unexpected errors.
Finally, self-configuration refers to setting the basic
parameters and operating conditions of computer sys-
tems automatically.

IBM introduced the MADE-k model (monitor-
ing, analysis, decision-making, and execution con-
trol loop with a shared knowledge base) to achieve
self-management capabilities and achieve indepen-
dent management of computer systems, as shown
in Fig. 2. In the monitoring phase, data is captured
by network elements and sensors from a dynamic
environment. The analysis phase is responsible for
collecting and converting data in order to create a
system status recognition model. The decision-
making phase involves planning based on event-
condition-action rules that can put the system in
the desired state. Finally, the execution phase ex-
ecutes the decisions made by the decision-making
phase by influencing the managed element. In
addition, knowledge is a common database among
the various phases for storing and exchanging
events.

4 Proposed Framework

In this section, a three-layer conceptual computing
framework (i.e., cloud-fog-IoT) is proposed to describe
the interactions between system components and the
FSP problem-solving policy. This framework formu-
lates the FSP problem based on the autonomous
MADE-k model [14]. The FSP problem determines
which IoT services are deployed on which fog nodes
to execute. Let n applications be available for processing
by IoT devices, where A = {a1, a2, …, ai, …, an} and
ai refer to the ith application. Each IoT application
contains a number of tasks. Each task is considered as
an IoT service request created by IoT devices. The
whole of all services from n IoT applications includes
the r service, where S = {s1, s2, …, sj, …, sr} and sj
refer to the jth service. On the other hand, FCL includes
m decentralized fog nodes, where F = {f1, f2, …, fk,
…, fm} and fk refer to the kth fog node.

The sj ∈ ai service can be subdivided into a set of
tasks, each of which is assigned to a fog node for
execution. Thus, the fk fog node can execute a subset
of parsed tasks from separate services. Each node
contains a set of VMs that can host a subset of parsed
tasks. For convenience, we assume services are in-
separable and perform all tasks of a service on an
independent fog node. Also, each service is hosted by
only one fog node until the end of the execution
process.

As shown in Fig. 3, the FSP problem refers to the
services placement from IoT applications on
decentralized fog nodes, so that the time deadline of
the applications is guaranteed. Each application contains
several services indicated by ellipses. A IoT service is
assigned to only one fog node. However, a fog node can
support more than one IoT service due to its free re-
sources, because the resources in the fog nodes are
provided by different VMs. Links between IoT services
indicate that they can exchange data according to the
Directed Acyclic Graph (DAG) model [46]. IoT ser-
vices execute in the FCL and close to data resources,
as each service requires specific resources at a reason-
able time. Properly allocating IoT services to limited
resources is a challenge that defines the FSP problem.
Therefore, a proper placement policy is needed to opti-
mize resources and ensure QoS, for which a conceptual
computing framework based on the autonomous
MADE-k model is proposed in this paper.

Autonomic Element

Autonomic Manager

Analyze

Monitor Execute
Knowledge

base

Sensors Effectors

Managed Element

Decision

Fig. 2 IBM MADE-k control loop

J Grid Computing (2022) 20: 12 Page 7 of 29 12

As shown in Fig. 4, the proposed framework consists
of three layers: cloud servers (i.e., CCL), fog domains
(i.e., FCL), and IoT devices. The CCL is at the highest
level, then the FCL, and the IoT device layer is at the
lowest level. The IoT device layer consists of a large
volume of low-cost smart devices that collect endpoint
information and send it to the FCL for processing. FCL
has limited computing and storage resources provided
by fog nodes. Fog nodes can be set-top-boxes, access
points, base stations, servers, gateways, switches,
routers, and more. Meanwhile, IoT devices such as
smartphones, sensors, smartwatches, smart vehicles,
cameras, etc., also show end users. The FCL receives
requests from the IoT device layer to provide the re-
sources they need. When the FCL fails to provide these
resources, the request must be forwarded to the CCL for
execution. CCL consists of a set of high-powered stor-
age and computing servers capable of processing com-
plex requests.

In order to efficiently manage and improve link
rates, fog nodes in the FCL are subdivided into non-
overlapping domains, where each domain is man-
aged by a dedicated node called FOCN. FOCN in
each domain is randomly selected from the fog
nodes and is responsible for domain workload man-
agement, authentication, and monitoring of the sub-
ordinate fog domain. In addition, fog domains can
work together to respond to requests through FOCN.
The proposed framework includes p of the fog do-
main, where D = {d1, d2, …, dj, …, dp} and dj
refer to the jth fog domain. Each domain is connect-
ed to a cloud environment through cloud gateways
and includes a FOCN and several of fog nodes. oj is
the FOCN in the domain di, and Res(di) represents

the set of subordinate fog nodes in this domain.
Here, fi, j refers to the ith fog node in the jth fog
domain. In addition, the FCL has a Cloud-Fog Con-
trol Middleware (CFCM) that manages resource re-
quests. Therefore, all resource requests generated by
the IoT device layer are sent to the CFCM in the
FCL through the fog gateway.

Communication links between ecosystem compo-

nents have low latency rates. lDM is the communication
link latency associated with the IoT devices and CFCM,
l f i

o j is the communication link latency associated with

jth FOCN and the ith fog node, lo j

N is the communication
link latency between jth FOCN and the Nearest Neigh-

boring Fog Domain (NNFD), lMo j
is the communication

link latency between CFCM and jth FOCN, and lMR
refers to the communication link latency between
CFCM and R cloud resources. All fog nodes have
storage capacity, processor and memory, denoted by
S f i , P f i and M f i , respectively. Similarly, these factors
for FOCN are denoted by So j , Po j and Moj , respective-

ly. On the other hand, every IoT application such as ai
includes ri independent services that must be placed on
fog nodes. Each sj ∈ ai service has different storage,
processor, and memory requirements, denoted by Ss j ,
Ps j , and Msj , respectively. Plus, each IoT service has a

time deadline indicated by Ds j , where Dai can be the

time deadline of application ai.
According to the proposed framework, the CFCM

receives and processes resource requests by the Ad-
mission Control Unit (ACU). This unit detects ap-
plications that are sensitive to latency and real-time,
and transfers other applications to CCL for execu-
tion. In addition to ACO, CFCM includes the

…Fog node 1 Fog node 2 Fog node 3 Fog node 4 Fog node

Service 1

Service 2

Service

Service 5

Service 3

Service 4

Application 1 Application. . .Fig. 3 Overview of the FAP
problem

J Grid Computing (2022) 20: 12Page 8 of 2912

Data storageComputing servers
Data centers

Cloud gateway

C
lo

ud
 c

om
pu

tin
g

la
ye

r

Fog domain 1

KB

Agent

Observer

Fog

orchestration

control node

���� Fog nodeFog nodeFog node

Knowledge

Base (KB)

Execute

Decision

Analyze

Monitor

Cloud-Fog Control Middleware

Admission Control

Unit (ACU)

Fog domain

KB

Agent

Observer

Fog

orchestration

control node

���� Fog nodeFog nodeFog node

����

Fo
g

co
m

pu
tin

g
la

ye
r

Io
T

 d
ev

ic
es

 la
ye

r

Fog gateway

Fig. 4 Proposed conceptual computing framework

J Grid Computing (2022) 20: 12 Page 9 of 29 12

autonomous MADE-k model. MADE-k is a control
loop model that can monitor, prioritize, placement,
and finally execute resource requests. The CFCM
performs the deployment of IoT services on fog
nodes based on the MADE-k model and informs
the FOCNs of the details of the planning. The data
required by the MADE-k model for placement
through the FOCN is sent to the CFCM at different
time periods. Therefore, each FOCN makes details
of subordinate fog domain resources available to the
CFCM at specified timeslots. The proposed mecha-
nism emphasizes the sending of this information at
the beginning of each time period τ.

When none of the fog nodes in a domain can
provide the resources needed for a request, the re-
quest is sent to the NNFD by FOCN. This can be
repeated by other domains. Finally, if the required
resources are not provided by any of the domains,
FOCN notifies the CFCM of this issue and the
CFCM sends the request to the CCL for execution.
A description of all the variables and symbols asso-
ciated with the problem is shown in Table 2. In
addition, Table 3 shows the details of all the abbre-
viations used in this paper.

High-level descriptions of how the proposed frame-
work works and the interactions between ecosystem
components are provided below.

4.1 Fog Node

The main entity in the FCL are fog nodes. These nodes
are decentralized computing entities that enable the
deployment and execution of IoT services. Fog nodes
communicate with IoT devices through various proto-
cols such as SNMP and CoAP [3]. They have the ability
to temporarily storage data and periodically send their
performance reports to the CCL. A fog node has five
components including listener, monitor, database, con-
trol manager and compute. The listener component is
responsible for receiving the IoT service from FOCN.
The monitor component monitors how the IoT service is
executed in the compute component. Fog landscape
status, monitored data, available node resources, and
IoT service details are stored in the database component.
The control manager component performs some opera-
tions on the fog node. Finally, the resources required for

the IoT service are provided by the compute component
to execute the service.

