
Context-Aware Multi-User Offloading in Mobile Edge
Computing: a Federated Learning-Based Approach

Ali Shahidinejad & Fariba Farahbakhsh &

Mostafa Ghobaei-Arani & Mazhar Hussain Malik &

Toni Anwar

Received: 5 May 2020 /Accepted: 29 March 2021 /Published online: 14 April 2021

Abstract Mobile edge computing (MEC) provides an
effective solution to help the Internet of Things (IoT)
devices with delay-sensitive and computation-intensive
tasks by offering computing capabilities in the proximity
of mobile device users. Most of the existing studies ignore
context information of the application, requests, sensors,
resources, and network. However, in practice, context
information has a significant impact on offloading deci-
sions. In this paper, we consider context-aware offloading
in MEC with multi-user. The contexts are collected using
autonomous management as the MAPE loop in all
offloading processes. Also, federated learning (FL)-based
offloading is presented. Our learning method in mobile
devices (MDs) is deep reinforcement learning (DRL). FL
helps us to use distributed capabilities of MEC with up-
dated weights between MDs and edge devices (Eds). The
simulation results indicate our method is superior to local
computing, offload, and FL without considering context-
aware algorithms in terms of energy consumption, execu-
tion cost, network usage, delay, and fairness.

Keywords Mobile edge computing . Computation
offloading . Context-aware . Federated learning

1 Introduction

In recent years, data production in various scientific and
industrial fields and the limitation of resources to pro-
cess has resulted in the need for a rich processing
environment outside of the user’s equipment. This led
to creating the cloud computing environment with al-
most endless physical and virtual processing resources
[1, 2]. In computation offloading to the cloud, we face
problems due to the large distance of end-users to the
cloud; for example, in cases where we need a real-time
response, such as healthcare, waiting for receiving a
response from the cloud can pose serious problems.
The computational offloading was proposed to solve
this problem in the fog environment to create a compu-
tational level closer to the end-users [3]. For several
years, a new trend was emerging and putting cloud
computing functions on the network’s edge. One of
the incentives for this approach is the mass production
of network EDs (including Wi-Fi router and access
point station). Due to the significant processing power
of these devices, high-throughput and delay-sensitive
functions can be implemented [4]. This computation
model is called mobile edge computing (MEC) [5]. This
technology is developed by the European telecommuni-
cations standards institute (ETSI) [6]. The main focus of
the MEC is on radio access networks (RANs) in 4G and
5G cellular networks.
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MEC has advanced features like latency, user prox-
imity, high bandwidth, and location awareness [7].
These enable MEC to run many new types of applica-
tions and multi-region services, such as business and
health, augmented reality, video streaming services, and
more [8]. At MEC, the user’s distance is much closer
than the user’s distance to the cloud. One of the key
technologies of MEC is computational offloading,
which can be realized from both single-user and multi-
user aspects. In a single-user computational system, at
any given moment, a user can offload the computing
task. In contrast, in a multi-user computational system,
multiple users are allowed to move their tasks to other
computing layers simultaneously. As a difference be-
tween these two systems in the multi-user offloading,
one module with different data related to different users
can be offload to EDs or the cloud. In the single-user
system, there is no need for any data management for
users. Although many works have been done in compu-
tational offloading in recent years, the concept of
context-awareness has been used very limitedly [9] in
past research. Our meaning about context is using the
properties of offloading, application, mobile, sensors,
network and media, and resources. The context in com-
puting offloading decisions will be very influential be-
cause of mobile conditions like location, network status,
and available computing resources [10].

One of the issues that arise in offloading is intelligent
tools to detect current or underlying conditions and
implement context-based behavior [11]. This ability
can be referred to as context-awareness. As soon as they
make a network available, they perform the offload
without considering whether the offloading is in their
favor or not [12]. The computational burden is not
always beneficial to obtain the required level of efficien-
cy and benefit offloading. Here we aim to improve the
delay and energy consumption by the proposed
offloading method. The distributed nature of MEC re-
quires an appropriate offloading method. For this pur-
pose, the FL can be useful in this regard. FL can coor-
dinate the training process among multiple MDs. The
DRL technique is very efficient in finding the optimal
offloading policy in MEC. Since DRL needs much
processing, thus the DRL agent has to be carefully
designed and implemented. Some challenges and their
solutions in FL are as follows [13].

– The whole training dataset is not accessible. This
challenge is created for the nature of distributed

computation, and it can provide the privacy of data
for all users.

– Slow and unstable communication. Based on the
proposed approach, MDs are not completely depen-
dent on EDs. As some nodes become offline, only
the weights are less trained or updated later, but the
task performing or offloading is done continuously.

– The trade-off between privacy guarantees and sys-
tem performance. The computation tasks can be
encrypted by a fast and trusted cryptography algo-
rithm in IoT.

– Interference among MDs (The MDs may be geo-
graphically close to each other. This introduces an
interference issue when they update local models to
the server. Channel allocation policies may need to
be combined with the resource allocation ap-
proaches to address the interference issue). DRL
can be considered to model the dynamic environ-
ment of MEC and make optimized decisions.

– Comparisons with other distributed learning
methods. Some methods use neural networks up
to a cut layer, or others ignore to transmit weights
to an aggregating server. FL has a more straightfor-
ward implementation since the participants and the
FL server run the same global model in each cluster.

– Learning convergence. We improve this challenge
with the loss function, as mentioned in the DRL
algorithm.

– Size of model updates. The combinations of
weights and contexts help us to reduce the size of
model updates.

Because real systems and environments are multi-
user and not single-user, we use multipurpose comput-
ing offloading in our approach. Since these users are
located in different locations and conditions, thus the
offloading decision should be made with the knowledge
of context and the existing conditions. This strategy
solves the problems shown above and improves the
service efficiency in computational offloading. We pro-
pose a multi-user conditionedMEC system that changes
the conditions of a mobile computing resource. In this
research, the contexts are collected using the monitor
phase of the autonomous management (MAPE control
loop) located at the edge level, including application
context, mobile devices, sensors, networks, edge
servers, and media. These contexts are analyzed in the
Analysis phase, and then these contexts are sent to the
proposed context-aware algorithm in the Planning
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phase. Finally, the Execution phase executes the
offloading instruction. Using the proposed FL algo-
rithm, the updated weights related to the DRL algorithm
are exchanged between MDs and EDs. Our key contri-
butions in this paper are as follows:

1. We provide a MAPE control loop for MEC to
decide whether to offload the tasks locally or re-
motely in the edge or cloud. Also, we use context
information of the application, sensors, resources,
edge servers, and network. These updated contexts
improve the offloading process.

2. For optimal use of the distributed capability of
MEC, we propose an FL-based offloading algo-
rithm that uses the DRL to train the MDs and sends
the updated weights to EDs and the cloud. It causes
lower data transmission from MDs to EDs and
protects the users’ information.

3. The proposed approach is evaluated based on some
metrics: energy consumption, execution cost, net-
work usage, delay, and fairness.

The rest of this paper is organized as follows. In
section 2, related works are summarized. The system
model and network architecture are presented in section
3. In section. 4, we explain our offloading algorithms in
detail. In Section 5, the evaluation results of our pro-
posed algorithms are presented and compared with other
methods. Finally, in Section 6, the conclusion is
discussed, and suggestions are made for future work.

2 Related Works

In recent years, many studies have been investigated
about MCC and MEC. We classify these studies to
multi-user and context-aware offloading as follows. Al-
so, we collect and analyze some researches about FL.

