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Abstract Heuristic approaches require fixed knowl-
edge of how resource allocation should be carried
out, and this can be limiting when managing variable
cloud workloads. Solutions based on Reinforcement
Learning (RL) have been presented to manage cloud
infrastructure, however, these tend to be centralized
and suffer in their ability to maintain Quality of Ser-
vice (QoS) for data centres with thousands of nodes.
To address this, we propose a reinforcement learning
management policy, which can run decentralized, and
achieve fast convergence towards efficient resource
allocation, resulting in lower SLA violations com-
pared to centralized architectures. To address some
of the common challenges in applying RL to cloud
resource management, such as slow learning and
state/action management, we use parallel learning and
reduction of the state/action space. We apply a deci-
sion making approach to optimize the migration of a
VM and choose a target node to host the VM in such
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a way that brings response time within SLA level. We
have also demonstrate unique, multi-level reinforce-
ment learning cooperation, that further reduces SLA
violations. We use simulation to evaluate and demon-
strate our proposal in practice, and compare the results
obtained with an established heuristic, demonstrating
significant improvement to SLA violations and higher
scalability.
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architecture - Distributed architecture

1 Introduction

Cloud computing is an established paradigm to give
end users access to computing resources through a
simplified as-a-service model. Cloud Providers (CPs)
build data centres and abstract resources through a
virtualisation layer, with a Virtual Machine (VM) as
a common form. End users request these services
through APIs, that map requests to virtual resources
that reside on physical resources in the data centre.
VM placement, both to schedule initial virtual
machines and to adapt the placement, to meet assorted
goals, has been a subject of extensive investigation
[17, 33, 37, 45, 50]. To perform VM placement, spe-
cific resource utilisation or compatibility requirements
are typically required, such that a VM is mapped onto
a physical node within the data centre. From within
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the pool of physical nodes that satisfy VM constraints,
the mapping process becomes an optimisation prob-
lem that aims to increase resource utilisation, energy
consumption or profit. Post initial VM placement, it is
common for the cloud environment to undergo a load
change, where the initial VM constraints are no longer
met. CPs use adaptation methods to continuously
monitor and perform VM placement [23].

VM placement is accepted as an NP-Hard prob-
lem and heuristic solutions have been used to solve it
[61]. However, data centres are becoming increasingly
large, which means the problem of making globally
appropriate placement decisions is increasingly chal-
lenging. Many of the solutions to manage cloud infras-
tructure are centralized and suffer in their ability to
support data centres with thousands of nodes. Further-
more, heuristic approaches have been shown to have
scalability challenges [26, 53], in their ability to exe-
cute the decision making process with the increasing
size of data centre infrastructure. Different approaches
have been proposed to address this problem of scale
[11, 44, 48, 56, 62]. These tend to be decentralized
heuristics, with no central controller, and have been
shown to manage a large number of nodes. A key chal-
lenge with heuristics is that their performance depends
on multiple factors including the statistical patterns
of resource demands, and if the underlying scenario
changes, heuristics may start to perform poorly [21].

In this paper, we build on a hybrid architecture that
has been shown to have benefits of rapid decision
making [24], fewer SLA violations, lower network
traffic utilisation and improved scalability as the num-
ber of nodes in the data centre increases, compared
to centralized, hierarchical and other decentralized
architectures. The hybrid architecture has hierarchi-
cal decentralized controllers operating at different
scopes. On the lowest level, controllers dynamically
adjust resource configurations and cooperate with
other nodes and higher level controllers in performing
VM placement. However, although the hybrid archi-
tecture supports localised decision-making in a global
context, this still raises the question as to the policies,
which map VMs to data centre resources, that should
be applied at different levels in the hierarchy. The
most suitable policy may depend on subtle features of
the infrastructure and the workload, hence there may
be benefits from learning the policy. Reinforcement
Learning (RL) is an approach that develops or refines
apolicy in the light of experience [54]. In RL, an agent
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performs learning by interacting with an environment,
and learning through trial and error. The agent takes
actions and observes the outcome of these actions. RL
has been applied successfully in a variety of resource
management settings [15, 51, 55]. Here we develop
an RL approach for the hybrid architecture [24] and
apply it to cloud resource management. Multiple RL
agents operate in a decentralized way and share the
learning from migration’s actions. Additionally, the
agents uniquely cooperate at multiple management
hierarchy levels to achieve rapid decision making and
learn an optimal online policy. Our approach is shown
to reduce SLA violations and achieve high scalability.
The contributions of this paper are as follows:

1. A realisation of a RL strategy in a specific
hybrid architecture, with lower SLA violations
and high scalability compared to a Heuristic based
approach.

2. The utilisation of the hybrid architecture, to
achieve unique, parallelised multi-level RL agent
cooperation.

3. An empirical evaluation of the RL strategy in
comparison with a heuristic strategy that has been
shown to be effective in practice [7]. This shows
the proposed RL approach improves SLA vio-
lation performance, compared to the heuristic
approach, and further improvements are achieved
when RL is combined with the hybrid architecture
from our earlier work [24].

The rest of this paper is organised as follows. We
first describe some of the challenges in designing an
efficient resource management controller. Section 3
describes related work in cloud resource manage-
ment, and Section 4 describes a background into RL.
Section 5 summarises the hybrid architecture from our
earlier work, and Section 6 describes our proposed
RL approach. Section 7 presents an evaluation of our
implementation and compares it to a heuristic hybrid,
RL centralized and a heuristic centralized approaches.
In Section 8 we draw conclusions and discuss future
work.

2 Problem Statement
Cloud Providers (CPs) provide access to resources

that are typically pooled and shared with multiple
customers, with a layer of orchestration that sepa-
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rates individual customer usage. Physical resources
are abstracted through virtualisation technology into
compute, memory, storage and networking with log-
ical separation of these resources, and typically pre-
sented as a Virtual Machine (VM). CPs customer
workloads experience variability and VMs are created
and deployed onto physical nodes to run customer
workloads. CPs need to re-optimize the infrastructure
regularly to provide high levels of availability and
reliability.

An illustrative use case is VMs running web appli-
cations, such as e-commerce systems, which are typi-
cally N-tier and with web servers that process business
logic. The resources assigned to the VM and the
amount of incoming requests determine the response
time experienced by end users. The web server will
typically experience a variable arrival rate of requests.
Using Fig. 1 as an example, Web Server 1 can expe-
rience an increase in requests, which will increase the
resources used by Server 1 and increase the load on
the physical node, and in turn could start to impact
the response time for Web Server 2 and Web Server 3.
Continuing with this state could have an adverse affect
on all of the web servers. CPs aim to react to such con-
ditions in order to preserve the customer’s SLAs. A
CP’s goal is to enable such VMs to operate at a rate
that meets customer agreed SLAs, and balance this
with the CP’s operating costs. We research and solve
the following problems:

— Detect when a VM is stressed.
— Identify which VMs to migrate.

Fig.1 Managing SLAs

—  Apply a decision making approach to optimize the
migration of a VM, and choose a target node to
host the VM in such a way that brings response
time within SLA levels.

— Develop an architecture for the control system
that monitors and optimises the migration of
VMs.

In particular, we aim to solve these problems in
ways that scale to work on data centres with thou-
sands of nodes. Our goal is to design a scheme that
minimises the SLA violations, by detecting stressed
VMs and actioning a migration plan to choose new
target nodes to house the VMs. One option is to
move stressed VMs to a newly switched on node or a
lightly loaded node, however this could have a nega-
tive impact on the amount of energy consumption in
the data centre and thus impact CP’s operating costs.
Therefore, the optimisation scheme needs to balance
meeting SLAs with energy consumption.

