
/Published online:23 July 2021

https://doi.org/10.1007/s10723-021-09575-x

Distributed and Decentralized Orchestration
of Containers on Edge Clouds

André Pires · José Simão · Luı́s Veiga

Received: 4 November 2020 / Accepted: 21 June 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract Cloud Computing has been successful in
providing substantial amounts of resources to deploy
scalable and highly available applications. However,
there is a growing necessity of lower latency ser-
vices and cheap bandwidth access to accommodate
the expansion of IoT and other applications that reside
at the internet’s edge. The development of commu-
nity networks and volunteer computing, together with
the today’s low cost of compute and storage devices,
is making the internet’s edge filled with a large
amount of still underutilized resources. Due to this,
new computing paradigms like Edge Computing and
Fog Computing are emerging. This work presents Car-
avela a Docker’s container orchestrator that utilizes
volunteer edge resources from users to build an Edge
Cloud where it is possible to deploy applications using
standard Docker containers. Current cloud solutions

Caravela (a.k.a Portuguese man o’war) is a colony of multi-
cellular organisms that barely survive alone, so they need to
work together to function like a single viable animal.

A. Pires
Instituto Superior Técnico, ULisboa, Lisbon, Portugal
e-mail: pardal.pires@tecnico.ulisboa.pt

J. Simão (�)
INESC-ID Lisboa, Instituto Superior de Engenharia
de Lisboa, IPL, Leiria, Portugal
e-mail: jose.simao@isel.pt

L. Veiga
INESC-ID Lisboa, Instituto Superior Técnico, ULisboa,
Lisbon, Portugal
e-mail: luis.veiga@inesc-id.pt

are mostly tied to a centralized cluster environment
deployment. Caravela employs a completely decen-
tralized architecture, resource discovery and schedul-
ing algorithms to cope with (1) the large amount of
volunteer devices, volatile environment, (2) wide area
networks that connects the devices and (3) nonexistent
natural central administration.

Keywords Edge cloud · Cloud computing ·
Volunteer computing · Resource scheduling ·
Resource discovery · Docker

1 Introduction

Cloud Computing is a mature platform that gained
its momentum due to its incredible advantages such
as: resource elasticity, no upfront investment for the
consumers (pay what you use, utility style), global
access and more [20]. It is implemented with a set
of geo-distributed energy hungry data centers at the
Internet’s backbone, which causes high latencies from
the network’s edge to the cloud, and it amplifies the
possibility of having expensive bandwidth to reach it.

With the increase of IoT applications [7, 12] the
network edge is producing a lot of data, that is pushed
to the cloud for processing and/or storage. The prob-
lem is that it is expensive in terms of bandwidth to
upload everything to the cloud and for latency sen-
sitive applications that need fast replies the cloud is
far away. The increase of community networks (e.g.,

Journal of Grid Computing (2021) 19: 36

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-021-09575-x&domain=pdf
http://orcid.org/0000-0002-6564-593X
http://orcid.org/0000-0002-9285-0736
mailto:pardal.pires@tecnico.ulisboa.pt
mailto:jose.simao@isel.pt
mailto:luis.veiga@inesc-id.pt

the GUIFI.net [5] with ≈35K nodes and a steady
growth of 2k nodes/year),and with the nowadays very
powerful desktops and laptops, the network’s edge is
filled with a lot of resources that most of the time are
underutilized. The Edge and Fog Computing intend to
leverage these resources to provide services that are
near the internet’s edge.

CISCO’s definition [8] for Fog/Edge Computing
represents the space between the end user’s devices
and the cloud as a platform (potentially developed
and backed up by their solutions) to offer com-
pute/storage/network capabilities mainly for medi-
ating the communication with the cloud. Vaquero
et al. definition [32], like Varghese and Buyya [33]
see Fog Computing as a completely decentralized plat-
form where the user’s own devices cooperate to offer
the compute, storage and network capabilities using
sandboxed environments. This approach would inherit
techniques used is Volunteer Computing works like
SETI@Home [1] and Cloud@Home [13].

Edge Computing has the potential to reduce latency
and bandwidth costs, improve security and privacy
[29], with application in various fields, including con-
sumer applications, industrial applications, e-health
services, and smart mobility applications [14]. Com-
munity Clouds are another example of edge infrastruc-
ture gaining attention in the last decade [27]. In these
networks, the infrastructure is managed as a common
resource and established by the participants. Some
real case experiments have been used in these envi-
ronments, such as file sharing, game servers, video
streaming and surveillance, remaining as a challenge
the definition of service deployment models for the
users of these networks.

Our contribution is Caravela, a Docker con-
tainer’s orchestrator, inspired by Docker Swarm1, but
enhanced to be used as an Edge Cloud platform. A
Docker container is the sandbox environment that a
user can configure and deploy in Caravela. Our work
targets the environment of fog/edge computing where
the number of devices available is large, heteroge-
neous, and connected via wide area networks. An
Edge Cloud must also be churn resilient because edge
devices have a high failure rates. Furthermore, users
can add or remove their devices, in the cloud, when-
ever they want. All of this require a distributed and
decentralized architecture, discovery, and scheduling

1https://docs.docker.com/engine/swarm/

algorithms to cope with the number of nodes and
users. Due to the volunteer environment, a decentral-
ized solution is recommended since there is no natural
central administration.

Caravela has the following main properties: a)
Decentralization: We propose a distributed and decen-
tralized architecture, resource discovery and scheduler
algorithms to avoid Single Point of Failure and bottle-
necks to cope with the substantial number of volunteer
resources and wide area of deployment; b) Workload
placement heuristics: Users should be able to spec-
ify the class of CPU (reflects CPU speed), number
of CPUs and RAM they need to deploy a container.
It should be possible to deploy a set of containers
that form an application stack, specifying if the user
wants the containers in the same node, promoting co-
location, or spread them over different nodes, e.g.,
promoting resilience.

The rest of the paper is structured as follows.
Section 2 briefly describes the fundamental and state
of the art works in Edge Clouds, resource management
and usage fairness, highlighting the innovative aspects
of the proposed approach. Section 3 presents the
architecture, the resource discovery and scheduling
algorithms that compose Caravela. Section 6 presents
the evaluation of Caravela, comparing its performance
with an adaptation of the Docker Swarm and a naive
random-based approach. Finally, Section 7 wraps up
the paper with our main conclusions.

2 Related Work

The related work is presented in two different but
complementary topics to build Caravela: Edge Clouds,
which is a broader and recent topic, and Resource
Management, that consist in discovering the resources
and schedule the computations or data into the sys-
tem’s nodes. In Caravela we focused the study and
development of the latter one applied to the Edge
Cloud scenarios.

Edge Clouds Volunteer Edge Clouds is where Cloud
Computing andVolunteer Computing intersect. Resources
are provided by the user personal devices (e.g.
Cloud@Home [13], Satyanarayanan et al. [26],
Cloudlets [34], Babaoglu et al. [4] and Mayer et al.
[19]). The users have incentives to join, e.g., with the
possibility to deploy their own applications. Volunteer

36 Page 2 of 20 J Grid Computing (2021) 19: 36

https://docs.docker.com/engine/swarm/

Edge Clouds have the potential to join many widespread
resources resulting in virtually unlimited computa-
tional and storage power. GridCop [36] is a system
designed to track the progress and correctness of a
program executing on remote and potentially fraud-
ulent host machines. In hybrid Edge Clouds a large
slice of the infrastructure belongs to a single entity
(usually a Fog Computing entity like Internet Service
Providers (ISPs)). The volunteer resources are hooked
to the management layer providing the computational
and storage power to the cloud (e.g., Nebula [25],
Chang et al. [11] and Mohan et al. [21]).