Each fog node as a computing resource has stor-
age, processing, and memory capabilities for
deploying and executing IoT services. Nodes in the
fog domain consist of two types of thin and fat
devices that only fat devices can process and calcu-
late. Thin devices are used as sensors and actuators.
Therefore, fat devices with different resource capa-
bilities are considered as fog nodes and are used to
provide IoT services according to various needs. A
node among the available fog nodes in a fog domain
is randomly considered as FOCN, which has various
tasks to manage the fog domain.

4.2 Fog Domain

Each fog domain consists of a FOCN and several fog
nodes with different resource capabilities. The fog
domain is supported by a head element in the cloud
(i.e., CFCM). In the proposed framework, there are
several fog domains that regularly work timeslots at
regular intervals to deploy IoT services on appropri-
ate fog nodes according to QoS requirements. The
fog domain manages the IoT services received from
CFCM. The fog domain stores the capabilities of
existing fog nodes and the QoS requirements associ-
ated with IoT services in its knowledge base. In
addition, the fog domain is responsible for determin-
ing the appropriate scheduling to provide the re-
sources needed by IoT services according to the
autonomous computing model.

4.3 Fog Orchestration Control Node

FOCN monitors the execution of the IoT service on
the dependent subordinate fog nodes. This node
cooperates to execute services with other fog do-
mains through low-latency communication links. In
addition, FOCN can communicate with the CFCM
or send some requests to the CCL. Resource utiliza-
tion analysis and subordinate domain reconstruction
are other FOCN tasks.

A FOCN has six components: listener, reasoner,
propagation, watchdog, registry, and storage. The
listener component is responsible for receiving IoT
services from the CFCM. The reasoner component

J Grid Computing (2022) 20: 12Page 10 of 2912

Table 2 Description of all variables and symbols related to the problem

Variables Description Variables Description

n Number of IoT applications
S f i

Storage capacity of fi

r Number of IoT services
P f i

Processor capacity of fi

m Number of fog nodes
M f i

Memory capacity of fi

p Number of fog domains
So j

Storage capacity of oj

A Set of applications
Po j

Processor capacity of oj

S Set of services
Moj

Memory capacity of oj

F Set of fog nodes
Ss j

Storage capacity required by sj

D Set of fog domains
Ps j

Processor capacity required by sj

ai The ith application
Msj

Memory capacity required by sj

sj The jth service
Ds j

Time deadline of sj

fk The kth fog node
Dai

Time deadline of ai

dj The jth fog domain
RTai

Execution time of ai

oj The jth FOCN P(ai) The priority of ai
Res(di) Set of subordinate fog nodes in di Rai

The time of sending the ai

ri Number of independent services in ai SC(ai) Service cost factor for ai
fi, j Fog node fi in the domain dj EC(ai) Energy consumption factor for ai

lDM
Link latency between devices and CFCM RT(ai) Response time factor for ai

l f i
o j

Link latency between oj and fi LT(ai) Latency factor for ai

lo j
N

Link latency between oj and NNFD FU(ai) Fog resource utilization factor for ai

lMo j

Link latency between CFCM and oj ξSC Weight of service cost factor

lMR
Link latency between CFCM and cloud ξEC Weight of energy consumption factor

lM Latency processing of service workloads in CFCM ξRT Weight of response time factor

lO Latency processing of service workloads in FOCN ξLT Weight of latency factor

lf Latency processing of service workloads in fog node ξFU Weight of fog resource utilization factor

lN Latency processing of service workloads in NNFD
X dv

s j

Binary variable for sj deployment on device dv

lR Latency processing of service workloads in cloud
CMdv

s j

Execution time of service sj on the device dv

φ Free resource rate of a fog node
CPdv

s j

Execute cost of service sj on the device dv

τ The time period EAC(sj) Energy consumed by ACU for sj
t System current time EST(sj) Energy consumed by FOCN for sj
xO binary decision variables for FOCN EFG(sj) Energy consumed by fog node for sj
xf binary decision variables for fog node ET(ai) Execution time of ai
xN binary decision variables for NNFD WT(ai) Waiting time of ai
xR binary decision variables for cloud CT(ai) Communication time of ai

J Grid Computing (2022) 20: 12 Page 11 of 29 12

analyzes the details of deploying IoT services. The
propagation component is responsible for transfer-
ring services whose resources are not available on
the subordinate fog domain. IoT services are sent to
the CFCM and then to the CCL, or to the NNFD
depending on the resources available in other do-
mains. FOCN can find the NNFD by checking the
communication link latency. In the watchdog com-
ponent, QoS parameters and resources consumed in
the subordinate fog domain are measured. The reg-
istry component provides the allocation of services
in the compute component of fog node. Finally, the
deployment of IoT services in the fog domain is
maintained by the storage component.

4.4 FSP Problem Limitations

We define two limitations including the execution
time deadline and the resources utilization for the
FSP problem. The first limitation refers to the exe-
cution time deadline of an application, which varies
according to the type of application. In general, the
execution time of the application in the ecosystem
should not exceed the time deadline of that applica-
tion. Let RTai be the execution time of ai on the
ecosystem and Dai the time deadline of this applica-
tion. In this case, the time deadline limitation is
defined by Eq. (1).

RTai ≤Dai ; ∀ai∈A ð1Þ

The second limitation refers to the amount of storage
capacity, processor and memory utilization of the fog
nodes by IoT services. Therefore, the resources required
by IoT services should not be more than the resources
available for fog nodes, where this is also the case for
FOCN. Let fk be the fog node assigned to the sj IoT
service. In this case, the limitation of the resource’s
utilization is defined by Eq. (2).

Ss j ≤φS f k&Ps j ≤φP f k&Msj ≤φM f k ;
∀s j∈ai; ai∈A

ð2Þ

Where,φ refers to the free resource rate of a fog node
that can be used for internal activities and data exchange
with other fog nodes.

4.5 Cloud-Fog Control Middleware

The CFCM, as the most important component in the
FCL, is responsible for deploying and managing IoT
services. CFCM operates on two main components
including ACU and MADE-k model. Requests are
received by the ACU from IoT devices. CFCM
stores the capabilities of enabled fog nodes and
information about the QoS requirements of IoT ser-
vices in its knowledge base. Thus, the MADE-k
model automatically decides whether to placement
IoT services on fog nodes and send them to fog
domains. In addition, CFCM monitors the utilization
of cloud resources. Hence, there is a bridge between
FCL and CCL through the cloud gateway.

CFCM periodically solves the FSP problem. The
proposed mechanism is that at each τ time period, the
IoT services are deployed on the fog nodes by the
MADE-k model. Therefore, newly received services
should be postponed until the nearest time period. Fi-
nally, the execution of the IoT services starts after the
complete deployment of all received requests in a time
period. It is important to note that CFCM deploys IoT
services in a distributed manner for each fog domain.
Therefore, details of the deployment of IoT services
after placement are sent to the FOCNs in each fog
domain.

Table 3 Details of all abbreviations used in this paper

Acronyms Definition

QoS Quality of Service

FSP Fog Services Placement

ODMA Open-source Development Model Algorithm

MADE-k Monitoring, Analysis, Decision-Making, And
Execution-knowledge base

FCL Fog Computing Layer

CCL Cloud Computing Layer

VM Virtual Machine

FOCN Fog Orchestration Control Node

NNFD Nearest Neighboring Fog Domain

CFCM Cloud-Fog Control Middleware

ACU Admission Control Unit

J Grid Computing (2022) 20: 12Page 12 of 2912

4.5.1 Admission Control Unit

The CFCM has an ACU that receives requests from
IoT devices through fog gateways at the edge of the
network, as shown in Fig. 5. Based on the response
time and time deadline of the applications, this unit
detects applications that are sensitive to latency and
real-time, and transfers other applications to CCL
for execution. Plus, when the FCL is unable to
provide the resources needed for a request, the
ACU sends the request to the CCL. This unit has a
queue that processes FCL-related requests at regular
timeslots. The proposed mechanism is that in each τ
time period, IoT services are sent from the queue to
the planning model (i.e., MADE-k). This can ensure
ecosystem dynamics for latency-sensitive and real-
time applications.

4.5.2 Autonomous MADE-K Model

There is a CFCM in the FCL that deploys IoT
services based on the MADE-k model. This model
consists of four phases of monitoring, analysis,
decision-making and execution control loop with a
shared knowledge base. The MADE-k model de-
ploys IoT services for each fog domain autonomous-
ly and distributed. When the service fails to execute
on the fog domain, it must be sent to the NNFD or
CCL, which will increase the latency. Therefore, the
FSP problem-solving approach must deploy IoT ser-
vices efficiently and taking into account the QoS
requirements to minimize latency. In addition to

latency, there are other metrics such as response
time, energy consumption, fog resource utilization,
cost, etc. in solving the FSP problem that must be
considered to satisfy. Therefore, we formulate the
FSP problem as a multi-objective optimization prob-
lem to solve it with a meta-heuristic approach. In
this paper, the QoS-aware IoT services placement
policy in FCL based on ODMA as a meta-heuristic
algorithm is performed. Placement planning and re-
quest management for execution is done by autono-
mous MADE-k model. This model receives requests
from the ACU and processes them in four phases as
follows.