Data centre workloads vary, with new workloads
being provisioned and other workloads being depro-
visioned, so an efficient controller needs to cope with
these varying demands. Additionally, web servers typ-
ically exhibit varying traffic loads that can cause nodes
to become stressed and lead to SLA violations. When
this occurs, the controller needs to engage a migration
plan to reduce SLA violations.

In a large data centre managing thousands of VMs
and nodes, a control scheme needs to be scalable
and continue to be responsive. Decentralized architec-
tures that have autonomous monitoring, management
and feedback are well suited to large scale environ-
ments [58]. In this paper, we have developed a control
approach where each node operates autonomously and
contains a learning agent that shares learnt knowledge
with other agents.

3 Related work

This section outlines related work on VM place-
ment and on the use of machine learning, and in
particular reinforcement learning (RL) for resource
management.

VM Placement is mapping of customer workloads
to infrastructure resources, in a way that achieves
a particular objective, such as reducing energy con-
sumption or load balancing, while ensuring SLAs are
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met [34]. VM placement consists of two parts: initial
VM placement, which refers to the first allocation of
VMs to nodes in the data centre, and VM migration
or relocation, which involves the revision of an earlier
placement decision. VM placement performs the map-
ping in order to meet an SLA, energy or profit goal
and has been studied extensively.

Meeting an SLA objective can be seen as detec-
tion of an overloaded node, selection of VM(s) on
the overloaded node, identification of a target node,
and engaging the hypervisor to migrate the VM to the
identified target node in order to avoid performance
degradation. When a node is deemed overloaded and
the adaptation process chooses to migrate a VM from a
stressed node, VM(s) need to be chosen for migration.
VM selection approaches include: Minimum Migra-
tion Time chooses a VM that takes the shortest time to
complete the migration, Random Selection chooses a
VM based on a uniformly distributed discrete random
variable and Maximum Correlation selects a VM of
the highest correlation of CPU utilization with other
VMs to migrate [7]. In this paper, we use a similar
approach to Maximum Correlation to select a VM for
migration, by sorting the VMs and choosing the VM
with highest correlation.

Heuristic approaches are widely used in the litera-
ture for VM migration. The authors in [22] proposed
an approach to increase efficiency of node utilization
and balance utilization of CPU and memory usage on
active nodes across the data centre. The approach used
a multi-dimensional resource usage model for target
node selection and used it to guide the VM placement
process. A resource usage factor is assigned to each
node and used in node selection. Their experiments
show minimisation of low utilized resources and more
balanced utilization of CPU and memory usage on
active nodes. Uniquely, the authors in [20] consid-
ered joint VM and container migration. The approach
divides the cloud resource management problem into
sub-problems including over-load/under-load detec-
tion, identifying if a VM or a container should be
migrated, VM/container selection and migration of
the VM/container. Local Regression was used to
detect overloaded nodes and VM selection was done
using Minimum Migration Time [7]. Target nodes
for migrations were selected using SLA-aware alloca-
tion. The authors in [63] proposed a multi-constraint
optimization model by considering migration cost
and remaining runtime of VM migration, and used
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a heuristic policy. The applied constraints were the
total CPU/memory requirements of VMs allocated
should not exceed the node’s resource capacity and
a VM should be assigned to a single physical node;
maximum duration that a node can be in SLA viola-
tion and the remaining runtime for a VM were also
considered. However, heuristics typically do not find
a globally optimal answer but may provide locally
optimal outcomes [42, 67].

Cloud environments are highly complex, and are
typically multi-tenanted with non linear workloads;
as a result they experience high variability. Machine
Learning (ML) techniques can offer an opportunity to
adjust resource management in a dynamic way, which
is reflective of the context of cloud environments
[32]. ML techniques can be categorised as Supervised
Learning where every data sample is labeled and used
as input. The learning process works by associating
features of the input and human feedback. In Unsuper-
vised Learning samples are used as input, but unlike
supervised learning, there are no labels and the learn-
ing process aims to learn the data distribution within
the sample. For example VM usage patterns can be
used to cluster VMs into distinct groups through
unsupervised learning. In Reinforcement Learning
there is no labeled input, instead an agent learns
dynamically from its environment and balances explo-
ration of new knowledge versus exploitation of known
knowledge.

Some ML approaches focus on auto-scaling
resources, autonomously provisioning and deprovi-
sioning resources. The authors in [41] presented an
auto-scaling method for adaptive provisioning of elas-
tic cloud services, based on ML time-series forecast-
ing and queuing theory, aimed at optimizing response
time. The approach uses Support Vector Machines
(SVM) to predict the average node load for the follow-
ing hour, and then use this with a queuing model to
adjust the resources assigned to a node. Their exper-
iments show SVM has better prediction than moving
average and linear regression. Similarly, another pre-
diction approach was presented in [64] with Long
Short Term Memory (LSTM) time-series prediction,
and provisioning through queue theory. Their results
show LSTM performed better in terms of prediction
accuracy than the SVM and Autoregressive Integrated
Moving Average. A Neural Network technique was
presented in [60], which proposes an adaptive selec-
tion that can choose a VM consolidation approach
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based on the current environment and the cloud
provider’s priority on energy and SLA violation. The
approach firstly generates a raw dataset by simulat-
ing the methods for several time steps. Each row will
contain the initial environment parameters and nor-
malized evaluation result of all policies. The results
(energy and SLA violations) for each row then are nor-
malized. A performance score is calculated using the
evaluation priority and normalized evaluation result
from the raw dataset; this score is then used to train
the neural network. Another framework for resource
reservation is presented in [52], based on load pre-
diction and several ML approaches including Neural
Networks, Linear Regression, RepTree and M5P. The
approach takes an initial reservation plan and moni-
toring data as inputs and optimises the plan based on
monitoring data from observations, with CPU being
the main monitored resource. The evaluation showed
RepTree was able to learn faster than the Neural Net-
work; however, the Neural Network ultimately yielded
better predictions.

While ML models approaches have shown to be
effective, one limitation of these approaches is that
they are typically trained offline and require retrain-
ing to make use of new data [49]. Cloud environments
are dynamic and exhibit regular changes in the struc-
ture of workloads and access patterns. Aptly, RL can
operate online and learn dynamically from interact-
ing with a changing environment and make use of
new information to enhance the decision making pro-
cess. Additionally, RL approaches do not require prior
knowledge of the optimization model and are not
coded explicit instructions relating to which action to
take next; instead, they learn actions through feed-
back from the environment. These features make RL
well-suited to cloud resource management resource
management [41].

Auto-scaling of the assigned VMs is the focus of
some of the approaches in the literature, by using RL
to add more resources for customer workloads. The
authors in [28] propose a general purpose model-free
learning algorithm, based on Q-learning, that adapts to
unknown system specifics, such as application traffic,
to generate scaling up or down actions. Our proposal
also uses Q-learning, however we focus on migrating
stressed VM as opposed to auto-scaling. To speed up
the convergence of RL, the authors in [6] developed
an approach that parallelises Q-learning to speed up
convergence of agents in order to achieve auto-scaling

of VMs. We propose a similar approach of paral-
lel learning and further enhance it with cooperative
learning between agents running at different layers
of a hierarchical cloud infrastructure. The problem of
autonomous scaling of cloud resources can be mapped
to MAPE-K architecture (Monitor, Analyse, Plan, and
Execute) [19]. The approach enhanced the perfor-
mance of the planning phase and a planning module
uses linear regression to predict future demands, with
Q-learning performing dynamic resource allocation.
Their experiments show the approach increases the
resource utilization and decreases the total cost while
reducing SLA violations. Our proposal has many simi-
larities with monitoring, planning and execution mod-
ules, although, unique to our approach, is cooperative
learning between RL agents running at different layers
of a hierarchical infrastructure.

