
/Published online:17 July 2021

https://doi.org/10.1007/s10723-021-09573-z

Ultra-Reliable and Low-Latency Computing in the Edge
with Kubernetes

László Toka

Received: 3 November 2020 / Accepted: 21 June 2021
© The Author(s) 2021

Abstract Novel applications will require extending
traditional cloud computing infrastructure with com-
pute resources deployed close to the end user. Edge
and fog computing tightly integrated with carrier
networks can fulfill this demand. The emphasis is
on integration: the rigorous delay constraints, ensur-
ing reliability on the distributed, remote compute
nodes, and the sheer scale of the system altogether
call for a powerful resource provisioning platform
that offers the applications the best of the underly-
ing infrastructure. We therefore propose Kubernetes-
edge-scheduler that provides high reliability for appli-
cations in the edge, while provisioning less than 10%
of resources for this purpose, and at the same time,
it guarantees compliance with the latency require-
ments that end users expect. We present a novel
topology clustering method that considers application
latency requirements, and enables scheduling appli-
cations even on a worldwide scale of edge clusters.
We demonstrate that in a potential use case, a dis-
tributed stream analytics application, our orchestration
system can reduce the job completion time to 40%
of the baseline provided by the default Kubernetes
scheduler.

L. Toka (�)
MTA-BME Network Softwarization Research Group, Fac-
ulty of Electrical Engineering and Informatics, Budapest
University of Technology and Economics,
Budapest, Hungary
e-mail: toka.laszlo@vik.bme.hu

Keywords Orchestration · Kubernetes ·
Edge computing · Resource provisioning ·
High-reliability · Low-latency

1 Introduction

Future applications, e.g., extended reality applications
or 5G and beyond telco services, will require ultra-
reliability and low-latency communication from the
hosting compute and network infrastructure. Hence
we are in the process of extending the traditional cloud
with an emerging architecture. Edge computing, built
on the fast access network of 5G, is capable of fulfill-
ing such strict delay criteria. Remote edge nodes are
prone to failures and their downtime might be longer
than that of a central infrastructure, i.e., data centers.
Therefore, while the edge deployment of compute ele-
ments of the service minimizes service delay, ensuring
the high reliability of services is a challenge.

The evolution and the growing interest of virtual-
ization technologies led to the appearance of central-
ized data centers that host cloud-native applications
and have advanced infrastructure managers to ensure
the seamless operation of those applications. Kuber-
netes has become the most popular cluster manager
during the past 5 years: it is used primarily for orches-
trating data center deployments running web appli-
cations. Its powerful features, e.g., self-healing and
scaling, have attracted a huge community, which in

Journal of Grid Computing (2021) 19: 31

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-021-09573-z&domain=pdf
http://orcid.org/0000-0003-1045-9205
mailto:toka.laszlo@vik.bme.hu

turn, is inducing a meteoric rise of this open source
project. We venture to reshape Kubernetes’ “heart-
and-soul”, the scheduler, to be suited for an edge
infrastructure and for delay-sensitive applications to
be deployed on the edge of a global network. As the
edge infrastructure is highly prone to failures, and is
considered to be expensive to build and maintain, self-
healing features must receive more emphasis than in
the baseline Kubernetes, therefore a topology-aware
system is needed that extends its widely-used feature
set with regard to network latency.

Today’s services strive for worldwide availability
and geographic reach might be even more crucial
in the future. In order for a system to meet all the
requirements, e.g., low latency and high availability
practically everywhere, it should have tens of thou-
sands of computing nodes geographically distributed
and fully connected to serve all the clients. Generally,
we can state that managing such a huge infrastructure
is far from trivial, and exacerbated by the geographi-
cal spread. Answering simple questions, like, how do
we measure network characteristics effectively, how
can we react to topology changes, do become more
and more difficult. Besides availability, reaching high
reliability is also challenging: service providers must
ensure that they can respond to different failures, so
their users will not be affected by a service outage for
a long time.

In this article we give potential answers to the
above challenges and provide a conceptual solution
for the fulfillment of strict time criteria of future appli-
cations. We propose our advanced edge-scheduler that
takes into account the underlying network latency, and
the applications’ latency requirement in the schedul-
ing decisions about the application components. Our
backup resource multiplexing technique provides high
reliability for the applications with aware of latency
requirements by carefully provisioning resources for
this aim. The system works on large scale with huge
number of worker nodes and service requests thanks to
our dynamic clustering method that can also organize
a federated system dynamically. As a proof of concept,
we implement the edge-scheduler in Kubernetes, and
evaluate its performance in selected scenarios.

The paper is organized as follows. In Section 2
we introduce our model for ensuring high reliability
and ultra-low latency with economical edge resource
provisioning. In Section 3 we show our proposed

scheduler solution that is based on an advanced heuris-
tic scheduling algorithm, which dynamically handles
incoming events of a geographically widespread vir-
tual infrastructure, supporting several latency critical
5G applications. In Section 4 we present the oper-
ation of our re-scheduler that further decreases the
provisioned resources in our system periodically, in an
offline orchestration operation. We address scalability
and present our edge node clustering solution based on
network delay in Section 5. In Section 6 we describe
the implementation choices we made and we present
our experiment results in Section 7. We discuss related
prior art in Section 8, and we conclude the paper in
Section 9.

2 Scalable and Economical Edge Scheduling
for Latency-Critical and Operation-Critical
Applications

Our proposed concept turns a virtual infrastruc-
ture scheduler into a manager of geographically
widespread infrastructure. It is built on two advanced
scheduling algorithms that support latency critical
applications. In this section we introduce our propo-
sition for reserving backup resources, and we build a
model for describing the problem of minimizing the
amount of those while conveniently providing reliabil-
ity for delay-critical applications on top of them.

In the architecture of the system we call the phys-
ical entities with computational resources, processor,
memory, network bandwidth, as nodes. In this sense,
a node can represent a single server at the edge of
the network, or an abstraction of an entire cloud data
center. Since our system considers network latency
in every aspect of application deployment, we use a
delay matrix: the values in the delay matrix represent
the smallest delay value between each node pair. The
deployable units of application components are called
as Pods. The users can define delay criterion for each
latency critical Pod which gives the maximum net-
work latency that is tolerated by the application from
an arbitrary point defined by the application provider,
which we call origin.

Definition 1 The application provider submits its
requests to deploy each and every Pod in the system
along with the Pod’s origin and with the respective

31 Page 2 of 23 J Grid Computing (2021) 19: 31

Fig. 1 Proposed system architecture design for edge computing

radius. The origin of a Pod can be defined either
as one of the nodes (that is close to the location of
the users that the Pod will serve), or as another Pod
deployed previously in the system (with which affinity
is required for the Pod currently being deployed).

To provide high reliability for the applications, we
provision backup compute resources on edge nodes,
which we call placeholders. We prepare for only
one node failure at a given moment, so we dimen-
sion the placeholders for the maximum number of
Pods on any node to fail at once. Therefore, each
placeholder has a resource demand depending on two
factors: i) how many Pods it supports simultaneously;
ii) how the backed up Pods are distributed among
the nodes. A placeholder’s size is not necessarily
equal to the sum of the supported Pods’ sizes: it can
be less if the supported Pods are placed on differ-
ent nodes. A Pod’s placeholder must be assigned to
a node that differs from the host of the Pod, and
the placeholder must also fulfill the Pod’s latency
requirement.

Since edge nodes are prone to failures and we
strive to ensure high reliability for all the applica-
tions, we want to make sure if a single node fail-
ure occurs, placeholders in the system have enough
reserved resource to restart all Pods of the failed node.
We consider that the resources on edge nodes are

expensive, since edge nodes have limited resource
capacity compared to the large data centers.

The Pods’ have computational characteristics that
our system needs to ensure, i.e., processor, memory,
network bandwidth. Regarding of these two proper-
ties, one of our main goals is to minimize the resources
reserved for placeholders in the system.

An example view of our system architecture with
two simple scheduling result is presented in Fig. 1
with a central cloud, and several edge nodes. On the
left side of Fig. 1, a non-optimal scheduling exam-
ple is presented. In this case, the amount of backup
resource (placeholder) reservation is greater than what
the optimal solution would need. The result of how an
advanced scheduler would deploy both the Pods and
the placeholders can be seen on the right side. Since
both of the Pods have common servers in their latency
radius, their placeholders can be multiplexed in order
to decrease the provisioned extra resources but still
high reliability is ensured for the Pods. Our edge-
scheduler, an advanced scheduler extension, integrates
and improves the rudimentary solutions described in
[8, 27]. The architecture of our edge-scheduler with
some mandatory operations of each component is
visualised in Fig. 2. The main components in our edge-
scheduler are the Monitoring, Event handler, Cluster-
ing, Scheduler, and Re-scheduler. We introduce these
components throughout the next section.

J Grid Computing (2021) 19: 31 Page 3 of 23 31

3 Scheduler: Online Pod Scheduling for Fulfilling
Delay Requirements

Our online scheduler component is in charge of
deploying the incoming Pod requests on the fly,
with the awareness of their delay and computational
requirements, and also of deploying respective place-
holders for ensuring high reliability. It works in poly-
nomial time and its approximation ratio is 3 in terms
of total amount of placeholder resources sacrificed
for guaranteeing high reliability against single node
failures.

3.1 The operation of our online Pod scheduler

The scheduler works in an online manner, it processes
the users’ application requests one-by-one at the time
of their submission. The major steps of scheduling
are showcased in the schedule box in Fig. 2 and
Algorithm 1.

Since our scheduler must give a solution that meets
the delay requirements, the scheduling starts with the
identification of the options that the Pod’s require-
ments allow. More precisely, it pinpoints the nodes
that are in the radius of the given origin (Line 8
of Algorithm 1). In case of the origin is a Pod, the
algorithm defines its current host and gets the nodes
around that. It is possible that none of the nodes in
the radius have enough computational resource for
the new application, i.e., processor, memory, network
bandwidth. If none of the listed nodes have enough
computational resource, our algorithm tries to migrate
Pods from their current hosts to somewhere else, in
order to free up some resource for the actual request
(Line 11 of Algorithm 1). We present the dynamic
operational challenges that our algorithm must solve,
i.e., migration and fail-over, in Section 3.4.