Monitoring phase The input of this phase is the data
related to the available fog nodes from the subordi-
nate fog domain and the set of IoT services existent
in time period τ. This phase is responsible for mon-
itoring free resources in the fog domain, FOCN
status, resources required by IoT services, and fog
node status. At this phase, the utilization of storage,
processor and memory in each time period is mon-
itored. Also, the monitoring phase is responsible for
managing requests that are sent to the CCL due to
lack of required resources. In addition, in this phase,
details of IoT applications, resources required by
IoT services, and fog nodes status are stored in the
knowledge base.

Analysis phase This phase sets the priority of exe-
cuting IoT services to reduce IoT service latency
and improve the placement process. Given that

MADE-k model

Monitor Analyze Decision Execute

Knowledge base

Start Process in the cloud computing layer
Send to

cloud

Send to fog

domain

Responses

send to IoT

devices
Request process

by ACU

IoT request

send to ACU

End

Fig. 5 The admission control function

J Grid Computing (2022) 20: 12 Page 13 of 29 12

each application includes IoT several services, so
priorities are determined by the application. In this
regard, all IoT services in an application have the
same priority and are executed based on the pri-
ority set for their application. In this paper, prior-
ity is defined based on the time interval to the
application deadline, as done in [4, 5]. According-
ly, applications with the shortest time to deadline
has a higher priority for placement and execution.
P(ai) refers to the priority of the application ai,
which is defined by Eq. (3).

P aið Þ ¼ 1

Dai− t−Raið Þ ð3Þ

Where,Dai is the execution time of the application ai,
t is the current time and Rai is the time of sending the ai
by the end user.

Decision-making phase The input to this phase is a
set of IoT services that are prioritized according to
their applications. In addition, details of fog nodes
and free resources in the fog domain are available
in this phase. Based on this data, the decision to
IoT services placement is made at this phase. In
this paper, the decision-making process is perform-
ed by ODMA based on multi-objective optimiza-
tion. This algorithm provides a placement scheme
for the fog domain independently, as described in
Section 6. At the end of this phase, placement
details created for IoT services are stored in the
knowledge base.

Execution phase In this phase, according to the place-
ment scheme created in the decision-making phase, IoT
services are deployed and executed on fog nodes. In this
phase, the results of executing IoT services on fog nodes
are stored in the knowledge base.

J Grid Computing (2022) 20: 12Page 14 of 2912

The pseudocode of the proposed framework for the
cloud-fog-IoT ecosystem is shown in Algorithm 1. The
loop embedded in line 1 is to execute the phases of the
autonomous MADE-k model in each time period such
as τ. Lines 2–6 as well as lines 7–11 performmonitoring
phases for IoT services and the fog nodes status, respec-
tively. In addition, this phase monitors storage, proces-
sor, and memory utilization on line 4 for IoT services
and line 9 for fog nodes. Also, the details of the IoT
services and the fog nodes status are stored in lines 5 and

10, respectively. Lines 12–15 relate to application pri-
oritization in the analysis phase. Lines 16–19 relate to
the decision-making phase, which carries out the QoS-
aware placement scheme for deploying IoT services
using ODMA. In lines 20–23, the created placement
scheme is applied and IoT services are executed on the
fog nodes. Finally, the output of the algorithm is de-
scribed in line 25.

J Grid Computing (2022) 20: 12 Page 15 of 29 12

5 Proposed Placement Policy with ODMA

In this paper, the FSP problem is formulated as a multi-
objective optimization problem considering some QoS
requirements, which is an NP-Complete problem [28].
In order to prove the effectiveness of meta-heuristic
techniques in solving optimization problems, in this
paper, ODMA is used as a meta-heuristic algorithm to
solve the FSP problem, which we call FSP-ODMA.
FSP-ODMA is a QoS-aware placement policy in the
MADE-kmodel that decides on the optimal deployment
of IoT services by compromising between different
objectives such as service cost, energy consumption,
response time, latency and fog resource utilization.

Like other evolutionary algorithms, ODMA consists
of three main steps: 1) encoding solution (as a software)
and creating the initial population, 2) calculating the
fitness of the solutions, and 3) population evolution to
satisfaction of the stop conditions. Basically, steps 1 and
2 are similar for evolutionary algorithms, and it is this
way of population evolution in step 3 that distinguishes
the optimization process in the algorithms. The evolu-
tion process in ODMA is based on two groups of
solutions, namely promising and leading, which is done
in three steps: (i) moving towards the leading softwares,
(ii) evolution of the leading softwares based on their
history, and (iii) removing weak softwares and forking
new softwares based on the leading softwares [15]. The
details of ODMA to solve the FSP problem are de-
scribed below. In addition, the pseudocode of the FSP-
ODMA approach to solving the FSP problem is shown
in Algorithm 2.

Lines 1–5 are dedicated to the initial population
creation step. In line 6, the algorithm is repeated to the
specified number. Line 7 refers to the sorting of solu-
tions based on the fitness function. The selection of a
subset of the leading solutions in line 8 is done. Lines 9–
19 relate to the first step in the evolution of the ODMA
algorithm. Lines 20–29 are related to the second step
and lines 30–38 are related to the third step of evolution.

5.1 Encoding Solution and Creating the Initial
Population

In ODMA, each iteration consists of a population of
software, so that each software encodes a solution to the
problem. Here, the initial population includes the NP

solution, which is encoded based on Integer Linear
Programming (ILP) to assign IoT services to fog nodes.

Figure 6 shows the proposed encoding for representa-
tions of solutions in FSP-ODMA. As illustrated, each
solution contains r independent element as the number
of fog services available for placement in time period τ.
In this encoding, each element refers to a separate IoT
service from a specific application. On the other hand,
the value of each element refers to an available fog node.
Consequently, vk ∈ F is a fog node assigned to the IoT
service sj. Due to the ability to host multiple services by
one fog node, services can be duplicated in more than
one fog node [4].

This encoding ensures that all IoT services are de-
ployed on fog nodes. After defining the encoding, the
initial population containing theNP solution is generated
randomly. Figure 7 provides an example of a solution
encoding process for better understanding, where 12 IoT
services from 4 applications are assigned to 4 fog nodes.
In this example, application a1 contains the IoT services
{s1, s2, s3}, which are deployed on the fog nodes {f1,
f1, f2}, respectively. Application a2 consists of two IoT
services {s4, s5}, which are assigned to fog nodes {f1,
f3}, respectively. The IoT services {s6, s7, s8, s9} be-
long to the application a3, which are mapped to the fog
nodes {f1, f2, f3, f4}, respectively. Finally, IoT services
{s10, s11, s12} of application a4 are deployed on fog
nodes {f3, f4, f4}, respectively.

5.2 Fitness Function

In each iteration of the optimization process, the fitness
of the solutions must be calculated. The fitness function
(also known as the objective function) is used to evalu-
ate solutions to the ideal solution. In this paper, the FSP
problem is formulated as a multi-objective optimization
problem, where it is rarely possible in theory to produce
the ideal solution to such problems that satisfy all ob-
jectives at the same time [5]. Therefore, the ideal solu-
tion must be determined based on a compromise and
agreement between the objectives.

Several objectives in the FSP problem have been
explored by researchers to satisfy different QoS require-
ments, for example, number of services accepted, fog
resource utilization, SLA violation, energy consump-
tion, response time, service time, latency, throughput,
service cost, etc. However, some objectives including
service cost, energy consumption, response time, laten-
cy and fog resource utilization have been identified by
many researchers as the main objectives in the FSP
problem [4, 5]. Hence, we calculate the fitness of

J Grid Computing (2022) 20: 12Page 16 of 2912

solutions with the aim of minimizing service costs,
energy consumption, response time and latency, and
maximizing the fog resource utilization. Thus, the fit-
ness function for the FSP problem is defined by the five
objectives considered by Eq. (4), where we seek to
minimize it.

Fitness ¼ ξSC:SC þ ξEC:EC þ ξRT :RT

þ ξLT :LT−ξUF :FU ð4Þ
Where, SC, EC, RT, LT and FU refer to the factors of

service cost, energy consumption, response time, laten-
cy and fog resource utilization, respectively, and ξSC,
ξEC, ξRT, ξLT and ξFU are the weights associated with
these factors.

According to [7], the effect of all objectives is con-
sidered the same. The process of calculating SC, EC,
RT, LT and FU based on the IoT application is discussed
below, where the sum for all applications must be con-
sidered to calculate the final fitness. Meanwhile, Since
the factors used in the objective function have different
units of measurement, the values of each factor are
normalized before calculation.

Service cost (SC): The service cost refers to the
monetary cost associated with that service, which in-
cludes the communication service (i.e., the service exe-
cution time) and the computational cost (i.e., the cost of
executing the service on the node) [48]. Each service
can be deployed and executed on cloud R, FOCN or fog

node. Let X dv
s j be a binary variable that indicates the IoT

service sj is deployed on the device dv ∈ {R, O, f}.
Since there is no priority to execute services owned by
an application, we calculate the cost factor for an appli-
cation. Eq. (5) defines the cost factor for the application
ai.

SC aið Þ ¼ ∑
s j∈ai

X R
s jCM

R
s jCP

R
s j þ XO

s jCM
O
s jCP

O
s j

þ X f
s jCM

f
s jCP

f
s j ð5Þ

Where, CMdv
s j and CPdv

s j are the execution time and

execute cost of service sj on the device dv, respectively.