Reinforcement learning techniques can suffer from
the curse of dimensionality, where the state and/or
action space grows exponentially, which introduces
challenges in the time needed for the RL agent to
explore a given environment and introduce space com-
plexity in memory consumption by the agent. To
address this, some approaches utilise function approx-
imation, such as Deep Q-Learning (DQN) [40], which
is an approach of combining deep learning and Q-
learning to combat the challenges of Q-learning in
environments with a large or continuous state action
space. The authors in [30] propose a DQN based
model to respond to anomalies in CPU and memory
bottlenecks and apply granular actions to autoscale
resources. The approach in [9] also proposes a Deep
Q-learning based approach to adjust the size of a clus-
ter, by taking the state of the cluster as input and
training an RL agent to resize a cluster based on
administrator defined policies and rewards. The agent
can use Deep Q-learning, Double Deep Q-learning or
Full Deep Q-learning, and the approach was compared
to other RL and decision-tree based approaches and
shows it gains rewards up to 1.6 times better. Alter-
natively to using a DQN, the approach in [46] used
a coarse-grained Q-table and can achieve higher res-
olution in the Q-table with less cost. The approach
proposed granular actions to adjust CPU and mem-
ory resources, and applied it in a distributed learning
mechanism using Q-learning. The work in [10] used a
heuristic method to reduce the state space to a smaller
set, by dividing the original state space into multi-
ple exclusive subsets, where a range of states can fit
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into the same subset, thus reducing the state space
to aid RL convergence speed. Other non-statistical
approaches for function approximation have been pro-
posed [5, 8, 25]. To address the curse of dimension-
ality, instead of function approximation we used an
aggregation approach in our proposal. This reduces
states and actions into smaller groups, with multiple
states being mapped into a smaller number of states
and actions.

Migration of stressed VMs, which are failing a
quality of service metric, to another target node, is
the focus of some of the work in the literature and
has a similar aim to our proposal. The authors in [47]
propose a Deep RL based framework that performs
VM migrations and uses a proximal policy optimiza-
tion (PPO) algorithm and a neural network based on
LSTM for function approximation. The architecture of
the approach is split onto an offline and an online part.
The offline part trains an agent by sampling log data,
which is generated by the online agent. The online
agent has a similar method to the offline, except it
does not update the agent parameters. Online deci-
sion information is used for the next offline training.
Our approach also caters for reducing SLA violations,
however we choose a different state action reduction
approach to manage the challenges with Q-learning.
Additionally, the approach was only evaluated with a
small number of VMs, while our experiments were
evaluated with thousands of VMs and nodes. The
authors in [43] propose a Q-learning controller to
manage complex workload arrival patterns and use a
decentralized architecture, with each node responsi-
ble for maintaining its own SLA performance. The
approach is able to add nodes and scale down by
shutting down excess nodes to save on energy con-
sumption. To combat the state space challenge in
Q-learning, the approach uses a reduced state space.
Similarly, our proposal uses a decentralized architec-
ture, applies knowledge sharing among the RL agents,
uses aggregation to reduce the state action space,
and uses linear regression to monitor QoS metrics
like response time. However, the uniqueness of our
approach is cooperative learning between RL agents
running at different layers of a hierarchical cloud
infrastructure. The authors in [66] investigate VM
migration during data centre upgrade and use a DQN
to decide a target node for each VM migration with the
objective of minimising the total migration time. We
use a state action aggregation approach to address the
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dimensionality challenge, while the authors use func-
tion approximation. Table 1 presents a summary of the
approaches used in VM cloud resource management,
including heuristics and ML techniques.

While there have been attempts at examining the
scalability of approaches based on RL [10, 46], these
tend to be at a small scale that is not representative
of the size of the infrastructure in public clouds. We
propose a highly scalable RL approach and examine
its ability to manage a large infrastructure, with many
thousands of nodes.

4 RL Background

Reinforcement Learning (RL) is a machine learning
technique that enables an agent to learn within an
interactive environment, through trial and error, and
uses signals from the environment in a feedback loop.
In Fig. 2, the agent monitors the current state of the
environment (Step 1), and chooses an action from the
available options on the environment (Step 2). The
environment will then generate a reward for the action
taken by the agent, and transition to a new state (Step
3). The goal oriented agent aims to learn the set of
actions, a policy, that will lead it to a specific goal, or
to maximise an objective function. RL problems are
typically formulated with well defined transition prob-
abilities and modelled as a Markov decision process
(MDP) [54].

While RL has shown much promise, there are sig-
nificant challenges applying to practical real world
problems [16], including limited offline training logs,
learning on the real system where exploration has to
be limited and delays in the system actuators to gather
action reward.

RL approaches are categorised as model based
or model free methods, depending on whether full
knowledge of the model can be specified. Model
based approaches need knowledge of the environment
model, while model free methods learn a policy based
on observations and rewards [54].

There are two common control categories of
RL. Value-based or off-policy methods: RL algo-
rithms proceed to learn the value function for every
state/state-action pair to arrive at the optimal pol-
icy. Q-learning is a common algorithm in this cate-
gory. Policy-based or on-line methods directly learn
the parameters for the policy, instead of learning an
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Table 1 Adaptation proposals

MA Objective Considered resource Techniques
CPU Memory Storage Network

Yadav [65] SLA & Energy X Heuristic

Gholipour [20] SLA & Energy X Heuristic

Xu [63] SLA & Energy X X Heuristic

Gupta [22] Energy X X Heuristic

Vozmediano [41] SLA X SVM & QT

Moghaddam [30] SLA X X DQN

Bitsakos [9] SLA X X X DQN

Ren [47] SLA & Energy X X DQN

Ren [66] SLA X X X DQN

Witanto [60] SLA & Energy X Multiple

Sniezynski [52] SLA & Energy X Multiple ML

Bibal [8] SLA X X SARSA

Arabnejad [5] SLA X Q & SARSA

Bu [10] SLA X X Q

Ghobaei-Arani [19] SLA X X X X Q

Rao [46] SLA X X X Q

Nouri [43] SLA X X Q

Jamshidi [25] SLA & Energy X X Q

Barrett [6] SLA X X X Q

Hummaida (This paper) SLA X X Q

Key: Q: Q-learning, DQN: Deep Q-Learning, ML: Machine Learning, SVM: Support Vector Machines, QT: Queueing Theory,

SARSA: State—Action—Reward—State—Action
explicit policy function, by fine tuning a vector of

parameters in order to select the best action to take for
policy. SARSA is a common example in this category.

b
8
wv
3
]
c
o3
2
@
3
]
4

- Action
- State

Fig. 2 RL continuous process

Deep reinforcement learning combines RL with
Deep Neural Network based approximation of
expected values. An offline phase prepares the net-
work with prior system knowledge, for example from
execution. These are then used during online RL exe-
cution to select best actions based on the state of the
environment [35].

Q-learning [59] is a common control strategy in
cloud resource management, due to its simple imple-
mentation. Q-learning is model free RL algorithm,
belonging to a collection of algorithms known as Tem-
poral Difference (TD) methods. Q-learning estimates
the optimal action value function, independent of the
policy being followed, and does not require a full
model of the environment. The action-value function
or Q-function is updated using (1), and approximates
the value of selecting a certain action at a certain state.

