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Abstract For the current research on computing
offloading, most of them only considers the multi-user
task offloading decision problem or only considers the
wireless resource and computing resource allocation.
They have failed to comprehensively consider the im-
pact of offloading decision and resource allocation on
computing offloading performance, and it is difficult to
achieve efficient computing offloading. For this reason,
this paper proposes an edge computing task offloading
strategy based on improved genetic algorithm (IGA).
First, the weighted sum of task execution delay and
energy consumption is defined as the optimization func-
tion of total overhead. Besides, the paper comprehen-
sively considers the impact of users’ offloading deci-
sion, uplink power allocation related to task offloading
and MEC computing resource allocation on system
performance. Secondly, Genetic Algorithm (GA) is
substituted to establish communication model, the
offloading strategy is corresponding to the chromosome
in algorithm and the gene is encoded by integer coding.
Finally, IGA is used to solve the task to achieve efficient
offloading. Among them, the use of integer coding,
knowledge-based crossover and the mutation of popu-
lation segmentation improves the optimization ability of
this algorithm. Finally, experimental results show that
the performance of IGA is the best, and the overall cost

is about 52.7% of All-local algorithm and 28.8% of
Full-edge algorithm.

Keywords Computing offloading .Mobile edge
computing (MEC) . Improved genetic algorithm (IGA) .

Computing resource . Task allocation . Offloading
decision

1 Introduction

In recent years, the development of mobile terminal
equipment technologies such as smart phones and tablet
computers has promoted a large number of services and
applications that require high-quality transmission rates
and processing rates. This brings severe challenges to
network service providers. Although the central pro-
cessing unit, battery capacity and other software and
hardware of smart phones continue to upgrade, they
are still limited by physical design and cannot handle
applications that require large-scale calculations in a
short time. The opportunity and challenge have promot-
ed the development of Mobile Cloud Computing
(MCC), which allows mobile users to access and use
cloud computing [1].

The MEC mode deploys distributed computing and
cache resources at the edge of wireless access network
close to mobile terminal equipment. This can effectively
save network bandwidth transmitted to the central node,
reduce the cross-congestion of data transmission and
help solve the problem of intensive computing tasks
requiring instant response. By offloading intensive tasks
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to MEC servers, users use the server’s computing re-
sources to save energy, improve the endurance of de-
vices and extend the battery life [2]. The MEC server
can provide real-time information about the user’s loca-
tion and behavior, which helps to enable context-aware
services [3, 4]. In addition, MEC can support wireless
power transmission tomobile terminal equipment [5–7].

Computing task offloading is a commonly used im-
plementation method for MEC systems. Computing
offloading refers to the technology of migrating com-
puting tasks of user equipment to MEC servers or core
cloud data centers [8]. The offloading strategy is usually
determined according to the computing resources of
mobile user equipment, the available resources in
MEC servers and cloud servers. For the current research
on MEC computing offloading, most of literatures only
considers the multi-user task offloading decision prob-
lem. Or they only consider the wireless resource and
computing resource allocation in the process of comput-
ing offloading and fail to comprehensively consider the
impact of offloading decision and resource allocation on
computing offloading performance. In addition, some
literatures have studied the joint optimization problem
of task offloading and resource allocation. However,
few literatures consider the problem of MEC server
computing resource allocation, there are problems of
single consideration and high computing complexity.
To solve the above problems, an edge computing task
offloading strategy based on IGA is proposed. The
innovations of this paper are summarized as follows:

(1) Aiming at the joint optimization problem of multi-
user task offloading and resource allocation in
MEC single-cell scenario, this paper defines the
weighted sum of task execution delay and energy
consumption as the total overhead optimization
function. It also considers the impact of offloading
decisions, uplink power allocation related to task
offloading and MEC computing resource alloca-
tion on system performance.

(2) In order to reduce the time complexity of genetic
algorithm and adapt to the structured characteris-
tics of our proposed problem task, this paper
adopts genetic algorithm to substitute the
established communication model. In this model,
the offloading strategy corresponds to the chromo-
some in algorithm and the gene is encoded by
integer coding. Each gene represents the execution
position of a task in the workflow. The reciprocal

of overall system overhead is selected as the fitness
function, and genetic algorithm is improved ac-
cording to the characteristics of this problem.
These ensure the effectiveness of mutation and
avoid invalid mutation to improve the local search
ability of this algorithm.