Cloud@Home [13] work tries to provide a frame-
work for the development of an Edge Cloud, where the
Volunteer Computing and the Edge Computing inter-
sect. The authors provide a high level description of
the system, where a centralized set of nodes would
control the resources of the volunteer nodes, discov-
ering resources and scheduling the user’s requests
(via VMs deployment) in the nodes. They soon state
that when the amount of devices increased above a
given threshold, distributed and decentralized sched-
ulers would be needed to cope with the amount of
devices, which is exactly what we aim for in our work.

Autonomic Cloud [19] is a preliminary work in
a P2P Cloud that also targets volunteer resources
to build it. The authors were testing the platform
development on top of the Pastry DHT in order to
find resources and communicate in a scalable fash-
ion for large networks such as an Edge Cloud. They
used OSGI bundles as a deployable component in the
nodes, which does not provide so good isolation and
security as a VM or even a Container for multi-tenant
platforms [23].

Resource Management The management of distributed
resources consists in two main stages: Resource Dis-
covery and Resource Scheduling [9]. Resource dis-
covery (a.k.a Resource Provisioning) focus in discov-
ering the resources for a given request, obtaining the
addresses (e.g., IP addresses) and its characteristics
(e.g., RAM available). Resource schedulers redirect
the user requests to a subset of the resources dis-
covered. Resource scheduling is composed of three
processes: Resource Mapping, Resource Allocation
and Resource Monitoring [30].

Docker Swarm is a Docker Container orchestrator
that uses a centralized server/node (or set of repli-
cated nodes) to control all the other nodes, taking

the scheduling decisions in a centralized way. This
approach can enforce global policies in the deploy-
ment like consolidating the containers to maximize
resource utilization or spreading to offer better per-
formance for the containers with a similar distribution
of load in the nodes. The centralized server is a bot-
tleneck to the system scalability and SPoF. It only
considers the node’s current availability regarding the
number of CPUs and RAM.

Resource Bundles [9] work presents a resource dis-
covery algorithm for node’s current available number
of CPUs and RAM using an hierarchical overlay of
nodes. Some nodes are responsible for a set of regular
nodes, designated by super nodes. These super nodes
use a cluster algorithm called multinomial model-
based expectation maximization in its regular nodes
resource availability. This clustering algorithm allows
to aggregate the regular’s nodes available resources
in a compacted form while maintain a good degree
of node’s individual available resources. It allows
to reduce the traffic in the network when spread-
ing the node’s resource availability. It still has SPoF
and bottleneck in the super nodes that are responsi-
ble for regular nodes, although it is more scalable than
centralized solutions.

Kargar et al. [16] describe how multiple rings are
set up in a peer-to-peer network representing each
individual type of resources, while caring to avoid
wide area message exchanges across the network. This
can be leveraged to the same purposes of our work
but presently there is no integration with container
technology and orchestration/scheduling.

Selimi et al. [28] propose resource discovery and
scheduling algorithms that schedule services (sets of
co-related containers, e.g., micro services) in nodes
with higher bandwidth available, in the context of
GUIFI.net community network. It only considers the
node’s available bandwidth for the discovery and
deployment. It uses a centralized solution where the
knowledge of the network and all nodes is neces-
sary. A K-means clustering algorithm is used to group
nodes by their geo-graphical position. Head nodes
for each group are then determined to maximize
the bandwidth available within the group to discover
the nodes with best links connecting them. Finally,
groups are recalculated taking into account the band-
width information to group the nodes with higher
bandwidth available between them. Recent work [27]
made the system more dynamic (able to incorporate

J Grid Computing (2021) 19: 36 Page 3 of 20 36

continuously updated network state information) and
more responsive, by reacting with a faster heuristic-
driven approach to changes in resource availability
across the network.

Resource scheduling in edge computing can also be
designed to introduce preferences among users when
they are related via some social network [2], or by the
history of past interactions and social structure cre-
ated among users [3]. Long-term sustainability of edge
clouds can be promoted with economic incentives and
compensations reliably recorded using permissioned
blockchain technology, such as Hyperledger Fabric
(HLF) or Ethereum [15, 18].

Caravela makes it feasible to construct large-scale
decentralized clouds, harnessing synergies from network-
edge small and medium clusters and peer machines
owned by end-users. Users should be able to spec-
ify workloads and computing power in a platform-
independent way (resembling the serverless comput-
ing paradigm [10]) but controlling some heuristics
regarding workload placement. Among the different
challenges of building Edge Cloud [17], Caravela
has to address: a) Scalability: the architecture design
should be very scalable to accommodate large number
of devices that can participate to provide increasing
power; b) Workload isolation: users’ applications will
run in other users’ machines so it is necessary to iso-
late the cloud platform from the underlying private
user resources; c) Churn Resilience: the edge devices
are not very reliable, and users can put and take away
their devices from the cloud at anytime, so it should
adapt to this by degrading its performance gracefully;
d) Ease of Use: make it simple to contribute with
resources and deploy applications because the success
of its volunteer part depends on the user interest.

3 Architecture and Resource Discovery

Caravela is a Docker container’s orchestrator that use
the users’ donated devices to provide computational,
storage and network capabilities to build an Edge
Cloud. So it is mandatory for Caravela’s nodes to have
(Fig. 1):

– Docker’s engine running;
– Caravela’s middleware running as daemon.

To simplify Caravela’s development (and deploy-
ment) each node should have a stable and public IP

address (in realistic deployments, e.g., IPFS, web tech-
nology allows to lower these requirement).2 Caravela
middleware is a broker of resources among nodes,
here each node can supply, offer or trade resources.
Because of this market-oriented approach, the fol-
lowing components are also relevant for the overall
system, although they are out of scope for this paper:

– A client for a highly distributed and decentral-
ized file system like IPFS [6] or BitTorrent [24].
It would be necessary to transfer and maintain
the container’s images in a scalable way. We used
Docker Hub, a centralized public repository of
container’s images to demonstrate the Caravela’s
prototype basic functionalities;

– A client for a distributed and decentralized repu-
tation system, e.g, Karma [35], to maintain user’s
reputation in order to control user’s abuses in the
system like promising a certain kind of resources
but giving others;

– A client for a distributed and decentralized vir-
tual currency system, e.g., Bitcoin [22], to main-
tain user’s balance between its contributions with
resources and its consumption of the other users
resources.

Caravela’s middleware exposes a Node-to-Node
REST interface, that is used by the discovery and
scheduling algorithms we will show, in order to coop-
erate. The middleware also provides a REST API for
the users, allowing to interact with its node’s daemons,
and a command line tool to consume the API facilitat-
ing the use of Caravela. This tool provides the same
syntax and a similar semantics to the Docker Swarm’s
CLI tool. Our API allows the user to do the three
fundamental operations specified as follows:

– Deploy Container(s): Allow the user to deploy
a container in Caravela specifying its resources
needs: CPU class, number of CPUs and RAM.
The CPU class identify the node’s performance
(correlated with the CPU speed). It also allows
to do a Stack Deployment (Swarm also allows it)
which consists in deploying a set of correlated

2In edge computing deployments, and peer-to-peer before, there
may be issues with bidirectional IP addressing due to net-
work address translation (NAT). Web-based technologies such
as WebRTC have specifications employing techniques circum-
venting these issues (port forwarding, ICE, STUN, TURN).