Q(sy, ar) < OC(st, ar) + afry
+yMaxQ((se+1, ar,) — Qst, ar))l (D
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In this equation, o €[0,1] is the learning rate, or
step size, and determines how the agent learns from
recent updates. A high value for ¢ means the most
recent information obtained is utilised while a low
value implies slower learning. To dampen the reward’s
effect on the agent’s choice of action, the discount fac-
tor y € [0,1] is used. When y is set to 1, the agent
will emphasise greater weight to rewards in the future.
When it is closer to 0, the agent will only consider
the most recent rewards. MaxQ(s;41, ar,,) returns
the maximum estimate for the future state-action pair.
Once the Q-Value is calculated it is then stored in the
agent’s Q-Table.

One of the challenges in action selection is explo-
ration vs exploitation, which is the challenge of
choosing to further explore the environment for pos-
sibly better rewards or choosing to exploit the known
reward paths. To speed up the process of learning an
effective policy, the agent needs to exploit reward-
ing actions, but it needs to also find these online.
A common approach is e-greedy [54], which selects
the action with the highest estimated reward most of
the time. With a small probability of €, we choose
to explore, and not exploit by randomly selecting
an available action, independent of the action-value
estimates we have previously learned. Other action
selection methods include soft-max and optimistic
initialisation of values [54].

Some of the challenges with RL include poor initial
performance, large training time, and large state space.
To improve the poor initial performance, human
experts can set initial values for a given state/action
[38], and convergence time can be reduced by using
parallel learning agents [8], where each agent learns
from its experience of visited states, and learns the
value of unvisited states from other agents, and a Q-
table can be shared among all the agents. A high
number of states and or actions would lead to com-
plex Q-tables with millions of cells and consume large
amount of memory. Exploring all the states to gen-
erate a Q-table can also be time consuming [27]. To
solve the challenges with large state and action space,
techniques such as tile coding and function approxi-
mation can be used [12, 29, 36]. Other approaches to
reducing the problem of dimensionality include aggre-
gation, where multiple states or actions are aggregated
to a smaller number of abstracted categories [8, 10,
19].
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In this paper we develop an RL based controller
to solve the VM migration problem and combine Q-
Learning with an aggregated state action space to
address the curse of dimensionality in Q-learning. To
speed up RL convergence, we utilise parallel learning
agents that learn from a shared collective experi-
ence of all agents. We develop a reward function that
focuses on learning a policy to reduce SLA violations,
and balance this with energy consumption.

5 Hybrid Architecture

Cloud Providers (CPs) build and operate large
scale data centres that contain numerous computing
resources, that are typically virtualised and require a
level of orchestration of the shared resources, which is
a challenging issue [3]. We classify the management
process into two dimensions, Management Algorithm
(MA) and Management Framework (MF). The MA is
responsible for deciding how workloads are assigned
to infrastructure resources, while the MF enables the
MA to execute by providing common functionality,
such as hierarchy level management and aggregation
of metrics between nodes. The combined function-
ality results in workloads executing on infrastructure
nodes. In our previous work we detail a hybrid MF
[24], which we summarise here. A new RL based MA
is the focus of this paper.

The Management Framework (MF) provides com-
mon utilities that enable the MA to execute, including
a mechanism to propagate node state, and a decision
engine architecture that may be centralized, hierarchi-
cal or decentralized. The architecture of our previous
work [24] consists of hybrid hierarchical decentralized
controllers operating at different scopes. On the lowest
level, every node in the infrastructure contains a Node
Controller (NC), which dynamically adjusts resource
configurations to satisfy VM demands on each node.
A collection of NCs form a cluster of nodes. Each NC
cooperates with a Lead Node (LN), which is a higher
level controller for all the NCs within a given cluster.
Unique to our proposal, the NCs within each cluster
are divided into logical groups, called overlays, where
a NC cooperates with other NCs within the same over-
lay. Each NC exists in only one overlay and in one
cluster. Once again unique to our approach, the LN
operates as a normal node within the infrastructure in
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addition to its management responsibility towards the
cluster. At the highest level, the Data Centre Controller
(DC) manages the controllers one level below it.

Our scalable hybrid architecture, SHDF, attempts
to service resource requests at the lowest local level
possible, in order to reduce the overhead of servicing
the request [39] and to reduce the performance impact
of migrating VMs across cluster boundaries [4].

5.1 Controller Functionality - VM Migration

When a node cannot satisfy the demands of the VMs
it hosts, it starts an escalation process that aims to
resolve the request at the lowest possible level. The
MA running on the stressed node and the LN coop-
erate to resolve the escalated VM migration, by using
our provided framework mechanisms.

The process starts within the NC’s overlay by send-
ing a request to other nodes within the same overlay
(Step 1), shown in Fig. 3, by using the accumulated
metrics of other nodes. If a target node is available
and accepts the migration request, then the migration
process completes for this cycle. If the selected target
node does not accept, other nodes within the over-
lay are attempted until no further options are available

DC Controller

Cluster

within the overlay. If a target is not available within
the overlay, the stressed NC escalates the VM migra-
tion request to the LN (Step 2), and the MA running
on the LN can query the cluster records from all the
overlays, which have state data from all nodes in the
cluster, to find a suitable node to house an escalated
VM. If the LN locates a target within the cluster, the
migration request is forwarded (Step 3). If the LN can-
not find a suitable target for the migration within the
cluster, it will use its knowledge of other available
clusters, through participation in the LNs overlays, to
forward the migration request to another LN (Step 4).
This target LN will repeat the process performed by
the forwarding LN, and attempt nodes within this clus-
ter (Step 5). If a suitable target is found the process
competes. If the LN in Step 5 cannot find a target, the
request is rejected back to the forwarding LN, which
will attempt other LNs in its overlay. If a suitable
target is found through another LN, the process com-
pletes. If this fails to find a suitable target, the request
is escalated to the DC Controllers (Step 6). The DC
has a view of the entire infrastructure and can forward
the request to other LNs (Step 7), which the origi-
nal LN does not cooperate with. This recipient LN
will repeat the process carried out by other LNs in the

Cluster

Lead Nodes Overlay

Overlay

/

Fig.3 VM migration & escalation process
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escalation chain (Step 8), and if a target is found the
process completes. If a target is not found, the recent
LN will reject the request back to the DC controller
(Step 9). The DC controller will attempt other LN,
which have not been already tired, until a target is
found or all LNs have been attempted.

If a target is not found then the infrastructure is
highly stressed and the request is rejected back to the
original escalating NC. In each of these escalation
phases, the MA uses data from the data dissemination
to decide on the list of targets to forward a request
to. As requests progress through the escalation pro-
cess, they are assigned an increasing priority, which
can be used by the MA in the decision making pro-
cess. For example, the MA may choose to prioritise
finding a host for an escalated VM compared to a new
VM placement.

5.2 Controller Functionality - Consolidation

At periodic time intervals and changes in utilisation,
each of the management controllers and LNs can
invoke a consolidation process where the MA can
examine the state of the infrastructure and for every
node under its management, decide to migrate some
VMs from a node, migrate all VMs off a node and
switch the node off or no change.

The advantage of SHDF is it allows the nodes to
primarily operate in a distributed manner for time sen-
sitive operations such as VM migrations, which could
improve SLA violation metrics. In this paper, we focus
on VM migration to achieve QoS metrics, and while
RL consolidation is out of scope, we use a simple
heuristic to perform regular consolidation.