During the Pod scheduling, we have to keep in
mind the scarcity of the edge resources. Therefore, our
algorithm first tries to place each Pod without increas-
ing the total placeholder size in the system, keeping
in mind the delay requirement (Lines 15 and 26 of
Algorithm 1). When we can not find any solution that
keeps the total backup resource size intact, we have to
deploy the Pod first and then create a new placeholder
or increase an existing placeholder’s size for the Pod
(Line 28 of Algorithm 1). Our node selection strategy
for Pods favors dispersing them among nodes, lead-
ing to a balanced utilization in the system, which in

Algorithm 1: Online schedule algorithm.
Data: pod, nodes
Result: pod.node and pod.placeholder are set

1 if pod.reschedule then
2 bind(pod, pod.target);
3 pod.reschedule ← False;
4 end
5 if pod.placeholder then
6 patch(pod, pod.placeholder);
7 else
8 nodes in radius ← nodes.filter(pod.origin,

pod.delay) ;
9 suitable nodes ←

nodes in radius.filter(pod.capacity);
10 while suitable nodes.size = 0 do
11 nodes in radius ←

find and migrate pods(nodes in radius) ;
12 suitable nodes ←

nodes in radius.filter(pod.capacity);
13 end
14 if suitable nodes.size > 1 then
15 hosting nodes, placeholder ←

find placeholder(suitable nodes, pod) ;
16 else
17 No placeholder will be assigned to this

Pod! ;
18 end
19 if hosting nodes.size > 0 then
20 chosen node ←

min utilized(hosting nodes) ;
21 else
22 chosen node ←

min utilized(suitable nodes) ;
23 end
24 bind(pod, chosen node);
25 if placeholder then
26 patch(pod, placeholder) ;
27 else
28 create placeholder(suitable nodes, pod) ;
29 end
30 end

turn decreases the necessary placeholder resources to
support single node failures (Lines 20 and 22 of Algo-
rithm 1). In contrast, the placement of placeholders
favors those nodes that have a high number of nodes in
their vicinity in terms of delay: these “central” nodes

31 Page 4 of 23 J Grid Computing (2021) 19: 31

Fig. 2 The components of our edge-scheduler

are good choices for placeholders, since they can sup-
port Pods on many nodes around them. The scheduler
does not cover a Pod with a placeholder if the available
computational resources do not allow the placeholder
creation or size increase, or the delay requirement is so
strict that only the starting node appears in the radius
(Line 17 of Algorithm 1).

3.2 Complexity Analysis of our Proposed Scheduler

The scheduler algorithm processes the incoming Pod
requests at the time of their arrival. Therefore, in a
globally available system, the scheduler component
need to act fast when a request comes in. We state that
our scheduler runs in polynomial time, which we state
in Theorem 1.

Theorem 1 Our proposed online scheduling algo-
rithm has polynomial complexity.

Proof Let us denote the set of nodes with N and
the set of Pods with P . In the beginning, getting the
nodes in the radius around the origin can be done in
O(|N |). Then, the online scheduling algorithm tries
to deploy the incoming Pod without increasing the
total placeholder size in the system. Regarding that,
the algorithm collects the placeholders in the radius
and checks the network and computational constraints.
This collection and constraint check have the follow-
ing complexity: O(|N |2 + |P |2). In the next step, the
algorithm sorts the nodes based on their number of
deployed Pods and their number of network connec-
tions that fulfill the delay requirements. In the worst
case scenario, the algorithm has to do this sorting two
times, which means, its complexity can be approxi-
mated with O(2|N | log |N |) = O(|N | log |N |). After
the sorting, the selection of the best fitting node
and the deployment takes constant time. To summa-
rize, the complexity of our online Pod scheduling

J Grid Computing (2021) 19: 31 Page 5 of 23 31

algorithm (without migration) can be approximated by
O(|N |+|N |2+|P |2+|N | log |N |) = O(|N |2+|P |2),
which equals with O(|N |2) when |N | > |P |, and
O(|P |2) when |N | < |P |.

3.3 Approximation Bound on Placeholder
Provisioning

In this section we prove that our scheduler is a 3-
approximation algorithm in terms of the amount of
placeholder allocation for Pods. As the first step, let
us create a graph G = (V , E), where the vertices rep-
resent the nodes and the edges of the graph present
the connection between the nodes. We denote the set
of Pods as P . In the proofs of the approximation we
use the graph’s diameter d(G), which is the length of
maxu,v∈V d(u, v) the “longest shortest path” between
any two graph vertices (u, v), where d(u, v) is the dis-
tance between the vertices. We define the group of
vertices that we call buds in Definition 2.

Definition 2 A vertex is a bud, if it connects to at least
one leaf.

Furthermore, we make an assumption about the
graph model and the latency requirements of the Pods
in order to render the approximation analysis of our
scheduler algorithm analytically tractable. The first
part of the assumption is about the size of the topology
and the resource capability of each node. The sec-
ond part simplifies the number and the requirement of
Pods to be deployed.

Assumption 1 G is a simple, connected graph, with
|V | = n > 3, each vertex in G represents a node in
the Kubernetes cluster and has infinite capacity. Edges
in G represent unit latency distance between the ver-
tices. |P | = |V |, moreover each Pod p ∈ P has unit
resource requirement, i.e., homogeneous Pod sizes,
and there is a one-to-one mapping between the Pods’
origins and the vertices in the graph: pi → vi; pi ∈
P, vi ∈ V , i.e., every vertex is origin for a Pod. The
delay requirement of each Pod makes the neighboring
nodes of the Pod’s origin eligible, no other nodes, i.e.,
nodes farther than 1 hop yield too much delay for the
service deployed in the Pod.

Note that in the following we consider Assump-
tion 1 to hold. It is partly a relaxing assumption, e.g.,

in terms of Pod-, and placeholder placement as infinite
node capacities are supposed, but partly specific, e.g.,
in the aspect of origin selection. In terms of latency
requirements, the assumption considers an extremely
restrictive scenario.

The goal of an economical scheduler is to find the
minimum amount of placeholders that can support all
Pods in the system in case of one node’s failure. Let us
denote by OPT the optimal solution and by HEUR

the solution that our online scheduler algorithm yields.
Let us denote the number of buds as b, and the diam-
eter of the graph d . The lower bound of the optimal
solution can be deduced from the number of buds and
the diameter of the graph. Therefore, we define the
lowest amount of placeholders that can be theoreti-
cally achieved in Lemmas 1 and 2 using the diameter
and number of buds respectively.

Lemma 1 OPT ≥ d+1
3

Proof G with diameter d has at least one shortest path
with length d and must have d + 1 nodes. Thus, there
is a subgraph G′ in G that can be represented as a
path graph, which has d + 1 vertices. The Pods’ delay
requirement allows only the origin node and its neigh-
bors (see Assumption 1) as their hosting node. Since
every node is an origin for a Pod, the number of ver-
tices in each Pod’s radius (whose origin is in G′) is 2
or 3 in G′.

In the path graph representation the minimum num-
ber of sets that cover all nodes at least once and
each set contains only neighboring nodes, equals
to dividing the nodes into groups of three. One
can see that the number of sets gives the mini-
mum number of placeholders in G, that should be
deployed.

Lemma 2 OPT ≥ b

Proof We know that a bud is connected with at least
one leaf, and each Pod’s latency constraint allows only
the neighbors of the origin node. Therefore, only two
nodes (a bud and the leaf) are in the radius of the Pods,
whose origin node is a leaf. Regarding that, one of the
nodes in each bud-leaf pairs must hold a placeholder.
From this statement, one can see that the number of
placeholders must be greater or equal to the number of
buds.

31 Page 6 of 23 J Grid Computing (2021) 19: 31

We state, with Lemma 3, that our heuristic solution
will have at least one Pod, which shares its placeholder
with at least one other Pod.

Lemma 3 HEUR ≤ n − 1.

Proof HEUR ≤ n, as |P | = n. By the heuristics
applied in our online scheduling algorithm, equality
occurs only in the case when placeholders cannot be
multiplexed. This would occur only in a G with 1-
degree vertices, which is impossible with n > 3, hence
the statement.

In order to prove the approximation bound of our
scheduler, we have to identify the proportion between:
i) the diameter and the optimal amount of placehold-
ers; ii) the number of buds and the amount of place-
holders provided by our heuristic solution. Therefore
in Lemma 5 and Lemma 6 (in the Appendix) we prove
that the number of placeholders is directly propor-
tional with the number of buds and the diameter value,
as well.

Simple, connected graphs can have diverse com-
binations of diameter value and number of buds that
affect the number of placeholders provisioned in the
system. In Lemma 7 we present the possible graph
architectures that simple, connected graphs can have
with diverse diameter and bud value combinations.
From Lemma 5 and Lemma 6 we can draw the
following relationship:

max

(
HEUR

OPT

)
∝ max

(
d

b

)
.

Based on this observation, we define the approxima-
tion bound of our heuristic solution in the combi-
nations of diameter and the number of buds where
the latter is minimal and the former is maximal. To
summarize the previously presented results, we state
and prove the approximation bound of our scheduler
algorithm in Theorem 2.

Theorem 2 Our online scheduling solution is a 3-
approximation algorithm for providing joint place-
ment of placeholders of Pods (HEUR ≤ 3OPT).

Proof In Lemma 8 (in the Appendix) we prove
that on all possible inputs, the approximation ratio

between our heuristic solution and the optimal solu-
tion is always less than or equal to 3. Therefore,
our scheduler is a 3-approximation algorithm in
terms of the amount of placeholder allocation under
Assumption 1.

3.4 Pod Migration and Fail-Over

There are certain dynamic operational challenges that
scheduling algorithms must face; for remedy we pro-
pose a migration policy. Network-aware migration of
deployed Pods is triggered when a new Pod request
comes in, but the available resources are not suffi-
cient. In these situations we migrate the affected Pods
to new nodes to avoid disruptions. The major steps of
migration, and the flow of the process between them
is presented in the “Migrate” box in Fig. 2. Although
we strive to make room for the incoming Pod in the
system, we migrate Pods only if their relocation frees
enough resources and their assigned placeholders’ size
remains the same. While the online scheduling will
inevitably lead to suboptimal resource allocation for
the placeholders, i.e., more resources will be dedi-
cated to backup than the absolute minimal amount at
the highest attainable multiplexing scheme for single
node failures, we are not sure how often migration
events will need to take place. As the authors of
[9] argue, edge computing is the strongest candidate
for providing low-latency responses, but it is not yet
clear what edge infrastructures will be like. In addi-
tion to that, the edge applications’ dynamics and their
latency requirements will greatly affect the frequency
of migrations.