2 Related Work

In recent years, many domestic and foreign scholars have
conducted research on the joint optimization of wireless
and computing resources in different application scenar-
ios. Literature [9–11] mainly focused on single-user sce-
narios, combining the cycle frequency of mobile device
CPU to perform computing tasks and transmission power
required for offloading to study offloading strategies.
Literature [9] proposed Lyapunov’s dynamic computing
task offloading strategy with low computing complexity.
The user made a computing task offloading decision in
each time slot. After the decision was made, when the
computing task was executed locally on terminal devices,
CPU cycles were allocated. The transmission power was
allocated when the computing task was offloaded to
MEC servers for execution. Literature [10] comprehen-
sively considered the computing power of terminal
equipment and MEC server and the characteristics of
communication channel between mobile devices and
MEC servers. It designed a computing task offloading
strategy, minimized the task completion time delay, and
used a one-dimensional search algorithm to solve it.
Literature [11] proposed a computing task offloading
strategy based on minimizing MD energy consumption
under the condition of time delay constraints, and trans-
formed the optimization problem into a Markov process
solution. Two strategies were proposed in the paper, one
of them was an online learning strategy, which dynami-
cally adjusts the offloading strategy according to task
calculation required by the application used by terminal
devices. The other was an offline prediction strategy. The
computing task offloading strategy was designed accord-
ing to the relevant knowledge of the application used by
terminal devices and communication channel conditions.
Literature [12] mainly studied the balance between ener-
gy consumption of mobile terminal devices and calcula-
tion delay in a multi-user system. It minimized energy
consumption and takes system stability as a constraint
condition under the time-delay limitation, and used
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Lyapunov optimization algorithm to determine the com-
puting task offloading strategy online. In the literature
[13], when considering the trade-off between energy
consumption and time delay, the priority was determined
by setting the weight value. At the same time, this liter-
ature considered the problem of computing task
offloading strategies in a multi-channel environment.
They not only judged whether to offload computing tasks
to MEC servers according to the weight parameter, but
also selected channels with the best communication qual-
ity for data transmission. Obviously, solving the optimal
solution is an NP-hard problem in a multi-user scenario,
it is difficult to find a centralized solution, and there is
room for improvement. Therefore, the paper proposes an
approximate algorithm based on this, approximates cen-
tralized and distributed.

The above studies all involve the problem of central-
ized resource allocation. Centralized computing
offloading is generally managed by a unified central
controller, which requires prior knowledge of the com-
puting resources of each mobile device and node. Under
this premise, a better offloading strategy for computing
tasks is selected for scheduling. It generally involves
solving Mixed Integer Nonlinear Programming (MINP)
problems, which are complex and difficult to find the
optimal solution. And most only give numerical results
to illustrate performance. Since only the same MEC
server can be shared, the expected delays spent by
different users in the system required by edge comput-
ing are coupled. Therefore, directly optimizing the
MINP problem is very complicated. At the same time,
due to users are very smart and hope to maximize their
own interests, it is not easy to directly control the
offloading strategy. In addition, the centralized optimi-
zation problem requires direct control of the users’
decision-making and revenue function. This is hard to
come by, especially when users are motivated to cheat.
Thus, some scholars turn to distributed resource
allocation.

Literature [14] was based on game theory to achieve
efficient offloading ofMCC tasks. The decision-making
problem of distributed computing offloading among
multiple mobile users was abstracted into a distributed
computing task offloading game. By analyzing the
structural properties of this game, it was found that this
game can always achieve Nash equilibrium. Thus, a
distributed computing offloading algorithm was de-
signed to achieve Nash equilibrium, and the efficiency
ratio was quantified through a centralized optimization

method. Literature [15] mainly solved the problem of
realizing energy-saving computing offloading under the
hard constraint of terminal device application comple-
tion time. For this reason, dynamic energy-saving com-
puting offloading and resource scheduling strategies
were proposed to save energy consumption and reduce
application completion time. Literature [16] proposed a
multi-dimensional optimization problem including the
formulation of offloading strategies, load balancing and
computing resource allocation. It minimized the weight-
ed sum of total delay and energy consumption of all
multi-smart mobile devices (SMD) in a multi-MEC
server and SMD network, and performs power control.
A low-complexity heuristic algorithm was used to ob-
tain an offloading strategy while ensuring load balance
amongmultipleMEC servers, and used Lagrangian dual
decomposition method to solve the sub-problem of
computing resource allocation. This method was effec-
tive in shortening the task processing delay, but it was
not conducive to reducing system energy consumption.