6 Proposed Reinforcement Learning Management
Algorithm

In our previous work [24], we have shown manage-
ment algorithms (MAs) are widely covered in the
literature, and drive the decision making process in
cloud systems adaptation. The MA assigns resources
in the infrastructure and regularly assesses the sat-
isfaction of such assignments in achieving a given
Service Level Agreement (SLA). The frequency of
this assessment is influenced by the time complex-
ity of the algorithm; the lower the complexity, the
more frequently the algorithm can be executed. The
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approaches in the literature tend to be threshold-based
[23], however, shared cloud environments have a sig-
nificant uncertainty, and it is beneficial for the MA
to be able to update the parameters of the decision
making process to cope with a changing environment.
With the promising results of applying RL in cloud
resource management [8, 10, 19], we propose a RL
based approach for VM migration, which builds on the
MF from our earlier work, specifically to satisfy QoS
metrics such as SLA. We build on SHDF by adding
multiple modules that implement RL based agents at
different levels of the SHDF hierarchy. On both the
NC and LN, we add monitoring, classification and
learning modules that provide the RL capability. The
NC and LN perform their roles and escalation process
on the hybrid architecture, as shown in Fig. 3. The new
modules and their operation are shown in Fig. 4 and
discussed below:

— A Monitoring Module tracks VM response times
and is used as input by other modules to man-
age the node. The module additionally tracks the
outcome of reinforcement learning actions.

— A Classification module assesses the state of a
node and the VMs running on it, by using input

Classification
Module

Learning

Module

A
e
Monitoring
Module
e
Global Q Table
(NC/LN)

Fig. 4 Proposed RL decision making steps
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from the Monitoring node. The module decides if
a VM is stressed.

— A Learning Module uses the other modules as
input to carry out decision making. When a VM
is classed as stressed, the module determines the
available actions and runs the Q-learning algo-
rithm to decide the action to take. The module
additionally executes the action and invokes the
monitoring module to determine the outcome of
the action, calculates the reward for each taken
action and updates the Q-table.

Algorithm 1 shows the operations in the RL agent.
Each agent initialises value estimates to 0, and in each
decision making cycle, the agent classifies the cur-
rent state of the node, which identifies stressed VMs.
Based on the current state of the node, the learning
module determines all possible options by calling get-
PossibleActions. This uses the current overlay state
in state.targetCPUgroup[i] to determine the available
target groups of CPU utilisation from 0 to 90%. From
the available options, the learning module will choose
an action using an e-greedy policy with respect to Q.
This policy ensures that not all the agent’s actions are
greedy with respect to Q, and the agent will sometimes
choose a random action, which enables a tradeoff
between exploration and exploitation. Based on the
chosen action, the learning module will then execute
the action.

To speed up learning and speed of convergence in
the Q-learning, we employ parallel learning [6]. Each
agent learns from its experience of visited states, and
learns the value of unvisited states from cooperating
nodes in the SHDF architecture. A Q-table is shared
among all the agents for each level in the SHDF hier-
archy, and thus there is a shared Q-table for all NCs
and a separate shared Q-table for all LNs. In addi-
tion to speeding up the learning and convergence, this
approach enables a unique cooperation between NCs
and LNs. When a NC escalates a migration to the LN
in a given state, the reward from this action is tracked
as part of the learning process.

6.1 RL State

The representation of the state is key to the RL deci-
sion making process. To overcome the state space
dimensionality challenge with RL, we use a reduction
approach and aggregate VMs to two states: Normal

Algorithm 1 RL@NC.

1: procedure REGULARCHECK
2: state <— classifyState(VM.getMonitoringData)
3: actions < state.getPossibleActions
4 stateAction <«
LearningModule.chooseAction(actions)
switch stateAction do
case powerNode
7: result <~
powerNewNode(vmToMigrate)

AN

case migrate

result <«
findOverlayNode(vmToMigrate,
targetCPUWindow)

10: case escalateToLead

11: escalateToL.ead

12: case noAction

13: nop

14: procedure GETPOSSIBLEACTIONS(state)

15: possibleActions <— null

16: for targetCPUgroup[i] do

17: if state.targetCPUgroup[i] > O then

18: possibleActions.add <«
targetCPUgroupl[i]

19: if offNodes > 0 then

20: possibleActions.add < powerOnNode

21: possibleActions.add <« escalateToLead

22:

23: procedure CHOOSEACTION(possibleActions)

24: if random < 1 —e then

25: action < actionWithMaxQAtState(state,

possibleActions)
26: else
27: action <«
randomAction(possibleActions)
28:

and Stressed. Response time has been used as a mea-
sure for application performance [18]. To account for
variation in response time during the lifetime of an
application, we use an approach similar to [43]. We
apply linear regression on collected response time dur-
ing each monitoring epoch, which by default is every
two minutes. The classification module will deem a
VM stressed when the 95th percentile of response
time, during a monitoring period, is above a defined
SLA threshold that by default is 500ms. We categorise
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the state of VMs as Normal when the 95th percentile
of the response time is below the defined SLA level.
The classification of state occurs during the regular
node check, shown in line 2 of Algorithm 1.

6.2 RL Actions

Each node contains an RL agent, which carries out
decision making. The RL agent carries out actions
to achieve QoS metrics and balance this with energy
consumption. To perform migration when a VM is
stressed, the agent needs to identify a new target node
to host the VM. The hybrid architecture provides an
expanding set of options to migrate a VM, starting
within the overlay where the VM resides and then onto
the cluster and the rest of the data centre, a cooperation
facilitated through the LN.

RL actions are contextual to the current state, and
the agent ensures actions are valid by filtering non
applicable actions, as shown in the getPossible Actions
method in line 3 of Algorithm 1. For example, when
the VM is in Normal state, no migration actions are
available to the RL agent.

The goal for the RL agents is to find the actions that
reduce SLA violations (maximise reward) when an
agent enters a given state, shown in method chooseAc-
tion in line 4 of Algorithm 1. During the decision
making process, the agent chooses between powering
on a new node to house the migrating VM (line 6),
migrating the VM to another target node within the
same overlay (line 8), escalating to the Lead Node
(line 10) and taking no action (line 12). In the migrate
within overlay case, the RL agent needs to choose
a target node to send a stressed VM to. However, a
large data centre will have many thousands of nodes,
and tracking an action reward for each individual tar-
get node will lead to a large set of actions and a
large Q-table. To solve this, we simplify the RL action
space and use a reduction mechanism that groups tar-
get nodes based on their CPU utilisation. By default
we use 10 groups, 10% each using (2), which creates
target groups from O to 9. For example, action groupl
means migrate the stressed VM to a node with an aver-
age CPU utilisation of 10% to 19%. Selecting action
group6 means migrate to a node with CPU utilisation
of 60% to 69%. Once an action is selected, we use a
greedy policy to select the first available node that fits
the action group. For example, an action of group6,
will result in the first available node that meets the
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requirements of the VM and has an average utilisation
between 60% and 69% to become selected as the tar-
get node. Based on CPU utilisation, we identify the
target groups available and add these as options for the
RL agent to choose from (lines 16 to 18). We addi-
tionally account for the number of available switched
off nodes and add these as an option to the RL agent
to switch on (lines 19 to 20). In most cases the agent
chooses an action, from the available options, that
maximises future reward (line 25). With a small prob-
ability of €, the agent will choose to explore and not
exploit, by randomly selecting an available action (line
27).

; ‘G avgCpuUtilization(node) @)
argetGroup =
& P actionGroups

The NC can select actions to migrate a stressed VM
within the overlay, as well escalate to a LN. We mod-
ify the original hybrid architecture, where escalation
to the LN was only available when no target nodes
were available in the overlay, to being able to esca-
late at any point using a RL action (line 12). The RL
based migration and escalation process is shown in
Fig. 5. A LN deals with escalation of VM migrations
from a NC, and performs RL actions within the scope
of a whole cluster. Table 2 shows the RL actions car-
ried out by a NC and Table 3 shows the LN actions.
Similar to the original hybrid architecture, the pro-
cess starts within the NC’s overlay, where a NC uses
the RL modules to make a migration. The difference
in this new version, is the NC can choose to migrate
within the overlay (Step 1) or make an escalation to
the LN (Step 2), based on the RL agent and the actions
from Table 2. If an escalation to the LN is chosen, the
RL agent running on the LN will classify the cluster
state and choose an action from Table 3, which can be
within the cluster (Step 3) or a migration outside the
cluster (Step 4). Once the action is executed, both the
LN and NC RL agents receive a reward post action
completion. The NC receives a reward for the escala-
tion action (Step 5) and the LN for the choice of action
within the cluster or outside it (Step 6).