Our solution can also handle topology changes
dynamically. The fail-over process is triggered, when
our scheduler perceives that a worker node is unreach-
able, or a delay deterioration in the infrastructure
spoils Pods’ delay constraints. In these cases we use
the already provisioned placeholders to restart the
respective Pods within their placeholders’ resources.
After the restart, we remove the Pods from their
original placeholders, and try to find or create new
placeholders for them.

Both Pod migration and fail-over appear in our
online algorithm. Since we consider the delay require-
ments as hard constraints, both of these methods take
the delay requirements into account. Our re-scheduler
operates on all Pods at once, which renders migration
or fail-over meaningless during its execution.

J Grid Computing (2021) 19: 31 Page 7 of 23 31

3.5 Complexity analysis of Pod migration calculation

In every system, the migration of virtual entities, e.g.
Pods, is an expensive process in terms of execution
time and operational steps. Although it is a costly
operation, we show that our Pod migrating algorithm
runs in polynomial time, and we prove its polynomial
complexity in Theorem 3.

Theorem 3 The migration calculation in our sched-
uler has polynomial complexity.

Proof Let us denote the set of nodes with N and the
set of Pods with P . In the migration process the algo-
rithm knows the new Pod (that cannot be deployed
in the system due to lack of resources) characteris-
tics and the nodes that are in the latency radius of
the Pod’s origin node. Our solution iterates over all
those nodes’ Pods and try to migrate them till one of
the nodes has enough free resource to host the new
Pod. This means in the worst case we have to try the
migration in O(|P |) times. When we examine a Pod if
its “migratable”, we check the following constraints:
i) the actual node will have enough free resource for
hosting the new Pod, in case we migrate the exam-
ined Pod to another node (can be done in O(1)); ii)
at least one of the nodes in the examined Pod’s radius
has enough free resource for that Pod (O(|N |)); iii)
when a placeholder is assigned to the examined Pod,
we do not have to increase its size if we deploy the Pod
to a new host (if |P | > |N | then O(|P |2), otherwise
|N |2log|N |). If all constraints are met, we migrate
the examined Pod, so we can deploy the new Pod to
its original host. The complexity of Pod migration is
O(|P ||N |2log|N |) in cases, when |P | < |N |, else
(|P | > |N |) it is O(|P |3).

As for the technical migration overhead, we argue
that stateless [26] application components can be
migrated with minimal extra resources. The stateless
design, of course, must be supported by a distributed
cloud database [24, 25], which transforms the punc-
tual migration overhead into a continuous synchro-
nization of application states onto multiple database
instances running on nodes potentially hosting the
stateless application, which leads to an extra con-
sumption in terms of compute, memory and network
resources.

4 Re-scheduler: An Offline Orchestrator
to Minimize Provisioned Backup Resources

Operating besides the scheduler, our re-scheduler is
responsible for the offline minimization of the total
provisioned backup resources in the system. The main
difference between the two solutions is in the submis-
sion pattern of the Pods. While the scheduler works
in an online manner, the re-scheduler better approxi-
mates the minimum amount of necessary placeholders
as it works in an offline manner and it is fed with the
batch of all deployed Pods.

4.1 The Operation of our Re-Scheduler

Our re-scheduler has three major phases: i) place-
holder deployment; ii) Pod deployment; iii) repair
phase. The flowchart of the phases are presented
inside the “Re-scheduler” box in Fig. 2. As for the first
phase, according to our intuition, the nodes that could
host the most Pods are the best choices for placehold-
ers: placeholders on them can cover all those Pods
if they are placed elsewhere, which maximizes the
multiplexing effect, hence the least possible resources
reserved for placeholders. Therefore in the first phase,
as shown in Algorithm 2, we reserve the minimum
amount of placeholders on the nodes (Lines 2 and 3
of Algorithm 2) that could possibly host all Pods to be
deployed.

Algorithm 2: Offline placeholder deployment.
Data: pods, nodes
Result: pod.placeholder are set for all pods

1 while pods do
2 node ←

nodes.sort(by number of deployable pods,
decreasing order, pods).first ;

3 placeholder ← create placeholder(node,
maximum capacity(node.deployable pods)) ;

4 for pod in node.deployable pods do
5 patch(pod, placeholder);
6 pod.placeholder ← node;
7 end
8 pods.remove(node.deployable pods);
9 node.deployable pods ← ∅;

10 end

31 Page 8 of 23 J Grid Computing (2021) 19: 31

The deployment of Pods that can be hosted only
on a subset of nodes, e.g., in a strict latency radius,
is challenging. The order of Pod deployment follows
the number of possible nodes that could host a Pod
(Line 6 of Algorithm 3), which mainly corresponds to
the tightness of their delay requirements. We deploy
the Pods with the fewest options first, then move for-
ward to Pods with looser latency requirements. At the
end of this phase, each Pod is deployed and all of
them are covered with a placeholder as Algorithm 3
indicates.

Algorithm 3: Offline pod deployment.
Data: pods, nodes
Result: pods are deployed

1 foreach pod in pods do
2 nodes in radius ← nodes.filter(pod.origin,

pod.delay);
3 suitable nodes ←

nodes in radius.filter(pod.capacity);
4 pod.choosable nodes ←

suitable nodes.filter(pod.placeholder);
5 end
6 foreach pod in
pods.sort(by number of choosable nodes,
decreasing order) do

7 chosen node ←
min utilized(pod.choosable nodes);

8 bind(pod, chosen node);
9 end

Pod migration is an expensive operation since dur-
ing the migration the behavior of the application can
be non-deterministic and the service provider has to
guarantee the seamless relocation of the components.
Therefore, the cost of migration is not negligible in the
minimization process in our re-scheduler. When the
re-scheduler is triggered, a deployment that defines
the host node, determined by the online scheduler,
is in effect for each submitted Pod. Relying on that
predefined deployment, in the second phase the sched-
uler strives to deploy the Pods on those nodes that
already host the Pod. Due to this behavior, our solu-
tion can minimize the number of migrations while still
minimizing the amount of total provisioned resources.

It is possible that some of the reserved placehold-
ers’ size might not be enough to back up all the

Pods which have been assigned to them. In order to
ensure full reliability, we have to repair those failed
placeholders, one input to Algorithm 4. Since we
minimize the total footprint of provisioned placehold-
ers, we reassign Pods from each failed placeholder to
other placeholders, or re-deploy them to other nodes
if migration is favored (Line 2 of Algorithm 4). If we
can not find any solution that would keep the amount
of total placeholder size on the same level, we have
to increase the broken placeholders’ size (Line 6 of
Algorithm4), or instantiate new placeholders (Line 10
of Algorithm 4).

Algorithm 4: Offline repair.
Data: bad placeholders, nodes
Result: no bad placeholders left

1 foreach placeholder in bad placeholders do
2 success ← reassign(placeholder, nodes) ;
3 if success then
4 bad placeholders.remove(placeholder);

5 foreach placeholder in bad placeholders do
6 success ← increase(placeholder) ;
7 if success then
8 bad placeholders.remove(placeholder);

9 foreach placeholder in bad placeholders do
10 success ← create placeholder(placeholder) ;
11 if success then
12 bad placeholders.remove(placeholder);

4.2 Complexity Analysis of our Re-Scheduler

Although our re-scheduler works in an offline man-
ner, i.e., it processes the batch of all the deployed
Pods’ requirements, we must not let its execution time
increase unpredictably. The state of the system is con-
tinuously changing: Pods come and go, nodes might
fail. If such events occur while the re-scheduler is run-
ning, the placement result yield by the algorithm may
not be valid anymore. Therefore it is of paramount
importance to design the re-scheduling algorithm to
be fast. In Theorem 4 we prove that our proposed
re-scheduler algorithm runs in polynomial time.

Theorem 4 Our proposed re-scheduler algorithm has
polynomial complexity.

J Grid Computing (2021) 19: 31 Page 9 of 23 31

Proof Let us denote the set of nodes with N and the
set of Pods with P . In the re-scheduler algorithm’s
first phase we deploy the placeholders. As the first
step, it calculates the nodes in each Pod’s radius. This
calculation can be estimated with O(|P ||N |). After
the calculation, the re-scheduler sorts the nodes by
the number of the Pods that could be hosted on them.
The complexity of this sorting is O(|N |2). In the next
step, it deploys each placeholder and reorders the list
after every deployment. This step and the whole first
phase can be estimated with O(|P ||P ||N |(|N |−1)) =
O(|P |2|N |2 − |N |) = O(|P |2|N |2).

In the second phase the re-scheduler places the
Pods on the nodes. First, it sorts the Pods by their
number of fitting nodes. The complexity of the sort-
ing is O(|P |2). Then, the algorithm iterates through
the sorted Pods, and deploys them on the least uti-
lized node. The worst case complexity of this iteration
can be estimated by O(|P ||N |). The worst case com-
plexity of the whole second phase, if |P | > |N |,
is O(|P |2), anyway the worst case complexity is
O(|P ||N |).

In the third phase, the algorithm checks if any bro-
ken placeholders exist, and repairs the failed ones.
When it checks the placeholder constraints, it iter-
ates through all the placeholders and for each of
them it also iterates through all the nodes and the
Pods. The worst case complexity of this validation is
O(|P ||N |2), as in the worst case each node contains
one placeholder. Then, the re-scheduler goes through
all the broken placeholders, and tries to fix them with
Pod reassignment to different, already instantiated
placeholders, or to other nodes. During the reassign-
ment for each broken placeholder, the algorithm gets
those nodes whose constraints are not fulfilled and
tries to reassign the specified Pods. In case of |P | >

|N |, the reassignment’s complexity is O(|P ||N |2),
otherwise the complexity is O(|N |3). In the second
repair method the algorithm increases each broken
placeholder’s size, if possible, which has the worst
case complexity of O(|P ||N |). The last repair attempt
is the new placeholder, which has the same worst case
complexity as the Pod reassignment O(|P ||N |2)or
O(|N |3). If |P | > |N | the worst case complexity
of the third phase equals to O(|P ||N |2 + |P ||N |2 +
|P ||N | + |P ||N |2) = O(|P ||N |2), otherwise it is
O(|P ||N |2 + |N |3 + |P ||N | + |N |3) = O(|N |3).

