Journal of Grid Computing (2021) 19: 5
https://doi.org/10.1007/s10723-021-09549-z

®

Check for
updates

TORCH: a TOSCA-Based Orchestrator of Multi-Cloud

Containerised Applications

- Domenico Calcaterra -
- Pietro Mazzaglia

Orazio Tomarchio
Giuseppe Di Modica

Received: 10 July 2020 / Accepted: 18 January 2021 /Published online: 18 February 2021

© The Author(s) 2021

Abstract The growth in the number and types of
cloud-based services offered to IT customers is sup-
ported by the constant entry of new actors in the mar-
ket and the consolidation of disruptive technologies
such as Al, Big Data and Micro-services. From the
customer’s perspective, in a market landscape where
the cloud offer is highly diversified due to the pres-
ence of multiple competing service providers, picking
the service that best accommodate their specific needs
is a critical challenge. Once the choice is made, so
called “cloud orchestration tools” (orchestrators) are
required to take care of the customer application’s
life-cycle. While big players offer their customers pro-
prietary orchestrators, in the literature quite a number
of open-source initiatives have launched multi-cloud
orchestrators capable of transparently managing appli-
cations on top of the most representative cloud plat-
forms. In this paper, we propose TORCH, a TOSCA-
based framework for the deployment and orchestration
of cloud applications, both classical and containerised,

O. Tomarchio (><)) - D. Calcaterra - G. Di Modica -
P. Mazzaglia

Department of Electrical, Electronic and Computer
Engineering, University of Catania, Catania, Italy
e-mail: orazio.tomarchio @unict.it

D. Calcaterra

e-mail: calcaterra.domenico@gmail.com
G. Di Modica

e-mail: dimodica@unict.it

P. Mazzaglia
e-mail: pietromazzaglia@gmail.com

on multiple cloud providers. The framework assists
the cloud customer in defining application require-
ments by using standard specification models. Unlike
other multi-cloud orchestrators, adopts a strategy that
separates the provisioning workflow from the actual
invocation of proprietary cloud services API. The
main benefit is the possibility to add support to any
cloud platforms at a very low implementation cost.
In the paper, we present a prototypal implementation
of TORCH and showcase its interaction with two dif-
ferent container-based cluster platforms. Preliminary
performance tests conducted on a small-scale test-bed
confirm the potential of TORCH.

Keywords Cloud orchestration - Automated
deployment and provisioning - Containerised
applications - TOSCA - BPMN

1 Introduction

In the last decade, cloud computing has established
itself as a new paradigm of distributed computing that
allows the sharing of resource pools on an on-demand
basis model. For IT industry, this leads to several ben-
efits in terms of availability, scalability and costs, low-
ering the barriers to innovation [1]. Moreover, cloud
technologies encourage a larger distribution of ser-
vices across the internet [2]. As reported in the Flexera
2020 State of the Cloud Report [3], many compa-
nies and organisations have successfully adopted the
cloud computing paradigm worldwide, while more

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-021-09549-z&domain=pdf
http://orcid.org/0000-0003-4653-0480
https://orcid.org/0000-0002-0298-7828
mailto:orazio.tomarchio@unict.it
mailto:calcaterra.domenico@gmail.com
mailto:dimodica@unict.it
mailto:pietromazzaglia@gmail.com

5 Page?2 of 25

J Grid Computing (2021) 19: 5

and more are approaching it, as they see a real oppor-
tunity to grow their business. Since cloud has emerged
as a dominating paradigm for application distribution,
providers keep on implementing new features to offer
services which are not limited to just infrastructure
provisioning. This trend is depicted as “Everything as
a Service”, namely XaasS [4].

The increasing complexity of the cloud environ-
ments, along with the challenges posed by building
and managing scalable applications, has drawn out the
necessity of software that would simplify the deploy-
ment and monitoring processes for cloud applications.
In this regard, cloud orchestration tools have increased
their popularity in recent years, becoming a main topic
for cloud research [5, 6]. Today, most of the commer-
cial cloud providers offer an orchestration platform to
end-users [7]: however, these products are proprietary
and not portable. Besides, although modern config-
uration management solutions provide support for
handling resource configuration over cloud services,
all potential users are often required to understand
various low-level cloud service APIs and procedu-
ral programming constructs in order to create and
maintain complex resource configurations.