2.1 Multi-User Offloading

There are some studies about multi-user offloading.
Here, we mention these papers based on their objectives
and methods. Researchers studied different objectives
such as energy consumption [14], computation delay
[15], QoS (Quality of service), latency, and accuracy
[16]. According to [17], as with cloud services such as
PaaS (platform as a service), IaaS (infrastructure as a
service), SaaS (software as a service), computation

offloading is also considered as offloading as a service
(OaaS) in cloud computing.

Some researchers minimized the cost under constraints
and solve the offloading problem in multi-user MEC by
backtracking, genetic algorithm, and greedy strategies
[18]. Chang et al. [19] investigated the computational
offloading with an efficient energy scheme in a multi-
user fog computing system. They used queuing to model
the execution processes on mobile and fog devices. The
problem of efficient energy optimizationwas formulated to
minimize energy consumption conditional on delay con-
straints. A distributed algorithm called ADMM (based on
the periodic multiplier method) was presented to solve the
formulated problem. Their simulation results showed bet-
ter performance than other existing designs. The authors in
[14] solved a multi-objective scheduling problem to opti-
mize time and energy consumption. They could improve
the objectives by a whale optimization algorithm in the
MCC. Paper [20] also worked on the energy consumption
and also cost for computation offloading of workflow
applications in MEC using a Non-dominated Sorting Ge-
netic Algorithm (NSGA). The results were better than no
offloading and cloud offloading methods.

It has been argued in [21] that although computation-
al offloading can reduce power consumption on mobile
devices, it may delay further execution, including send-
ing time between mobile devices and cloud servers.
According to theoretical analysis, a multi-objective op-
timization problem is formulated with reducing energy
consumption, execution delay, and payment cost, by
finding the optimal computational offloading and trans-
mission power for each mobile device.

The results show decreasing in the mentioned
objectives.

In [22], a mixed-integer linear programming (MILP)
optimization model was used. This paper considers two
types of cloud patches: the local cloud patch and the
global cloud patch, which have higher capabilities. The
model presented in this paper reduces energy consump-
tion while imposing a significant amount of delay.

Researchers in [23] provided some disadvantages of
cloud processing, such as high latency and unstable QoS
(Data dissemination, routing between mobile devices,
and cloud servers). Assuming different real-time com-
puting tasks on different devices, each task is decided to
either run locally on the device itself or to be offloaded
to one of the edge servers or the cloud server. This paper
examined low-complexity computing offloading poli-
cies to minimize the quality of MEC network service

J Grid Computing (2021) 19: 18 Page 3 of 23 18



assurance of mobile devices’ power consumption. Their
method was superior to other compared approaches.

2.2 Context-Aware Offloading

Considering context information in the offloading prob-
lem is done based on different objectives and network
architectures such as energy-saving and execution time
[24] and latency [25] inMCC andMEC. Chen et al. [26]
proposed a framework that supports mobile applications
with computational offload capability for aware condi-
tions. First, a design pattern was proposed to enable the
application to be offloaded on demand. Second, an
estimationmodel was presented to select the appropriate
cloud source for offloading automatically. Their frame-
work includes three modules: service selection module,
computational offload, and runtime management. The
evaluation results and comparison with traditional off-
shore samples showed that the proposed approach could
improve runtime and power consumption.

Ghasemi-Falavarjani et al. proposed an offloading
middleware to the aggregate cloud by considering ener-
gy level, processing power, runtime, and network band-
width [27]. The resource allocation problem was formu-
lated as a multi-objective optimization that aims to
optimize the completion time of the task and the energy
consumption of all participating mobile devices by sat-
isfying the task boundary. They used an NSGA-II to
obtain the best solution. Besides, a multi-attribute deci-
sion-making (MADM) technique was used to determine
the best compromise solution based on the entropy
technique and weighting for a priority order. Their val-
uation Results showed that the proposed method man-
agedwell the compromise between completion time and
energy consumption.

The researchers in [28] analyzed the context-aware
energy optimization for services on MDs. Their evalu-
ation was based on three supervised machine learning
methods as naïve Bayesian, decision tree, and random
forest. They showed that using the machine learning
method is better than others for reducing the service
execution time and the energy consumption in MCC.

Roostaei et al. proposed a fault-tolerant aware mobility
offloading (MAFO) approach that collects network infor-
mation and user mobility over time and uses the Markov
chain of the user’s visited networks in different possible
paths [29]. It also predicts the stoppage time of each
network based on user mobility. The evaluation results
showed that improvements in time and energy

consumption. Authors in [30] have suggested a framework
called Thinkair that simplifies developers’work to migrate
their smartphone apps to the cloud. It uses the concept of
smartphone virtualization in the cloud and provides com-
putation offloading. It focuses on the resilience and scal-
ability of the cloud and enhances the power of cloud
computing by implementing a parallelization approach
using multiple virtual machines. Their results showed
better performance and lower power consumption than
similar non-parallel methods. In [31], a framework is
considered to decide whether to offload a given method
to cloud servers. In this paper, a field-aware decision-
making algorithm was designed, implemented, and evalu-
ated called CADA, which uses user contexts and historical
metrics to optimize the performance of mobile devices
with various optimization criteria such as short response
time. Their evaluation results demonstrated high accuracy
and improved response time and energy consumption
compared to other approaches.

2.3 FL-Based Offloading

Using cooperative models has shown good performance
in IoT devices [32]. FL is a cooperative-based method
that can be used in MEC. Here we first try to present a
conceptual view of FL and then provide some
offloading problems that FL solves.

FL allows devices to collaboratively train a shared
model while keeping data privacy on devices. Thus, FL
can be used as an enabling technology for ML model
training at MEC. Each device can process its task by a
learning model, which is applicable to all devices. After
that, all devices can share their experience. As a result,
we will have a global model by aggregating all learning
models. The worth-mentioning point is that in this co-
operation, any private data are not transferred between
devices.

Generally, there are two main entities in FL: N data
owners {1,2,…,N} and the model owner (FL server).
According to Fig. 1, in the initialization (step 1), the FL
server specifies the hyperparameters of the global model
and the training process, e.g., learning rate. Then, in step
2, each data owner i (Mobile device) train a local model
wi and send it to the FL server (Controller). In step 3, all
collected local models in the FL server are aggregated
w ¼ ⋃i∈Nwi. Steps 2 and 3 are repeated until the global
loss function converges or a desirable training accuracy
is achieved [13].
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Since the offloading methods in MEC need a real dis-
tributed algorithm; thus, FL is an excellent way to this
purpose. In [33], the authors presented an FL-based
offloading in MEC. DRL algorithms are executed in
MDs, and the updated weights are transfer between MDs
and ED. Their used parameters were energy consumption
and transmission time. Their results showed a better perfor-
mance compared to centralized DRL. In centralized DRL,
the tasks are waiting in a queue to get resources of devices.
Therefore, many tasks may be dropped due to insufficient
resources. Nevertheless, FL can offload some tasks to other
devices which causes a lower drop task in devices.

A group of researchers proposed an aggregation
model of EDs in the cloud by FL. They used the differ-
ence of convex functions (DC) representation for sparse
and low-rank function [34]. It is demonstrated that the
novel method was able to select more devices than other
benchmark approaches. The paper [35] is presented
based on a distributed DRL in MEC for caching and
communication operations. This research includes three
parts, information collecting, cognitive computing, and
request handling. Their results showed some improve-
ments in utility for the user equipment.