Energy consumption (EC) The energy consumption of
each service requested in the cloud-fog-IoT ecosystem
includes three types of energy: 1) energy consumed to
service processing in the ACU, 2) energy consumed to
transfer service to the FOCN via CFCM, and 3) energy
consumed to service execution in the fog node.

Therefore, the energy consumption of the IoT service
sj is calculated based on the sum of these three types of
energy. Hence, the total energy consumption of the
application ai can be calculated based on the sum of
the energies consumed by all the services belonging to
ai, as shown in Eq. (6).

EC aið Þ ¼ ∑
s j∈ai

EAC s j
� �þ EST s j

� �þ EFN s j
� � ð6Þ

Where, EAC(sj), EST(sj) and EFN(sj) refer to the energy
consumed by ACU, FOCN and fog node for IoT service
sj, respectively.

The energy consumed for service processing in the
ACU (i.e., EAC) is measured based on the size of the
service. EAC is defined for the IoT service sj in Eq. (7).

EAC s j
� � ¼ SSs j :θAC:nAC ð7Þ

Where, SSs j is the size of the IoT service sj based on
the number of bits, θAC is the energy consumed per
processor cycle in the ACU, and nAC is the number of
cycles required by the processor to process one bit of
data.

The energy consumed to transfer the service to
FOCN via CFCM (i.e., EST) is measured based on the
communication architecture. EST is defined for the IoT
service sj in Eq. (8).

EST s j
� � ¼ SSs j :te f

bwf :senet
ð8Þ

Where, tef is the transmission energy of the signal
transmitter, bwf is the output bandwidth of FOCN and
senet is the spectral efficiency of the communication link
between the CFCM and FOCN. Considering tef, senet is
calculated by Eq. (9) [10].

senet ¼ log2 1þ pf :k f :γ f

bwf :N0 þ ip f

 !
ð9Þ

Where, pf is the probability of FOCN being idle, kf is
the shadowing factor in the communication link, γf is the
channel loss rate, N0 is the noise power spectral density,
and ipf refers to the interference power in the FOCN.

There are two types of fog nodes (i.e., thin and fat) in
the proposed framework, where only fat nodes can
perform calculations and processing. The energy con-
sumed to execute the service in the fat type node (i.e.,
EFN) is measured based on the processing time and the
amount of processor utilization. EFN is defined for the

J Grid Computing (2022) 20: 12 Page 17 of 29 12

IoT service sj in Eq. (10).

EFN s j
� � ¼ ∫tβtαEs j tð Þdt ð10Þ

Where, tα and tβ are the start and end times of the IoT
service sj, respectively, and Es j tð Þ is the energy con-

sumed to execute the IoT service sj at time t. Es j is

calculated by considering the relationship between the
FOCN and the fog node according to Eq. (8).

Response time (RT): The response time of an appli-
cation is estimated based on the execution time, waiting
time, and communication time of all IoT services be-
longing to that application, as defined in Eq. (11).

RT aið Þ ¼ ET aið Þ þWT aið Þ þ CT aið Þ ð11Þ

Where, RT(ai) is the response time of application ai,
and ET, WT, and CT refer to execution time, waiting
time, and communication time, respectively.

Basically, the execution time of a IoT service de-
pends on the hardware configuration of the fog node
(i.e., total memory size, memory utilization, cache size,
and processor power) and the software features of the
services depend on the application (i.e., the computa-
tional time complexity of the application module). Here,
the Whetstone criterion is used to calculate the service
processing capability and the TPROF tool is used to
determine the computational time complexity of the
application module [47]. Let Exe(sj) be the execution
time predicted for the IoT service sj. Hence, the total

execution time of the application ai is estimated based
on the sum of the execution times of all the IoT services
belonging to application ai, as shown in Eq. (12).

ET aið Þ ¼ ∑
s j∈ai

Exe s j
� � ð12Þ

Requests are sent from IoT devices to CFCM. Ac-
cordingly, three queues are defined in the ecosystem
based on the FCFS. The QM queue is related to the
incoming traffic flow to the CFCM. The Qf queue refers
to traffic flow in fog nodes, and the QR queue refers to
traffic flow in the cloud. Based on these three queues,
the waiting time of an IoT service can be calculated. We
calculate the waiting time inQM based on time periods τ.
However, the waiting time in Qf is calculated based on
the time between IoT services reaching the fog node,
where the input rate is assumed by the Poisson distribu-
tion. Let λ be the input rate of requests and μ is the rate
of distribution of IoT services by the MADE-k model.

Accordingly, WT sFNj
� �

is the waiting time in Qf asso-

ciated with the IoT service sj defined by Eq. (13) [48].

WT sFNj
� �

¼ 1

μi−λi
−
1

μi
ð13Þ

Since the cloud has virtually unbounded resources,
the waiting time of IoT services can be considered zero
for QR. Therefore, the execution time of IoT service sj is
calculated based on Eq. (14).

Application …Application …Application Application

…………

…………

Fig. 6 Proposed encoding to representations of solutions

Fog

node

Fog

node

Fog

node

Fog

node

Application Application Application Application

443432131211

Fig. 7 An example of a solution encoding process

J Grid Computing (2022) 20: 12Page 18 of 2912

WT sj
� � ¼ WT sfj

� �
þWT sMj

� �
ð14Þ

Hence, the total execution time of the application ai is
estimated based on the sum of the execution times of all
the IoT services belonging to application ai, as shown in
Eq. (15).

WT aið Þ ¼ ∑
s j∈ai

WT s j
� � ð15Þ

The communication time required to transfer data
between ecosystem components at different layers is
calculated based on the latency of the communication
links. Since IoT services are sent by CFCM to the
FOCN and then to the fog nodes, the sum of the laten-

cies lMo j
and l f i

o j is considered as the communication

time. The amount of these latencies is negligible, how-
ever the latency between components i and j is calculat-
ed based on bandwidth (bwi, j), a constant propagation
latency (lpd), and the size of the data associated with the
IoT service sj (dss j), as shown in Eq. (16). In addition,

Eq. (17) shows the total communication time of the
application ai.

WT aið Þ ¼ ∑
s j∈ai

WT s j
� � ð16Þ

CT aið Þ ¼ ∑
s j∈ai

CT s j
� � ð17Þ

Latency (LT): latency factor indicates the time re-
quired to execute all services in an application. In the
proposed framework, we consider two types of latency
for each service: 1) communication link latency and 2)
processing latency. Communication link latency in-
clude: latency in transmission of service workloads from

IoT device to CFCM (lDM), latency in transmission of

service workloads from CFCM to FOCN (lMO), latency
in transmission of service workloads from CFCM to fog

node (lOf), latency in transmission of service workloads

from FOCN to NNFD (lON), and latency in transmission
of application workloads from CFCM to R-cloud re-

sources (lMR). On the other hand, processing latency
include: latency processing of service workloads in
CFCM (lM), latency processing of service workloads
in FOCN (lO), latency processing of service workloads
in fog node (lf), latency processing of service workloads
in NNFD (lN), and latency processing of service

workloads in R-cloud resources (lR). In this paper, com-
munication link latency is avoided because communi-
cation link latency between ecosystem components is
negligible due to the close distance to the network edge
[5]. Therefore, the total latency of application ai is
calculated based on Eq. (18).

LT aið Þ ¼ ∑
s j∈ai

lM s j
� �þ xO:lO s j

� �þ x f :l f s j
� �

þ xN :lN s j
� �þ xR:lR s j

� � ð18Þ

Where, xO, xf, xN, and xR represent the binary decision
variables for FOCN, fog node, NNFD, and cloud R,
respectively.

Each factor is multiplied by a binary decision vari-
able to determine the computing resource assigned to
the IoT service sj. Due to the processing of all services
for placement in CFCM, lM applies to all services. Given
the time periods specified, we assume lM = τ. Also,
given the strong computing capacity and rich resources
in the cloud, lR = 0 is assumed. The latencies associated
with lO, lf and lN are calculated similarly. Here, the
latency lf is calculated according to Eq. (19).

l f s j
� � ¼ SSs j :φ f s j

� �
fr f

ð19Þ

Where, SSs j is the size of the IoT service sj based on
the number of bits, φf(sj) is the number of cycles re-
quired by the processor per fog node to execute the IoT
service sj, and frf is the frequency of the fog node.

Fog resources utilization (FU): This factor indicates
the number of FCL locations utilized by IoT services.
Therefore, maximizing the fog resources utilization to
reduce energy consumption is emphasized. This factor
is calculated based on the communication latency and
placement associated with deploying the IoT service on
FOCN, fog node, NNFD, or cloud R, as these can lead to
breach of application deadlines. Eq. (20) calculates the
fog resources utilization for the application ai.

FU aið Þ ¼ P aið Þ ∑
s j∈ai

xO s j
� �þ x f s j

� �þ xN s j
� �þ xR s j

� �� �

ð20Þ

Where, P(ai) is the priority of the application ai,
which is calculated by Eq. (3). Also, xO, xf, xN, and xR
are the binary decision variables associated with the IoT
service sj for FOCN, fog node, NNFD, and cloud R,
respectively.