Summarizing, our proposed heuristic algorithm’s
complexity in the worst case scenario equals

O(|P |2|N |2 + |P |2 + |P ||N |2) = O(|P |2|N |2) in
case of |P | > |N |, otherwise O(|P |2|N |2 + |P ||N | +
|N |3) = O(|P |2|N |2 + |N |3).

5 Providing Scalability with Node Clustering

As the size of the system grows, not only finding the
best placement for the service components, but even
measuring the network characteristics becomes chal-
lenging. The continuous measurement is induced by
the fact that the underlying network and topology may
change, and such events can cause application fail-
ures and delay requirement violations. Our clustering
solution not only reduces the overhead of determining
network characteristics, but also helps the scheduling
of the applications by compressing the topology. By
topology compression, we mean that since a cluster-
ing algorithm forms groups (clusters) from a set of
nodes, the scheduling algorithms do not need to iter-
ate through all the nodes, it is sufficient to calculate
with the clusters. Furthermore, our solution provides
valuable input for service providers who want to
implement self-organizing network features to dynam-
ically organize their federated system hierarchically,
based on their network topology.

5.1 Dynamic, Delay-Based Clustering Problem

We propose a clustering algorithm that groups the
physical nodes into clusters in order to ensure that
dynamic application placement and network delay
measurements can scale effectively in large topolo-
gies. Our solution is an agglomerative clustering algo-
rithm that creates cluster layers hierarchically, where
each layer contains clusters that are constructed with
a new delay requirement belonging to a Pod request.
The input of our clustering algorithm is a topology
(that maybe already clustered before), and a set of
delay values that will be used for clustering the nodes
(or the clusters) inside topology. In this agglomera-
tive clustering approach, each node starts in its own
cluster, then the clusters are merged as we build
up the hierarchy, where each layer (and their clus-
ters) are built based on increasing delay requirement
values.

In cases when the topology is not clustered with
a given delay value yet, a new layer is being created
(visualized in Fig. 2, in “New layer creation” box

31 Page 10 of 23 J Grid Computing (2021) 19: 31

inside the “Clustering” box) relying on the underlying
layer that is clustered with the delay that is the greatest
and closest, but still less than the new one. Regarding
the application placement, our clustering mechanism
guarantees that all nodes inside a cluster fulfill a Pod’s
delay requirement in case the cluster is an output of the
clustering with that delay value. Hence service delay
requirement violations can not happen inside a clus-
ter for the given delay value, no matter which member
node hosts the given Pod.

The clustering may lead to different outcomes, in
which a node may belong to different clusters. An
illustrative example can be viewed in Fig. 3, where on
the top, a simple topology is depicted with delays on
network connections between the nodes. On the bot-
tom, we present how the topology can be clustered
based on different delay requirements. The red cir-
cled clusters (bottom middle) are non-deterministic,
since they overlap each other and the cluster-
ing result depends on the processing order of the
nodes.

There are some delay values (denoted as d in
Fig. 3), for which the clustering is deterministic, i.e.,
each node belongs to only one determined cluster no
matter the order of nodes during the clustering pro-
cess. Formally we define this problem in Definition 3.

Definition 3 Given a G = (V , E) graph and a
d delay value. G is an undirected complete graph
with weighted edges that fulfill the triangle inequality
and d is a positive number that represents the delay
requirement of a service.

DETERMINISTIC CLUSTERING PROBLEM: Can G

be clustered based on d in a deterministic manner?

A key feature of our solution is to find those delay
values (for the given topology) that provide such deter-
ministic clustering results. We call these delays as
vantage-free delays and we seek these delays at the
initialization of the clustering component (“Initializa-
tion” box inside “Clustering” box in Fig. 2). These
vantage-free clustering layers can be defined and

Fig. 3 Deterministic and non deterministic clustering examples

J Grid Computing (2021) 19: 31 Page 11 of 23 31

created in polynomial time by using only the delay
values that appear between the nodes in the topology
(see Lemma 4).

Lemma 4 We can find an answer for the DETERMIN-
ISTIC CLUSTERING PROBLEM in polynomial time.

Proof Let us represent our topology with a com-
plete graph G, where the nodes are the vertices and
the edges are the smallest available latency values
between each node pair. The proof consists two steps.
First, we delete the edges from G if their weight is
greater than d , in O(|V |2). Then, we examine each
disconnected component, if they are complete sub-
graphs. This examination can be done in O(|V |2). If
all of the disconnected components are complete sub-
graphs (cliques), the output is positive (yes), G can
be clustered based on d deterministically, otherwise it
cannot.

The purpose of defining these delay values and
their clustering layers is that they serve well as under-
lying layers for clustering with other, non vantage-
free delay values, since these vantage-free delays do
not change unless the topology changes. In order to
support the large scale scheduling, the purpose of
our clustering solution is to create the least clusters
that cover all the nodes and the nodes cannot vio-
late the given delay requirement within their cluster.
We call this problem as DELAY BASED CLUSTERING

PROBLEM. A formal definition of the DELAY BASED

CLUSTERING PROBLEM is given in Definition 4. We
state and prove that DELAY BASED CLUSTERING

PROBLEM is a hard problem in general in Theorem 5.

Definition 4 Given a graph G = (V , E) that repre-
sents the physical topology, and d , a positive number
that equals to the delay requirement of the service. G

is an undirected complete graph, whose edges fulfill
the triangle inequality.

DELAY BASED CLUSTERING PROBLEM: Cluster-
ing the vertices with minimum number of clusters with
the awareness of the following requirements: i) a clus-
ter has to be a clique; ii) the weight of every edge
inside the clusters is less than or equal to d; iii) clusters
can not overlap with each other.

Theorem 5 The DELAY BASED CLUSTERING PROB-
LEM is NP-hard.

Proof In the proof of this theorem, we use Karp-
reduction for a known NP-hard problem, the CLIQUE

COVER PROBLEM, which is the algorithmic problem
of finding a minimum clique cover. A clique cover of
a given undirected graph is a partition of the vertices
into cliques.

As a preparation step, we construct G′ with delet-
ing all of the edges with greater weight than d from
G, since those edges surely will not appear inside any
cluster. After this step, we can ignore the edge weights
in G′. In this case we strive to find the minimum num-
ber of not overlapping clusters that are cliques, and
cover all the vertices. Note that, since service delay
requirement violations can not happen inside a clus-
ter for the given delay value, the clusters can only
contain cliques in our solution. Let G′ be the input
of the clique cover problem. In this case, one can
see that finding the minimum clique cover (the clique
cover that uses as few cliques as possible), equals with
finding the minimum clusters (that are also cliques)
that solves the DELAY BASED CLUSTERING PROB-
LEM. Also a solution for DELAY BASED CLUSTERING

PROBLEM gives a good clique cover for the MINIMUM

CLIQUE COVER PROBLEM. Since G′ can be con-
structed in polynomial time (O(|V |2)) from G, and
covering with minimum clusters on G is fully com-
plaint with CLIQUE COVER PROBLEM on G′, DELAY

BASED CLUSTERING PROBLEM is NP-hard.

We proved that the DELAY BASED CLUSTERING

PROBLEM is a hard problem in general, although in
some cases it is solvable in polynomial time. In The-
orem 6 we state that the DELAY BASED CLUSTERING

PROBLEM is solvable in polynomial time in cases
when DETERMINISTIC CLUSTERING PROBLEM gives
positive answer for the same input.

Theorem 6 On a given complete, weighted graph
G (whose edges fulfill the triangle inequality) and d

positive number for which answering the DETERMIN-
ISTIC CLUSTERING PROBLEM gives positive outcome
(yes), a solution can be found for the DELAY BASED

CLUSTERING PROBLEM in polynomial time.

Proof In Lemma 4 we proved that we can find an
answer for the question of Definition 3 in polynomial
time. In cases, when the question of Definition 3 has
a positive answer if we delete all edges with greater

31 Page 12 of 23 J Grid Computing (2021) 19: 31

weight than d from G, then all the disconnected
components of G (after the deletion) are complete sub-
graphs. Since none of the remaining edges has greater
weight than d , the optimal solution for DELAY BASED

CLUSTERING PROBLEM equals with the disconnected
complete subgraphs.

5.2 Operational Steps of our Clustering Algorithm

When our clustering component is initialized, the
scheduler receives the node clusters from our cluster-
ing component when they are looking for nodes in a
certain delay radius. The scheduler calls the clustering
component with the origin node and the delay radius
required by the Pod. If there is already a constructed
cluster layer with that delay value, the algorithm finds
the appropriate cluster (that holds the starting node),
and returns that to the scheduler. If the topology is not
clustered with the given delay value yet, the algorithm
creates a new layer that is based on the underlying
layer that is clustered with the delay that is the great-
est and closest to the new one, but still less than the
given one. Relying on that underlying layer and its
delay matrix, the algorithm creates the new layer in six
steps: 1) delete the edges that are greater than the delay
requirement; 2) find a maximal clique in the graph;
3) create cluster from the found maximal clique; 4)
remove the vertices in the clique from the graph: 5)
return to step (2), until all of the vertices are deleted
from the graph; 6) create the new delay matrix.

After we defined the clusters with the new delay
requirement, a new delay matrix must be created
that holds the delay values between the clusters. We
apply the conservative complete-linkage clustering
method (also known as farthest neighbour clustering)
for delay matrix creation to calculate the delay val-
ues between clusters. The complete-linkage clustering
method means that the delay value between two clus-
ters equals to the delay between those two nodes (one
in each cluster) that are farthest away (have the highest
delay) from each other.

6 Implementation Choices

Today’s most widely used resource and service
manager is Kubernetes [17]: it orchestrates con-
tainers, provides automatic scheduling, scaling and

self-healing features. We have built a prototype of our
edge-scheduler that we integrate with Kubernetes. In
this section we present Kubernetes extensions, includ-
ing ours, that propose edge computing support.

6.1 Kubernetes on the Edge

Kubernetes distinguishes two types of nodes, which
might be either virtual or physical machines: i) the
master, who is responsible for coordinating the clus-
ter; and ii) the worker nodes. Pods are the smallest
deployable units of computing in Kubernetes; several
Pods can be instantiated on a node, and the Kubernetes
master schedules and manages Pods across nodes in
the cluster. A Pod contains one or more containers,
e.g., Docker containers, with shared storage/network,
and a specification for how to run them.