FL is also used to make decisions about computation
offloading and energy allocation in MEC [36]. Here, a

DRL-based algorithm is proposed to maximize the expect-
ed long-term utility. This method has better results than the
centralized and greedy-based offloading algorithms.

As stated in the introduction section’s contribution list,
the main idea of this research is to use MAPE and FL-
based offloading algorithm. Context information has been
used in the previous works. We have tried to offload the
modules with these contexts in the controlled MAPE loop
with our distributed algorithm to improve the mentioned
objectives. We try to compare our results with new re-
searches. Also, federated learning is very close to the
distributed learning paradigm. In previous studies, DRL
or DL has been used in each device, and the devices do not
offload the tasks to each other.We solve this issue by using
federated learning.

The summary of offloading algorithms is categorized by
technique, objectives, architecture, pros, and cons in
Table 1.

3 System Model and Problem Formulation

In this section, we present the architecture and system
model. Figure 1 shows the three-layer architecture of
our proposed system.

Fig. 1 The architecture and system model
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3.1 IoT

The IoT component is at the very bottom of the archi-
tecture, including communication devices that are con-
nected through heterogeneous networks. In general, it
aims to collect and process data through IoT devices to
extract patterns and discover patterns or to perform
predictive analysis or optimization and make smarter,
more timely decisions. The IoT devices first collect the
data, and each user sends their requests to the queue
according to the data collected.

3.2 Controller

This component plays the role of the master node in our
hierarchical model. It is located at the edge command
center and is at the top edge of the edge. This component
itself is a robust edge resource that manages resources
for requests from the lower layer. The controller decides
whether the request will be executed on the same edge
layer or delivered to the cloud layer based on the users’
context and existing resource conditions (existing edge
server features).

3.3 Edge Server

The edge layer component consists of several edge
servers that play the role of a slave in our hierarchical
approach. The edge servers send information about their
processing and storage capabilities to the controller. The
controller selects one of the edge servers to execute the
requests by matching the context information and re-
source capability.

3.4 MAPE

The MAPE control loop is the main component of our
framework, including monitoring, analyzing, planning,
and executing. This component collects the current con-
ditions and resources available. Then it examines the
available resources and decides whether to execute them
on the edge layer or offload the super layer’s computa-
tion. The MAPE control loop is located on the edge
server controller component. Our context-aware algo-
rithm is implemented in this component. To achieve
autonomous computing, IBM has proposed a reference
model for autonomous loops, known as the MAPE-K
loop, which has four phases (monitor, analyze, plan,

execute) [40]. All of these four phases exchange infor-
mation using common knowledge.

In the monitoring phase, the properties of the envi-
ronment are recorded by the sensors. The data is first
received through sensors and intelligent equipment, and
according to the data received, the requests for execu-
tion are made. The analysis phase deals with the pro-
cessing of data collected from the monitoring phase.
Any violation of the level of needs defined in the anal-
ysis phase is considered. Based on the information
created in the previous two phases, an appropriate
offloading decision is made in the planning phase. The
execution phase executes the planned decision in the
third phase. In fact, it is responsible for executing the
programs approved by the analysis phase.

We propose a hierarchical model for the proposed
system, in which the edge layer plays a master node role
in which all four phases of the MAPE loop are imple-
mented, and the other nodes play a slave role. With this
smart, autonomous solution, decentralized collections
are managed in a centralized system. Integrating cen-
tralized and distributed strategies can be important as an
innovative strategy. Autonomous loop computing
(MAPE) decision-making autonomously leads to better
management of resources, reduced response time to
heavily time-dependent applications and requests, and
reduced system latency.

3.5 Cloud

When requests from the edge server controller are de-
cided to be offloaded to the cloud layer, they are sent
directly to the cloud gateway. The cloud layer delivers
on-demand computing services from applications to
storage and processing power.

3.6 Case Study

The VR-GAME (Virtual reality Game) application is
a human-based game. According to the workflow of
this application, EEG signals send to the client mod-
ule. The client module sends consistent data to the
concentration calculator module. The client module
updates the game display to the player. The coordi-
nator module gathers and distributes measured con-
centration among players [41].

The EEG value could be used to determine the inter-
val between two sensed signals. Based on the applica-
tion part of Fig. 2, the EEG sensor, display actuator, and
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client module are placed in the mobile device. The
concentration calculator and the coordinator modules
can be placed in the EDs or cloud. The main problem
of this paper is the offloading of modules as {M1,M2,. ..,
Mk} to edge servers as {ED1, ED2,. .., EDn} or cloud.
The problem formulation is explained as follows. The
symbols used in this paper are defined in Table 2.

3.7 Local Execution Time

Suppose the required resources in MDs are provided. In
that case, we can calculate the local execution time using
Eq. (1), where μ is CPU cycles for processing the task and
ω is the commonly adopted effective switched capacitance
that depends on the architecture of chips [33]. According to

[42], ω can be given by ∑
N

i¼1
αi*CLi*ΔVi, where CLi is the

physical capacitance, αi is the activity weighting factor,
each averaged over the N nodes in the circuit. Also, ΔVi is
the voltage change. It is worth mentioning that the ω value
is calculated by the simulator.

Ti ¼ μffiffiffiffiffiffiffiffiffiffiffi
1

ω * μ

r ð1Þ

3.8 Data Rate between MDs and EDs

When an MD wants to communicate with an ED, a
wireless link is established. The achievable data rate is
calculated by Eq. (2). Here, A is the power of interfer-
ence plus noise, sei is the channel gain between the MD
and an ED in epoch i [33]. This channel gain is static and
independently taken from the state of MD.

DataRatei ¼ ω * log2 1þ sei * f tri
A

� �
ð2Þ

The transmission power is calculated by Eq. (3) where
BWi is the bandwidth of ED in epoch i and d is the
transmission data size required for offloading a module.

Fig. 2 Application of virtual reality game

Table 2 Symbol definition

Symbol Definition

μ CPU cycles for processing the task

gi Number of energy units

ω Commonly adopted effective switched capacitance

sei Channel gain between the MD and an ED in epoch i

ftri Transmission power

d Transmission data size

Pi Power of ith ED

Ui Utilization of ith FD

Up
i Utilization in the previous updates time

T1 The time frame of datacenter

T2 The time frame of the host

TD Difference between current and last process time

UMIPS Utilization of MIPS

TAM Total allocated MIPS

Ec Current energy consumption

Tn Current time

Ph Host power in last utilization

N Number of FDs

C Execution cost

Sc System clock

Tlu Last utilization update time

RM Rate per MIPS

ω Number of processors in a host

Ul Last utilization

MIPSAk Allocated MIPS of kth processor in the host

m1 Number of all processors and allocated processors

m2 Number of allocated processors

TED ED’s execution time

MIPSk MIPS of kth processor in the host

TMA Total allocated MIPS of the host

Li Total latency

Si The total size of ith tuple

N′ Total number of tuples

Tmax Maximum simulation time

Tst Tuple start time

Ta Average CPU time of the tuple type

ET Emitting time of a tuple

Ts Sending time of a module to another module

NRT Number of receipt tuple types

Q The number of devices contributed to the offloading

xj Energy consumption of jth device

A Selected action by the agent

R Reward value

α Learning rate

γ Importance of the next rewards

Q(S,a)im Q update value
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f tri ¼ BWi

d
ð3Þ

3.9 Edge server’s Power Consumption

The power consumption of each ED is computed by Eq.
(4). According to this equation, an edge server with the
highest power is considered as a candidate for an
offloading destination.