J Grid Computing (2022) 20: 12 Page 19 of 29 12

5.3 The Process of Population Evolution

After creating the initial population, the fitness of each
solution is calculated. According to ODMA, solutions
are sorted so that soft1 is the best and softNP

is the worst
solution based on the fitness function. Then, z solutions
with the highest fitness function are selected as the
leading solutions, while other solutions are promising.
Therefore, LS = {soft1, soft2, …, softz} a set of leading
solutions and PS ¼ softzþ1

�
; softzþ2;…; softNP

g is a
set of promising solutions. Any solution as a software
may develop and evolve over time or become obsolete
and removed. The evolutionary process in ODMA con-
sists of three main steps: (i) moving towards leading
solutions, (ii) evolution of the leading solutions based on
their history, and (iii) removing weak solutions and
forking new solutions based on the leading solutions
[15]. The details of the evolutionary steps are described
below.

Moving toward the leading solutions: In this step,
each promising solution is developed based on a leading
solution. ODMA uses an open-source model-based
mechanism to select the leading solution. In this mech-
anism, each solution has a score, where scorei refers to
the score of the ith solution. Initially, the score is zero for
all solutions, scorei ¼ 0; ∀i ¼ 1; 2;…;NP . The so-
lution scores are updated during the optimization pro-
cess as follows:

& Adding a unit to the score of a solution that has
improved its position based on the fitness function.

& Adding a unit to the score of the leading solution
that has succeeded in improving the position of a
promising solution.

According to the solution scores, the promising so-
lution jth selects a solution from among the z leading
solutions for its development. The leading solution in-
dex selected by Eq. (21) is defined so that the promising
solution score is effective in selecting the leading solu-
tion [15].

ϕ ¼ argRand 1; zþ 1ð Þ− score j
∑z

i¼1scorei

	

2� zð Þ

	
� �

ð21Þ

Where, ϕ the leading solution index is selected and
argRand is a random function for selecting the solution
index within the specified range.

Next, the promising solution softj moves and de-
velops based on the leading solution softϕ. Here, the
moving process is performed in a discrete form with
the definition of the probabilistic variable ρ ∈ [0 −
1]. Here, each element of softj changes with proba-
bility ρ and with respect to its corresponding ele-
ment in softϕ. Basically, ρ = 1 changes all elements
softj to softϕ and ρ = 0 makes no change to softj.
Figure 8 shows an example of moving towards the
leading solutions, where changes have been made to
elements 4, 5 and 10. These changes are made on
the assumption that there is a probability of ρ for
these elements.

Evolution of the leading solutions based on their
history: In this step, each leading solution evolves based
on its history, including the current position (softcur) and
the old position (softold). softnew as a new position of a
leading solution and is calculated by Eq. (22).

softknew ¼
softkcur þ softkold

�
2

þ Δ ∀k ¼ 1; 2;…; r

ð22Þ

Where, Δ ∈ {−1, 0, 1} is a random number in the
defined range to create variation in the solution, and ‖∗‖
is a rounding function. k is known as the index of an
element in the solution, and r refers to the solution size
(i.e., the number of fog services).

According to the solution encoding, each element as
the position of a service in the solution cannot be less
than 1 and greater than r. Therefore, this constraint is
checked after applying this step to the solution and the
violations are corrected with the value of the previous
state.

Removing weak solutions and forking new solutions:
In this step, nω weak solution is removed after each Piter
iteration and replaced with new solutions, where nω ≤ z.
Weak solutions are determined based on the suitability
(i.e., average score and fitness function). For each solu-
tion removed, a new solution is forking of the leading
solutions. Here, nω the leading solution with the highest
suitability for forking is selected. Let softL be a leading
solution selected. The new forked solution from softL is
calculated by Eq. (23).

J Grid Computing (2022) 20: 12Page 20 of 2912

softknew ¼ softkL þ Δ ρ≥randðÞ
softkL otherwise

�
∀k ¼ 1; 2;…; r

ð22Þ
Where, Δ ∈ {−1, 0, 1} is a random number in the

defined range and ρ ∈ [0 − 1] determines the probabil-
ity of change in each element of the solution.

After the end of an iteration in ODMA, the new
population has evolved compared to the old population.
This process causes the population to converge towards
the optimal points in successive iterations. We now
analyze the stop criteria for the practical implementation
of the algorithm, as it is impossible to execute for
infinite time. In this paper, two stop conditions are
defined for ODMA: the conventional iteration method
and the achievement of convergence. In the first meth-
od, the number of iterations is used as a stop condition,
where the maximum number of iterations is defined as
Maxiter. The secondmethod can be defined by observing
the change in the most optimal solution of each iteration.
Convergence occurs when no change in the optimal
fitness of the solution is reported in several consecutive
iterations.

6 Simulation Results

In this section, the proposed algorithm (i.e., FSP-
ODMA) is compared to evaluate the performance
against other similar methods. This comparison is per-
formed with FSP-GWO [2], FSP-CSA [5] and FSP-
PSO [7] methods, where they solve the FSP problem
with GWO, CSA and PSO algorithms, respectively. In
addition, all comparable methods, like the proposed
algorithm, formulate the FSP problem as a multi-
objective problem. The source code link of all these
algorithms is available as open-source in related papers.
The simulation was performed on a testbed based on the
iFogSim28 simulator [36].

All experiments run on an HP ENVY Laptop with an
Intel® Core™ i7 processor with a speed of 4.7 GHz and
16 GB of RAM. Requests sent from IoT devices are
received by the CFCM, and based on the MADE-k
model, the FSP-ODMA automatically decides on the
services placement. In this regard, Google Cloud Plat-
form is used for cloud services and Raspberry Pi 3b +
Hypriot OS is used for fog nodes [36]. FCL is config-
ured based on the Spring and Java 8 frameworks. In
addition, communication exchanges between ecosystem

components are handled by JSON and REST API pack-
ages. This section discusses experimental setup, perfor-
mance metrics, and comparison results.

6.1 Experimental Setup

The simulation is performed on a virtual testbed plat-
form and the experimental setup are adjusted according-
ly [48]. In this study, different algorithms are evaluated
based on 5 consecutive time periods (i.e., τ = 5). The
number of services requested in each period is according
to Table 4. Tables 5 show the various parameters and
resource details for cloud servers and fog nodes. Ex-
penses related to storage, processor and memory are in
dollars per Billing Time Unit (BTU). The simulation is
performed for 3 fog domains, where the number of fog
nodes in the domains are 4, 8 and 12, respectively. Since
FOCN is randomly selected from the fog nodes, the
processing cost in FOCN and other fog nodes is the
same.

Requests are sent to the FCL as real-time
microservice-based applications by IoT devices. Three
microservice-based applications were used to evaluate
FSP-ODMA compared to FSP-GWO, FSP-CSA and
FSP-PSO methods. These applications include Smart-
health, Teastore and Hipstershop. Smart-health is a
microservice application based on smart healthcare with
4 services that uses ECG sensor for continuous patient
monitoring. The application includes modules for
extracting anomalies, analyzers and persistence that
process data locally and without latency in the FCL.
Teastore is an e-commerce industry application with 6
services that has been used by various researchers to
evaluate the FSP problem. Hipstershop is also an e-
commerce-based application with 10 services that give
online customers features such as item browsing, adding
items to the cart, and completing the shopping process.
Application specifications include the time deadline for
execution, details of services, required resources (i.e.,
storage, processor and memory) and services field
(mandatory or non-mandatory) are given in Table 6.
Time deadlines are expressed in seconds (s), storage
and memory resources in mebibytes (M.B), and proces-
sor resources in millicores (M.C).

All the comparative methods (i.e., FSP-GWO, FSP-
CSA and FSP-PSO) together with the proposed algo-
rithm (i.e., FSP-ODMA) use an evolutionary approach
to solve the FSP problem. The simulation parameters for

J Grid Computing (2022) 20: 12 Page 21 of 29 12

all of them are set as follows:NP = 25,Maxiter = 100, τ

= 3s, lDM ¼ lMR ¼ 1s, l f i
o j ¼ lMo j

¼ 0:2s, lo j

N ¼ 0:3s.

In addition, some specific parameters related to FSP-
ODMA are set as follows: z = 10, ρ = 0.25, nω = 3,
Piter = 25.

6.2 Performance Metrics

The proposed algorithm is evaluated based on different
performance metrics compared to other similar methods
in the FSP problem. These metrics include the number
of services performed, the number of failed services, the
remaining services, convergence, runtime, service cost,
energy consumption, response time, latency, and the fog
resource utilization, which are discussed below.

Number of services performed This metric refers to the
total number of services performed before the end of the
specified time periods. Therefore, maximizing this met-
ric is emphasized.

Number of failed services This metric refers to the
number of services that failed to execute on the cloud
or fog due to a time deadline violation. Therefore,
minimizing this metric is emphasized.

Remaining services This metric refers to the number of
services that failed to execute after the specified time
periods. Therefore, minimizing this metric is
emphasized.

Convergence This metric is related to evolutionary
algorithms that stop evolution because exactly ev-
ery solution is the identical in a population. An
algorithm usually converges when there is no sig-
nificant improvement in population fitness values
from one iteration to the next. Convergence is
measured by the fitness function relative to itera-
tion, and the goal is to achieve maximum fit in the
least iteration.