The advent of the multi-cloud computing and its
wide adoption by enterprises [3] further exacerbates
the orchestration issues. The multi-cloud paradigm is
a recent technological trend within the cloud comput-
ing landscape, which gravitates towards the possibility
to access services and resources provided by mul-
tiple providers [8]. With respect to other paradigms
involving multiple cloud platforms, the multi-cloud
one is characterised by a unified interface that allows
to select which cloud to use for consuming services
and resources, choosing among a collection of various
platforms [9]. This brings in several advantages, such
as reducing vendor lock-ins, enabling a fairer mar-
ketplace of cloud services, and introducing a smaller
overhead compared to solutions that engage with mul-
tiple clouds at the same time.

In order to effectively enable the multi-cloud
paradigm, it is essential to guarantee an easy porta-
bility of applications among cloud providers [10, 11].
This new requirement calls for more powerful cloud
orchestration mechanisms capable of dealing with the
heterogeneity of the underlying cloud resources and
services. In the last few years, several efforts have
been made to overcome these issues. Open Standards,
such as OASIS CAMP [12] and OASIS TOSCA [13],
have been proposed for modelling the application

@ Springer

topology and the component life-cycles so as to facil-
itate the orchestration process and enhance portabil-
ity across different providers. In particular, TOSCA
stands out for the large number of literature works and
tools that are based upon it [14].

Container-based applications have provided a solu-
tion to improve portability in the cloud deploy-
ment landscape [15]. Containers offer packaged soft-
ware units which run on a virtualised environment.
Their decoupling from the running environment eases
their deployment process and the management of
their dependencies. These qualities, abetted by the
lightweight nature of containers, high reusability and
near-native performances [16] raised significant inter-
est in the business-oriented context. Containers can
be either run as standalone services or organised in
swarm services. Swarm services increase the flexi-
bility of containers, allowing them to run on clusters
of resources. Container-centric orchestrators such as
Docker Swarm [17], Kubernetes [18], and Apache
Mesos [19] have appeared. They perform orches-
tration at container level by automating the provi-
sioning and management of complex containerised
deployments across multiple hosts and locations. This
approach combines well with the cloud computing
paradigm, providing faster management operations
while granting all the advantages of cloud services.

In this paper, we present the design and develop-
ment of TORCH, a framework for the deployment
and orchestration of classical and containerised cloud
applications on top of different cloud providers. Our
work leverages the TOSCA specification to build up
a cloud service orchestrator capable of automating
the execution of tasks and operations required for the
provisioning of a multi-cloud application. The basic
strategy adopted by TORCH is to transform a TOSCA
application model into an equivalent BPMN work-
flow and dataflow model, which a BPMN engine
leverages to enforce the operations specified in the
model [20, 21]. The proposed approach clearly sepa-
rates the orchestration of the provisioning tasks from
the real provisioning services, easily allowing the
deployment on different cloud providers. Based on
our previous work [22], we provide integration with
a variety of container-based technologies in order to
close the loop. In this regard, the fault-aware orches-
tration of containerised applications is supported via
new business process models and pluggable software
connectors. We also enrich our web tool with features

J Grid Computing (2021) 19: 5

Page 3 of 25 5

for the modelling, deployment management and mon-
itoring of both containerised and non-containerised
applications.

In summary, TORCH main features include:

— description and modelling of the application
topology using standard languages (namely,
TOSCA);

— capability to deploy application components on
different cloud providers, by means of pluggable
“connectors”;

— integration with different container-based cluster
technologies;

— fault-aware orchestration based on a set of busi-
ness process models;

— deployment management through a simple web
tool.

In this work, after discussing the technical choices
on which the TORCH design grounds, we provide
implementation details of the TORCH prototype and
show some performance results obtained from running
the prototype on a small-scale test-bed. The remain-
der of the paper is organised as follows. In Section 2,
a background of technologies exploited in this work
is presented. In Section 3, we present the main design
principles of TORCH, along with its overall archi-
tecture. The prototypal implementation is discussed
in Section 4. In Section 5, the deployment and the
performance results of a use case application on a
small-scale test-bed are presented. Related work is
discussed in Section 6. Finally, we conclude the work
in Section 7.