Pi ¼ Pc
i þ T1þ T2 ð4Þ

In Eq. (4), Pci is the current power of FD and T1 is the
energy consumption of the data center in the current
time, and T2 is calculated using Eq. (5).

T2 ¼ Up
i þ

Ui−Up
i

2
*TD ð5Þ

In Eq. (5), Ui is the utilization of ith FD, Up
i is the

utilization in the previous updates time, and TD is the
time difference between the current time and the last
process time. Ui is also computed using Eq.(6).

Ui ¼ UMIPS

TAM
ð6Þ

The total allocatedMIPS of all processing elements is
updated as Eq. (7).

TAM ¼ ∑
N

i¼1
∑
M

j¼1
PEMij ð7Þ

TAM is the total allocated MIPS of an ED that is less
than or equal to that ED’s MIPS (TAM ≤ EDMIPS).

Up
i ¼

UP
MIPS

TAM
ð8Þ

In Eqs. (6) and (8), Up
i is the utilization value in the

previous time, UMIPS is the utilization of MIPS, and
TAM is the total allocated MIPS.

3.10 Edge server’s Execution Time

MIPS calculates the runtime of modules in edge servers.
The number of commands that any edge server can
handle given its current workload is considered its cur-
rent capacity. Therefore, according to Eq. (9), each
module can capture and run it at TED, where MIPS is
the million executable operations that an edge server can
run per second.

TED ¼ 1

MIPS
ð9Þ

3.11 Edge server’s Bandwidth

Each ED includes some hosts as follows.

Host1;Host2;…;Hostnf g∈EDi ð10Þ
The main properties of hosts are RAM, bandwidth,

storage, and Pes, as shown in Eq. (11):

BWLower≤ ∑
N

i¼1
BWi≤BWUpper ð11Þ

Where BWLower is the lower bandwidth, and BWUpper is
the upper bandwidth of each ED. BWi is the bandwidth
of ith host. N is the number of hosts. The total band-
width of all hosts in each ED is between BWLower and
BWUpper.

4 The Proposed Approach

As stated above, our goal is to apply the concept of context
knowledge to a multi-user mobile edge computing system.
The proposed framework for the context-aware system can
be described as follows. In this system, we have two types
of variables: independent variables and dependent vari-
ables. Independent variables are all input variables that
the system receives in the form of transactions and does
not interfere with their calculation, such as the types of
fields that surround the environment. Dependent variables
are variables that are obtained by using independent vari-
ables as inputs to the proposed system. Delay and energy
consumption are those variables. The following sections
describe the various tasks in MAPE.

4.1 MAPE

The MAPE control loop consists of four phases the
monitor, analyze, plan, and execute. We explain each
phase as follows:

4.1.1 Monitoring

This section monitors and collects input modules, includ-
ing the contexts. The inputs include all requests received
from IoT devices and fields collected from the environ-
ment which enter modules. The request is received with a
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unique identifier. This request can be either computation or
data. In this phase, independent parameters such as QoS
and SLA are also monitored and written to the knowledge
database. The contexts include application, mobile device,
sensors, network, and media.

– Offloading contexts: Request id, requester name,
sensitivity type (resource-based or time-based),
QoS, and SLA requirements. Based on context
information, the QoS depends on data rate between
MDs and EDs as Eq. 2, edge power consumption an
Eq. 4, and edge server’s execution time introduced
in Section 3.6.4.

– Application contexts: Total executed modules,
runtime, allocated memory, priorities of modules,
and source type. According to Eq. (12), the ith
module has got more priority than the jth module
if the module is before the jth module in the appli-
cation’s workflow.

Priorityi≤Priority j ð12Þ

– Mobile contexts: Average frequency of CPU, av-
erage CPU usage, and battery level. The CPU usage
depends on the MIPS of each CPU.

– Sensor contexts: Sensor id, location, latency, des-
tination module, tuple type, and transmission time.

– Network and media context: Cellular communi-
cation and bandwidth mode, Wi-Fi communication
mode, cellular connectivity signal, and Wi-Fi.

– Resource contexts: Resource state, identification,
memory, and storage.

These fields are stored in our knowledge bank’s
context database to be used later in the computing
offloading operations.

4.1.2 Analysis

This component deals with the processing of data col-
lected from the monitor component. In this phase, QoS
and SLA are considered. If a resource is assigned to a
computing request, which results in a breach of service
quality, the analyst must detect this and issue the neces-
sary alert. The second phase of the loop performs such
analyzes. This phase has a close relationship with the
knowledge bank and is constantly exchanging informa-
tion with it. The analysis phase’s output contexts are
resource id, offloading request-id, QoS, and SLA types.

4.1.3 Planning

This phase contains the decision module of our system.
Using the information from the previous phases, this
section makes the final decision on whether to offload or
execute locally. The decision module includes cost es-
timation and context-aware decision algorithm and finds
the best destination for offloading the requester modules
to edge-server or cloud. We present two offloading
methods as MUCAO and FLUCO, as following.

MUCAO The first method for finding the best destina-
tion for offloading is a heuristic technique. Algorithm 1
includes two sections as initialization and MAPE [7]. In
the initialization section, firstly, mobile devices, cloud,
and applications are created. Secondly, edge servers are
built based on the number of departments and mobiles.
Finally, the application is submitted to the edge server
controller, and iFogsim is started. In the MAPE section,
four phases execute continuously. In the monitoring
phase, the context of modules, sensors, tuples, network
interfaces, mobile devices, cloud, and edge servers are
collected. In the analysis phase, the cost of execution in
the local device, edge server, and cloud is calculated,
and the network interface state is checked. In the plan-
ning phase, the availability of local devices, edge
servers, and cloud are checked. Finally, the offloading
decision is executed.

Algorithm 1 MUCAO

1: Create Mobile devices, cloud, applications (Modules, Edges, Tuples, Workow).

2: for i = 1 to DepartmentMax do

3:    for j = 1 to MobileMax do

4:        Edge server (Node name, MIPS, Ram, Storage, upper BW, lower BW, busy 

power, and idle power).

5:    end for
6: end for
7: Submit applications.

8: Start iFogsim.

9: while Modules enter from MDs do

10:   Monitor:
11:       Collect context of modules, sensors, tuples, network interfaces, mobile 

devices, cloud, and edge servers.

12:   Analyze:
13:       Calculate cost of execution in the local device, edge server, and cloud.

14:       Check network interface state.

15:   Plan:
16:   if Available(Local device) then
17:       if Available(Cloud) then
18:         Decision = MinCost(Local device,Cloud).

19:         Break.

20:      else
21:         Decision = local device.

22:      end if
23:   else
24:       if Available(Wi-Fi) then
25:           if Available(Edge server) & Available(Cloud) then
26:                Decision = MinCost(Local,Edge,CLoud).

27:           end if
28:       end if
29:   end if
30: Execute:
31:   Offload module based on the decision.

32: end while
33: Stop iFogsim.
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FLUCO The second proposed approach is based on the
DRL. The DRL approach aims to learn the optimal
MEC offloading policy from past experience. We try
to extend this method to the distributed system. Our
offloading algorithm implements in the MDs. The EDs
and cloud devices analyze the updated weights from
MDs. Then, each MD can decide to offload tasks to
the best devices for execution. Here, we define the
module offloading by DRL’s agent as a tuple:

Agent ¼ M ; S;A;Qð Þ ð13Þ

In Eq. (13), M is the set of modules’ attributes for
allocation by agent, S is the set of all environment states,
A is the set of actions like local execution, FDs, or
cloud, and Q is the quality function that learning algo-
rithm can select the best destination for module execu-
tion by that. These parameters use for the agent’s action
and calculated by Eq. (14).