However, most existing studies always assume that
the computing power of MEC servers is unlimited. But
due to MEC servers are located at the edge of network,
their computing power should be limited, especially in a
workload-intensive network. In this case, a suitable
strategy is needed to control the users’ offloading task
and ensure the normal operation of system, considering
the impact of offloading decision and resource alloca-
tion on computing offloading performance.

3 System Model

3.1 Network Model

Consider a single-cell-multi-user network model using
MEC technology, as shown in Fig. 1. Among them, the
MEC server is deployed near a Base Station (BS). The
MEC server can handle computing tasks offloaded from
users. In this way, each BS has a certain storage capacity
and task operation processing capacity, and the BSs
communicate with each other through wireless signals.
When the base station handles the task, it adopts the
dynamic voltage adjustment technology. The total num-
ber of users in the network is K, and the collection of all
mobile users is represented as κ = {1, 2,⋯,K}. Assume
that each user k has a computing task ϖk ¼ bkf ; sk ;
Tmax
k g to be executed, where bk represents the amount of
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input data for computing tasks, sk represents the number
of CPU cycles required to complete computing tasks,
and Tmax

k represents the user’s tolerance for processing
tasks. This paper considers the total offloading scheme
(that is, the task cannot be divided and can only be
processed as a whole). Let ak ∈ {0, 1} denote the user’s
offloading decision. When ak = 1 means that user k
chooses to offload computing tasks to MEC servers for
processing; otherwise, the user chooses to execute tasks
locally. The set of users who choose to offload comput-
ing tasks is recorded as κc, and the potential of the set is

κcj j ¼ Kc ¼ ∑K
k¼1ak , which represents the number of

users it contains. Similarly, the set of users who choose
to execute locally is denoted as κl, and the potential of
the set is |κl| =Kl =K −Kc. For the convenience of anal-
ysis, assume a quasi-static scenario, that is, within the
same offloading decision period, the user set K remains
unchanged.

3.2 Communication Model

In this model, it is assumed that each user in the cell
adopts uplink transmission channels orthogonal to each
other. Therefore, all users will not cause co-frequency

interference between each other during task offloading.
When user k transmits with pk power, its uplink rate
Rk(pk) is expressed as:

Rk pkð Þ ¼ Wk log2 1þ pkhk
σ2
0;k

 !
;∀k∈κ ð1Þ

where Wk represents the uplink bandwidth corre-

sponding to user k, and B ¼ ∑K
k¼1Wk represents the

total uplink bandwidth of the system. hk represents
the uplink channel gain between user k and BS,
and σ2

0;k represents the uplink noise power of BS

corresponding to user k.

3.3 Calculation Model

(1) When user k chooses to execute tasks locally, let f lk
denote the computing power (the number of CPU
cycles) that user k local device can provide. The

time Tl
k to complete local computing tasks is:

Core
network

controller

BS

Gateway

MEC

server

User 1

User 2

User 3User k
User K ...

Fig. 1 The MEC network model
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Tl
k ¼

sk
f lk

ð2Þ

It can be seen from literature [17] that the energy

consumption El
k in local calculation is:

El
k ¼ κsk f lk

� �2 ð3Þ

where the energy consumption coefficient κ is a con-
stant related to the chip structure of mobile devices, here
κ = 10−26 is taken.

When user k chooses to execute computing tasks
locally, its total cost includes the weighted sum of
energy consumption generated in the process and local
execution delay. According to formulas (2) and (3), it
can be expressed as:

zlk ¼ γekE
l
k þ γtkT

l
k ð4Þ

where the coefficients γek and γtk respectively represent
the trade-off factor of task execution energy consump-
tion and time delay when making the offloading deci-
sion, satisfying γek ; γ

t
k∈ 0; 1½ �, γek þ γtk ¼ 1. When γek is

larger, it means that the power of user equipment is
lower at this time. Pay more attention to user equipment
energy consumption when making offload decisions.
When the γtk is large, it indicates that the computing
task is delay-sensitive at this time. Pay more attention to
task completion delay when making offloading deci-
sions [18, 19]. Users can dynamically adjust according
to their own situation.