2 Background

This work aims to provide synergy between cloud
resource orchestration, portable topology specification
and containerisation technologies. In this section, we
provide a more in-depth background on these topics.

2.1 Cloud Orchestration

Cloud orchestration denotes various processes and
services to select, describe, configure, deploy, mon-
itor and control cloud services or resources across
different cloud solutions in an automated way.
The overall goal of orchestration is to guarantee

successful hosting and seamless delivery of applica-
tions by meeting the Quality of Service (QoS) goals
of both cloud application owners and cloud resource
providers [23].

Many cloud industry players have developed cloud
management platforms (CMP) to automate the provi-
sioning of cloud services (e.g. Amazon CloudForma-
tion [24], Flexera Cloud Management Platform [25],
RedHat CloudForms [26], IBM Cloud Orchestrator
[27]). The most advanced platforms also offer life-
cycle management of cloud applications. These com-
mercial products are neither open to the community
nor portable across third-party providers.

As to open-source cloud orchestration frame-
works, OpenStack provides a service to orchestrate
composite cloud applications using a declarative
template-based format, i.e. Heat Orchestration Tem-
plate (HOT) [28], through both an OpenStack-native
REST API and AWS CloudFormation-compatible
API. Another notable example of orchestration plat-
form in the open-source domain is Cloudify [29],
which allows to model TOSCA-compliant applica-
tions and automate their lifecycle via a set of built-in
workflows.

There are a number of neighbouring tool cate-
gories which share similarities with cloud orches-
trators. Configuration management tools (Ansible
[30], Chef [31], Puppet [32], Salt [33]) are mostly
built to automate the development, delivery, testing
and maintenance throughout the software life-cycle.
These tools have recently moved towards orchestra-
tion functionalities, including virtual machine and
infrastructure creation, which leverage Infrastructure
as Code (IaC) [34] to change, configure, and auto-
mate infrastructure. Terraform [35] is one of the
most notable IaC open-source solutions. Nevertheless,
it includes no life-cycle management, while scaling
and error-handling are only provided with external
support.

Regarding standardising initiatives, BPEL [36] and
BPMN [37] are the most applied standards for ser-
vice composition and fault-aware orchestration [38].
Three basic fault handling concepts are supported by
BPEL: compensation handlers, fault handlers, and
event handlers. Nevertheless, BPEL only manages
predefined faults specified by application designers.
Similarly, BPMN supports error events, cancel events
and compensation events.

@ Springer

5 Page4 of 25

J Grid Computing (2021) 19: 5

2.2 Cloud Portability

Portability has been defined as the capability of a
program to be executed on various types of data pro-
cessing systems without converting the program to a
different language and with little or no modification
[39]. In respect to cloud computing, portability com-
prises three categories: data portability, application
portability and platform portability [40]. In particular,
application portability refers to the ability to define
application features in a vendor-agnostic way.

Supporting open standards such as CAMP [12] and
TOSCA [13] for modelling the application’s topology
and components facilitates the usage of cloud orches-
trators and further increases the reusability of the
topology definition, as it restricts the vendor lock-in
issue to cloud provider level.

CAMP is a standard developed by OASIS which
focuses on providing a management API for cloud
platforms. It defines interfaces and artifacts for
self-service provisioning, monitoring and control. A
resource model for representing applications and their
components is defined. CAMP was designed to be
language, framework, and platform-neutral with the
goal of covering a variety of cloud platforms, which
is why it uses a REST-like protocol for manipulat-
ing the specified resources. Apache Brooklyn [41] is
a notable open-source cloud orchestration framework
implementing CAMP.

TOSCA is a standard designed by OASIS to enable
the portability of cloud applications and the related
IT services. The structure of a cloud application
is described as a service template, which is com-
posed of a topology template and the types needed
to build such a template. The topology template is a
typed directed graph, whose nodes (called node tem-
plates) model the application components, and edges
(called relationship templates) model the relations
occurring among such components. Each topology
node can also contain information such as the cor-
responding requirements, the operations to manage it
(interfaces), the attributes and the properties it fea-
tures, the capabilities it provides, and the software
artifacts it uses. Cloud applications are typically pack-
aged in TOSCA using Cloud Service Archive (CSAR)
files.