36 Page 4 of 20 J Grid Computing (2021) 19: 36

Fig. 1 Overview of
Caravela’s architecture

Caravela REST API

Caravela
daemon

Docker
runtime

Resource Group
P2P overlay network

Trader

Buyer

Supplier

Resource discovery

Edge Applications

containers in the system in one request, e.g. micro
services deployment;

– Stop Container(s): Stop container(s) releasing
the resources allocated for each one from the
nodes where each was deployed;

– List Containers(s): List all the user’s containers
running and its respective details.

Note that in Docker Swarm there exist no notion of
classes of CPUs because it targets homogeneous clus-
ters of machines which is not the case of an Edge
Cloud.

The following sections describe how we manage
all the nodes/devices that are part of the Caravela in
a distributed and fully decentralized way, helping us
to build scalable and efficient resource discovery and
scheduling algorithms.

3.1 Network Management

Caravela is built on top of a Chord [31] P2P overlay,
that consists of a ring of nodes. Each one has a unique
ID in a key space of k-bits. Chord maps each key in
a node, it can look up for for the key’s responsible
node in average log2(N) network hops with N being
the network’s size. Caravela uses Chord to leverage
this lookup operation in order to find the resources

necessary to deploy a container in a scalable and
efficient way for large networks.

Chord’s typical use consist in finding the node that
contains some data (e.g., files or chunks of files) hash-
ing the content’s ID/key with a consistent hashing
algorithm (e.g. SHA-1) to obtain a Chord’s k-bits key.
With the key Chord’s client provide it to its lookup
mechanism that will return the IP address of the node
responsible for the content. The consistent hashing
provides a good dispersion of the keys over the nodes
balancing the load in the system which is important
in large networks. In Caravela, the node’s resources
necessary for the container(s) (specified by the users)
are the key that we provide to Chord. The next two
paragraphs detail how we used Chord in Caravela.

When a user submits a container it specifies the
resources that the container needs in form of a pair
{(CPUClass; #CPUs); RAM}, if the system does
not find any node with that minimum of resources
available the user is notified of the error and can retry
later. We use Chord to find out what are the nodes
that have enough CPUs and RAM to run a user’s con-
tainer, e.g., if a user requests {(0; 2CPUs); 512MB}
we need to find at least a node with that amount
of resources available in that moment. So using the
typical approach for Chord, hashing the resources
needed with SHA-1, would result only in perfect

J Grid Computing (2021) 19: 36 Page 5 of 20 36

matches, e.g. {(0; 1CPU); 256MB} and {(0; 1CPU);
300MB} would be mapped to completely different
nodes while its needs are very similar. Basically, the
equal-based search of a typical Chord’s use must be
replaced by a kind of range query search.

To solve this problem, we encoded the resources
availability of the nodes in its IDs. We divided
the Chord’s ID/Key space (statically) in contigu-
ous regions that represent different combinations
of resources. Figure 2 pictures an example of the
resources encoding in Chord’s ring. One region with
{(0; 2CPUs); 512MB} label means that the nodes
that have IDs in that region are responsible for
nodes with resources availability of at least the spec-
ified in the region’s label. In Section 3.2 we detail
how we leverage this mapping to efficiently discover
the resources. Figure 2 pictures larger regions for
weaker combinations of resources, this is by design,
because in a real Edge Cloud we expect that there
are much more nodes offering weaker combinations
of resources. It is natural that are more users offering
small resources than large resources.

3.2 Resource Discovery

Before introducing our resource discovery algorithm,
we introduce some terminology used in the rest of the
paper. Resources offer (offer to simplify) is a mech-
anism used by nodes to inform about their available

<(1;1);250>

<(0;1);256>

<(
0;
2)
;5
12

>

<(
0;
2)
;1
02
4>

...

<(1;1);512>

...

<(0;1);512>

<(
1;
2)
;5
12

>
<(
1;
2)
;1
02
4>

Fig. 2 Resources regions mapping in Chord’s ring

and used resources, consisting in a data structure that
contains the following node’s information:

– IP address of the node that have the specified
resources available;

– Resources available {(CPUClass; #CPUs);RAM};
– Resources used {(CPUClass; #CPUs);RAM};
– Offer’s unique ID.

Each node has three roles depending on the action
it is doing:

– Supplier: Node’s role when it is supplying its
resources (via offers);

– Buyer: Node’s role when it is searching for
resources (via offers) to deploy a container in
behalf of the node’s owner/user;

– Trader: Node’s role when it is mediating the
supply/search for offers.

Suppliers publish offers into traders and buyers search
for offers in traders. Each trader is responsible for
offers that belong to the resource region where its
ID belong. From here onwards if we describe actions
made by a trader, supplier or trader is same as if it was
node since each node has the 3 roles, which makes
Caravela completely P2P.

Algorithm 1 is called by the supplier every time
its free resources change, e.g. due to container’s
launch/exit in the node consuming/releasing resources.
A supplier provides its resources to the buyers by cre-
ating N offers in the system, one for each of the con-
figured resource regions that represent less or equal
resources than the supplier’s current free resources
(line 2). After that the supplier iterates the offers it
already has in the system and looks for the regions
where they are registered (lines [3-4]). Then we cross
reference the regions where we must create offers and
the regions from the offers where we already have
them (line 5). The rest of the algorithm is straight-
forward, if the supplier already has an offer in the
region an UpdateOffer message is sent directly to
the trader to update the offer free/used resources (lines
[6-8]). This update is important to enforce global poli-
cies in the container’s scheduling (Section 4). If the
supplier has an offer in a region where its current
free resources cannot handle the requests for it, the
supplier removes the offer from the trader sending a
RemoveOffer message (lines [11-12]). Finally, if
there exist regions where the supplier does not have

36 Page 6 of 20 J Grid Computing (2021) 19: 36

Algorithm 1 Supplier’s resource supplying.
Data: suppOff erMap

1 Function SupplyResources(f reeRes,
usedRes):

2 regions ←
SuitableResourcesRegions(f reeRes)

3 foreach off er in suppOff erMap do
4 off erRegion ←

Region(off er.T raderID)

5 if regions.Contains(off erRegion)

then
6 upOff er ←

Offer(offer.ID, freeRes, usedRes)
7 UpdateOff er(upOff er)

8 regions.Remove(off erRegion)

9 end
10 else

/* When node free
resources decrease. */

11 suppOff erMap.Remove(off er.ID)

12 RemoveOff er(off er.ID)

13 end
14 end
15 foreach region in regions do

/* When node free resources
increase. See Algorithm 2.

*/
16 PublishOffer(freeRess, usedRes, region)
17 end

any offers, it publishes one offer in each region (lines
[14-15]).

To publish an offer the supplier runs Algorithm 2.
It starts by creating an offer object with the supplier’s
resource availability. After that it obtains a random
ID/key in the offer’s target resource region , the ran-
dom is used to distribute the request’s load among the
region’s traders. With the random node’s ID it calls
Chord to obtain the trader’s IP responsible for that
ID/Key.

The trader registers the offer in its internal offer’s
table and acknowledges it.

Making suppliers and traders save the IP addresses
make subsequent contact directly via IP avoiding the
more expensive operation of the Chord’s lookup.