Q : X i*A→ℝ ð14Þ

Here, xi is based on Eq. (15), A is the selected action
by the agent, and R is the reward.

xi ¼ z1 xð Þ; z2 xð Þ;…; zn xð Þð Þ∈X z ð15Þ

As Eq. (16), each agent can explain modules and
environments by Z.

Z ¼ M∪S ¼ z1; z2;…; znf g ð16Þ

The Q update function is defined by Eq. (17) whereα
∈ (0, 1) is the learning rate, and γ∈ (0, 1) shows the
importance of the next rewards.

Q S; að Þim ¼ Q S; að Þim þ α r þ γmaxαQ S
0
; a

0
� �i

m
−Q S; að Þim

� �
ð17Þ

According to DRL, the maximum value of Q S; að Þim
based on action A is 1-ϵ, and other actions have ϵ
probability. Using a greedy policy technique is to avoid
local optimum in the learning algorithms [43]. A reward
function evaluates agent operations that should generate
output very quickly so that learning and problem solv-
ing can be done without delay. The reward function in
the proposed approach is calculated by Eq. (18).

Reward ¼ Pi

T i
ð18Þ

Pi is the available power of ith FD and Ti is the
execution time of an FD module. Since power and
execution time values are in different ranges, a logarith-
mic function is used to normalize them in [0,1]. Thus

Pi ¼ logPi
10 and Ti ¼ logTi

10 .

DRL Algorithm The pseudo-code of the DRL is
shown in Algorithm 2. The learning algorithm is
executed for all modules. Then, the Q-table is ini-
tialized by 0. For all episodes, the possible actions
and Q values of them are calculated, and the best
action is selected by arg max Q. State S′ is trans-
ferred to state S. Here, the best destination for each
module is selected. After calculating the reward
function, updating the operation of Q and saving
episodes in memory is done.

Algorithm 2 DRL

1: for m = 1 to LastModuleInQueue do

2:       Initialize Q(S,a).

3:       for i = 1 to EpisodeLast do

4:             Set S to S0.

5:             for j = 1 to SLast do

6:                   Select best a by calculation arg max Q.

7:                   Action a, visit r and S'.

8:                   Calculate Q(S, a)i
m as Eq. (17).

9:                   Transfer S to S'.

10:                  end for
11:            end for
12:            Select a destination device for each module.

13:            Calculate real-time reward.

14:            Save S, r, S', and in memory.

15:            Train Q policy by training samples.

16:            Update Q.

17:            Save the current episode in memory.

18: end for

Based on our approach, the DRL does not execute in
EDs for three reasons.

1) The jeopardize of accessing personal data of MDs.
2) Encryption algorithms can protect data, but com-

munication with the EDs weakens MDs’ privacy.
3) Transferring a lot of data fromMDs to EDs causes a

lot of bandwidth consumption and burden wireless
channels.

J Grid Computing (2021) 19: 18 Page 11 of 23 18



Furthermore, if the DRL agent runs on each MD,
it will consume a lot of energy and time. For
solving this problem, our proposed method is not
based on the separate learning of each MD, and we
use the distribution capability of the MEC. In fact,
we propose FL for distributed training DRL agents.
As a result, we can save a lot of energy.

FLUCO Algorithm In FL-based offloading, each ED is
a controller to coordinate some MDs. Each MD can
execute a DRL agent with less computation burden.
FL does three steps:

1) Send the DRL agent’s parameters from the ED.
2) MDs use to download data from EDs for upgrading

their model.
3) Send updated DRL agent’s parameters from MDs

to ED (model aggregation). FL works in a parallel
manner that increases the performance of the sys-
tem. To design an optimal control policy on FL, we
have to maximize the expected long-term utility as
Eq. (19).

G E;Uð Þ ¼ lim
N→∞

1

N
∑
N

i¼1
g Ei;U Eið ÞjE1 ¼ Eð Þ ð19Þ

E is the network size, U is the system utility, Ei

is the initial network size, g(0) is the immediate
utility at epoch i that is calculated based on the
reward function in DRL. Based on the mentioned
approach as Algorithm 2, DRL agents execute in
MDs; training is performed, local execution or
offloading to best ED are decided. Finally, trained
weights are uploaded to EDs. EDs do not execute
DRL agents and only update and aggregate their
weights and send them to MDs. The weights ag-
gregate by Eq. (20).

Wrþ1 ¼ ∑
k¼1

SetLast Ci
r

Cr
*Wi

rþ1

� �
ð20Þ

SetLast is the last set of available MDs, Ci
r is the

context of ith MD in round r, and Wi
r + 1 is the weight

ith module in the next round. The computation task
is executed in MDs or offloaded to the best ED
based on the DRL agent result. We propose multi

ED in the MEC and update all EDs according to
MDs’ downloaded information.

Algorithm 3 FLUCO

1: Create Mobile devices, cloud, application (Modules, EDs,

Tuples, Workflow).

2: for x = 1 to DepartmentMax do
3: for y = 1 to MobileMax do
4:              Create ED (Node name, MIPS, Ram, Storage, upper BW, lower BW, busy 

power, and idle power).

5:             Initialize the DRL agent with random weights W0 in the current ED.

6:               Initialize the gross training times T0.

7: end for
8: end for
9: for M = 1 to MDsLast do
10:      Initialize the contexts CM

0

11:      Initialize the DRL WM
0

12:      Download W0 from the closest ED.

13:      WM
0 = W0.

14: end for
15: Submit applications.

16: Start iFogsim.

17: while Modules enter from MDs do
18: for r = 1 to rLast do
19: Monitor:
20:              Collect the context of modules, sensors, tuples, network interfaces, mobile 

devices, cloud, and edge servers.

21:                Analyze:
22:               Setr = random set of available MDs.

23: for i = 1 to SetLast do
24:               Fetch Wr from ED as Wi

r = Wr.

25:               Update context Ci
rounr.

26:               Plan:
27:              Train the DRL agent with Wi

r on Ci.

28:               Upload trained Wi
r+1 to the closest ED.

29:               Notify the ED the time's Tr of local training.

30:               end for
31: for j = 1 to EDLast do

32:                     Receive all model updates.

33:                     Update Tj
r .

34:                     Aggregate by Eq. (20).

35:                 end for
36: end for
37: Execute:
38:           Offload modules based on the FDL result.

39: end while
40: Stop iFogsim.

The outputs of the planning phase are offloading
request-id, resource type, offloading destination, and
considered media for the relationship with a resource.

4.1.4 Execution

The execution phase is responsible for executing
the offloading decisions. This component is closely
related to the equipment and resources and stores
the latest state of the resources previously men-
tioned in the knowledge bank for future use. The
task manager collects information such as (method
entries, libraries needed to execute the task, the
network address of the download location) and puts
it into an offloading package. The manager decides
to run the task locally or sends it to the top layers
as edge servers or cloud. The outputs of the plan-
ning phase are offloading request-id, resource type,
offloading destination, and considered media for
relation with the resource.
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5 Evaluation

The performance of the proposed methods is presented in
this section. The simulation environment in this research is
the iFogsim library [41]. This simulator has got classes to
implement resource management strategies. We have ex-
tended some classes as the ModulePlacementEdgeward
for offloading and controller for more output metrics. Also,
the VRGAMEFOG class is customized based on the
architecture of this paper. We simulate the proposed algo-
rithm and compare the results with other offloading
methods as follows.