As edge computing becomes rather the norm, than
the exception, the community has started to work on
extending Kubernetes with several capabilities that
support the operation in edge computing systems.
KubeEdge [15] is built upon Kubernetes to extend
application scheduling capabilities to nodes in an
edge computing environment. It provides infrastruc-
ture support for networking and application deploy-
ment between cloud and edge. Beside KubeEdge,
another multi-cluster oriented framework has attained
the community’s attention. Kubefed [16] (Kubernetes
Cluster Federation) is the official Kubernetes cluster
federation implementation. It allows the management
and configuration of multiple Kubernetes clusters with
a single set of APIs from a “host cluster”. Neither
KubeEdge and Kubefed feature network characteris-
tic measurements between the worker nodes nor make
guarantees about fulfilling delay requirements that
novel applications would pose. Both of these frame-
works apply the default Kubernetes scheduler, and
they work on manually and preliminary constructed
clusters, i.e., they do not support dynamic cluster cre-
ation based on e.g., network properties. K3s [12] and
Microk8s [19] are frameworks that make Kubernetes
lightweight by eliminating some of its components
and by reducing the operational overhead. Although, a
distributed system can enjoy the small footprint opera-
tion capability that K3s and Microk8s provide, in edge
computing, beside the limited physical resources there
are other issues that the system has to face with, e.g.
unreliability, large scale, service level agreements, etc.

J Grid Computing (2021) 19: 31 Page 13 of 23 31

None of the listed frameworks are fully capable of
handling an edge cloud system with latency-critical
application requests. They proposed some steps for-
ward in order to support an edge cloud system, but
we argue that they are missing features that must be
considered when a fully operational geo-distributed
manager is proposed. These deficiencies call for an
advanced system design that we propose throughout
this article.

6.2 Extending Kubernetes with our Prototype

Our prototype extends Kubernetes [17] with the ability
to work in a large scale edge computing topology and
make latency critical Pod scheduling possible, while
ensuring high reliability. Our solution works next to
Kubernetes’ default scheduler and extends its func-
tionality with awareness to network characteristics.

Beside the previously seen scheduler, re-scheduler,
and clustering modules, there are two more major
components that make Kubernetes-edge-scheduler a
fully operable edge-scheduler. The Monitoring com-
ponent in Fig. 2 is responsible for collecting the
underlying network delays. The measurement of the
delay values can be performed in three ways with
our implementation: i) with “ping pods” that are dis-
tributed between all nodes and send the measured
delay values (between all node pairs) to Kubernetes-
edge-scheduler; ii) with Goldpinger [6]; iii) with static
files. The Event handler (also presented in Fig. 2)
connects Kubernetes system events, e.g. Pod submis-
sion, Pod removal, etc. with our solution. It subscribes
to important events, and after some pre-processing, it
forwards the event to our system.

The source code of our implemented solutions has
been released [18].

7 Comprehensive Evaluation of our Kubernetes
Scheduler

In this section we present the efficiency of our
Kubernetes-edge-scheduler with comprehensive eval-
uation scenarios. First, we run large scale simulations
to evaluate the performance and scalability of our
scheduler and re-scheduler algorithms, then we deploy
a streaming analytics application in a Kubernetes clus-
ter featuring our proposed scheduler to demonstrate
the benefits of the delay-awareness in the edge.

In a realistic operation mode, customers send their
requests in an online manner, one after another dis-
tributed in time. The offline placeholder minimization
process, however, takes a single batch request that
contains all, already submitted Pods. To make the
best of the two worlds, our online scheduler and our
offline re-scheduler work together: while the sched-
uler does the dynamic operations, like Pod scheduling,
the re-scheduler can periodically minimize the size
of placeholders provisioned in the system. Although
the provider has to find the balance, how frequently
the re-scheduler should run, and how they manage the
changes that the re-scheduler proposes.

The offline minimization process is expensive and
the state of the system may even change during its
execution. The cost of the placeholder minimiza-
tion in fact relies on two factors: i) the calculation
demands extra computational resources; ii) resulting
Pod migrations cause instability to applications. Mul-
tiple triggering criteria can be defined to control the
start of executing the offline minimization procedure.
A feasible triggering criteria can be a threshold of
the ratio between the size of the deployed Pods and
the size of the provisioned placeholders. This value
can give a good insight about the efficiency of the
placeholder provisioning and the utilization of the
system.

7.1 Large Scale Simulation Setting

In our experiment setup we simulate high numbers
of edge nodes in the range of 500 to 10000, and a
number of Pods in the same order of magnitude to be
scheduled (and then re-scheduled for optimization) on
those edge nodes. The resource capacity of edge nodes
are identical, and are represented by 12GB of mem-
ory. On the other hand, the inter-node delay values are
heterogeneous, due to their hierarchical network set-
ting: we assume 3 edge nodes in one server rack with
1ms delay between any pair of them, and 2-3 racks
in close vicinity with 5ms delay between the edge
nodes within. The network topology of our simula-
tions is similar to the one depicted in Fig. 1 with delays
of 10ms, 20ms, and 40ms on the links from bottom
up. Therefore the delay between any 2 edge nodes is
between 1ms and 152ms. Central cloud is supposed to
be reachable at the top of the network hierarchy, so the
network latency between any edge node and the cloud
is 76ms.

31 Page 14 of 23 J Grid Computing (2021) 19: 31

The computational resource demand of Pods are
represented homogeneously by 1GB of memory for
simplicity. Their delay requirements, however, are
randomly drawn from the following values: 1, 20,
50, 60, 70, 80, 90, 150, 160, 170 ms. The corre-
sponding origins for which these delay limits are
defined are randomly scattered over the locations of
edge nodes. The order of deploying the Pods’ with
the online scheduler is totally randomized over the
measurements. For all parameter settings we run 100
measurements to account for the randomized infras-
tructure, Pod delay requirements and Pod deployment
order.

7.2 Evaluation of Placeholder Provisioning

We compare the performance of our scheduler and re-
scheduler in terms of how effectively they provision
the resources to provide high reliability. In the left side
of Fig. 4 we compare the created placeholders’ total
size to the total amount of resources of deployed Pods
with both of our scheduler and re-scheduler. The right
plot in Fig. 4 shows the size of the Pods, that need to
be migrated after the re-scheduler finished, compared
to the total amount of resources of the deployed Pods.
In each scenario we scheduled Pods triple the number
of edge nodes. All scenarios, distinguished with dif-
ferent colors per plot in Fig. 4, ran on topologies of
various sizes. The number of edge nodes is depicted

on the x-axis. The y-axis shows the achieved size ratio
in percentage (lower value is better).

We evaluate our re-scheduler in two scenarios. The
scenarios differ in the strategy of Pod relocation in the
repair phase. In the first scenario, we favor migration:
the algorithm migrates a Pod when the migration fixes
a failed placeholder in the repair phase. In the other
scenario, we rule out the migration possibility during
the repair phase.

The re-scheduler always achieves better perfor-
mance, i.e., more compacted placeholders, compared
to the online scheduler’s results (see the left chart).
This is expected, since the re-scheduler operates on all
Pod requests at once, in contrast to the online algo-
rithm, which strives to minimize the placeholders’
size, but it processes only one request at a time.

We achieve the best placeholders/Pods ratios with
our re-scheduler when the migration is favored. In
these cases, the size ratios are around 8%, while in
other scenarios, where we consider the migration too
expensive, we achieve results around 8.5% and the
online algorithms scores between 9 to 10% (see the
left plot in Fig. 4). Although beside the improvement
in the total size of backup resources, the number of
migrations can be relatively high, around 18% of the
total Pods, when we favor the migration. In contrast,
when the migration is avoided during the repair phase,
the number of migrated Pods is around 6% (see the
right plot in Fig. 4). The achieved size ratio results are

Fig. 4 Size ratio differences compared to deployed Pods’ size

J Grid Computing (2021) 19: 31 Page 15 of 23 31

Fig. 5 Execution time of placement of 30000 Pods with and
without clustering

greatly affected by the delay values in the topology
and the Pods’ delay requirements, hence the relatively
large boxplots showing high variance.

To conclude the results presented in Fig. 4 we state
that both our scheduler and re-scheduler can effec-
tively provision resource for placeholders and Pods,
since in all cases the size ratios are less than 10%,
which means our schedulers provision less than 10%
of the requested resource of applications to provide
high reliability for all applications with the aware of
their delay criteria.

7.3 Evaluation of Execution Times

We evaluated our scheduler and our re-scheduler with
and without the clustering feature on topologies of
different sizes. The achieved execution times are pre-
sented in Fig. 5, where the x-axis shows the number
of edge nodes and the y-axis presents the achieved
runtime. In all scenarios, we submitted Pods, triple of
the number of edge nodes. An evaluation started when
the first request was submitted and ended when the
algorithms gave their final deployment.

Although the re-scheduler has polynomial com-
plexity (Section 4.2), it took the most time to return its

result deployment. In all scenarios, we either deployed
all Pods with the online algorithm one-by-one, or the
re-scheduler received the same request set in one batch
to work with. Both of the scheduler and re-scheduler
benefit from clustering in terms of execution time,
since in every case the algorithms finished earlier
with clustering, e.g., on 10000 edge nodes the re-
scheduler with clustering deployed all 30000 Pods on
average in 263 seconds, but it took 317 seconds with-
out clustering. A summarizing table, Table 1, shows
the complexities for both the offline minimization,
the online scheduling and the migration methods. We
denote the set of nodes with N and the set of Pods
with P .

The presented results exclude the initialization
phase, since it is not an integral part of the scheduling
process, and we have to find the vantage-free lay-
ers once. Since we use hierarchical clustering, as the
number of layers increases, the clustering becomes
faster. This effect can be seen in Fig. 5. The cluster-
ing has negligible overhead, as the execution times are
improved with the clustering feature, since the base
layers were constructed with the vantage-free delays.
To conclude the results presented in Fig. 5 we state
that Kubernetes-edge-scheduler scales well for both
the growing topology and for the increasing number of
requests. Even the slower re-scheduler algorithm took
less than 300 seconds for mapping 30000 Pods, which
means it took an average of 10ms to deploy a single
Pod.