TOSCA Simple Profile is an isomorphic rendering
of a subset of the TOSCA specification in the YAML
language [42]. It defines a few normative workflows to

@ Springer

operate a topology and specifies how they are declara-
tively generated: deploy, undeploy, scaling-workflows
and auto-healing workflows. Imperative workflows
can still be used for complex use-cases that cannot be
solved in declarative workflows. However, they pro-
vide less reusability as they are defined for a specific
topology rather than being dynamically generated
based on the topology content.

2.3 Containerisation

Container-based virtualisation [43] is a key approach
for sharing the host operating system kernel across
multiple guest instances, while keeping them iso-
lated. Environment-level containers provide resource
isolation with little overhead compared to OS-level
hypervisors [44]. Docker [45] represents the leading
Linux-based technology for container runtimes [46].
Among competitors, containerd [47], CRI-O [48] and
Containerizer [49] are worth mentioning.

In recent times, container-centric cluster solutions
have grown in popularity regarding container deploy-
ment and management. Most of them perform orches-
tration at container level by automating the provision-
ing of complex containerised deployments across mul-
tiple hosts and locations, leading to greater scalability,
improved reliability and sophisticated management.

Kubernetes [18] currently constitutes the most
widespread ecosystem for the deployment, scaling
and management of containerised workloads. Docker
Swarm [17] offers a native solution to integrate clus-
ter management into Docker. Apache Mesos [19] is
an open-source project to manage computer clusters,
which natively supports Docker containers and can be
used in conjunction with Marathon [50], a container
orchestration platform.

Most cloud providers, such as Amazon AWS,
Microsoft Azure and Google Cloud have built-in ser-
vices to operate containers and clusters. OpenStack,
serving as an open-source alternative to control large
pools of resources, supports container orchestration by
means of Magnum [51] and Heat [28] services. The
former allows clustered container platforms (Kuber-
netes, Mesos, Swarm) to interoperate with other Open-
Stack components. The latter is a service to orchestrate
composite cloud applications.

The great availability of technologies and providers
gives developers many options in terms of flexibil-
ity, reliability and costs. However, all these services

J Grid Computing (2021) 19: 5

Page 5 of 25 5

are neither interchangeable nor interoperable. Switch-
ing from a service (or a platform) to another one
requires several manual operations to be performed,
and the learning curve might not be entirely negligible.
These shortcomings have led to systems to automate
deployment and management operations while inter-
facing with multiple container technologies, clusters
and cloud providers.

3 TORCH Design

The objective of this work is to propose an open-
source platform that offers user-friendly and reliable
services to deploy user applications on top of any
cloud provider infrastructure. In this section, we dis-
cuss inspiring design principles and delve into techni-
cal details of the framework.

3.1 Design Principles

Two simple principles guided the design of the pro-
posed system. The first principle concerns cloud users
and their need to easily specify the requirements of
the application to be deployed on the Cloud. We
make the basic assumption that application owners are
completely agnostic as to how their applications are
handled on the Cloud. Nevertheless, they know very
well their application structure, i.e., the number and
type of software modules that the application is com-
posed of, modules inter-dependencies, functional and
non-functional requirements, etc. Application owners
should be supported to supply a representation of such
application requirements in a way that is as simple
as unambiguous. In the remainder of the paper we
will interchangeably use the terms Cloud user and
Customers to refer to the application owner that buys
cloud resources (computing capacity, storage, etc.) to
deploy their application on top of them.

The second principle regards the application of a
provisioning strategy that clearly separates the pro-
visioning workflow from the actual invocation of
cloud services that enforce the provisioning. We argue
that, despite cloud providers expose proprietary APIs,
the activities underlying any application provision-
ing process follow a common and API-independent
pattern, that basically consists in instantiating the
required resource(s) on the cloud provider infrastruc-
ture, deploying the application components on the

instantiated resources, making the necessary software
configuration, and finally running the application. By
isolating the provisioning workflow from the actual
cloud service invocation, several benefits derive in
terms of:

— Coding effort. Once designed, the provisioning
workflow can be fed to any off-the-shelf work-
flow engine that will transparently take care of
pipelining the activities. Implementation effort
will mainly focus on coding the plugins (“Con-
nectors”, from now on) responsible for connecting
the workflow tasks to platform-specific APIs.