– Original: In this method, the computations in
MDs execute locally. Thus, the computations
do not offload to edge servers or the cloud.
Since MDs continuously execute the tasks, they
might not have enough resources. As a result,
some tasks wait in a queue of resources, and
the delays are increased.

– Offload: In this technique, the destination of tasks
or modules is calculated based on the order of edge
servers or cloud in the network [44]. Context-aware
is not considered in this method. Here, all devices
are in a list, and the controller assigns those mod-
ules that need resources to the elements of this list in
order. This method is not optimal due to ignoring
the properties of devices, applications, and network
environment. Maybe a device at the top of the list is
selected as the offloading destination, while some
devices in the middle or last of the list are the best
destination for offloading modules.

– MUCAO: This algorithm is presented in [7]. As
discussed in the proposed approach section, this
method is based on a MAPE loop and uses the
execution cost in MDs, EDs, and cloud. Consider-
ing context awareness of devices, applications, and
network environment leads to find the best device
for offloading modules.

– FLO: As a state-of-the-art algorithm, FLO is an FL-
based algorithm based on DRL [33]. Using one ED
converts the computing architecture to the cloud. If
the number of modules that need resources increase
in MDs, just one ED might not answer all
offloading requests. As a result, some modules wait
for a long time. There are two differences between
this work and our proposed algorithm. FLUCO uses
many numbers of Eds, and contexts are considered
for offloading decision making.

We run the simulation by three departments and four
mobile devices. The comparisons are based on the best
results of algorithms with the same configuration for
each case study.

5.1 Simulation Configuration

Here, we present the VRGAMEFOG application con-
figuration in edges, devices, connection latency, and
hosts in Tables 3, 4, and 5, respectively. In Table 3, Pr
is the periodicity (mS) of edges.

The host configuration is as follows. The architecture
is ×86, OS is Linux, Storage is 106B, BW is 104 BS, VM
model is Xen, the cost is 3 $, cost per memory is 0.05 $,
cost per storage is 0.01 $, and time zone is 10. Table 4
shows the parameters of devices including MIPS, RAM
(KB), UpBW (Upper bandwidth by kilobyte per sec-
ond), DownBW (Down bandwidth by kilobyte per sec-
ond), level in the hierarchical topology, the rate per
MIPS, busy, and idle power (Megawatt).

Table 6 shows three different mobile types that have
been used in this work. Type A is an Apple iPhone 11,
type B is a Samsung Galaxy S10, and type C is a
Huawei P30 pro. Their properties include CPU, memo-
ry, and battery. In this table, MT is a mobile type.

5.2 Metrics

We consider some metrics such as energy consumption,
total execution cost, total network usage, delay, and Jain
index to analyze our proposed approach and compare it
with other offloading algorithms.

5.2.1 Energy Consumption

The energy consumption is calculated by Eq. (21) for all
edge servers and cloud when they have serviced the
input modules.

E ¼ Ec þ Tn−Tluð Þ*Ph ð21Þ
We calculate the edge server’s energy consumption

by the power of all hosts in a certain time frame of
execution. Where Ec is energy consumption in the cur-
rent state, Tn is the current time, Tlu is the update time at
the last utilization, and Ph is the host’s power in the last
utilization. To calculate the total energy consumption,
we have to sum all edge servers and the cloud’s energy.
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5.2.2 Total Execution Cost

To obtain the execution cost, we calculate the total
MIPS of hosts by the time frame. The time frame is
calculated by the difference between the current time of
simulation and the last utilization time.

Cost ¼ ∑
N

i¼1
C þ SC−Tluð Þ*RM*Ul* ∑

ω

k¼1
MIPSk

� �
ð22Þ

In Eq. (22), N is the number of edge servers, C is the
execution cost, SC is the system clock or current time of
simulation, Tlu is update time at the last utilization, RM is
the rate per MIPS that is different for each inter-module
edges, and TM is the total MIPS of the host. Ul is the last
utilization (Ul) that is calculated by Eq. (23). Where
MIPSAK and MIPSK are the allocated MIPS and MIPS
of the kth processor in the host, and m1 and m2 are the
number of all processors and allocated processors in a
host, respectively.

Ul ¼ Min 1;
∑m2

k¼1MIPSAk
∑m1

k¼1MIPSk

 !
ð23Þ

5.2.3 Total Network Usage

Since tuples define the relationships between modules,
thus resources’ usages depend on the transferred tuples’

size at a certain time. Total network usage is based on
Eq. (24).

TNU ¼ ∑N
0

i¼1 Li*Sið Þ
Tmax

ð24Þ

In Eq. (24), Li and Si are the latency and size of ith
tuple overall, N′ is the total number of tuples, and Tmax is
the maximum simulation time.

5.2.4 Application Delay

The delay of application execution is calculated by the
system clock and the end time of a tuple.

TTN ¼
SC−Tst if Ta ¼ 0;
Tst*NET þ SC−Tstð Þ

NET þ 1
if Ta≥0

8<
: ð25Þ

The end time of the tuple is calculated by Eq. (25).
Where Tst is the tuple start time, SC is the system clock,
(SC-Tst) is the execution time, and NET is the number of
executed tuple types. Ta is the average CPU time based
on the tuple type. CC is the system clock, and ET is the
emitting time of a tuple. Ts is transfer time between two
modules.

Table 3 VR game application edge configuration

Source Module Destination
Module

Pr Tuple CPU length
(B)

Tuple new length
(B)

EEG Client 0 3000 500

Client Concentration Calculator 0 3500 500

Concentration Calculator Coordinator 100 1000 1000

Concentration Calculator Client 0 14 500

Coordinator Client 100 28 1000

client Display 0 1000 500

Table 4 Devices configuration

Device MIPS Ram Uplink BW Downlink BW Lv Rate per MIPS Busy Power Idle Power

Cloud 44,800 40,000 100 10,000 0 0.01 1648 1332

Controller 2800 4000 10,000 10,000 1 0 107,339 834,333

EDs 2800 4000 10,000 10,000 2 0 107,339 834,333

MDss 500 1000 10,000 10,000 3 0 8753 8244
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TTR ¼ Tst*NRT þ SC−Ts

NET þ 1
ð26Þ

The tuple receipt time is based on Eq. (26). NRT is the
number of receipt tuple types. Application delay is
calculated by the difference time between tuple end time
in a module and tuple receipt time in another module.

5.3 Fairness

We evaluate the fairness of the offloading method based
on the Jain index [32], which is computed by Eq. (27):

JainIndex ¼
∑Q

j¼1x j
� �2
Q*∑Q

j¼1x
2
j

ð27Þ

Q is the number of devices that contributed to the
offloading, and xj is the jth device’s energy consump-
tion. The Jain index is between 1

Q and 1; a better

offloading method has a more Jain index.

5.4 Comparison Scenarios

Table 7 shows four different scenarios to analyze the
proposed approach and other algorithms. Scenario 1 is
based on a different number of users. Scenario 2 is
considered for four different module sizes. Scenario 3
is for comparing the methods based on four mobile
types. Also, we compare our proposed approach with

others based on different intervals. The reason for using
the values introduced in the diagram is according to the
type of application. Since this application is introduced
in the iFogsim emulator, so it comes with values by
default. We tried to consider less and more of these
parameters to get a reasonable estimate in terms of
scalability, number and type of mobile devices, and
module size.