(2) When user k chooses to offload tasks to MEC
servers for execution, let Tc

k f kð ; pkÞ denote the process-
ing delay of tasks on MEC servers corresponding to the
user’s remote end. It can be expressed as:

Tc
k f k ; pkð Þ ¼ Tul

k pkð Þ þ Texe
k f kð Þ ð5Þ

where Tul
k pkð Þ and Texe

k f kð Þ respectively represent the
time delay corresponding to the task input data uploaded
to MEC servers via the uplink and the task execution on
MEC servers. And there has:

Tul
k pkð Þ ¼ bk

Wk log2 1þ ωkpkð Þ ð6Þ

Among them, ωk ¼ hk=σ2
0;k . After the task is

uploaded to MEC servers, the MEC server will allocate
computing resource fk for it. At this time, the execution
delay Texe

k f kð Þ of tasks can be expressed as:

Texe
k f kð Þ ¼ sk

f k
ð7Þ

User k chooses to transfer computing tasks to the re-
mote MEC server’s energy consumption Ec

k expressed as:

Ec
k pkð Þ ¼ pk

ζ
Tul
k pkð Þ

¼ pk
ζ

bk
Wk log2 1þ ωkpkð Þ

ð8Þ

Among them, ζ is the efficiency of equipment trans-
mission power amplifier.

Based on the above evaluation indicators, when
user k chooses to offload tasks to MEC servers for
processing, the total cost includes energy con-
sumption and execution delay of remote MEC
servers. According to formulas (5)–(8), it can be
expressed as follows:

zck ¼ γekE
c
k pkð Þ þ γtkT

c
k f k ; pkð Þ ð9Þ

In this chapter, the main consideration is the
impact of task offloading on user-side delay and
energy consumption. At the same time, MEC
servers have more powerful computing power than
the local equipment of users. Thus, the energy
consumption when computing tasks are executed
on MEC servers is omitted. Besides, the amount of
result data after computing tasks are executed on
MEC servers is generally small. Thus, the energy
consumption and time delay that the user needs to
bear in the process of returning the execution
result of computing tasks to users are ignored.

3.4 Problem Description

Through the above analysis, the overhead function of user
k in entire task offloading process can be expressed as:

zk ¼ 1−akð Þzlk þ akzck ð10Þ
In this chapter, the optimal offloading decision

A∗ = {a1, a2,⋯, ak}, uplink power allocation P∗ = {p1,
p2,⋯, pk} and MEC are calculated by minimizing the
total overhead function of all users to calculate resource
allocation strategy F∗ = {f1, f2,⋯, fk}. According to the
above discussion, in the single-cell MEC scenario, the

J Grid Computing (2021) 19: 38 Page 5 of 12 38



optimized objective function of computing task
offloading is expressed as:

min
A;P;F

Z ¼ ∑
K

k¼1
1−akð Þzlk þ akzck s:t:C1

: ak∈ 0; 1f g;∀k∈κC2 : 0 < pk ≤pmax;∀k∈κ
cC3

: ∑k∈κcak f k ≤ f maxC4 : f k > 0;∀k∈κcC5

: ∑k∈κakWk ≤B ð11Þ
whereC1 represents the offloading decision of users;C2
represents that the uplink power when offloading trans-
mission shall not exceed its maximum transmission
power pmax. C3 indicates that the computing resources
allocated to the offloading user cannot exceed maxi-
mum computing resource fmax owned by MEC servers;
C4 indicates that the computing resources allocated to
offloading users by the MEC server are non-negative.
C5 represents the limitation of system bandwidth, spe-
cifically ∑k ∈ κak ≤ ⌊B/Wk⌋ =N, which means that only
N users are allowed to upload data at the same time in
the cell.

4 Computing Offloading Strategy Based on IGA

4.1 Task Offloading Strategy Based on GA

In this section, we will solve the 0/1 knapsack problem
based on genetic algorithm design, and get the best task
offloading strategy. Genetic algorithm is influenced by
biological genetics and evolution. By simulating the
biological evolution process to search for the optimal
solution in global scope using a probabilistic optimiza-
tion method, it has the characteristics of direct, rapid,
accurate and flexible [20, 21]. The flow chart of genetic
algorithm is shown in Fig. 2 below. The genetic algo-
rithm mainly simulates the following characteristics of
biological evolution:

1. Genetic information is attached to chromosomes by
coding, and evolutionary screening of chromo-
somes will affect coding information. Therefore,
the nature of the problem solution can be expressed
by coding.