— Maintainability. As long as system responsibili-
ties are distributed among multiple components
(namely, the workflow engine and the connec-
tors), system maintenance keeps easier and less
time-consuming.

— Expansibility. Adding support for a new cloud
provider is as easy as creating a new Connector.

— Scalability. No particular effort is requested to
enforce the system scalability, since the respon-
sibility of scaling up to provisioning requests is
upon the workflow engine tool.

As far as modelling application deployment
requirements is concerned, we choose to comply
with the OASIS TOSCA standard, and more specifi-
cally, the TOSCA Simple Profile rendering. The latter
offers a human-readable language to describe both
the application topology and the artifacts needed by
the application itself. We make use of BPMN [37]
to model provisioning activities. BPMN is a wide-
spread process modelling language which exhibits a
rich expressiveness and is supported by many reliable
workflow engines. The connection between the work-
flow engine activities and the proprietary cloud provi-
sion API offered by the multitude of cloud providers
is realised by means of ad-hoc plugins, whose imple-
mentation follows a specified development pattern as
better detailed in Section 4. The proposed framework
will enable a scenario of an open cloud service market,
where cloud providers can participate and customers
are presented with a variety of services to choose
from.

3.2 Framework Architecture

In this section, the high-level architecture of the
TORCH orchestration framework is presented.

@ Springer

5 Page 6 of 25

J Grid Computing (2021) 19: 5

/ Application
{ specification

TOSCA
Processor

Customer

TOSCA
scenario

Dashboard

Fig. 1 TORCH provisioning scenario

The framework offers tools and services that facil-
itate the scenario depicted in Fig. 1. On the one hand,
the framework offers Customers user-friendly tools to
specify application provisioning requirements; on the
other hand, it allows Cloud Providers to plug their
deployment services by means of some service bind-
ing tools. In between, the framework automatically
pipelines and executes the activities leading to the pro-
visioning of the Customer’s application on the desired
cloud infrastructure.

The overall provisioning process is composed of
three distinct sequential phases. The process begins
with the Application specification phase, during which
the Customer is in charge of modelling and submit-
ting the application requirements. The submitted input
triggers the Orchestration phase, that in turn con-
sists of the transformation of the requirements into a
workflow plan, composed of a combination of pre-
modelled workflow models that get customised based
on input data, and its subsequent enactment performed
by a workflow engine. Finally, in the Service binding
phase, ad-hoc service Connectors transform generic
provisioning actions into concrete service deployment
invocations.

Figure 2 shows the multi-layered framework archi-
tecture enabling the provisioning scenario shown in

Service \
binding Service

| Providers

Service
Broker

Service Bus

Fig. 1. The Application Specification Layer consists
of two components: the Dashboard and the TOSCA
Modeller. The Dashboard is the front-end compo-
nent implementing the interaction with the Customer
and the displaying views on the provisioning process
status. The TOSCA Modeller guides the Customer
to sketch application requirements. The Orchestra-
tion Layer is populated by the TOSCA Processor
component, which is in charge of validating, pars-
ing and converting TOSCA application scenarios into
BPMN Data Inputs, and the BPMN Engine compo-
nent, which is responsible for instantiating and orches-
trating BPMN Plans. The Service Binding Layer com-
prises all the components necessary to manage the
interaction between provisioning tasks and provision-
ing services. Invocation of cloud provisioning services
is implemented in a SOA fashion (hence the presence
of Service Broker, Service Bus and Service Registry
components) and is mediated by Connector compo-
nents.

3.3 Application Specification Layer
One of the main strengths of TORCH is the possibil-

ity to specify cloud and platform-agnostic applications
using a fully-compliant TOSCA YAML description.