5.5 Scenario 1: Comparison of Offloading Performance
Based on the Number of Users

One of the parameters to show the performance of the
offloading methods is the number of users. Here, we
compare the energy consumption, total execution cost,
network usage, and delay of MUCAO in MEC by the
number of users. As can be seen in Figs. 3, 4, 5, 6, and 7,
there are values of the number of users by 1, 3, 7, and 10
in the horizontal axis.

Fog devices serve multiple users simultaneously. On
the other hand, given the number of resources these
devices have, when the number of users reaches a cer-
tain size, they reach a degree of optimization. This
means that devices can perform resource management
operations more efficiently. Due to the hierarchical
structure of the network and users’ distribution, it will

Table 5 Connection latency

Device Name Device Name Latency (mS)

Cloud Proxy – Server 100

Proxy – Server Department (Gateway) 4

Department (Gateway) Mobiles 4

EEG sensor Mobile 6

Display EEG sensor 1

Table 6 Mobile types

Brand CPU
(GHz)

RAM
(MB)

Battery
(mA)

A Apple iPhone 11 6*2.96 4000 3110

B Samsung Galaxy S10 8*2.30 8000 3400

C Huawei P30 pro 8*2.03 8000 4200

Table 7 Comparison scenarios

No. Description Values

Scenario 1 Number of users 1, 3, 7, 10

Scenario 2 Module size (MB) 1000, 2000, 5000, 10,000

Scenario 3 Mobile types AB, AC, BC, ABC

Scenario 4 Interval (ms) 100, 200, 500, 1000

Fig. 3 Energy consumption based on the number of users

J Grid Computing (2021) 19: 18 Page 15 of 23 18



be possible to improve the results even with the increase
of users, which can be seen in the results.

5.5.1 Energy Consumption Based on the Number
of Users

Figure 3 shows that the energy consumption of
MUCAO is less than the original and offload methods.
MUCAO can decrease energy consumption in a higher
number of users. As this figure, the maximum energy
consumption is on the number of users by 7 for the
original method by 1.635 * 107MJ. Theminimum value
is on the number of users by 10 for the FLUCO method
by 1.58 * 107 MJ. This result shows that the FL-based
method with distributed structure causes less energy
consumption than others. Also, adding context-
awareness information to FLO and using more than
one ED cause to create a better method as FLUCO for
energy efficiency. The reason for the improvement is a
distributed algorithm of FLUCO that executes in multi
EDs. The FLUCO causes MDs with lower resources to
transfer more of their modules to EDs. As a result, the
workload in the network has been distributed in a bal-
anced way. There is not much difference between the

energy consumption of methods with increasing the
number of users. Since FLUCO distributes modules in
the network, and also the capacity of devices is restrict-
ed. Thus the number of modules in devices cannot
increase. Finally, we have not got more computations
to calculate energy consumption for them.

5.5.2 Total Execution Cost Based on the Number
of Users

The cost is one of the important metrics in this work.We
can see in Fig. 4 with increasing the number of users
from 3 to 7, and 10 causes increasing cost in original and
offload methods. MUCAO has a balanced cost than
these methods in many users with fluctuating between
4.12 *106 $ and 4.15 * 106 $. Additionally, FLUCO
with minimum energy consumption less than FLO and
MUCAO is placed in the first rank of total execution
cost. This result shows that with the increase in the
number of users and distribution in the environment,
the FLUCO has managed the cost well and brings
economic savings. The main reason for this improve-
ment is our distributed algorithm in some EDs that cause

Fig. 4 Total execution cost based on the number of users

Fig. 5 Network usage based on the number of users

Fig. 6 Delay based on the number of users

Fig. 7 Jain index based on the number of users
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choosing the best device with high performance and
minimum delay.

5.5.3 Network Usage Based on the Number of Users

Figure 5 shows that MUCA can increase network usage
by considering context-awareness. Increasing the num-
ber of users could not increase the network usage so
much. The reason for this result is the best matching of
offload destination instead of first matching. MUCAO
has used network resources better than other methods.
Since the main idea of the porposed method is distribu-
tion, the modules can be offloaded to a wide range of
devices. That is why all devices in the network are
almost busy with minimum free time.

5.5.4 Delay Based on the Number of Users

The delay of the application loop by MUCAO has a
slight decrease, and its delay is lower than original and
offload methods. According to Fig. 6, the maximum
delay is related to the original method and the minimum
value belongs to FLUCO, which shows that using con-
text information and distributed algorithms cause to fast
executing of requests and offloading process. This
means that MDs using FLUCO can quickly find the
best destination to offload their modules and save more
time.

5.5.5 Jain Index Based on the Number of Users

We provide the fairness of offloading algorithms by Jain
index value in Fig. 7. Since the original method has not
any offloading thus, we compare others. As we men-
tioned, this metric uses the energy consumption and the
number of edge servers that contribute to offloading.
The maximum Jain index is related to FLUCO in the
number of users by 10. This shows in FLUCO; more
edge servers are used to offload modules. Also, this
result proves better load balancing in the FLUCO than
others.

5.6 Scenario 2: Comparison of Offloading Performance
Based on Module Size

The module size is another metric for evaluating the
offloadingmethods in this work. Based on Figs. 8, 9, 10,
11, and 12, there are module size’s values by 1000,
2000, 5000, and 100,000 in the horizontal axis.

5.6.1 Energy Consumption Based on Module Size

According to Fig. 8, the module size does not have a
significant impact on energy consumption. The original,
offload, and MUCAO show almost equal energy con-
sumption. On the other hand, FLUCO and FLO have
got better results. This means using distributed structure
and context awareness can improve the energy con-
sumption of the system. Since EDs and cloud resources
have more capacities than MDs, different modules can
be offloaded and executed to the network’s upper layer.
Also, regarding more devices and widely distributed
modules, the module’s size has not got a considerable
change in energy consumption.

5.6.2 Total Execution Cost Based on Module Size

Fi. 9 shows the total execution cost for different ap-
proaches using different module sizes. The context-
awareness of application, devices, and network environ-
ment allows MDs to have a better offloading decision,
and thus FLUCO presents the lowest execution cost
compared to other methods.

Fig. 8 Energy consumption based on module size

Fig. 9 Total execution cost based on module size
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5.6.3 Network Usage Based on Module Size

Figure 10 shows the network usage of different ap-
proaches under various module sizes. The minimum
network usage is belonged to the original method with
a module size of 2000 B by 1.125 * 105. Increasing the
module size causes raising total network usage, but this
happens until a specific module size because EDs and
cloud capacities are more than MDs.

5.6.4 Delay Based on Module Size

As shown in Fig. 11, increasing the module size causes a
decrease in the delay for all methods. The reason for
decreasing delay in the original method is the local
execution of modules. Also, we should consider some
of the modules might not execute locally for not being
enough resources. Of course, the energy consumption of
MDs will be increased. Since edge servers have more
capacity than module sizes, they can execute offloaded
modules in less time. Also, FLUCO has better results
than others in module sizes by 2000 and 5000 B. In
module size 1000 and 10,000 B, FLUCO has got a little
improvement than FLO. This shows that a distributed

algorithm can manage and offload them to the best
devices when module size increases.

5.6.5 Jain Index Based on Module Size

In Fig. 12, the fairness of the offloading method is
between 0.6 and 0.8. However, the range of this metric
in MUCAO is between 0.8 and 1.0. This proves that
MUCAO with considering context information is fairer
than the offloading method. On the other hand, using
distributes algorithms and more EDs convert FLUCO to
the best algorithm. This means the energy consumption
of all devices in the network was in a distributed man-
ner. Also, decreasing the delay of modules cause all
devices to consume less energy, so that the proposed
approaches are better in this case.