Runtime This metric for various algorithms refers to the
duration of the FSP problem-solving policy, which is
expressed in seconds.

Service cost Cost refers to the monetary that the user
pays to application execution, which includes the cost of
communications and calculations. The service cost is
defined based on Eq. (5), where its minimizing is
emphasized.

Energy consumption Sending a request by a user leads
to the energy consumption of the entities involved in the
ecosystem. In general, energy consumption depends on
the type of data to be processed by the nodes and the

Promising solution before moving ()

4343213121

Leading solution selected ()

2313224412

Promising solution after the move

2343224121

Fig. 8 An example of moving
towards the leading solutions

Table 4 Number of services requested in 5 consecutive time
periods

Time period (τ) Time (s) Number of services requested

1 8 71

2 16 48

3 24 48

4 32 46

5 40 87

Table 5 Various parameters and resource details in cloud and fog

Parameters Cloud computing Fog computing

Probability of failure 0.003 0.00002

Storage (GB) 4 $ 6 $

Processor (M.C) 4 $ 5 $

Memory (GB) 4 $ 6 $

J Grid Computing (2022) 20: 12Page 22 of 2912

communications required to send the request/response.
Energy consumption is defined based on Eq. (6), where
its minimizing is emphasized.

Response time This metric refers to the time elapsed
from the user’s request to the receipt of results, which
includes waiting time and service time. Response time
can vary depending on the bandwidth of the network,
the type and number of user requests. This metric is
defined based on Eq. (11), where its minimizing is
emphasized.

Latency A latency is the time it takes for a request to be
sent to a processing component. This metric includes the
time required to all services execution of application
along with the time required for communication. Laten-
cy is defined by Eq. (18), where its minimizing is
emphasized.

Fog resource utilization This metr ic means
deploying the maximum number of services on
fog nodes. Therefore, the utilization of more fog

resources will increase the performance of the
service. This metric is defined based on Eq. (20),
where its maximizing is emphasized.

6.3 Comparison and Discussion

In this section, the methods of FSP-GWO, FSP-
CSA, FSP-PSO and also FSP-ODMA as the pro-
posed algorithm are compared and evaluated based
on different performance metrics. Here, 300 ser-
vices from 47 application applications enter the
ecosystem for deployment in 5 different time pe-
riods. These requests consist of 3 different appli-
cations that must be placed and executed on 3 fog
domains with the number of nodes 4, 8 and 12,
respectively. An overview of FSP-ODMA results
is reported in Table 7. These results are reported
for each application based on the sum of all
requests.

In addition, the statistical analysis of the proposed
algorithm using paired t-test for different metrics is
presented so that the results show that the proposed

Table 6 Specifications of Smart-health, Teastore and Hipstershop applications

Application Time deadline
(s)

Number of
requests

Service name Storage
(M.B)

Processor
(M.C)

Memory
(M.B)

Service field

Smart-health 5 15 Analyser 100 200 100 Not mandatory

Feature extractor 80 200 80 Mandatory

Persistance 200 150 200 Not mandatory

Client 200 200 100 Mandatory

Teastore 7 20 Auth 80 100 80 Mandatory

Image 150 100 150 Not mandatory

Persistence 100 200 100 Not mandatory

Recommender 100 100 80 Mandatory

Registry 150 100 150 Mandatory

Webui 160 200 80 Not mandatory

Hipstershop 18 12 Shipping 64 100 64 Mandatory

Recommend 220 100 220 Not mandatory

Product 64 100 64 Mandatory

Payment 64 100 64 Mandatory

Frontend 64 100 64 Mandatory

Email 64 100 64 Not mandatory

Currency 64 100 64 Not mandatory

Checkout 64 100 64 Mandatory

Cart 128 200 64 Mandatory

Adservice 180 200 180 Not mandatory

J Grid Computing (2022) 20: 12 Page 23 of 29 12

algorithm has a significant level in the results. Statistical
parameters include mean and standard deviation (SD) of
t-value and p-value. In this analysis, a significance level
of p < 0.05 is considered for paired t-test. Therefore,
when the p value is lower than 0.05, it can be concluded
that the proposed algorithm for a particular criterion has
a significant level.

According to Table 6, there are a total of 300 services
for the three defined applications that enter the ecosys-
tem in 5 different time periods. The aim of any place-
ment algorithm is to deploy these services on fog nodes,
NNFD or cloud, where the time deadline of the appli-
cations is not violated. Services that are executed before
the time deadline are known as services performed.
Failed services are services that could not be executed
due to a time deadline violation. On the other hand, the
resources required by some services may not be avail-
able in the specified time period and the placement of
these services should be done in the next time period.
These services are known as the remaining services.
Figure 9 shows the results associated with the different
methods for the metrics of number of services perform-
ed, number of failed services, and number of remaining
services.

As illustrated, FSP-ODMA is superior to FSP-GWO,
FSP-CSA and FSP-PSO methods with 271 services
performed, 24 failed services and 5 remaining services
by 8.4%, 4.9% and 25.6%, respectively. Prioritization to
determine the order of application execution leads to the
reduction of failed services. Thus, the superiority of
FSP-ODMA can be explained by the fact that fog nodes
select requests with minimum time deadline to execu-
tion based on priorities.

Convergence refers to the limitations of a process
and can be a useful analytical tool when evaluating
the expected performance of an optimization algo-
rithm. In general, optimization is a process for pro-
ducing candidate solutions, and convergence is a
stable point at the end of the process that no further
change is expected. All the methods compared use
evolutionary approaches to solve the FSP problem,
and since convergence is a phenomenon in evolu-
tionary computations, it can compare existing
methods based on this metric. In Fig. 10, the con-
vergence for different methods in 100 iterations is
calculated based on the fitness function.

As illustrated, FSP-ODMA has a better conver-
gence rate than other methods, although this supe-
riority is slight. FSP-ODMA converged to 853.5 in

iteration 43, and the closest method to it is FSP-
GWO, which converged to 854.9 in iteration 36.
Due to the high computational complexity of the
FSP-CSA in the optimization process, poor con-
vergence was expected for this method.

Although the solution provided by FSP-ODMA
has a better convergence rate than other methods,
but the complexity of the methods in the optimiza-
tion process must also be analyzed. Because most
application require real-time resources and the exe-
cution time of the methods is important in solving
the FSP problem due to the dynamic environment.
Figure 11 shows the runtime of different methods
for deciding on the IoT services placement during
optimization. The results clearly show the inefficien-
cy of FSP-CSA, because the evolution process of
this method has many steps and, in each iteration,
there is a need to calculate the fitness function
sequentially. However, the runtime of the other
methods is almost the same, although the FSP-
GWO has a shorter runtime. In this experiment, the
proposed algorithm has the best performance with
an average runtime of 14.1 s after FSP-GWO.

Compared to other methods, FSP-ODMA has
resulted in a minimized fitness function as well as
better convergence speed. Therefore, the IoT ser-
vices placement by FSP-ODMA is predictable with
the lowest service cost. Figure 12 shows the results
related to service costs for different methods after
the end of time periods. Obviously, the service cost
in the proposed algorithm is 8.2%, 24.6% and
21.7% better than the solutions obtained by FSP-
GWO, FSP-CSA and FSP-PSO, respectively. This
shows that FSP-ODMA can reduce the cost of IoT
applications by an average of 18.2%. It is worth
noting that with the IoT services placement on fog
nodes, there is no need for any rental costs for cloud
services. In addition, the proposed algorithm im-
proves the service cost by considering the QoS
requirements and the defined objective function.

Figure 13 shows the energy consumption of fog
nodes after 5 time periods. FSP-ODMA with 21 J has
the lowest energy consumption compared to other
methods. After the proposed algorithm, FSP-PSO and
FSP-GWO with 2.3 J have worthy energy efficiency
and the worst results are related to FSP-CSA. In general,
the proposed algorithm consumes 9.5% less energy to
solve the FSP problem than FSP-PSO and FSP-GWO
and 28.6% compared to FSP-CSA.

J Grid Computing (2022) 20: 12Page 24 of 2912

Response time refers to the total time elapsed
from sending the request to receiving the response.
Here the response time is measured in seconds (s)
and the purpose of IoT service placement methods
is to minimize it. Response time is calculated
based on the sum of communication time, waiting
time and execution time factors. Each application
has a time deadline within which the user expects
a response, and placement methods must ensure
that resources are provided for IoT applications
with tolerable response time. Figure 14 shows the
response time based on the different time periods
defined in Table 4 for all requests. These results
are reported for each method based on the average
response time on all applications.

As illustrated, FSP-ODMA has a better response time
than all other methods in all comparisons and guarantees

a tolerable response time. As time periods increase,
access to the number of fog nodes also increases and
response times for all methods decrease. Simulation
observations show that in all cases the response time
for the HipsterShop application is higher than for the
Smart-Health and TeaStore applications, because the
HipsterShop has more service modules. On average,
the response time for FSP-ODMA is 5.64 s and it
performs better with 2.93 s, 10.05 s and 8.84 s compared
to FSP-GWO, FSP-CSA and FSP-PSO methods,
respectively.

In the following, different methods are evalu-
ated and compared based on latency performance
metric. Latency in service execution indicates the
amount of time spent on a service on the network,
where it often depends on the latency of commu-
nication links in the network. Figure 15 shows the
results of this comparison.