2. Genetic information will generate new traits of
chromosomes by genetic operations such as selec-
tion, crossover and mutation.

3. Genetic information will survive the fittest by natu-
ral selection. Thus, when designing genetic algo-
rithms, individuals with strong adaptability will
pass chromosomes to the next generation through
fitness function screening [22, 23].

The following will introduce the key steps of genetic
algorithm from chromosome coding, fitness function
design and genetic operator design.

4.2 Computing Offloading Strategy Based on IGA

Classical genetic algorithms update individuals by
selection, crossover and mutation operations, and
obtain approximately optimal computing offloading
strategies after several generations of evolution. Its
convergence speed is slow and it is easy to fall
into “premature maturity”. This paper proposes an
IGA, which combines the knowledge-based cross-
over operator by improving the crossover and mu-
tation process of classic genetic algorithms, to
expand the range of feasible solutions and quickly
generate the global optimal solution.

Start

Calculation of individual fitness

Is genetic termination satisfied

End

Y

Encoded

Generating initial population

Selection

Crossover

Mutation

Generating new populations

Get the optimal solution

N

Genetic

manipulation

Fig. 2 The flow chart of genetic algorithm
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4.2.1 Initialization

The population consists of M chromosomes, and each
chromosome corresponds to an offloading strategy.
There are n genes on each chromosome and each gene
corresponds to a task. Use integer coding to encode
genes, and each gene represents the execution position
of a task in the workflow. The coding example is shown
in Fig. 1. Among them, yi = 0 means that the tail task is
executed locally, and yi = 1 means that the first task
executed is executed on the edge (Fig. 3).

4.2.2 Fitness Function Design

The fitness function is the criterion for evaluating
the merits of individuals. The value of function
shrinks, and the individual value is easily retained
in evolution. The fitness function is calculated by
formula (10). Due to time delay, the smaller the
accumulation, the better the system performance.
Thus, the reciprocal of the calculation result of
formula (10) is taken as the fitness function. Be-
sides, because workflow tasks are sensitive to de-
lay, individuals who do not meet the delay con-
straint are deleted in the selection phase. Individ-
uals that satisfy the time delay constraints consti-
tute feasible solutions to the goal problem.

4.2.3 Selection

Use random tournament method to improve scale qual-
ity. Randomly select chromosomes into the replacement
group, and select chromosomes with additional fitness
function values to enter the chromosomes. The calcula-
tion expression for the probability of selecting chromo-
some c(0 ≤ c ≤M) into the increment by random tourna-
ment methods is

Qc ¼
Fc

∑
M

c¼1
Fc

ð12Þ

4.2.4 Cross

Crossover operation is an important operation in gene
recombination. Through the crossover operation, part of
the child chromosome replaces part of parent chromo-
some to form a new population individual. The cross-
over operation of classic genetic algorithms uses a single
point crossover method, and its crossover probability is
Qc. The specific operation method is to randomly set a
cross point in the chromosome string.When crossover is
performed, the partial structures of the two chromo-
somes before or after the point are exchanged, and two
new individuals are generated.

The crossover operator combines individuals in the
selection phase and expects to produce high-quality
offspring individuals. IGA usually uses the standard
single point crossover operator. But when the standard
single-point crossover operator is applied to a specific
problem, the effect is generally poor. Thus, GA algo-
rithm is improved according to the characteristics of
problem, so that it has a knowledge-based crossover.
The algorithm selects an individual from its parents R1

and R2 in the selection phase. And each gene of an
individual is a more adaptive gene among the corre-
sponding genes of its parents. By calculating the weight-
ed combination of execution time and energy consump-
tion, the local fitness of each gene can be compared:

f k ¼ αm*dkm þ 1−αmð Þ*ekm ð13Þ

where dkm and ekm respectively represent the delay cost
and energy cost of k subtask. As shown in Fig. 4, the
bolded genes mean higher local fitness. Thus, the off-
spring’s genes include y2, y4 from R1, and y1, y3, and y5
from R2.