Once suppliers can provide their resources,

Algorithm 2 Supplier’s publish offer algorithm.
Data: supplierIP

1 Function PubOffer(f reeRes, usedRes,
destRegionRes):

2 newOff er ←
Off er(f reeRes, usedRes, supplierIP)

3 destT raderID ←
RandomID(destRegionRes)

4 traderIP ←
ChordLookup(destT raderID)

5 ok ←
CreateOffer(traderIP,NodeInfo(), newOffer)

6 if ok = true then
7 newOff er.SetT raderIP (traderIP)

8 suppOff ersMap[newOff er.ID] =
newOff er

9 return
10 end
11 return

Error(“offerCouldNotBeCreatedError′′)

Caravela discovers available offers for deploying
containers running Algorithm 3. It receives the con-
tainer’s necessary resources. The algorithm has a
maximum retry threshold defined in the system con-
figuration file (parameter MaxDiscoveryretries) that
is used to limit the times we try to search for the
resources (lines [2-3]). In a retry, a new random ID/key
is generated (again to distribute the request’s load
between region’s traders) in the region that represent
the smaller resource combination but greater than the
necessary resources. Then system then uses Chord to
get the trader’s IP (responsible for the random key
generated), sending a GetOffers message to it to
obtain the trader’s registered offers. If the set of offers
received is not empty it returns them, otherwise retries
if the threshold was not reached.

Chord’s lookup protocol is used only when we
need to publish offers due to node’s resource availabil-
ity increase and when searching for offers. Chord’s
lookup is the most expensive network operation here
with log2(N) (N being the network size) so we avoid
it at maximum. We will show in evaluation that
we configured the maximum retries of the discover
resources algorithm to only 1 obtaining a very inter-
esting efficiency in the discovery process.

J Grid Computing (2021) 19: 36 Page 7 of 20 36

Algorithm 3 Resource discover algorithm.
Data: conf igs

1 Function
DiscoverResources(resourcesNeeded):

2 retry ← 0
3 while

retry < conf igs.MaxDiscoverRetries()

do
4 destT raderID ←

RandomID(resourcesNeeded)

5 traderIP ←
ChordLookup(destT raderID)

6 resultOff ers ←
GetOff ers(traderIP)

7 if resultOff ers != ∅ then
8 return resultOff ers

9 end
10 retry ← retry + 1
11 end
12 return ∅

Due to the nodes’ crash (frequent scenario in an
Edge Cloud) a trader could be giving offers from
dead suppliers, and consequently a supplier would
think that its resources were available in the trader,
but the trader was dead. To minimize this prob-
lem each trader, refresh an offer from time to time
(sending a RefreshOffer message) defined by
Caravela’s parameter Ref reshinterval . This way the
trader acknowledges the presence of the supplier
and vice versa. The parameter MaxRef reshesf ailed

defines how many refreshes a supplier can fail before
the trader removes the supplier’s offer, and comple-
mentary the parameter MaxRef reshesmissed define
how many refreshes a trader can fail before the sup-
plier publish the offer onto other trader (of the same
region).

Suppliers publish resource availability in several
regions. Doing otherwise, i.e., publishing it only in the
highest one where the resources available are greater,
would have little information per trader (one offer per
node only) which would decrease our efficiency and
efficacy when looking for resources due to the little
information spread over too many nodes.

4 Container’s Scheduling

This section describes the container’s scheduling on
top of the resource discovery process. Before detail-
ing the scheduling algorithm, the global scheduling
policy and the request-level scheduling policy are
defined.

Similar to Docker Swarm Caravela offers two
global scheduling policies: binpack and spread. When
binpack is configured the system’s scheduler tries to
consolidate containers in few nodes, while provid-
ing the container’s requested resources. Spread is the
opposite of binpack, it distributes the containers thinly
by all the system’s nodes. The globally policy con-
figured is applied to all the requests scheduled in
the system. All nodes respect the configured policy
because every node that joins Caravela receives a copy
of the system’s configurations. Caravela’s configura-
tions are used to configure the bootstrap nodes. All the
other nodes that join it receive a copy of it.

Also similar to Docker Swarm, Caravela allows a
stack deployment which consist in a composite deploy-
ment request where a user can specify a set/group
of containers to be scheduled together. This is a
common case nowadays with micro services deploy-
ments. We extend the stack deployments to allow
for request-level (or group-level) scheduling policies,
which means a user can specify different schedul-
ing policies for containers in the stack deployment.
We developed the co-location and scatter request-level
scheduling policies. The co-location scheduling policy
allows the user to specify that a sub-set of contain-
ers in the stack deployment must be scheduled in
the same node. The scatter policy can be used by
the user to specify that a sub-set of containers must
be deployed in different nodes. Co-location is useful
for components/containers that communicate a lot or
need low latency communications. Scatter is useful for
robustness properties.

Note that the spread policy is like the scatter pol-
icy, the difference is that the spread policy has a global
scope, if it is configured, then all deployment requests
respect it. The scatter policy works among the con-
tainers of a stack deployment (request-level scope).
This rationale also applies to the binpack and co-
location policies. The global scheduling policies and
the request-level ones are orthogonal e.g., Caravela (as

36 Page 8 of 20 J Grid Computing (2021) 19: 36

a system) can be consolidating (global-level binpack),
while users systematically request stack deployments
with all the containers in them configured to be scat-
tered (request-level scatter).

Algorithm 4 Algorithm to schedule containers in
nodes.

Data: globalSchedulingPolicy

1 Function
Schedule(contConfigs, resourcesNeeded):

2 off ers ←
DiscoverResources(resourcesNeeded)

3 off ers ←
globalSchedulingPolicy.Rank(off ers)

4 foreach off er in off ers do
5 contsStatus ←

Launch(offer.SuppIP, offer.ID,

contConfigs)
6 if contsStatus != ∅ then
7 return contsStatus

8 end
9 end

10 return
Error(“CouldNotScheduleContainersError′′)

Algorithm 4 finds the suitable node to deploy a
given set of container’s configurations (one per con-
tainer) and the sum of all the resources necessary by
all the containers. The first thing the algorithm does is
to call the Algorithm 3 with the resources needed in
order to obtain a set of resource offers that have free
resources equal or greater than the sum of resources
needed by all containers. If the set of offers is empty,
we return an error to the user (line 10). Otherwise
Caravela will rank the set of offers accordingly to the
global-level policy configured (binpack or spread).

The adaptation introduces the CPUClass attribute
in the ranking, because there is not a CPU class notion
in Swarm.

Algorithm 5 describes the function called by the
node’s buyer when the node’s owner/user inject a con-
tainer(s) deployment request on it. TheOnDeployment
Request function receives as parameter a non-
empty set of container’s configurations (one per
container) specifying all the details for each container:

image’s key, container name, container’s arguments,
port mappings {Host : Container}, resources
necessary and the request-level policy.

4.1 Optimization: Super Traders

The discovery algorithm, previously described (recall
Algorithm 3), selects a random trader in the resource
region it targets. When the system is low on resources
(few suppliers publishing offers) there are less offers
in the traders so the chances of targeting an empty
trader is higher. This led to two problems: if the
trader is empty our search for resources would fail
and it was needed a retry (automatically or done by
the user), which would affect the resource discovery
efficacy and efficiency; the second problem is that
global scheduling policies are enforced accurately if
the buyer has many offers to rank and choose because
it led to better decisions.

To mitigate these problems, we devised a new way
to choose a trader of a resource region. Instead of
choosing a random key from the resource region, we
choose a random key from a limited set of keys evenly
distributed in the region. The size of this set of keys
affects how we concentrate the CreateOffer and
GetOffers messages in traders. In the end we are
creating a kind of super traders that would manage
more offers than before, while the other nodes would
not manage any offer. Figure 3 pictures the nodes
receiving CreateOffer and GetOffers (colored
arrows) without and with super traders. The number
of super traders can be controlled by the Caravela’s
configuration parameter SuperT raderf actor , e.g. the
value 7 for the parameter would mean that each super
trader would manage the offers of 7 nodes.