While concerned about the quadratic complexity in
terms of number of nodes, we strive to decrease the
search space of the algorithms with the help of cluster-
ing the nodes based on latency measurements among
them, we note that the runtime is majorly affected by
the latency requirements of the applications and the
capacity of edge nodes: if both the former and the
latter are stringent, then the search space is greatly
reduced, possibly resulting in orders of magnitude
lower runtimes. We argue that for typical delay-critical
applications and edge node infrastructures this will be
the case.

Table 1 Summarizing the complexities of the algorithms

Offline Online Migration

|P | < |N | O(|P |2|N |2 + |N |3) O(|N |2) O(|P ||N |2log|N |)
|P | > |N | O(|P |2|N |2) O(|P |2) O(|P |3)

31 Page 16 of 23 J Grid Computing (2021) 19: 31

7.4 Stream Analytics in the Edge

We demonstrate the benefits of using Kubernetes-
edge-scheduler in a real-world Spark [30] stream-
ing application that is deployed over an emulated
edge computing topology. In our use-case, we have a
streaming application that receives a text file through a
network socket and executes a word-count application
on it on the fly. In our topology we had 10 edge nodes
that are close together, and 1 worker node that repre-
sented the cloud. We compared the completion time
of the word-count application deployed with both the
default Kubernetes scheduler and Kubernetes-edge-
scheduler. The results are presented in Fig. 6, where
the x-axis shows the number of allocated executors
(Pods) for the application, the y-axis shows the execu-
tion time in seconds.

The results show that the Spark streaming
application always finished earlier in the cases
when Kubernetes-edge-scheduler deployed its Pods.
This outcome confirms that network delay affects
the streaming applications performance, and as
Kubernetes-edge-scheduler takes into account the net-
work delay between the application components, it
achieves better performance. More precisely, our solu-
tion reduced the average execution time by more
than 60%. Using the default scheduler leads to higher
variance in execution times, which is explained by
the default scheduler policy that chooses nodes ran-
domly, disregarding the characteristics of the under-
lying network connections. In contrast, Kubernetes-
edge-scheduler considers network latency during

Fig. 6 Execution times for a Spark streaming application

scheduling, so the variance of execution times is
lower.

8 State-of-the-art on Reliability and Delay
Guarantees of Scalable Edge Cloud Platforms

In this section we present the major achievements in
the literature related to our Kubernetes-based edge
cloud orchestrator. We divide the discussion of the
state-of-the-art into parts on i) the application require-
ments and features of the edge cloud, ii) high reliabil-
ity and availability concepts in virtual resource envi-
ronments, and finally, iii) the implementation efforts
towards scalable edge cloud platforms.

8.1 Latency-Critical Cloud-Native Applications
and the Edge Cloud

Latency-sensitive and data-intensive applications,
such as IoT or mobile services, are leveraged by edge
computing, which extends the cloud ecosystem with
distributed computational resources in proximity to
data providers and consumers. This brings signifi-
cant benefits in terms of lower latency and higher
bandwidth. However, by definition, edge computing
has limited resources with respect to cloud counter-
parts; thus, there exists a trade-off between proximity
to users and resource utilization. Moreover, service
availability is a significant concern at the edge of the
network, where extensive support systems as in cloud
data centers are not usually present. To overcome
these limitations, [1] proposes a score-based edge
service scheduling algorithm that evaluates network,
compute, and reliability capabilities of edge nodes.
The algorithm outputs the maximum scoring mapping
between resources and services with regard to critical
aspects of service quality. [9] introduces a new plat-
form for enabling an edge infrastructure according to
a disaggregated distributed cloud architecture and an
opportunistic model based on bare-metal providers.
Results from a multi-server online gaming application
deployed in a real geo-distributed edge infrastructure
show the feasibility, performance and cost efficiency
of the solution.

In order to meet the rapidly changing requirements
of the cloud-native dynamic execution environment,
without human support and without the need to con-
tinually improve one’s skills, autonomic features need

J Grid Computing (2021) 19: 31 Page 17 of 23 31

to be added. Embracing automation at every layer
of performance management enables us to reduce
costs while improving outcomes. Kosińska and Zielin-
ski [14] lists the definition of autonomic manage-
ment requirements of cloud-native applications, and
the authors propose that the automation is achieved
via high-level policies, while autonomy features are
accomplished via the rule engine support. One such
feature of online scheduling in a cloud-native context
is migration. A large body of research has tack-
led the issues around migration of virtual machines,
containers, etc. in the cloud. E.g., [10] proposes an
energy-aware virtual machine migration technique for
cloud computing, which is based on the Firefly algo-
rithm. The proposed technique migrates the maxi-
mally loaded virtual machine to the least loaded active
node while maintaining the performance and energy
efficiency of the data centers.

In the era of cloud services, there is a strong desire
to improve the elasticity and reliability of applications
in the cloud. The standard way of achieving these
goals is to decouple the life-cycle of important appli-
cation states from the life-cycle of individual applica-
tion instances: states, and data in general, are written
to and read from cloud databases, deployed close to
the application code. Rooted in cloud-native comput-
ing, the stateless design outsources the state embedded
in computing entities, e.g., virtual machines, contain-
ers, Pods, virtual network functions, to a dedicated
state storage layer, facilitating elastic scaling and
resiliency [26]. In [26] the authors propose a system
design that can be adapted to any cloud application
without the need for complex coordination among the
network control, the stateless application elements,
and the state storage backend. They present the first
product-phase realization of the stateless paradigm, an
operational virtualized IP Multimedia Subsystem that
can restore the live call records of thousands of mobile
subscribers under a couple of seconds with half the
resources required by a traditional “stateful” design.

The high performance requirements on the appli-
cation impose strict latency limits on these cloud
storage solutions for state access. Cloud database
instances are therefore distributed on multiple hosts
in order to strive to ensure data locality for all appli-
cations. However, the shared nature of certain states,
and the inevitable dynamics of the application work-
load necessarily lead to inter-host data access within
the data center (or even across data centers, if the

application requires a multi-data center setup). In
order to minimize the inter-host communication due
to state externalization, the authors of [25, 26] propose
an advanced cloud scheduling algorithm that places
applications’ states across the hosts of a data center.
In such a cloud-native setting, stateless cloud applica-
tions and an adaptively self-synchronizing distributed
cloud database alleviate the long-standing issues of
live migration within the cloud.

8.2 Ensuring High Reliability and Availability
on Virtualized Resources

Several research papers have been published that all
propose some kind of scheme for improving the avail-
ability and reliability of applications in the inherently
untrustworthy context of edge cloud infrastructure.

Javed et al. [11] tackled the problem of separate
software stacks between the edge and the cloud with
no unified fault-tolerant management, which hinders
dynamic relocation of data processing. In such sys-
tems, the data must also be preserved from being
corrupted or duplicated in the case of intermittent
long-distance network connectivity issues, malicious
harming of edge devices, or other hostile environ-
ments.

A self-adapting scheme named SAB is proposed
in [23]: SAB uses static and dynamic backups for
VNFs (Virtualized Network Function) over both the
edge and the cloud in order to provide high avail-
ability. Fan. et al. [4] propose a framework to pro-
vision availability of SFC (Service Function Chain)
requests in a data center. None of these research works
consider multiplexing backup resources for multiple
virtual instances like our Kubernetes-edge-scheduler
does. Yala et al. [28] propose a solution for their opti-
mization problem that strive to optimize the trade-off
between availability and latency. However, their work
deploys VNFs without deploying backup resources.

Although, the solution of Kanizo et al. [13] and
RABA [31] both multiplex backup resources, however
they ensure high availability for VNFs with dedicated
backup nodes. In contrast, Kubernetes-edge-scheduler
does the resource provisioning on general nodes that
contains Pods as well. In [2, 5] the authors consider
the replica and virtual function placement to achieve
lower migration time, however they did not consider
minimizing the provisioned resources assigned to
replicas. Authors of [29] investigate the fog resource

31 Page 18 of 23 J Grid Computing (2021) 19: 31

provisioning problem for deadline-driven IoT services
to minimize the cost considering the probability of
resource failures. They assume that virtual machine
failures are temporary and recoverable. In contrast, we
argue that each node’s failure should be prepared for.

8.3 Latency-Aware Cloud Platforms

An online resource orchestration algorithm which
takes into account network aspects is proposed in
[7]. The algorithm enables the orchestrator of Open-
Stack to manage a distributed cloud-fog infrastructure.
An embedding algorithm is proposed in [21], which
instantly deploys end-to-end delay-constrained ser-
vices while applying a cost-aware VNF migration
strategy. The authors’ hybrid orchestration approach
unites the advantages of online heuristics and offline
optimization in their service orchestration method,
with the goal of providing fast service placement and
minimizing the cost due to VNF migrations.

The research community have already started
extending the Kubernetes scheduler to support edge
computing architectures with network awareness
[3, 20, 22]. In contrast to our work, the schedul-
ing method in [3] does not take into account the
delay directly between the edge nodes. Authors of
[20] proposes a content delivery method that improves
Kubernetes scheduler with awareness to network dis-
tance using AS path of BGP. In contrast, we use the
measured delay values as the network distance prop-
erty. An extension, called Network-Aware Scheduler,
is implemented in [22] enabling Kubernetes to make
resource provisioning decisions based on the network
infrastructure properties like latency and bandwidth.
Although, the application requests in [20, 22] do not
define latency requirement that has to be met during
their scheduling. Furthermore, none of the previous
works consider providing high reliability for the appli-
cations, and dynamic topology clustering to relax the
difficulties that a large scale architecture poses. We
argue that the main goal of edge computing, i.e., host-
ing delay critical applications, must be aware of not
only network latency, but it must also take into account
the unreliability and the large number of edge nodes.

A key difference between previous works and our
solution is that none of [3, 7, 20–22] deal with reli-
ability, while our proposed solution achieves high
reliability with the consideration of minimizing the
resources provisioned for this cause.

9 Conclusion

In this article we proposed Kubernetes-edge-
scheduler, a novel scheduler that extends a Kubernetes
system to operate on an edge computing architecture
and to manage latency critical, novel applications.
Our contribution is fourfold: i) we defined placehold-
ers that help to guarantee high-reliability for edge
applications with the provision of backup resources;
ii) we proposed an online Pod scheduler algorithm
that deploys latency critical Pods on the fly, reacts
to network and Pod related system events, and pro-
vides high reliability for applications; iii) an offline
re-scheduler is presented that reduces the provisioned
backup resources that ensure the high reliability in
the system; iv) a latency based clustering method is
proposed for addressing the difficult task a possibly
worldwide-scale topology would pose in network
latency measurements, Pod scheduling, etc. Using
both emulated and simulated experiments we show-
cased the effectiveness of our solution in terms of
end-to-end application delay, the amount of pro-
visioned resources and the scaling quality of our
Kubernetes-edge-scheduler.