4.2.5 Mutation

Themutation operation of classical genetic algorithms is
to select a mutation bit for mutation. Use the mutation
probability Qc to change the value of a gene in chromo-
some to calculate the fitness of new chromosome. If the

1 1 0 1 1

4y 5y

1 0 0

3y1y 2y 6y 7y 8y

Fig. 3 The examples of chromosome coding

1 0 0 1 1

1y 2y 3y 4y 5y

0 0 1 0 1

1y 2y 3y 4y 5y

1 0 1 0 1

Fig. 4 The improved cross operation
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fitness is less than original value, select and mutate
again until chromosome fitness after mutation is greater
than or equal to its original fitness.

Randomly select tasks in the task sequence as muta-
tion points, and use mutation probability to determine
whether to mutation. If a mutation occurs. The task
execution position will change to any position except
the current execution position. When the computing
power is limited, users upload tasks to the edge and
the cloud for execution by the computing offloading
decision. The specific steps are as follows.

Step 1 Code the feasible offloading strategy that
meets the requirements of maximum tolerable de-
lay as a chromosome. Calculate individual fitness
according to formula (10).
Step 2 Select the chromosome with smaller fitness
function value to enter the population. Use NDX
operator to perform crossover and mutation opera-
tions on individuals.
Step 3 According to the constraints, delete infeasi-
ble solutions in the population.
Step 4 In order to expand the space of feasible
offloading strategy, repeat the above steps 2–3
continuously. When the number of iterations is
greater than 200, or the fitness function value error
of the chromosomes produced by two adjacent
iterations is less than 2%, the above process is
stopped. In order to ensure the minimum system
overhead, the individual with the smallest fitness
function value is selected from the last generation
population to decode. The decoded offloading strat-
egy is regarded as the optimal offloading strategy.

5 Experiment

5.1 Simulation Setting

In this section, we will evaluate the performance of our
proposed algorithm by simulation and comparison ex-
periments. Consider a single-cell-multi-user network
using MEC, where the MEC server is co-located near
BS, and users are evenly distributed in the cell coverage.
Using Matlab2012a simulation. The channel model in
this chapter refers to the 3GPP standard in [24]. The
detailed simulation parameter settings are shown in
Table 1.

5.2 Performance Verification of Algorithm

In order to verify the performance of algorithm, our
proposed IGA offloading strategy is compared with
All-local where all tasks in the workflow are executed
locally, Full-edge where all tasks in the workflow are all
offloaded to the edge cloud, and the offloading strategy
based on GA algorithm. The comparison indexes main-
ly differ in the number of users, the number of tasks,
delay and energy consumption.

Figure 5 shows the simulation results of the four
strategies with different user numbers overhead. We
can see that as the number of users increases, the delay
and energy consumption of the four strategies have
increased. This is because the increase in the number
of users leads to an increase in the number of requests,
which leads to an increase in the delay and energy
consumption of the algorithm. All-local strategywithout
offloading has the largest delay and energy consump-
tion. When the number of users is in the range of 0–7,
the energy consumption of Full-edge strategy is the
smallest, and then the energy consumption of IGA al-
gorithm strategy is the smallest. This is because when
the number of users is small, offloading tasks to nearby
edge servers can effectively reduce latency. As the
number of users increases, edge servers are overloaded,
which will inevitably lead to delays in decision-making.

Table 1 Simulation experiment parameter settings

Parameter Value

Community coverage radius 600 m

User broadband /Wk 1 MHz

System bandwidth /B 16 MHz

The power of background noise /σ2
0

-100 dBm

The maximum transmit power of users /pmax 24 dBm

Input data size /Bk 500~1000 KB

The CPU cycle required for task completion /sk 0.2~1GMHz

The maximum delay tolerated by tasks /Tmax
k

1~4 s

The computing power of users / f lk
0.1~1GMHz/cycle

The computing power of MEC servers /fmax 4GMHz/cycle

The trade-off factor between energy

consumption and delay /λc
k、λl

k

0.25~0.75

Population size /M 50

The maximum number of population
evolution /Gmax

200
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IGA strategy can quickly make offloading decisions and
effectively optimize system overheads.

As the number of users increases, the number of users
per CPU service increases. When the user’s computing
needs exceed the computing capacity of edge servers,
queuing occurs, resulting in increased overhead. The
overall cost of IGA strategy is about 28.8% of All-
local and 52.7% of Full-edge.