5 Implementation

Caravela is a P2P system, so each node contains the
same components and runs the same code. Here, we
address the inside of Caravela to understand what
components are responsible for the algorithms and
protocols described in Sections 3 and 4. Caravela
is composed by several components such as, Node,
User Manager, Remote Client, Docker Client Wrap-
per, Scheduler, Discovery, Images Storage Client,
Containers Manager, Overlay Client, Configuration’s
Manager and a HTTP WebServer. Figure 4 pictures

J Grid Computing (2021) 19: 36 Page 9 of 20 36

Algorithm 5 Buyer’s on request deployment algorithm.

1 Function OnDeploymentRequest(containersConf igs):
2 deploymentFailed ← f alse

3 colocatedResSum ← NewResources(0, 0)
4 colocatedConts, scatterConts, deployedConts ← ∅

5 foreach contConf ig in containersConf igs do
6 if contConf ig.GroupPolicy = “Co-location” then
7 colocatedResSum.Add(contConf ig.Resource)

8 colocatedConts ← colocatedConts ∪ contConf ig

9 end
10 else
11 scatterConts ← scatterConts ∪ contConf ig

12 end
13 end

/* Skipped if there are not co-located. */

14 contStatus ← Schedule(colocatedConts, colocatedResSum)

15 if contStatus = nil then
16 return NewError(“DeployFailedError ′′)
17 end
18 deployedConts ← deployedConts ∪ contStatus

/* Skipped if there are not scatter. */

19 foreach contConf ig in scatterConts do
20 scatterContRes ← contConf ig.Resources

21 contStatus ← Schedule(contConf ig, scatterContRes)

22 if contStatus = nil then
23 deploymentFailed ← true

24 break
25 end
26 deployedConts ← deployedConts ∪ contStatus

27 end
/* Rollback the deployment if necessary. */

28 if deploymentFailed = true then
29 foreach cont in deployedConts do
30 StopContainer(cont.SuppIP, cont.ContID)

31 end
32 return Error(“DeployFailedError ′′)
33 return deployedConts

Fig. 3 Super Traders (STs) usage

36 Page 10 of 20 J Grid Computing (2021) 19: 36

Fig. 4 Caravela’s components and interfaces relationships

Caravela’s node components, its interfaces and rela-
tionships. It also pictures the relations with the exter-
nal components like the Docker Engine. This picture
is used as reference. Caravela prototype is written in
Go, Docker and Swarm native language.

The Node component is a component that con-
tains the main logic implementation of algorithms.
It exposes the public services of the User Man-
ager (IUser interface), Scheduler (IRemoteS
cheduler interface) and Discovery (IRemote
Discovery interface). The User Manager compo-
nent manages the user’s information and requests. It
exposes to the outside an interface called IUser that
is used as the front-end of Caravela for a user.

The Scheduler component drives the containers
deployment. It exposes two interfaces: ILocal
Scheduler and IRemoteScheduler. The
ILocalScheduler interface is used by the User
Manager component to inject user requests in the
system (as a local buyer). IRemoteScheduler is
exposed to other nodes to allow them (as remote buy-
ers) to send messages to launch containers in other
nodes. The Scheduler is responsible for choosing
the best node(s) for the container(s)’s deployment.
To achieve that, it uses the Discovery component
(via IResourcesDiscovery interface) to find

suitable nodes for the requests that the User Manager
component forwards to it. The set of suitable nodes
(via offers) that it receives depends on the Discovery
component’s implementation.

The Discovery component has three main respon-
sibilities: (1) manage the node’s local resources, as a
supplier; (2) manage other node’s offers, as a trader;
(3) implement the resource discovery algorithms to
efficiently find the resources. It relies on the Overlay
client component (for us backed up by Chord) to guide
its search for resources over the nodes’ overlay. It
relies on the Overlay client component (for us backed
up by Chord) to guide its search for resources over the
nodes’ overlay. We implemented different backends
of the Discovery component: Docker Swarm based,
Random, and Multi-Offer.

The Containers Manager component manages the
containers that run in the local’s node Docker engine.
It exposes the IContainers interface for the
Scheduler component. This interface is used by the
Scheduler component to launch a container in the node
on behalf of other nodes. The Docker Client Wrapper,
as the name indicates, wraps the Go’s Software Devel-
opment Kit (SDK) for the Docker Engine exposing
a very simple interface to be used by the Contain-
ers Manager component. We did this to isolate the

J Grid Computing (2021) 19: 36 Page 11 of 20 36

containers management at Caravela’s level from the
Docker’s API details. The Docker Client Wrapper, as
the name indicates, wraps the Go’s Software Devel-
opment Kit (SDK) for the Docker Engine exposing
a very simple interface to be used by our Contain-
ers Manager component. We did this to isolate the
containers management at Caravela’s level from the
Docker’s API details.

6 Evaluation

To evaluate Caravela3 we developed a cycle-based
simulator called CaravelaSim4, due to the necessity
of re-utilizing our Go’s code base of Caravela, and
at same time test the scalability of the solution with
thousands of nodes. We used Go to code Caravela
because Docker and all tools around it are written in
Go. The simulations were deployed on Amazon Web
Services (AWS) Elastic Compute Cloud (EC2) plat-
form, using a c4.8xlarge instance with 36 vCPUs and
60GB of RAM backed up by an Intel Xeon E5-2666
v3 (Haswell) with 25M Cache and 2.60 GHz, run-
ning with 20s ticks and a duration of 360 ticks (2h
of simulation). The simulator was designed in a way
that it was a harness for Caravela’s components, which
means the simulation ran the Caravela’s code with a
minor modification to support multi-threaded simu-
lation. We implemented the Chord’s protocol as it is
in its paper [31], except the background stabilization
protocol, due to the simulation overhead.

6.1 Methodology

Two resource discovery and scheduling alternatives
were developed to set a baseline. A Docker Swarm
centralized solution adapted to work over Chord and
a naive random approach also over Chord, from now
on designated by Swarm and Random respectively.
The Swarm uses a master node that receives the offers
and the deployment requests from all the other nodes.
This master mode considers all the offers/nodes when
deploying containers, so it is a near “oracle” approach
that allow it to obtain a near perfect request satisfac-
tion and the near perfect global policy enforcement.

3Code available at https://github.com/Strabox/caravela
4Code available at https://github.com/Strabox/caravela-sim

The master node is the Chord’s node responsible for
key 0.

The Random approach is very simple: when a
node receives a deployment request it looks for a
random key/node in Chord. If the node has enough
resources to accept the request, it sends the Launch
message immediately with the container(s)’s informa-
tion, otherwise the request is retried automatically by
the system until the maximum discovery retries are
achieved. When the maximum retries are achieved it
is considered a failed request and the user is informed.
This approach has minimal overhead and is used to
verify that our problem did not have a trivial solu-
tion. Finally, our approach detailed in Section 3, is
designated as Multi-Offer from here forward.

The same request stream (deploy containers requests
and stop containers requests) was submitted to all the
approaches to maintain the evaluation fair. We sub-
mitted the system to a load where at least 50% of its
total resources would be used. After that, the request
stream had the same deploys and stops to maintain
the system in a constant state of resource utilization.
We did this because a real and well-designed system
is always at least 50% utilized, otherwise it would be
over dimensioned or poorly used system.