Table 7 Overview of FSP-ODMA results for Smart-health, Teastore and Hipstershop applications

Performance metrics Smart-health Teastore Hipstershop

Number of services performed 54 107 111

Number of remaining services 6 13 9

Convergence 40 35 51

Execution time (s) 8.7 13.1 19.3

Service cost ($) 6.8 7.3 13. 4

Energy consumption (J) 1.05 1.36 2.06

Response time (s) 4.38 4.16 6.73

Latency (s) 0.17 0.18 0.31

Utilization of fog resources (%) 95.47 91.14 87.09

t-value 3.19 2.25 2.34

p-value 0.021 0.025 0.014

Fig. 9 Comparison of services performed, failed and remaining in
different methods Fig. 10 Comparison of convergence speed in different methods

J Grid Computing (2022) 20: 12 Page 25 of 29 12

As illustrated, FSP-ODMA has less latency than
other methods. These results are reported for 5 time
periods (1 to 40s) for each service. The reason for the
increase in latency for some services is that more re-
quests are sent to the fog nodes at certain time periods.
However, most services have relatively little latency
because FSP-ODMA has been able to handle most
requests in the FCL and a small number of requests
have been sent to the cloud. Since most requests are
processed by the proposed algorithm in the FCL, the
average latency remains at 0.22 s. Meanwhile, the aver-
age latency of all services for FSP-GWO, FSP-CSA and
FSP-PSO methods is 0.46 s, 0.76 s and 0.98 s,
respectively.

The metric results of the fog resource utilization
for different methods are presented in Fig. 16.
This comparison was calculated and reported dur-
ing 5 time periods (1 to 40s). According to the
results, SFP-ODMA has increased the utilization
rate of fog resources compared to other methods.
As illustrated, SFP-ODMA improved this metric
by 0.43% compared to SFP-GWO, 8.37% com-
pared to SFP-CSA and 6.26% compared to SFP-

PSO. These results show that the proposed algo-
rithm provides the ability to suitable IoT services
placement by increasing the fog resource utiliza-
tion through the autonomous MADE-k model.
Therefore, the obtained results indicate the accept-
able performance of the proposed algorithm in
terms of the fog resource utilization.

In general, the proposed algorithm (i.e., SFP-
ODMA) offers better results in different perfor-
mance metrics than other comparable methods
(i.e., FSP-GWO, FSP-CSA and FSP-PSO). On av-
erage, SFP-ODMA results are 4.98%, 12.88% and
12.15% superior to FSP-GWO, FSP-CSA and
FSP-PSO, respectively. In addition, comparing
SFP-ODMA with other methods, it can be con-
cluded that: (1) the solutions provided by FSP-
ODMA have a better variety than other methods
due to different steps in evolution and consider-
ation of two types of leading and promising solu-
tions, (2) the proposed algorithm has a better dis-
tribution in creating solutions, which improves the
convergence speed, and (3) FSP-ODMA seems to
work better in environments with a large number
of nodes than other methods, especially FSP-COA.
However, the comparison with runtime shows the
superiority of FSP-GWO over FSP-ODMA with a
slight difference.

7 Conclusion

Fog computing can be defined as a distributed
computing paradigm that provides cloud services
at the edge of the network. Therefore, due to their
proximity to final devices, fog computing has the
potential to provide service to latency-sensitive

Fig. 11 Comparison of runtime in different methods

Fig. 12 Comparison of service costs in different methods

Fig. 13 Comparison of energy consumption in different methods

J Grid Computing (2022) 20: 12Page 26 of 2912

applications. With the advent of fog computing,
the challenge of deploying IoT services on fog
nodes has attracted much attention, where it is

often formulated as a multi-objective optimization
problem. In this paper, an autonomous method of
IoT services placement is proposed based on a
conceptual framework consisting of four phases
of monitoring, analysis, decision-making and exe-
cution control loop with a shared knowledge base
(MADE-k). First, service details are monitored
from IoT applications and fog resource status.
Then, the services are analyzed and prioritized
according to the time deadline. After that, the
ODMA metaheuristic algorithm decides on the de-
ployment of IoT services on fog nodes to optimize
objectives such as service cost, energy consump-
tion, response time, latency, and fog resource uti-
lization. Finally, the decisions made are executed
in a fog environment. The proposed policy im-
proves service availability and QoS satisfaction
by bringing cloud services and resources closer
to the end devices. Fog landscape simulation using
iFogSim shows that the proposed algorithm (i.e.,
FSP-ODMA) performs better than its counterparts
such as FSP-GWO, FSP-CSA, and FSP-PSO by
solving an optimization problem based on various
performance metrics. For future work, we will
develop our proposed policy based on the theory
of subjective logic to ensure the reliability and
safety of interactions in the fog environment in
addition to latency.

Acknowledgements 1. The research results of the Ministry of
Education’s 2021 industry university cooperation collaborative
education project “Research and practice of online and offline
mixed teaching mode based on OBE concept for course Database
Principle and Application” (Project NO.202101087015).

Fig. 14 Comparison of response
times in different methods

Fig. 15 Comparison of service latency in different methods

Fig. 16 Comparison of the fog resource utilization in different
methods

J Grid Computing (2022) 20: 12 Page 27 of 29 12

2. The research results of Natonal Vocational Education teaching
reform research project: “Research on the path of Vocational
Colleges to improve morality and build people from the perspec-
t ive of curr iculum ideology and pol i t ics” (Project
No.2020QJG036).

Author Contribution Defu Zhao, Qunying Zou, Milad
Boshkani Zadeh conducted this research. Defu Zhao: Methodolo-
gy, Software, Validation, Writing original draft. Qunying Zou:
Conceptualization, Supervision, Writing review& editing, Formal
analysis, Project administration. Milad Boshkani Zadeh: Investi-
gation, Resources, Data curation, Visualization.

Funding This research received no specific grant from any
funding agency in the public, commercial, or not-for-profit sectors.

Data Availability Data sharing not applicable to this article as
no datasets were generated or analyzed during the current study.

Declarations.

Conflict of Interest We certify that there is no actual or potential
conflict of interest in relation to this article.

References

1. Nižetić, S., Šolić, P., González-de, D.L.D.I., Patrono, L.:
Internet of things (IoT): opportunities, issues and challenges
towards a smart and sustainable future. J. Clean. Prod. 274,
122877 (2020)

2. Salimian, M., Ghobaei-Arani, M., Shahidinejad, A.: Toward
an autonomic approach for internet of things service place-
ment using gray wolf optimization in the fog computing
environment. Software: Practice and Experience. 51(8),
1745–1772 (2021)

3. Rezaeipanah, A., Mojarad, M., Fakhari, A.: Providing a new
approach to increase fault tolerance in cloud computing
using fuzzy logic. Int. J. Comput. Appl. 44(2), 139–147
(2020)

4. Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M.,
Leitner, P.: Optimized IoT service placement in the fog.
SOCA. 11(4), 427–443 (2017)

5. Liu, C., Wang, J., Zhou, L., Rezaeipanah, A.: Solving the
multi-objective problem of IoT service placement in fog
computing using cuckoo search algorithm. Neural. Process.
Lett. 1–32 (2022) in press

6. Berahmand, K., Samadi, N., Sheikholeslami, S.M.: Effect of
rich-club on diffusion in complex networks. International
Journal of Modern Physics B. 32(12), 1850142 (2018)

7. Salimian, M., Ghobaei-Arani, M., Shahidinejad, A.: An
evolutionary multi-objective optimization technique to de-
ploy the IoT Services in fog-enabled Networks: an autono-
mous approach. Appl. Artif. Intell. (2022). https://doi.
org/10.1080/08839514.2021.2008149

8. Hosseinzadeh, M., Masdari, M., Rahmani, A.M.,
Mohammadi, M., Aldalwie, A.H.M., Majeed, M.K.,
Karim, S.H.T.: Improved butterfly optimization algorithm

for data placement and scheduling in edge computing envi-
ronments. Journal of Grid Computing. 19(2), 1–27 (2021)

9. Rezaeipanah, A., Nazari, H., Ahmadi, G.: A hybrid ap-
proach for prolonging lifetime of wireless sensor networks
using genetic algorithm and online clustering. J. Comput.
Sci. Eng. 13(4), 163–174 (2019)

10. Berahmand, K., Bouyer, A.: A link-based similarity for
improving community detection based on label propagation
algorithm. J. Syst. Sci. Complex. 32(3), 737–758 (2019)

11. Aslanpour, M.S., Dashti, S.E., Ghobaei-Arani, M.,
Rahmanian, A.A.: Resource provisioning for cloud applica-
tions: a 3-D, provident and flexible approach. J.
Supercomput. 74(12), 6470–6501 (2018)

12. Selimi, M., Cerdà Alabern, L., Freitag, F., Veiga, L.,
Sathiaseelan, A., Crowcroft, J.: A lightweight service place-
ment approach for community network micro-clouds.
Journal of Grid Computing. 17(1), 169–189 (2019)

13. Ghobaei-Arani, M., Shahidinejad, A.: An efficient resource
provisioning approach for analyzing cloud workloads: a
metaheuristic-based clustering approach. J. Supercomput.
77(1), 711–750 (2021)