Assuming that the number of tasks is uniformly
distributed in the range of [0,200], the simulation results
of the four strategies with different task number over-
heads are shown in Fig. 6. It can be seen that as the
number of tasks increases, the costs of different strate-
gies are increasing. Because the computing power of
terminal equipment is limited, the channel frequency
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band resources are limited. As the number of tasks
increases, the load of computing equipment increases,
and it is difficult for limited wireless resources to cope
with the increase in the number of tasks. Because IGA
strategy can quickly make offloading decisions and
effectively optimize the overhead of system, the over-
head of IGA strategy is minimal.

In order to expand the space of feasible offloading
strategies, it is necessary to determine the number of
iterations when using knowledge-based crossover oper-
ator to perform crossover and mutation operations on
individuals. The offloading decision is made by fitting
classic GA algorithm, and the convergence of IGA
strategy and GA strategy is compared. The simulation
result is shown in Fig. 7. It can be seen that as the
number of iterations increases, the overhead of IGA
algorithm is less than that of GA algorithm. GA algo-
rithm converges at 100 iterations, and the cost of con-
tinuing iteration is no longer reduced. IGA algorithm
gradually converges when the number of iterations
reaches 200, and the cost of ownership continues to
decrease.

5.3 Comparative Analysis with Advanced Algorithms

In order to further demonstrate the performance of our
proposed algorithm in terms of energy consumption and
delay, it is compared and analyzed with literature [9],
literature [13] and literature [16]. The result is shown in
Fig. 8.

It can be seen from Fig. 8 that as the number of
requesting devices increases, the computing offloading
and resource allocation strategies generated by various
algorithms basically increase in terms of energy con-
sumption and delay. The proposed algorithm can
achieve better results in terms of delay and load
balancing. But the performance is average in terms of
energy consumption.

In addition, it can be seen from Fig. 8 that with the
increase in the number of devices on request, the com-
puting offloading and resource allocation strategies gen-
erated by the algorithm in literature [13] perform poorly
in terms of load balancing. And it behaves mediocre in
other respects. The algorithm in literature [16] performs
better than the algorithm in literature [13] in all aspects
except delay. The algorithm in literature [16] compre-
hensively considers the advantages of the two methods
in various aspects, and the performance in terms of
energy consumption and load balancing is relatively

ideal. When the number of devices is large, the strategy
generated by the algorithm in literature [9] has a good
effect in terms of delay. But the effect in terms of energy
consumption is the worst. At the same time, because the
algorithm in literature [16] and the algorithm in litera-
ture [13] are more inclined to offload subtasks to local
devices. When tasks are offloaded to edge computing
servers with higher computing power. The performance
of the literature [16] algorithm is better than that of the
literature [13] algorithm. When the number of applica-
tions is large, the time delay of the algorithm in literature
[9] shows a downward trend, and its performance is
better than the other two comparison algorithms. IGA
combined the knowledge-based crossover operator to
improve the crossover and mutation process of classic
genetic algorithms, thereby expanding the range of
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feasible solutions and quickly generating global optimal
solutions.

6 Conclusion

This paper studies the problem of MEC computing
offloading based on genetic algorithm in a single-cell-
multi-user scenario. The total cost of users is minimized
by formulating a joint optimization problem of task
offloading decision and resource allocation. Classical
genetic algorithms update individuals by selection,
crossover and mutation operations, and obtain approxi-
mately optimal computing offloading strategies after
several generations of evolution. However, its conver-
gence rate is slow, and it is easy to fall into “premature
maturity”. This paper proposes an IGA combined with a
knowledge-based crossover operator by improving the
crossover and mutation process of classic genetic algo-
rithms. This algorithm expands the range of feasible
solutions and quickly produces global optimal solutions.

This paper has done relevant research on computing
offloading and load balancing algorithms in MEC net-
works. However, due to personal research ability and
time constraints, there are still some areas for improve-
ment in this paper. The proposed algorithm can achieve
better results in terms of delay and load balancing, but
its performance in terms of energy consumption is av-
erage. The proposed task offloading algorithm provides
a new solution for MEC computing offloading technol-
ogy. However, this scheme mainly considers the calcu-
lation offloading under static conditions, and does not
consider the impact of user mobility on system. There-
fore, how to make real-time task offloading decisions
and resource allocation plans based on the movement of
users is challenging.
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