Consolidation using RL is outside the scope of this
work, and we use a simple heuristic to perform regular
consolidation at the cluster level. The heuristic, based
on [31], classifies all the nodes at the cluster level as
partially utilised, under utilised or empty. All under
utilised nodes become candidates for migrating VMs
away from to other partly utilised nodes. When the
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Fig. 5 RL migration & escalation process

last VM is migrated away from a node and it becomes
empty, the node is switched off.

Algorithm 2 Update Q-table.

1: procedure UPDATEQ(action)
2: s’ < classifyState(VM.getMonitoringData)
3: responseTime <~
monitoringModule.getRT(vm)
: reward <— calculateReward(responseTime)
5: O(s,a) < Q(s,a) + a[reward+
y Q-max(s',a) — Q(s, a)]

6.3 Reward

The goal for RL is to maximise rewards through incre-
mentally mapping states to actions. The monitoring
and classification modules regularly monitor a node
and capture the state, which enables a subsequent
action from the learning module. After an action is
executed, there is a waiting period, which is action

dependent. Boot up actions take a defined amount of
time, typically set to 30 seconds, while migrations take
a length of time that is dependent on the amount of
memory used by the VM. After the action wait time,
the monitoring module will calculate a reward for the
action using (3), and is shown in Algorithm 2. The
update starts by classifying the current state of a VM
(line 2), and calculating the archived reward based on
(3) in line 4. The Q-learning update is then applied
based on (1) in line 5. As our goal is to reduce SLA
violations, and balance this with energy consumption,
the reward function should reflect VM performance
(yield) and resource utilisation (cost), and punish
actions that degrade VM performance or significantly
increase cost. Our reward function is shown in (3),
where yield is the gain in a QoS metric, and cost is the
increase in energy consumption, represented by the
delta in CPU utilisation. As nodes consume up to 70%
of their full utilisation in idle state [13], the Power on
node action incurs a penalty of 0.7. Other actions do
not carry a penalty.

Reward = yield — cost — penalty, 3)
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Table 2 NC RL actions
Action

Description

Migrate [0,1,2,3,4,5,6,7,8,9] inside overlay

Migrate Outside Overlay

Power Node inside overlay

Do nothing

Migrate to target node with utili-
sation [1 to 9%, 10 to 19%, 20 to
29%, 30 to 39%, 40 to 49%, 50 to
59%, 60 to 69%, 70 to 79%, 80 to
89%, 90 to 99%]

Escalate migration to LN

Power on node & migrate

Do nothing

where yield € [ —1,1] decaying to —1 for the worst
QoS and 1 when QoS is met. Cost is the change in
CPU utilisation where cost € [0,1]. We use Response
Time as our key QoS metric. Response Time (rt) rep-
resents the time it takes to execute a request to an
application running inside a hosted VM, and reflects
the CPU resources that are assigned to the VM. The
monitoring module captures response time in the 95th
percentile. When a VM is moved to a new target node,
it will likely experience a change in r¢; migration may
also impact other VMs running on the target node. To
capture this, our yield of 7 is calculated based on (4),
where m is the number of all VMs running on the
target node.

yield = 377, y(rt)) . 4)

For each VM, when rt is a value below the
TargetRT and therefore satisfying SLA, the reward
is 1. When rt is above the Target RT for the VM, the
function will punish actions that cause SLA violations,
as shown in (5).

TargetRT —rt ,rt > TargetRT,

y () = { 1 rt < TargetRT ©)

Energy Consumption is the second component used
by the reward function, and captures the energy utili-
sation cost of the action, based on the CPU utilisation
of the target node before and after the action. This
value helps the learnt policy to move towards actions

that balance meeting SLAs with energy consumption,
and is shown in (6).

cost = postActionUtilisation — preActionUtilisation

Q)

Each NC and LN carries out an action, receives a
reward for the action, and updates the shared global
NC and LN Q-tables respectively, as shown in Algo-
rithm 2.

7 Experiment Setup and Evaluation

In this section, we evaluate different approaches and
compare our RL based Management Algorithm (MA)
with multiple systems from literature, on both the MA
and Management Framework (MF) dimensions. We
choose to compare to a heuristic [7] MA that uses a
Modified Best Fit Decreasing approach to migrate a
VM, which has been shown to be effective in prac-
tice. For MF, we choose the hybrid architecture from
our earlier work [24] and a centralized MF, due to the
popularity of centralized MFs in the literature, and we
combine MFs and MAs with varying workloads and
VM configurations. Thus, our evaluation set is:

— RL MA combined with Hybrid MF

Table 3 LN RL actions
Action

Description

Migrate [0,1,2,3,4,5,6,7,8,9] inside cluster

Migrate Outside cluster

Power Node inside cluster

Migrate to target node with utilisation [1 to
9%, 10 to 19%, 20 to 29%, 30 to 39%, 40
to 49%, 50 to 59%, 60 to 69%, 70 to 79%,
80 to 89%, 90 to 99%]

Escalate migration to data centre controller

Power on node & migrate
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— Heuristic MA combined with Hybrid MF
— RL MA combined with Centralized MF
—  Heuristic MA combined Centralized MF

This combination enables us to evaluate the per-
formance of the proposed RL MA, by comparing to
a Heuristic MA, and investigate benefits that can be
realised from combining the RL MA with the Hybrid
MFE.

We used simulation to facilitate rapid development
of experiments of large data centres. We selected
DCSim [57] because of its extensibility and existing
implementation of a centralized architecture, allowing
us to create baseline comparators for our proposed RL
approach. We instantiate SHDF with three levels of
controllers, running on the root of the data centre (DC
Controller), the cluster manager (LN) and executing
nodes (NC).

7.1 Simulator Setup

DCSim allows a VM to use more CPU than reserved,
up to an amount that does not impact other VMs.
Like [31], for the heuristic based approaches we use a
CPU utilisation thresholds of 90% for high, indicating
stress level, and we use 60% for low, indicating low
utilisation.

In DCSim, an application is modelled as an inter-
active multi-tiered web application. Each application
has a specified client think time, a workload compo-
nent and a request service time, which is the amount
of time required to process each incoming request.
The workload defines the current number of clients
connected to the application, which can change at dis-
crete points in the simulation based on a frace file.
The resource requirements are defined as its resource
size, which is the expected amount of CPU, memory,
bandwidth and storage. DCSim treats bandwidth and
storage as fixed requirements, however, CPU require-
ments can be varied across the simulation based on the
VM demands. DCSim applies a cost to VM migration
including the time taken for migration, as a function
of memory consumed by a VM, and factors in the
bandwidth required for the VM migration on the host-
ing node. Additionally, the boot time of a switched
off node has an elapsed time cost. The time taken to
switch on a node for migration is reflected in the time
period the VM is in a stressed state, and therefore

the SLA achieved by a VM. Due to the complexi-
ties of building accurate power models, we focus our
investigation on scalability metrics.