5.7 Scenario 3: Comparison of Offloading Performance
Based on Mobile Types

Figures 13, 14, 15, 16, 17 show the obtained results
based on different mobile types, presented in Table 6.

5.7.1 Energy Consumption Based on Mobile Types

Analysis of energy consumption based on mobile types
shows better results of FLUCO than others in all states
AB, AC, BC, ABC. The results in Fig. 13 prove that the
diversity of mobiles can cause less energy consumption
by the proposed method. FLUCO, with minimum ener-
gy consumption of about 1.58*107 MJ, is the best
method than others. This method shows that a distribut-
ed algorithm in different devices can offload modules
with less energy consumption. Also, heterogeneous de-
vices with different configurations have got required
resources for local computation.

Fig. 10 Network usage based on module size

Fig. 11 Delay based on module size

Fig. 12 Jain index based on module size
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5.7.2 Total Execution Cost Based on Mobile Types

According to Fig. 14, using different mobile types de-
creases total cost in all methods. FLUCO has better
results than others. More capacity of CPU, memory,
and battery causes mobile devices to execute more
modules locally. This process decreases the offloading
cost. Another reason for the improvement of the
FLUCO can be fair offloading in a wide range of de-
vices. Thus, decreasing the cost of a device and distrib-
uting fair offloading to other devices can lower the costs.

5.7.3 Network Usage Based on Module Types

Based on Fig. 15, network usage has a gradual increase
by different mobile types. We can see in this figure that
the FLUCO has maximum network usage in mobile
type BC by 2.6 * 105 KB. Thus, diversity in mobile
types has a direct effect on network usage. Using a
distributed structure of the network causes more net-
work usage in the MEC. This means the FLUCO with a
distributed method can use many devices in the net-
work, and the number of jobless devices will decrease.

5.7.4 Delay Based on Module Types

Figure 16 shows that delay in all mobile types AB, AC,
and BC has sensitive changes. FLUCO has a minimum
delay equal to 226.2 mS on mobile type ABC. The
results prove that the increase in the diversity of MDs
causes more challenges in delay. The distributed algo-
rithms as FLO and FLUCO can do better than others.
FLUCO has got less delay when the mobile type is AC.
The reason for this improvement can be the context
awareness in FLUCO than FLO.

5.7.5 Jain Index Based on Module Types

The fairness metric shows that FLUCO has the best
results in all mobile types. Also, Fig. 17 proves the
minimum fairness is related to the offloading method
in mobile type AB by 0.6. Thus, distributed multi-user
context-aware is a suitable offloading method in MEC.
If the offloading method can place the modules on a
wide range of devices, we will have a fairway.

Fig. 13 Energy consumption based on mobile types

Fig. 14 Total execution cost based on module size

Fig. 15 Network usage based on module types

Fig. 16 Delay based on module types
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5.8 Scenario 4: Comparison of Offloading Performance
Based on Interval

Offloading’s interval shows the time distance between
the resource management process. We control the
workflow to the system by interval value. The energy
consumption, total execution cost, network usage, de-
lay, and Jain index are evaluated by offloading’s inter-
vals equal to 100, 200, 500, and 1000 mS. We set these
values for the spacing between the input data goes back
to the type of application. Since the application is
intended to process input data in an average of 200
mS. Therefore, we consider numbers in the same range.

5.8.1 Energy Consumption Based on Interval

Figure 18 proves that our proposed MUCAO and
FLUCO methods can decrease energy consumption
than the original, offload, and FLO methods. FLUCO
with 1.57* 107MJ is the best than others. Thus, FLUCO
is very suitable for offloading in the VRGAMEFOG
application. Since the interval value means the time
distance between the resource management process,
increasing that causes the offloading method will have

more time for processing or offloading modules to best
devices. As a result, we can see; generally, the FLUCO
used this chance better than others.

5.8.2 Total Execution Cost Based on the Interval

Analysis of execution cost by all offloading methods
shows that interval equals 500 causes more energy
consumption. According to Fig. 19, the minimum exe-
cution cost of 4.9 * 106$ is related to FLUCO by interval
200 mS. The worst execution is related to the original
method by 4.18 * 106$ in the interval of 500 mSwithout
any offloading. The results prove the superiority of the
distributed algorithm over others inMEC. The fair using
of resources in devices causes less cost so that FLUCO
can have better results than others with distribution and
context awareness capability.

5.8.3 Network Usage Based on Interval

The results of the simulation show the competition
between all methods. They cause relative network usage
values in the interval by 100, 500, and 1000 mS.
Figure 20 indicates, in the average stats, FLUCO is the

Fig. 17 Jain index based on module types

Fig. 18 Energy consumption vs. interval

Fig. 19 Total execution cost vs. interval

Fig. 20 Network usage vs. interval
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best offloading method than others. The main reason for
this improvement is the distributed structure of FLUCO,
also using the properties of devices, application mod-
ules, and environment are essential in context-
awareness.

5.8.4 Delay Based on the Interval

Based on Fig. 21, the MUCAO method has a gradual
increase in the delay parameter when the interval is
grown. According to this figure, the original method
has the worst result in the interval by 1000 mS. The
offload method has a fluctuated result with the lowest in
the interval of 200 mS and the highest in the interval by
500 mS. More analysis shows that FLO and FLUCO
have got lower delays than others. The results show that
these two methods can quickly offload the modules to
the best devices with minimum delay. Furthermore, the
lowest delay equal 226.3 mS is related to FLUCO in an
interval of 200 mS.

5.8.5 Jain Index Based on Interval

According to Fig. 22, MUCAO and FLUCO have
a gradual increase in the Jain index with maximum
fairness in the interval of 1000 mS. However, the
offloading method has fluctuated values, and it
could approximately close to MUCAO in 1000
mS. However, FLUCO with the highest Jain index
is better than others. This proves that a distributed
algorithm can be a fair offloading method. Thus,
the dynamic context-awareness and distributed
structure of the proposed algorithm can improve
the performance of MEC.

6 Conclusion

In this paper, we investigated context-aware
offloading by considering multi-user. We also pres-
ent a distributed algorithm as FLUCO to got close
to the MEC structure. To solve this problem, a
MAPE loop is used in all offloading processes.
Our method helps MDs to offload their modules
to edge servers or cloud if they can not execute
those locally with less cost. The results show that
FLUCO is superior to original, offload, MUCAO,
and FLO methods in energy consumption by 2%,
2%, 2.1%, and 0.7% in total execution cost by 3%,
3%, 2.34%, and 1.08% network usage by 2%, 2%,
1.21%, and 0.001% delay by 0.01%, 0.01%,
0.005%, and 0.001% and 0.002%, respectively.
Also, FLUCO is fairer than offload, MUCAO,
and FLO methods in the Jain index by 18%,
4.01%, and 1.6%, respectively. These results prove
that our proposed offloading algorithm with
context-aware information and distributed structure
could improve the network performance in the
mentioned metrics. As future work, we work on
MEC with FL-based methods on other case studies.
Cooperative mobile crowding is another challenge
of FL in MEC for more research. FL is vulnerable
to communication security issues such as Distrib-
uted Denial-of-Service (DoS) and jamming attacks.
Also, we will study the protection of data privacy
for MEC users.

Data Availability Data sharing not applicable to this article as
no datasets were generated or analyzed during the current study.

Fig. 21 Delay vs. interval

Fig. 22 Delay vs. interval
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