Funding Open access funding provided by Budapest Univer-
sity of Technology and Economics.

Appendix

Lemma 5 In case of a fix number of vertices (|V | =
n) and a fix diameter (d), with the increase of the
number of buds (b), the optimal solution (OPT)
monotonically increases.

Proof Referring on the proof of Lemma 2, one can
see that the number of placeholders is directly propor-
tional to the number of buds.

Lemma 6 In case of a fix number of vertices (|V | =
n) and a fix number of buds (b), with the increasing
diameter of the graph d , the number of placeholders,
given by our heuristic algorithm (HEUR) monotoni-
cally increases.

Proof Let us induce a path graph G′ from a path in
G whose length equals to d . We can give a sequence
of Pod requests, for which the amount of placeholders

J Grid Computing (2021) 19: 31 Page 19 of 23 31

provisioned by our heuristic solution would be equal
to HEUR = d . Since G′ has k = d + 1 vertices, the
HEUR = d = k − 1 solution is the worst solution
that our algorithm can give on G′ (Lemma 3). Regard-
ing this, one can see that with the increase of a graph’s
diameter, the number of placeholders, given by our
heuristic algorithm, monotonically increases.

Lemma 7 We deduce the possible number of buds in
simple, connected graphs with a given diameter.

1. If d = 1, then b = 0;
2. If d = 2, then 0 ≤ b ≤ 1;
3. If 3 ≤ d ≤ n

2 , then 0 ≤ b ≤ n
2 ;

4. If d = n
2 + k, k > 0(n

2 + 1 ≤ d ≤ n − 3), then
0 ≤ b ≤ (n

2) − k + 1;
5. If d = n − 2, then 1 ≤ b ≤ 3;
6. If d = n − 1, then b = 2.

Proof The indices of the following proofs refer to the
indices of cases listed in the lemma.

1. Only complete graphs (from the class of con-
nected, simple graphs) have diameter 1. Complete
graphs do not have any leaf vertices, therefore
they do not have buds either.

2. The diameter of a star graph, with one central
node is 2. This graph has exactly 1 bud node (the
central node), since all other nodes are leaves. We
can construct several different graphs that have
diameter d = 2 and 0 buds. One trivial example is
a graph that is constructed from a complete graph
by deleting a single edge. There cannot be more
buds in graphs with d = 2, since the smallest
combination of vertices and edges where b = 2
is a leaf-bud-bud-leaf subgraph that already has
d = 3.

3. Let us create a cycle with n vertices. This cycle
has d = n

2 and b = 0. We can add extra diagonal
edges to this graph so that it will have any diame-
ter value between 3 and n

2 and the number of buds
remains 0.

Now let us present the other cases, when the
graphs have 0 < b ≤ n

2 . For every diameter value
3 ≤ d ≤ n

4 we can create a cycle C with n
2 ver-

tices and adding extra diagonal edges so that G

has 3 ≤ d ≤ n
4 . At this point, we can connect the

remaining (G − C) n
2 vertices (from “outside of

the circle”) to the cycle so the number of buds is
0 < b ≤ n

2 .

We can also construct graphs for which n
4 <

d ≤ n
2 and 0 < b ≤ n

2 . Let us create a path graph
with d + 1 vertices. The number of internal nodes
(that are neither buds, nor leaves in the initial path
graph) is d + 1 − 4 = d − 3. We can add d −
3 extra leaves connected to the internal nodes in
order to increase b. To increase further the value
of b, we can connect extra bud-leaf node pairs to
any of the internal nodes till we reach the desired
number of buds, or we consumed all the vertices
in the graph. In case we reach the desired number
of buds, but there are more unconnected vertices,
we can construct a clique from them and connect
it to any internal node.

We showcased possible diameter and bud com-
binations between the upper and lower bounds of
both the diameter and the number of buds. We also
showed how we can construct graphs that have
any d and b values between the defined bounds.
Since the maximum number of buds in a graph
with n vertices is n

2 , there is no other combina-
tion that can be constructed regarding the given
diameter range.

4. Since the diameter of the graph is greater than n
2 ,

the graph can not be a cycle. Let us construct a
path graph with n

2 + k + 1 vertices (so the diam-
eter equals to n

2 + k). Following on Lemma 7, we
can close the two ends of the path graph with two
vertices, and connect the remaining (n

2 − k − 3)
vertices so that the graph will not have any buds.
After the induction of the path graph with n

2 +k+1
vertices, it has n

2 + k + 1 − 4 = n
2 + k − 3 ver-

tices and we have n
2 − k − 1 unconnected nodes.

The maximum number of buds that is achievable
in these scenarios is n

2 −k−1+2 = n
2 −k+1, since

the path graph already has 2 buds, one at each
end.

5. Let us construct a path graph with n − 1 vertices
with d = n − 2 and b = 2. The remaining one
node can be connected to the graph in three possi-
ble ways: i) the graph will have b = 1 bud, if we
form a triangle at one end of the path graph (so
we connect the last node to a leaf and to the con-
nected bud); ii) the graph will have b = 2 buds, if
we connect the last node to two adjacent internal
nodes; iii) the graph will have b = 3 buds, if we
connect the last node to one of the internal nodes.

6. A path graph with n nodes is the only connected,
simple graph that has d = n − 1. This graph must

31 Page 20 of 23 J Grid Computing (2021) 19: 31

have b = 2 buds, i.e., the second vertex on both
ends.

Lemma 8 The approximation ratio between our
heuristic and the optimal solution for given maximal
diameter and minimal number of buds:

1. if d = 1 and b = 0, then HEUR = OPT = 2;
2. if d = n − 3 and b = 0, then HEUR ≤ 3OPT ;
3. if d = n − 2 and b = 1, then HEUR ≤ 3OPT ;
4. if d = n − 1 and b = 2, then HEUR ≤ 3OPT .

Proof The indices of the following proofs refer to the
indices of cases listed in the lemma.

1. The optimal solution in every complete graph is
2. The anti-affinity requirement hinders to have
only one placeholder. Our heuristic algorithm also
achieves the value of 2, since after the deploy-
ment of the first request there will be one Pod
and one placeholder in the system. Let us denote
the hosting node of this placeholder with v. Every
other Pod whose origin differs from v will be
placed in the system without the need of increas-
ing the number of the total placeholders. For the
Pod, whose origin host is v, our solution creates
the second placeholder, and deploys the Pod on
another node. Therefore, with any order of Pod
submissions, the heuristic algorithm will deploy
only two placeholders.

2. Let us construct a path graph with n − 2 nodes
with d = n − 3 and b = 2. Now let us close
both ends of this path graph with two triangles
made by the last two nodes on both ends and
the two unconnected nodes. Therefore, the graph
will have b = 0. In this case the optimal solu-
tion equals to OPT = d+1

3 = n−2
3 (following

on Lemma 1). Our heuristic solution will deploy
maximum two placeholders in each triangle, so
at least one of the Pods (per side) whose origin
is in the triangle will benefit from a previously
deployed placeholder, i.e., two Pods will share a
placeholder on both ends of the graph. From this,
we can state that at least two nodes will not have
any placeholder on them, so HEUR ≤ n − 2.
Therefore, HEUR ≤ 3OPT = n − 2 ≤ 3n−2

3 .
3. Regarding to Lemma 1, the optimal solution

can not be less than OPT = d+1
3 = n−1

3 .
Therefore, even when the heuristic solution
achieves the worst solution (HEUR ≤ n−1), we

can state that HEUR ≤ 3OPT = n−1 ≤ 3n−1
3 .

One can see that our statement HEUR ≤ 3OPT

is proven in graphs with d = n − 2 and b = 1.
4. The only connected, simple graph that has d =

n − 1 and b = 2 is the path graph with n

nodes (see Lemma 7). The Pods’ delay require-
ments allow only the origin node and its neighbors
(see Assumption 1) as their hosting node. There-
fore, the number of vertices in each Pod’s radius
is 2 or 3. Therefore, the minimum number of
sets that cover all nodes, each set containing only
nodes that are connected with each other, give the
optimal solution for the number of placeholders.
Therefore the optimal solution is OPT =
n

3 �
in a path graph with n vertices. In Lemma 3 we
showed that the worst case result of our heuristic
algorithm is HEUR = n−1 (which is the case in
a path graph), hence HEUR ≤ 3OPT = n−1 ≤
3n

3 .

Acknowledgements Projects no. 135074 and 2019-2.1.13-
TÉT-IN-2020-00021 have been implemented with the support
provided by the Ministry of Innovation and Technology of
Hungary from the National Research, Development and Inno-
vation Fund, financed under the FK20 and 2019-2.1.13-TÉT-IN
funding schemes.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated oth-
erwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

References

1. Aral, A., Brandic, I., Uriarte, R.B., De Nicola, R.,
Scoca, V.: Addressing application latency require-
ments through edge scheduling. J. Grid Comput., 17.
https://doi.org/10.1007/s10723-019-09493-z (2019)

2. Bose, S.K., Brock, S., Skeoch, R., Rao, S.: Cloudspider:
Combining replication with scheduling for optimizing live
migration of virtual machines across wide area networks.
In: Proceedings of the 2011 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (2011)

J Grid Computing (2021) 19: 31 Page 21 of 23 31

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10723-019-09493-z

3. Chima Ogbuachi, M., Gore, C., Reale, A., Suskovics, P.,
Kovács, B.: Context-Aware K8S Scheduler for Real Time
Distributed 5G Edge Computing Applications. In: 2019
International Conference on Software, Telecommunica-
tions and Computer Networks (SoftCOM), pp. 1–6 (2019).
https://doi.org/10.23919/SOFTCOM.2019.8903766

4. Fan, J., Jiang, M., Rottenstreich, O., Zhao, Y., Guan,
T., Ramesh, R., Das, S., Qiao, C.: A framework for
provisioning availability of nfv in data center networks.
IEEE J. Sel. Areas Commun. 36(10), 2246–2259 (2018).
https://doi.org/10.1109/JSAC.2018.2869960