The distribution of maximum resources available
for each node when setting up the Caravela’s nodes in
the simulator is presented in Fig. 5a. This distribution
is the same for Caravela’s resources regions configura-
tion parameter. This was determined by what usually
happens in volunteer computing environments, where
each person only donates the resources he/she has
available; so, donating only 1CPU and 512MB of
RAM is something normal because the user probably
needs the rest for his/her own personal computations.
We used that distribution because it is realistic to con-
sider that in an Edge Cloud there are fewer highly
capable nodes than weaker nodes. Even with the max-
imum resources being picked with a pseudo random
generator from the presented distribution, we guar-
antee that all the simulations have exactly the same
nodes with the same number of maximum resources
because we provide the same seed for all of them.
The requests profiles (in terms of resources needs)
contained 50% of light requests (e.g., micro services
deployments) the other 50% were heavier requests
(e.g., heavy applications or heavy background tasks),
as depicted in Fig. 5b.

36 Page 12 of 20 J Grid Computing (2021) 19: 36

https://github.com/Strabox/caravela
https://github.com/Strabox/caravela

Fig. 5 Distribution of
resources regions and
request profiles used during
the evaluation

In the rest of this section we present the results of
our evaluation. We gathered 4 main metrics to verify
the scalability (without any node being a bottleneck)
of our solution and the discovery and scheduling algo-
rithms efficacy and efficiency. The metrics are: band-
width consumed per node, RAM used per node,
amount of requests fulfilled with success (user sat-
isfaction and resource discovery algorithm efficacy),
and the efficiency of the deployment requests (assess
discovery algorithm efficiency).

We tested the approaches with two network sizes
65,536 nodes (which we will refer loosely as 65K
for simplicity) and 1,048,576 nodes (referred as 220)
to test the scalability when the network grows 16
times. Note that we do not show higher network sizes
because the simulations would take too many hours.
We do not present the Swarm results for the 220 net-
work for the same reason. Swarm’s simulation time
hints that it is not scalable as we will show next.

6.2 Results

Bandwidth consumed per node Figures 6 and 7 show
the distribution of the bandwidth consumed per node
(on receiving) over time in time windows of 3 min-
utes. Note that the number of outliers represented in
the quartile plots (these and the ones that follows) are
[7%-9.5%] of system’s total node (super traders). We
did not take them out in order to show that not even
outliers would be stressed in any way.

Results show that Swarm master node consumes
500 times more bandwidth than the highest outlier
in Multi-Offer. With smaller networks we noted that
the bandwidth consumed by the master node double

when the network size also doubled. Multi-Offer con-
sumes a bit more than Random, which results from the
overhead introduced by more messages to maintain
the offer system but would only consume≈150MB
in a month span. When the network scales 16 times
the node’s bandwidth consumption only increases by
a factor of ≈1.2 per node (on average), which gives
a very good scalability factor to our Multi-Offer
approach. It is worth noting that to compute this metric
the size of the HTTP messages payload was measured
to compare the overheads between the approaches.

For the network size of 220 nodes, the master node
would consume ≈2.8TB of bandwidth in a month
span, which would be unbearable for a user due to
ISPs fair usage.

RAM used per node Figures 8 and 9 show the distri-
bution of the RAM used per node over time. Like the
previous metric we have [7%-13%] of outliers, which
in most cases, correspond to the super traders. We
only account for the data structures (without Chord
and WebServer structures) to check the overhead of
the solutions. We can extract similar conclusions as
the ones presented in the bandwidth consumption per
node. Swarm’s master node needs to save information
about all nodes participating to schedule the con-
tainer, it also needs to save the information about each
request scheduled in the system.

Deployment Request Efficacy Figure 10 show user’s
deployment request fulfilled with success (cumu-
latively) over time. In the end of the simulation
Swarm (centralized solution) can only fulfill 4% more
requests than Multi-Offer, which mean it can maintain

J Grid Computing (2021) 19: 36 Page 13 of 20 36

Fig. 6 Bandwidth used per node over time, in the 65K node’s network (Quartile Plots)

Fig. 7 Bandwidth used per node over time, in the 220 node’s network (Quartile Plots)

36 Page 14 of 20 J Grid Computing (2021) 19: 36

Fig. 8 RAM used per node, in the 65k node’s network (Quartile Plots)

a very good deployment efficacy with a fully decen-
tralized architecture. Multi-Offer in the end of the
simulation deployed ≈24% more requests than Ran-
dom. It is worth to mention that the simulations
ran with an automatic retry mechanism for Random
and Multi-Offer. The maximum retries for Random
was set to 3 and the Multi-Offer for 1, because we
wanted Random to have a decent efficacy to compare,
although this gives it a very inefficient resource dis-
covery in terms of network hops, as explained in the
next section. The total (red line) represents the total
amount of requests submitted into the system (also
cumulatively over time).

Deployment Requests Efficiency Figures 11 and 12
show the distribution of sequential messages (network
hops), taken until the deployment request succeeded
or failed. Swarm has a constant cost of 3 messages
because the master nodes save the node’s IP, mak-
ing the subsequent contacts direct. Multi-Offer highest
outlier costs less than Random’s median cost. It is
also notable that Multi-Offer cost has a small vari-
ance compared with Random. When there are few
free resources in the system, Random uses retries
to achieve the deployment request efficacy that was
discussed before (recall Section 6.2), making its effi-
ciency worst. This metric is important in Edge Clouds

J Grid Computing (2021) 19: 36 Page 15 of 20 36

Fig. 9 RAM used per node, in the 220 node’s network (Quartile Plots)

due to the WAN networks that connects the nodes.
More hops/messages mean higher latency between
the user’s request submission and the reply from the
system telling the success or failure of the request.

Due to space constraints the results with the simula-
tion of the Random approach with only 1 retry are not
presented. With 1 retry the deployment request effi-
ciency became the same asMulti-Offer because it only
uses one Chord lookup too. However the deployment
request efficacy presented in Section 6.2 decreased,

resulting in having the Multi-Offer solution fulfilling
≈70% more requests than Random.

6.3 Analysis

Based on the previous results we can conclude:

1. The Swarm’s master node concentrates too much
load in terms of network’s usage and computa-
tional power used to decide where to place the

Fig. 10 Deployment requests successfully fulfilled

36 Page 16 of 20 J Grid Computing (2021) 19: 36

Fig. 11 Distribution of the number of messages exchanged per deploy request submitted, in the 65k node’s network

Fig. 12 Distribution of the number of messages exchanged per deploy request submitted, in the 220 node’s network

J Grid Computing (2021) 19: 36 Page 17 of 20 36

requests, therefore it is unfeasible for networks
with tens of thousands of nodes. On the opposite
side, for smaller networks it can schedule con-
tainers using ≈ 3 messages, and it can enforce a
global policy “perfectly”, choosing the best nodes
which is better than the other two approaches;

2. Random is the one that scales better in terms of
bandwidth and RAM consumed but, in contrast,
its number of requests attended with success, the
deployment request efficiency and the efficiency
of global resources consolidation are the worst of
the three;

3. Multi-Offer has the strengths of the other two,
while minimizing the effects of their weaknesses.
So, it is an approach that would fit in a deploy-
ment of an Edge Cloud with 1M of nodes or
even more, while maintaining a very interest-
ing performance in discovering the resources and
scheduling the containers.

7 Conclusion

The Internet of Things and a reliable set of cloud
services have shown the need to build a new level
of computing, Edge Computing, where computation
can be made with the computing power available
near data sources. Community networks and volun-
teer computing complement this vision by providing
underutilized resources that can be seen as prosumers,
in a cloud-like platform, were nodes consume and
provide resources.

Current solutions to aggregate computing resources
have very centralized internal architectures and algo-
rithms that mostly fit small to medium, homogeneous,
and controlled environments like clusters, not in vol-
unteer and edge environments. The current literature
in Edge Clouds has few functional and deployable pro-
totypes, and in most cases a centralized management
prevails. The fairness in volunteer systems has been
studied for a while in volunteer P2P systems, but real
attempts to introduce it in a cloud solution are rare [17].