7.2 Workload and SLA Violations

We run the experiments at a load that requires more
than 70% of the CPU resources of active nodes. Each
simulated application contains a workload trace based
on the number of incoming requests to web servers
from publicly available traces; we used the following
traces included with DCSim: Google 1, Google 3, EPA
(Environment Protection Agency) and Clarknet. Each
workload has an average normalized load of: 0.74,
0.31, 0.24 for Google 1, Google 3, Clarknet and EPA
respectively. Figure 6 shows the normalized shape of
the workload requests for each of these traces. DCSim
divides traces into equal length segments, and total
the number of requests in each interval. The values
of each interval are then normalized to [0, 1], with O
being zero requests, and 1 being the maximum num-
ber of requests received in an interval. These are then
scaled to match the VM being used; for example if a
VM uses one core at 2GHz, the normalized trace is
scaled by 2000. We create VMs with different cores
and RAM configurations, as shown in Table 4. Each
experiment is run to simulate 24 hours, and when there
is not enough trace data for a an experiment duration,
we loop to the beginning of the trace.

7.3 Modelling the Impact of Decision Making

DCSim [57] applies a migration cost once a VM
is selected for migration, by adding additional time
to complete the migration based on the amount of
memory used by the VM. However, DCSim does not
account for the time it takes to execute the decision
making process, or the impact of such time. The length
of the decision making process impacts stressed nodes
by increasing the amount of time the node stays in a
stressed state. In a centralized architecture, all nodes
are used as input into the decision making process.
Therefore, the execution of decision making could get
progressively higher, as the number of managed nodes
increases.

To capture the cost of the decision making, we
extend DCSim to measure the amount of time during
decision making, and add this time to the VM migra-

@ Springer



15 Page 16 of 26

J Grid Computing (2022) 20: 15

Google Cluster Cores - Job Type 1

0.8 09 1.0

Normalized Workload
07

0.6

05

04

T T T T T
0 5000 10000 15000 20000

Time (s)

EPA-HTTP

0.6 0.8 1.0
1

Normalized Workload
04

02
1

0.0
1

0 20000 40000 60000 80000

Time (s)

Fig. 6 Original normalized traces used [57]

tion duration. As the decision making execution time
varies based on the MA and the hardware it is running
on, we add a configurable scaling factor that can be
applied to the measured execution time.

7.4 Data Centre
Our experiments use nodes modelled as ProLiant

DL380 G5 Quad Core [1], with 2 dual-core 3GHz
CPUs and 16GB of memory. The number of nodes
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used is specified in each of the experiments, with a
minimum of 1,000 nodes. We assume that the data
centre supports live VM migration, as this technique
is currently supported by most major hypervisor tech-
nologies, such VMware [2] or Xen [14].

To minimise the number of variables in our exper-
iments, we chose to keep a homogeneous infrastruc-
ture, with the same specification for all of the nodes.
The various parameters used in our evaluation are
outlined in Table 4.
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Table 4 Experiment configuration

Config

Config options

Base config

VM Core (Mhz)

Node Capacity (Mhz)
Number of Cores

VM Memory (MBs)
Workload

Number of Nodes

Node stress check frequency
VM service time

RL parameters

Target Response Time

1000,1300,2500

3000

1,2

1024,2048

clarknet, EPA, Google 1, Google 3
1000, 2000,3000, 4000, 5000

2 minutes

0.2 seconds

a=0.1, y=0.7, €=0.1

0.5

round robin [1000,1300,2500]

3000

round robin [1,2]

round robin [1024,2048]

round robin [clarknet, EPA, Google 1, Google 3]
1000

2 minutes

0.2 seconds

a=0.1, y=0.7, €=0.1

0.5

7.5 Experiments

Our goal is to demonstrate improved QoS metrics
for the RL MA, and we evaluate this by examining
SLA violations. We evaluate our proposal under vary-
ing workloads and draw a comparison between our
proposal and several related techniques.

Simulated applications are modelled as interactive
web servers, running inside a VM, and an SLA Vio-
lation occurs when response time associated with the
VM exceeds the rarget response time. We evaluate all
architectures under varying scenarios to understand
the impact on SLA violations. Initially, we evaluate
a mixed workload scenario to represent the varying
workloads deployed on data centres. To understand the

Fig. 7 Mixed workload

results: Number of SLA

Violations response time > 11000
0.5s

8250

5500

SLA Violations (Response Time)

2750

impact of specific workloads, we then evaluate these
individually. We additionally examine scalability and
how the approaches cope with a varying arrival rate
for new workloads.

7.5.1 No Adaptation

In this experiment, we use a combined workload of all
traces in a round robin approach, where each created
VM uses a workload trace from all of the available
traces. We use the centralized architecture with 1000
homogeneous nodes and no adaptation is invoked.
When a node becomes stressed, it remains stressed for
the reminder of the experiment, and exhibited 117045
instances of SLA violations.

M RLHybrid M Heuristic Hybrid [ RL Centralized [ Heuristic Centralized
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Fig. 8 Google 1 workload
results - Number of SLA
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7.5.2 Mixed Workload Assessment

In this experiment, we use a combined workload of all
traces in a round robin approach, where each created
VM uses a different workload trace, in a determin-
istic order. The mixed workload simulates different
workloads that could be experienced in a data centre.
Workload arrival rate is the frequency that new VM
placement requests arrive at the data centre. For this
experiment we use an arrival rate of 180 new VMs
per hour, with each VM running for 10 hours before
shutting down. The experiment simulates 24 hours of
elapsed time. We use 1000 nodes and the base con-
figuration in Table 4. The SLA violation results are
shown on Fig. 7.

Fig. 9 Google 3 workload
results - Number of SLA

Google 1

The hybrid architecture achieved lower SLA viola-
tion compared to centralized, and the RL hybrid out-
performed by 69.9%, 320.0% and 468.3% against the
heuristic hybrid, RL centralized and heuristic central-
ized, respectively. This is due to the RL approach of
discovering target allocations that achieve the desired
VM response time, and thus reduce SLA violations.
The reward function drives behaviour of RL to choose
target nodes that are switched on and have lower exist-
ing CPU utilisation. While the centralized architecture
benefited from using RL, the hybrid architecture bene-
fited more due to its autonomous approach to decision
making, which provides rapid decision making, com-
bined with a target node selection that maintains VM
response time, thus reducing SLA violations.

M RLHybrid M Heuristic Hybrid ! RL Centralized [ Heuristic Centralized

Violations response time > 18000
0.5s

13500

9000

SLA Violations (Response Time)

4500
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Fig. 10 Clarknet workload
results - Number of SLA
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Compared to the No adaptation experiment, all
approaches unsurprisingly reduced SLA violations.

7.6 Workload Impact

To investigate the impact of workload further, we use
the individual workloads from the previous experi-
ment and evaluate them individually. For this experi-
ment we use an arrival rate of 180 new VMs per hour,
with each VM running for 10 hours before shutting
down. The experiment simulated 24 hours of elapsed
time. We use the base configuration in Table 4.

The results for the Google 1 workload are shown
in Fig. 8, and show the effect on SLA violations.
This workload has an average of 0.74 normalized load
and thus high stress. The RL hybrid approach out-
performed other approaches by 119.4%, 248.4% and

Fig. 11 EPA workload
results - Number of SLA

Clarinet

299.7% against the heuristic hybrid, RL centralized
and heuristic centralized respectively. The RL hybrid
approach continues to perform well on this stress-
ful workload, and shows further improvement in this
workload against the heuristic hybrid; 119% versus
69% in the mixed workload, indicating the hybrid
architecture benefits from the RL learnt policy, which
favours target nodes that achieve target response time,
while the heuristic approach does not take feedback
signal on target node selection.