5. Farris, I., Taleb, T., Flinck, H., Iera, A.: Providing ultra-
short latency to user-centric 5g applications at the mobile
network edge. Trans. Emerging Telecommun. Technol.
29(4). https://doi.org/10.1002/ett.3169 (2018)

6. Goldpinger: Debugging tool for Kubernetes. https://github.
com/bloomberg/goldpinger. Accessed on: 21 March 2020

7. Haja, D., Szabo, M., Szalay, M., Nagy, A., Kern,
A., Toka, L., Sonkoly, B.: How to Orchestrate a
Distributed OpenStack. In: IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS), pp. 293–298 (2018).
https://doi.org/10.1109/INFCOMW.2018.8407014

8. Haja, D., Szalay, M., Sonkoly, B., Pongracz, G., Toka,
L.: Sharpening kubernetes for the edge. In: Proceedings
of the ACM SIGCOMM 2019 Conference Posters and
Demos, SIGCOMM Posters and Demos ’19, pp. 136–137.
Association for Computing Machinery, New York (2019).
https://doi.org/10.1145/3342280.3342335

9. Huedo, E., Montero, R.S., Moreno-Vozmediano, R.,
Vázquez, C., Holer, V., Llorente, I.M.: Opportunistic
deployment of distributed edge clouds for latency-critical
applications. J. Grid Comput., 19. https://doi.org/10.1007/
s10723-021-09545-3 (2021)

10. Jain, N., Chana, I.: Energy-aware Virtual Machine Migra-
tion for Cloud Computing - A Firefly Optimization
Approach. J. Grid Comput., 14. https://doi.org/10.1007/
s10723-016-9364-0 (2016)

11. Javed, A., Robert, J., Heljanko, K., Främling, K.: IoTEF: A
Federated Edge-Cloud Architecture for Fault-Tolerant IoT
Applications. J. Grid Comput., 18. https://doi.org/10.1007/
s10723-019-09498-8 (2020)

12. K3s: Lightweight Kubernetes. https://k3s.io/. Accessed on:
21 March 2020

13. Kanizo, Y., Rottenstreich, O., Segall, I., Yallouz, J.:
Optimizing virtual backup allocation for middleboxes.
IEEE/ACM Trans. Netw. 25(5), 2759–2772 (2017). https://
doi.org/10.1109/TNET.2017.2703080

14. Kosińska, J., Zielinski, K.: Autonomic management frame-
work for cloud-native applications. J. Grid Comput., 18.
https://doi.org/10.1007/s10723-020-09532-0 (2020)

15. KubeEdge: A Kubernetes Native Edge Computing Frame-
work. https://kubeedge.io. Accessed on: 21 March 2020

16. Kubernetes Cluster Federation. https://github.com/
kubernetes-sigs/kubefed. Accessed on: 21 March 2020

17. Kubernetes: Production-grade Container Orchestration.
https://kubernetes.io. Accessed on: 21. March 2020

18. kubernetes-edge-scheduler. https://github.com/davidhaja/
kubernetes-edge-scheduler. Accessed on: 21 March 2020

19. MicroK8s: Lightweight upstream K8s. https://microk8s.io
Accessed on: 21 March 2020

20. Nakanishi, K., Suzuki, F., Ohzahata, S., Yamamoto, R.,
Kato, T.: A Container-Based Content Delivery Method for
Edge Cloud over Wide Area Network. In: 2020 Interna-
tional Conference on Information Networking (ICOIN),
pp. 568–573 (2020). https://doi.org/10.1109/ICOIN48656.
2020.9016481

21. Németh, B., Szalay, M., Dóka, J., Rost, M., Schmid,
S., Toka, L., Sonkoly, B.: Fast and Efficient Network
Service Embedding Method with Adaptive Offload-
ing to the Edge. In: IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications Work-
shops (INFOCOM WKSHPS), pp. 178–183 (2018).
https://doi.org/10.1109/INFCOMW.2018.8406882

22. Santos, J., Wauters, T., Volckaert, B., De Turck, F.: Towards
Network-Aware Resource Provisioning in Kubernetes for
Fog Computing Applications. In: 2019 IEEE Conference
on Network Softwarization (Netsoft), pp. 351–359 (2019).
https://doi.org/10.1109/NETSOFT.2019.8806671

23. Shang, X., Huang, Y., Liu, Z., Yang, Y.: Reducing the Ser-
vice Function Chain Backup Cost over the Edge and Cloud
by a Self-Adapting Scheme. In: IEEE INFOCOM -IEEE
Conference on Computer Communications (2020)

24. Szalay, M., Mátray, P., Toka, L.: Minimizing State Access
Delay for Cloud-Native Network Functions. In: 2019
IEEE 8th International Conference on Cloud Network-
ing (Cloudnet), pp. 1–6 (2019). https://doi.org/10.1109/
CloudNet47604.2019.9064048

25. Szalay, M., Mátray, P., Toka, L.: State management for
cloud-native applications. Electronics 10(4). https://doi.org/
10.3390/electronics10040423. https://www.mdpi.com/
2079-9292/10/4/423 (2021)

26. Szalay, M., Nagy, M., Géhberger, D., Kiss, Z., Mátray,
P., Németh, F., Pongrácz, G., Rétvári, G., Toka, L.:
Industrial-Scale Stateless Network Functions. In: 2019
IEEE 12Th International Conference on Cloud Computing
(CLOUD), pp. 383–390 (2019). https://doi.org/10.1109/
CLOUD.2019.00068

27. Toka, L., Haja, D., Kőrösi, A., Sonkoly, B.: Resource Pro-
visioning for Highly Reliable and Ultra-Responsive Edge
Applications. In: 2019 IEEE 8Th International Confer-
ence on Cloud Networking (Cloudnet), pp. 1–6 (2019).
https://doi.org/10.1109/CloudNet47604.2019.9064131

28. Yala, L., Frangoudis, P.A., Ksentini, A.: Latency and
Availability Driven VNF Placement in a MEC-NFV Envi-
ronment. In: IEEE Global Communications Conference
(GLOBECOM) (2018)

29. Yao, J., Ansari, N.: Reliability-Aware Fog Resource Provi-
sioning for Deadline-Driven IoT Services. In: IEEE Global
Communications Conference (GLOBECOM) (2018)

31 Page 22 of 23 J Grid Computing (2021) 19: 31

https://doi.org/10.23919/SOFTCOM.2019.8903766
https://doi.org/10.1109/JSAC.2018.2869960
https://doi.org/10.1002/ett.3169
https://github.com/bloomberg/goldpinger
https://github.com/bloomberg/goldpinger
https://doi.org/10.1109/INFCOMW.2018.8407014
https://doi.org/10.1145/3342280.3342335
https://doi.org/10.1007/s10723-021-09545-3
https://doi.org/10.1007/s10723-021-09545-3
https://doi.org/10.1007/s10723-016-9364-0
https://doi.org/10.1007/s10723-016-9364-0
https://doi.org/10.1007/s10723-019-09498-8
https://doi.org/10.1007/s10723-019-09498-8
https://k3s.io/
https://doi.org/10.1109/TNET.2017.2703080
https://doi.org/10.1109/TNET.2017.2703080
https://doi.org/10.1007/s10723-020-09532-0
https://kubeedge.io
https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
https://kubernetes.io
https://github.com/davidhaja/kubernetes-edge-scheduler
https://github.com/davidhaja/kubernetes-edge-scheduler
https://microk8s.io
https://doi.org/10.1109/ICOIN48656.2020.9016481
https://doi.org/10.1109/ICOIN48656.2020.9016481
https://doi.org/10.1109/INFCOMW.2018.8406882
https://doi.org/10.1109/NETSOFT.2019.8806671
https://doi.org/10.1109/CloudNet47604.2019.9064048
https://doi.org/10.1109/CloudNet47604.2019.9064048
https://doi.org/10.3390/electronics10040423
https://doi.org/10.3390/electronics10040423
https://www.mdpi.com/2079-9292/10/4/423
https://www.mdpi.com/2079-9292/10/4/423
https://doi.org/10.1109/CLOUD.2019.00068
https://doi.org/10.1109/CLOUD.2019.00068
https://doi.org/10.1109/CloudNet47604.2019.9064131

30. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S.,
Stoica, I.: Spark: Cluster computing with working sets. In:
Proceedings of the 2nd USENIX Conference on Hot Top-
ics in Cloud Computing, HotCloud’10, p. 10. USENIX
Association, USA (2010)

31. Zhang, J., Wang, Z., Peng, C., Zhang, L., Huang, T., Liu,
Y.: Raba: Resource-Aware Backup Allocation for a Chain

of Virtual Network Functions. In: IEEE INFOCOM 2019-
IEEE Conference on Computer Communications (2019)

Publisher’s Note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and institu-
tional affiliations.

J Grid Computing (2021) 19: 31 Page 23 of 23 31

	Ultra-Reliable and Low-Latency Computing in the Edge with Kubernetes
	Abstract
	Introduction
	Scalable and Economical Edge Scheduling for Latency-Critical and Operation-Critical Applications
	Scheduler: Online Pod Scheduling for Fulfilling Delay Requirements
	The operation of our online Pod scheduler
	Complexity Analysis of our Proposed Scheduler
	Approximation Bound on Placeholder Provisioning
	Pod Migration and Fail-Over
	Complexity analysis of Pod migration calculation

	Re-scheduler: An Offline Orchestrator to Minimize Provisioned Backup Resources
	The Operation of our Re-Scheduler
	Complexity Analysis of our Re-Scheduler

	Providing Scalability with Node Clustering
	Dynamic, Delay-Based Clustering Problem
	Operational Steps of our Clustering Algorithm

	Implementation Choices
	Kubernetes on the Edge
	Extending Kubernetes with our Prototype

	Comprehensive Evaluation of our Kubernetes Scheduler
	Large Scale Simulation Setting
	Evaluation of Placeholder Provisioning
	Evaluation of Execution Times
	Stream Analytics in the Edge

	State-of-the-art on Reliability and Delay Guarantees of Scalable Edge Cloud Platforms
	Latency-Critical Cloud-Native Applications and the Edge Cloud
	Ensuring High Reliability and Availability on Virtualized Resources
	Latency-Aware Cloud Platforms

	Conclusion
	Appendix 1
	References