14. Goudarzi, M., Palaniswami, M., Buyya, R.: A distributed
application placement and migration management tech-
niques for edge and fog computing environments. In: 2021
16th Conference on Computer Science and Intelligence
Systems (FedCSIS), pp. 37–56. IEEE, Sofia, Bulgaria
(2021)

15. Hajipour, H., Khormuji, H.B., Rostami, H.: ODMA: a novel
swarm-evolutionary metaheuristic optimizer inspired by
open-source development model and communities. Soft.
Comput. 20(2), 727–747 (2016)

16. Rezazadeh, Z., Rahbari, D., Nickray, M.: Optimized module
placement in IoT applications based on fog computing. In:
Electrical Engineering (ICEE), pp. 1553–1558. IEEE,
Mashhad, Iran (2018)

17. Rezaeipanah, A., Amiri, P., Nazari, H., Mojarad, M., Parvin,
H.: An energy-aware hybrid approach for wireless sensor
networks using re-clustering-basedmulti-hop routing.Wirel.
Pers. Commun. 120(4), 3293–3314 (2021)

18. Holland, J.: Outline of control parameters for genetic algo-
rithms. Journal of Association for Computing Machinery. 3,
297–314 (1962)

19. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In
Proceedings of ICNN'95-International Conference on
Neural Networks, vol. 4, pp. 1942–1948. IEEE, Perth,
WA, Australia (1995)

20. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic
optimization algorithm: harmony search. Simulation. 76(2),
60–68 (2001)

21. Mirjalili, S., Lewis, A.: The whale optimization algorithm.
Adv. Eng. Softw. 95, 51–67 (2016)

22. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In:
2009 World Congress on Nature & Biologically Inspired
Computing (NaBIC), pp. 210–214. IEEE, Coimbatore, India
(2009)

23. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer.
Adv. Eng. Softw. 69, 46–61 (2014)

24. Yang, L., Cao, J., Liang, G., Han, X.: Cost aware service
placement and load dispatching in mobile cloud systems.
IEEE Trans. Comput. 65(5), 1440–1452 (2015)

J Grid Computing (2022) 20: 12Page 28 of 2912

https://doi.org/10.1080/08839514.2021.2008149
https://doi.org/10.1080/08839514.2021.2008149

25. Alghamdi, A., Alzahrani, A., Thayananthan, V.: Execution
time and power consumption optimization in fog computing
environment. International Journal of Computer Science &
Network Security. 21(1), 137–142 (2021)

26. Bhatia, M., Sood, S.K., Kaur, S.: Quantum-based predictive
fog scheduler for IoT applications. Comput. Ind. 111, 51–67
(2019)

27. Dai, Y., Xu, D., Maharjan, S., Zhang, Y.: Joint computation
offloading and user association in multi-task mobile edge
computing. IEEE Trans. Veh. Technol. 67(12), 12313–
12325 (2018)

28. Tavousi, F., Azizi, S., Ghaderzadeh, A.: A fuzzy approach
for optimal placement of IoT applications in fog-cloud com-
puting. Clust. Comput. 25, 303–320 (2021)

29. Gill, S.S., Tuli, S., Xu, M., Singh, I., Singh, K.V., Lindsay,
D., et al.: Transformative effects of IoT, Blockchain and
artificial intelligence on cloud computing: evolution, vision,
trends and open challenges. Internet of Things. 8, 100118
(2019)

30. Hussein, M.K., Mousa, M.H.: Efficient task offloading for
IoT-based applications in fog computing using ant colony
optimization. IEEE Access. 8, 37191–37201 (2020)

31. Nayeri, Z.M., Ghafarian, T., Javadi, B.: Application place-
ment in fog computing with AI approach: taxonomy and a
state of the art survey. J. Netw. Comput. Appl. 185, 103078
(2021)

32. Huang, T., Lin, W., Xiong, C., Pan, R., Huang, J.: An ant
colony optimization-based multiobjective service replicas
placement strategy for fog computing. IEEE Transactions
on Cybernetics. 51(11), 5595–5608 (2020)

33. Gill, M., Singh, D.: ACO based container placement for
CaaS in fog computing. Procedia Computer Science. 167,
760–768 (2020)

34. Ghalehtaki, R.A., Kianpisheh, S., Glitho, R.: A bee colony-
based algorithm for micro-cache placement close to end
users in fog-based content delivery networks. In: 2019
16th IEEE Annual Consumer Communications &
Networking Conference (CCNC), pp. 1–4. IEEE, Las
Vegas, NV, USA (2019)

35. Sharma, S., Saini, H.: Efficient solution for load balancing in
fog computing utilizing artificial bee Colony. International
Journal of Ambient Computing and Intelligence (IJACI).
10(4), 60–77 (2019)

36. Nabavi, S.S., Gill, S.S., Xu, M., Masdari, M., Garraghan, P.:
TRACTOR: traffic-aware and power-efficient virtual ma-
chine placement in edge-cloud data centers using artificial
bee colony optimization. Int. J. Commun. Syst. 35(1), e4747
(2022)

37. Javanmardi, S., Shojafar, M., Persico, V., Pescapè, A.:
FPFTS: a joint fuzzy particle swarm optimization mobility-
aware approach to fog task scheduling algorithm for internet
of things devices. Software: Practice and Experience.
51(12), 2519–2539 (2021)

38. Djemai, T., Stolf, P., Monteil, T., Pierson, J.M.: A discrete
particle swarm optimization approach for energy-efficient
IoT services placement over fog infrastructures. In: 2019

18th International Symposium on Parallel and Distributed
Computing (ISPDC), pp. 32–40. IEEE, Amsterdam,
Netherlands (2019)

39. Baburao, D., Pavankumar, T., Prabhu, C.S.R.: Load
balancing in the fog nodes using particle swarm optimiza-
tion-based enhanced dynamic resource allocation method.
Appl. Nanosci. (2021). https://doi.org/10.1007/s13204-021-
01970-w

40. Reddy, K.H.K., Luhach, A.K., Pradhan, B., Dash, J.K., Roy,
D.S.: A genetic algorithm for energy efficient fog layer
resource management in context-aware smart cities.
Sustain. Cities Soc. 63, 102428 (2020)

41. Maia, A.M., Ghamri-Doudane, Y., Vieira, D., de Castro,
M.F.: An improved multi-objective genetic algorithm with
heuristic initialization for service placement and load distri-
bution in edge computing. Comput. Netw. 194, 108146
(2021)

42. Bourhim, E.H., Elbiaze, H., Dieye, M.: Inter-container com-
munication aware container placement in fog computing. In:
2019 15th International Conference on Network and Service
Management (CNSM), pp. 1–6. IEEE, Halifax, NS, Canada
(2019)

43. Hussain, M.M., Beg, M.S.: CODE-V: multi-hop computa-
tion offloading in vehicular fog computing. Futur. Gener.
Comput. Syst. 116, 86–102 (2021)

44. Sami, H., Mourad, A., El-Hajj, W.: Vehicular-OBUs-as-on-
demand-fogs: resource and context aware deployment of
containerized micro-services. IEEE/ACM Trans.
Networking. 28(2), 778–790 (2020)

45. Nardelli, M., Cardellini, V., Grassi, V., Presti, F.L.: Efficient
operator placement for distributed data stream processing
applications. IEEE Transactions on Parallel and Distributed
Systems. 30(8), 1753–1767 (2019)

46. Gasmi, K., Dilek, S., Tosun, S., Ozdemir, S.: A survey on
computation offloading and service placement in fog
computing-based IoT. J. Supercomput. 78, 1983–2014
(2021)

47. Bao, L., Wu, C., Bu, X., Ren, N., Shen, M.: Performance
modeling and workflow scheduling of microservice-based
applications in clouds. IEEE Transactions on Parallel and
Distributed Systems. 30(9), 2114–2129 (2019)

48. Paul Martin, J., Kandasamy, A., Chandrasekaran, K.:
CREW: cost and reliability aware eagle-whale optimiser
for service placement in fog. Software: Practice and
Experience. 50(12), 2337–2360 (2020)

49. Zhang, G., Shen, F., Liu, Z., Yang, Y., Wang, K., Zhou,
M.T.: FEMTO: fair and energy-minimized task offloading
for fog-enabled IoT networks. IEEE Internet Things J. 6(3),
4388–4400 (2018)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional
affiliations.

J Grid Computing (2022) 20: 12 Page 29 of 29 12

https://doi.org/10.1007/s13204-021-01970-w
https://doi.org/10.1007/s13204-021-01970-w

	A QoS-Aware IoT Service Placement Mechanism in Fog Computing Based on Open-Source Development Model
	Abstract
	Introduction
	Related Works
	Background
	Open-Source Development Model Algorithm
	Autonomous Systems

	Proposed Framework
	Fog Node
	Fog Domain
	Fog Orchestration Control Node
	FSP Problem Limitations
	Cloud-Fog Control Middleware
	Admission Control Unit
	Autonomous MADE-K Model

	Proposed Placement Policy with ODMA
	Encoding Solution and Creating the Initial Population
	Fitness Function
	The Process of Population Evolution

	Simulation Results
	Experimental Setup
	Performance Metrics
	Comparison and Discussion

	Conclusion
	References