Caravela was devised to serve as a fully decentral-
ized Docker orchestrator to be deployed in an Edge
Computing environment, where there are tens of thou-
sands of nodes participating, high latency between the
nodes and no natural central administration. Its archi-
tecture and algorithms verified to be close in terms of

efficiency and efficacy to a centralized “oracle” solu-
tion as our adaptation of Docker Swarm to Edge Cloud
environment, while maintaining its scalability.

A typical centralized solution is defeated by the
scale. The Random approach was scalable with a low
overhead per node, but it had extremely low deploy-
ment request efficiency. It also cannot enforce the
binpack global scheduling policy that is interesting to
leverage the maximum of the system/nodes.

Acknowledgements This work was supported by national
funds through Fundação para a Ciência e a Tecnologia with ref-
erence PTDC/EEI-COM/30644/2017 and UIDB/50021/2020,
and by Instituto Superior de Engenharia de Lisboa and Instituto
Politécnico de Lisboa.

References

1. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M.,
Werthimer, D.: SETI@Home: an experiment in public-
resource computing. Commun. ACM 45(11), 56–61 (2002).
https://doi.org/10.1145/581571.581573

2. Apolónia, N., Ferreira, P., Veiga, L.: Trans-social networks
for distributed processing. In: Bestak, R., Kencl, L., Li,
L.E., Widmer, J., Yin, H. (eds.) Networking 2012 - 11th
International IFIP TC 6 Networking Conference, Prague,
Czech Republic, May 21-25, 2012, Proceedings, Part I,
Lecture Notes in Computer Science, vol. 7289, pp. 82–
96. Springer (2012). https://doi.org/10.1007/978-3-642-300
45-5 7

3. Apolónia, N., Freitag, F., Navarro, L., Girdzijauskas, S.:
Socially aware microcloud service overlay optimization in
community networks. Softw. Pract. Exp. 50(5), 675–687
(2020). https://doi.org/10.1002/spe.2750

4. Babaoglu, O., Marzolla, M., Tamburini, M.: Design and
implementation of a P2P Cloud system. In: Proceedings of
the 27th Annual ACM Symposium on Applied Computing
- SAC ’12, p. 412 (2012). https://doi.org/10.1145/2245276.
2245357

5. Baig, R., Roca, R., Freitag, F., Navarro, L.: Guifi.net,
a crowdsourced network infrastructure held in common.
Comput. Netw. https://doi.org/10.1016/j.comnet.2015.07.
009 (2015)

6. Benet, J.: IPFS-Content Addressed, Versioned, P2P File
System. IPFS-Content Addressed, Versioned, P2P File
System (Draft 3). https://doi.org/10.1109/ICPADS.2007.
4447808. arXiv:1407.3561 (2014)

7. Bittencourt, L., Immich, R., Sakellariou, R., Fonseca,
N., Madeira, E., Curado, M., Villas, L., DaSilva, L.,
Lee, C., Rana, O.: The internet of things, fog and cloud
continuum: Integration and challenges. Int. Things 3-4,
134–155 (2018). https://doi.org/10.1016/j.iot.2018.09.005.
http://www.sciencedirect.com/science/article/pii/
S2542660518300635

36 Page 18 of 20 J Grid Computing (2021) 19: 36

https://doi.org/10.1145/581571.581573
https://doi.org/10.1007/978-3-642-30045-5_7
https://doi.org/10.1007/978-3-642-30045-5_7
https://doi.org/10.1002/spe.2750
https://doi.org/10.1145/2245276.2245357
https://doi.org/10.1145/2245276.2245357
https://doi.org/10.1016/j.comnet.2015.07.009
https://doi.org/10.1016/j.comnet.2015.07.009
https://doi.org/10.1109/ICPADS.2007.4447808
https://doi.org/10.1109/ICPADS.2007.4447808
http://arxiv.org/abs/1407.3561
https://doi.org/10.1016/j.iot.2018.09.005
http://www.sciencedirect.com/science/article/pii/S2542660518300635
http://www.sciencedirect.com/science/article/pii/S2542660518300635

8. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog com-
puting and its role in the internet of things. In: Pro-
ceedings of the first edition of the MCC workshop on
Mobile cloud computing - MCC ’12, p. 13 (2012).
https://doi.org/10.1145/2342509.2342513

9. Cardosa, M., Chandra, A.: Resource bundles: Using
aggregation for statistical large-scale resource discovery
and management. IEEE Trans. Parall. Distribut. Syst.
21(8), 1089–1102 (2010). https://doi.org/10.1109/TPDS.
2009.143

10. Castro, P., Ishakian, V., Muthusamy, V., Slominski, A.: The
rise of serverless computing. Commun. ACM 62(12), 44–
54 (2019). https://doi.org/10.1145/3368454

11. Chang, H., Hari, A., Mukherjee, S., Lakshman, T.V.:
Bringing the cloud to the edge. In: Proceedings - IEEE
INFOCOM, pp. 346–351 (2014). https://doi.org/10.1109/
INFCOMW.2014.6849256

12. Cisco Systems: Fog Computing and the Internet of Things:
Extend the Cloud to Where the Things Are. White Paper p.
6 (2016). https://doi.org/10.1109/HotWeb.2015.22. http://
www.cisco.com/c/dam/en us/solutions/trends/iot/docs/
computing-overview.pdf

13. Cunsolo, V.D., Distefano, S., Puliafito, A., Scarpa,
M.Huang, D.S., Jo, K.H., Lee, H.H., Kang, H.J., Bevilac-
qua, V. (eds.): Cloud@Home: Bridging the gap between
volunteer and cloud computing. Springer, Berlin (2009)

14. Huedo, E., Montero, R.S., Moreno-Vozmediano, R.,
Vázquez, C., Holer, V., Llorente, I.M.: Opportunistic
deployment of distributed edge clouds for latency-critical
applications. J. Grid Comput. 19(1), 2 (2021). https://doi.
org/10.1007/s10723-021-09545-3

15. Kabbinale, A.R., Dimogerontakis, E., Selimi, M.,
Ali, A., Navarro, L., Sathiaseelan, A., Crowcroft,
J.: Blockchain for economically sustainable wireless
mesh networks. Concurr. Comput. Pract. Exp. 32(12).
https://doi.org/10.1002/cpe.5349 (2020)

16. Kargar, S., Mohammad-Khanli, L.: Fractal: An advanced
multidimensional range query lookup protocol on nested
rings for distributed systems. J. Netw. Comput. Appl.
87, 147–168 (2017). https://doi.org/10.1016/j.jnca.2017.
03.021. http://www.sciencedirect.com/science/article/pii/
S1084804517301303

17. Khan, A.M., Freitag, F., Rodrigues, L.: Current trends
and future directions in community edge clouds. In: 2015
IEEE 4Th International Conference on Cloud Network-
ing, Cloudnet 2015, pp. 239–241 (2015). https://doi.org/10.
1109/CloudNet.2015.7335315

18. Kochovski, P., Stankovski, V., Gec, S., Faticanti, F., Savi,
M., Siracusa, D., Kum, S.: Smart contracts for service-level
agreements in edge-to-cloud computing. J. Grid Comput.
18(4), 673–690 (2020). https://doi.org/10.1007/s10723-
020-09534-y