The results for the Google 3 workload are shown
in Fig. 9, and show the effect on SLA violations.
This workload has an average of .83 normalized load
and is the highest workload stress we have evaluated.
The hybrid approach outperformed other approaches
by 192.0%, 300.6% and 555.0% against the heuris-
tic hybrid, RL centralized and heuristic centralized

M RLHybrid M Heuristic Hybrid I RL Centralized M Heuristic Centralized

Violations response time > 6000
0.5s
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SLA Violations (Response Time)
w
8
o

-
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o
o
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Fig. 12 High dynamic workload: a)Arrival rate patterns, b) SLA violations for dynamic arrival rate

respectively. The RL hybrid approach performs even by 85.7%, 109.9% and 156.6% against the heuris-

better on this workload, compared to the Google 1 tic hybrid, RL centralized and heuristic centralized,
workload, indicating that more stressful workloads respectively. These are lower improvements, indicat-
benefit form the learned RL policy, which favours ing higher stress workload benefit more from the RL
target node selection that meets target response time. hybrid approach.

The results for the Clarknet workload are shown in The results for the EPA workload are shown in
Fig. 10, and show the effect on SLA violations. This Fig. 11, and show the effect on SLA violations.
workload has an average of .31 normalized load and This workload has an average of .24 normalized load
is a lower stress compared to the Google workloads. and is the least stress workload we have evaluated.

The hybrid approach outperformed other approaches The hybrid approach outperformed other approaches

Fig. 13 Active Nodes in — RL Hybrid ~— Heuristic Hybrid
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Table 5 Scalability of the different approaches - SLA Violations

Number of nodes RL hybrid Heuristic hybrid RL centralized Heuristic centralized
1000 2518 7353 10257 13788
2000 5485 18817 22357 29262
3000 8537 29784 34161 44044
4000 11051 43633 46882 59026
5000 17771 56678 58730 75208

by 54.9%, 212.1% and 269.2% against the heuris-
tic hybrid, RL centralized and heuristic centralized,
respectively. These are lower improvements, indicat-
ing higher stress workloads benefit more from the RL
hybrid approach.

7.7 Dynamic Workload

To evaluate how the different approaches cope with
multiple high arrival rates, this experiment involves
several sharp increases in arrival rate, by 400 VMs per
hour each time. High arrival rate for VMs causes more
VMs to be placed in the infrastructure, and in turn
more VMs that can exhibit SLA violations. We exam-
ine the scenario in Fig. 12a. There is a small and steady
flow of new VM creation requests, followed by two
sharp increases in number of VM creation requests
that persist for several hours, followed by a return

— RL Hybrid
30

2 2s

c

| .

©

Q

g

p = 15

)

3

£

-

S

& 75
0

to the previous small steady number of VM creation
requests. Each VM runs for 1 hour before shutting
down, and we use the Google 3 trace. The experiment
simulates 24 hours of elapsed time, and we use the
base configuration in Table 4. The high arrival rate
of VMs on the infrastructure, as each VM runs the
Google 3 workload, increases the VMs that begin to
experience a stress state where they do not deliver the
requested CPU demand, and thus enter SLA violation.
We hypothesised that this could be challenging for RL
approaches, as they could learn suitable responses for
arrival rates that are not sustained.

The results are shown in Fig. 12b, and show num-
ber of incurred SLA violations. The hybrid based
approaches outperform the centralized approach, due
to the rapid decision making process. The RL hybrid
outperforms the heuristic hybrid by receiving a reward
for powering on new nodes as the load increases,

— RL Centralized

0 65 140 215 295 370 450 495 555 615 680 750 810 860 925 995 105511301195 1265 1325 1385 1450
Time (minutes)

Fig. 14 RL convergence: Hybrid versus Centralized
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Fig. 15 SLA violations:
Hybrid Heuristic versus
Hybrid RL with escalation 260

195

130

Number of SLA Violations

65

= Escalation when overlay full

RL Escalation

0123456 7 8 910111213 14151617 18 19 20 21 22 23 24

shown in Fig. 13. During each of the spikes at hours
5 and 14, the RL switched on more nodes versus
steady new nodes in the heuristic hybrid. While the
RL centralized has an improved target node allocation,
compared to the heuristic centralized, it continued to
suffer from the time taken for the decision making
inherent in the centralized architecture.

7.8 Scalability

To evaluate how the approaches scale, we use the most
stressful workload, Google 3, and maintain the stress
ratio for each node, by increasing the load and the
number of nodes in the data centre. Similar to other
experiments, we simulate 24 hours and the results are
shown in Table 5.

As the load ratio increases with more nodes, it is
expected the number of SLA violations increases. The
RL hybrid approach maintains its SLA performance
as more nodes and VMs are added to the data centre,
with lower SLA violations than all other approaches,
on average 239.5%, 294.0% and 410.9% compared
to the heuristic hybrid, RL centralized and heuristic
centralized respectively.

7.9 Learning Performance
Convergence behaviour of an RL agent is a useful

indicator to show whether the agent is learning an
optimal policy. A preferable convergence shape is

@ Springer

Time (hours)

one where cumulative reward can gradually increase
through time and converge to a high value [66]. While
the RL hybrid and RL centralized use the same RL
approach to monitor, classify and action node state,
they have different decision making architectures. The
RL hybrid performs parallel decentralized learning
and the centralized has a single learning agent. The
hybrid architecture has more rapid decision making
and is able to execute more actions in a given time
window, and is able to converge on a policy faster than
the centralized approach. Figure 14 shows the cumula-
tive value of RL actions for both approaches, from the
Google 3 workload experiment. Initially there is low
stress on the infrastructure, and the RL approach is
making No-operation actions and both RL hybrid and
RL centralized are receiving similar rewards. As the
stress on the infrastructure increases, the RL hybrid is
able to observe rewards from actions quicker than the
RL centralized approach, and thus accumulate higher
value during the experiment.

The unique cooperation between the RL agents run-
ning on NCs and LNs, enables escalation by the NC
within one overlay to other overlays in the cluster. In
this paper, we extended the original hybrid architec-
ture, where escalation to the LN was only performed
when no target nodes where available in the over-
lay, to NCs being able to escalate at any point using
an RL action. This enables the RL agent to explore
escalation to LN prior to the overlay becoming full.
Figure 15 shows the reduction in SLA violations in the
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RL escalation approach. By performing opportunistic
escalation, the NC is reducing pressure on the overlay
by leaving capacity in the overlay and thus reducing
SLA violations.

8 Conclusion

RL has shown great promise in a range of control
applications. Using RL in managing cloud infrastruc-
tures offers adaptability and advantages over heuris-
tic based approaches, which historically have been
threshold based and require significant domain and
application knowledge to define threshold values. In
this paper, we presented a RL management algorithm
that reduces the state and action space and uses a
unique multi level RL agent cooperation, between a
NC and LN in hierarchical management, to further
improve SLA violations performance. This RL man-
agement algorithm integrates well into a hybrid man-
agement framework, from our earlier work. We eval-
uated the performance of our approach using work-
load traces and simulation, and compared the results
obtained with an established heuristic, demonstrat-
ing significant improvement to SLA violations and
high scalability. Future areas of improvement include
expanding the RL state space, and enabling the RL
MA to learn to migrate VMs just before they become
stressed. Our RL approach can also be extended to
include a RL approach for initial VM placement and
consolidation. Additionally, it would be valuable to
validate the simulation results with experimentation
on actual cloud infrastructure.

Data Availability The data traces used as input for this
paper are part of the DCSim [57] simulator, and are available
from Github: https://github.com/digs-uwo/dcsim/tree/master/
traces. Most of the data generated by this research is contained
in the results section of this paper, and the full datasets gener-
ated are available from the corresponding author on request.
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