19. Mayer, P., Klarl, A., Hennicker, R., Puviani, M., Tiezzi,
F., Pugliese, R., Keznikl, J., Bure, T.: The autonomic
cloud: A vision of voluntary, Peer-2-Peer cloud com-
puting. In: Proceedings - IEEE 7th International Con-
ference on Self-Adaptation and Self-Organizing Sys-
tems Workshops, SASOW 2013, pp. 89–94 (2014).
https://doi.org/10.1109/SASOW.2013.16

20. Mell, P., Grance, T.: The NIST definition of cloud comput-
ing recommendations of the national institute of standards
and technology. Nist Special Publication 145, 7 (2011).
https://doi.org/10.1136/emj.2010.096966

21. Mohan, N., Kangasharju, J.: Edge-fog cloud: A dis-
tributed cloud for Internet of Things computations. 2016
Cloudification of the Internet of Things CIoT 2016.
https://doi.org/10.1109/CIOT.2016.7872914 (2017)

22. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash
System. www.bitcoin.org p. 9. https://doi.org/10.1007/
s10838-008-9062-0. https://bitcoin.org/bitcoin.pdf (2008)

23. Peinl, R., Holzschuher, F., Pfitzer, F.: Docker clus-
ter management for the cloud - survey results and
own solution. J. Grid Comput. 14(2), 265–282 (2016).
https://doi.org/10.1007/s10723-016-9366-y

24. Pouwelse, J., Garbacki, P., Epema, D., Sips, H.: The Bittor-
rent P2P file-sharing system: measurements and analysis.
In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 3640, pp. 205–216. LNCS (2005).
https://doi.org/10.1007/11558989 19

25. Ryden, M., Oh, K., Chandra, A., Weissman, J.: Neb-
ula: Distributed edge cloud for data intensive computing.
In: Proceedings - 2014 IEEE International Conference
on Cloud Engineering, IC2E 2014, pp. 57–66 (2014).
https://doi.org/10.1109/IC2E.2014.34

26. Satyanarayanan, M., Bahl, P., Cáceres, R., Davies, N.:
The case for VM-based cloudlets in mobile com-
puting. IEEE Pervas. Comput. 8(4), 14–23 (2009).
https://doi.org/10.1109/MPRV.2009.82

27. Selimi, M., Cerdà-Alabern, L., Freitag, F., Veiga, L., Sathi-
aseelan, A., Crowcroft, J.: A lightweight service placement
approach for community network micro-clouds. J. Grid
Comput. 17(1), 169–189 (2019). https://doi.org/10.1007/
s10723-018-9437-3

28. Selimi, M., Cerda-Alabern, L., Sanchez-Artigas, M., Fre-
itag, F., Veiga, L.: Practical service placement approach
for microservices architecture. In: Proceedings - 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing, CCGRID 2017, pp. 401–410 (2017).
https://doi.org/10.1109/CCGRID.2017.28

29. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing:
Vision and challenges. IEEE Int. Things J. 3(5), 637–646
(2016). https://doi.org/10.1109/JIOT.2016.2579198

30. Singh, S., Chana, I.: A survey on resource scheduling in
cloud computing: Issues and challenges. J. Grid Comput.
14(2), 217–264 (2016). https://doi.org/10.1007/s10723-
015-9359-2

31. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R.,
Kaashoek, M.F., Dabek, F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup protocol for Internet appli-
cations. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003).
https://doi.org/10.1109/TNET.2002.808407

32. Vaquero, L.M., Rodero-Merino, L.: Finding your Way in
the Fog: Towards a Comprehensive Definition of Fog Com-
puting. ACM SIGCOMM Comput. Commun. Rev. 44(5),
27–32 (2014). https://doi.org/10.1145/2677046.2677052

33. Varghese, B., Buyya, R.: Next generation cloud computing:
New trends and research directions. Future Gener. Comput.

J Grid Computing (2021) 19: 36 Page 19 of 20 36

https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/TPDS.2009.143
https://doi.org/10.1109/TPDS.2009.143
https://doi.org/10.1145/3368454
https://doi.org/10.1109/INFCOMW.2014.6849256
https://doi.org/10.1109/INFCOMW.2014.6849256
https://doi.org/10.1109/HotWeb.2015.22
http://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/co mputing-overview.pdf
http://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/co mputing-overview.pdf
http://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/co mputing-overview.pdf
https://doi.org/10.1007/s10723-021-09545-3
https://doi.org/10.1007/s10723-021-09545-3
https://doi.org/10.1002/cpe.5349
https://doi.org/10.1016/j.jnca.2017.03.021
https://doi.org/10.1016/j.jnca.2017.03.021
http://www.sciencedirect.com/science/article/pii/S1084804517301303
http://www.sciencedirect.com/science/article/pii/S1084804517301303
https://doi.org/10.1109/CloudNet.2015.7335315
https://doi.org/10.1109/CloudNet.2015.7335315
https://doi.org/10.1007/s10723-020-09534-y
https://doi.org/10.1007/s10723-020-09534-y
https://doi.org/10.1109/SASOW.2013.16
https://doi.org/10.1136/emj.2010.096966
https://doi.org/10.1109/CIOT.2016.7872914
https://doi.org/10.1007/s10838-008-9062-0
https://doi.org/10.1007/s10838-008-9062-0
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/s10723-016-9366-y
https://doi.org/10.1007/11558989_19
https://doi.org/10.1109/IC2E.2014.34
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1007/s10723-018-9437-3
https://doi.org/10.1007/s10723-018-9437-3
https://doi.org/10.1109/CCGRID.2017.28
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1007/s10723-015-9359-2
https://doi.org/10.1007/s10723-015-9359-2
https://doi.org/10.1109/TNET.2002.808407
https://doi.org/10.1145/2677046.2677052

Syst. 79, 849–861 (2018). https://doi.org/10.1016/j.future.
2017.09.020. http://www.sciencedirect.com/science/
article/pii/S0167739X17302224

34. Verbelen, T., Simoens, P., Turck, F.D., Dhoedt, B.:
Cloudlets : Bringing the cloud to the mobile user. In: Pro-
ceedings of the third ACMworkshop onMobile cloud com-
puting and services, pp. 29–36 (2012). https://doi.org/10.
1145/2307849.2307858

35. Vishnumurthy, V., Chandrakumar, S., Emin, G.: Karma:
a secure economic framework for peer-to-peer resource

sharing. In: Workshop on Economics of Peer-to-peer Sys-
tems, p. 34 (2003)

36. Yang, S., Butt, A.R., Fang, X., Hu, Y.C., Midkiff, S.P.:
A fair, secure and trustworthy peer-to-peer based cycle-
sharing system. J. Grid Comput. 4(3), 265–286 (2006).
https://doi.org/10.1007/s10723-006-9039-3

Publisher’s Note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and institu-
tional affiliations.

36 Page 20 of 20 J Grid Computing (2021) 19: 36

https://doi.org/10.1016/j.future.2017.09.020
https://doi.org/10.1016/j.future.2017.09.020
http://www.sciencedirect.com/science/article/pii/S0167739X17302224
http://www.sciencedirect.com/science/article/pii/S0167739X17302224
https://doi.org/10.1145/2307849.2307858
https://doi.org/10.1145/2307849.2307858
https://doi.org/10.1007/s10723-006-9039-3

	Distributed and Decentralized Orchestration...
	Abstract
	Introduction
	Related Work
	Edge Clouds
	Resource Management

	Architecture and Resource Discovery
	Network Management
	Resource Discovery

	Container's Scheduling
	Optimization: Super Traders

	Implementation
	Evaluation
	Methodology
	Results*-.2pt
	Bandwidth consumed per node
	RAM used per node
	Deployment Request Efficacy
	Deployment Requests Efficiency

	Analysis

	Conclusion
	References