Application

Dashboard TOSCA Modeller Specification

Layer

: Orchestration

TOSCA Processor BPMN Engine Layer
Service Service Enterprise Service Service Binding
Broker Registry Service Bus Connectors Layer

Fig. 2 TORCH framework architecture

@ Springer

J Grid Computing (2021) 19: 5

Page 7 of 25 5

tosca.nodes.Container.Runtime:
derived_from: >
tosca.nodes.SoftwareComponent
capabilities:
host:
type: >
tosca.capabilities.Container
scalable:
type: >
tosca.capabilities.Scalable

tosca.nodes.Container.Application:

derived_from: tosca.nodes.Root
requirements:
- host:
capability: >
tosca.capabilities.Container
node: >
tosca.nodes.Container.Runtime
relationship: >
tosca.relationships.HostedOn
— storage:
capability: >
tosca.capabilities.Storage
- network:
capability: >
tosca.capabilities.EndPoint

(a)

(b)

Fig. 3 Container.Runtime (a) and Container.Application (b) node types

TOSCA Simple Profile provides a variety of types to
describe VM-based and containerised applications in a
generic and portable fashion. The application specifi-
cation approach herein adopted is solely based on such
normative types, avoiding any redefinition of standard
entities or the employment of ad-hoc types as basic
blocks of an application.

The standard presents two main node types
to describe containerised applications: Con-
tainer.Runtime and Container.Application, which are
illustrated in Fig. 3. The former (Fig. 3a) constitutes
the software component where a container application
runs, while the latter (Fig. 3b) is used to describe a
container entity. In TORCH, single or multiple Appli-
cations running on a Runtime represent a Deployment
Unit (DU).

As discussed in [22], a DU establishes a com-
mon representation for deployable entities across
different container cluster technologies, allowing to
specify container’s properties, volumes and connec-
tions through a generic approach. Later, during the DU
instantiation stage, each of these features would be
mapped to the appropriate resources, according to the
user’s specification. The possibility to map TORCH’s
DU to several existing tools enables container cluster
interoperability within the framework.

While normative types provide sufficient capa-
bilities to define containerised scenarios, we found
that, in the current version, the TOSCA standard
neglects the possibility to distinguish different kinds

of containers in an application. Indeed, no spe-
cific entities, such as Database or WebApplication,
are derived from the basic container node type
tosca.nodes.Container.Application, as opposed to the
node types referring to VM-based pieces of soft-
ware. In order to fill this gap in the standard, we
propose to define nodes that derive from the Con-
tainer.Application node type and provide container-
ised versions of the normative role-specific types.

Figure 4 provides an example of the way this
extension is operated. The main difference lies in
the derived_from field. While the original WebAppli-
cation node (Fig. 4a) derives from the Root node,
the Container. WebApplication node (Fig. 4b) derives
from the Container.Application node. Then, proper-
ties and capabilities of the original type are copied
into the new containerised version. There is no need to
replicate the requirements since containers represent
self-contained pieces of software that, in contrast with
common application software, have no pre-installation
requirements.

We make clear that the employment of the derived
nodes does not affect the orchestration process at all.
Derived nodes work exactly the same way as the stan-
dard Container.Application node, given the fact that
they simply add properties and capabilities but no
additional requirements. This is significant for porta-
bility, as any TOSCA-compatible runtime would be
able to execute the derived nodes as standard container
applications. However, we believe that the possibility

@ Springer

5 Page 8 of 25

J Grid Computing (2021) 19: 5

tosca.nodes.WebApplication:
derived_from: tosca.nodes.Root
properties:
context_root:
type: string
capabilities:
app_endpoint:
type: >
tosca.capabilities.Endpoint
requirements:

tosca.nodes.Container.WebApplication:
derived_from: >
tosca.nodes.Container.Application
properties:
context_root:
type: string
capabilities:
app_endpoint:
type: >
tosca.capabilities.Endpoint

(a)

(b)

Fig. 4 Standard TOSCA WebApplication node type (a) and our containerised extension, Container. WebApplication (b)

to use role-specific containers increases the expres-
siveness of an application description.

In order to establish connections between contain-
ers in our application description, two DU nodes are
required: the “source node”, which has a requirement
specifying a tosca.relationships.ConnectsTo relation,
and a “target node”, with endpoint capabilities. A
link is created when the source’s requirement points
to the target node. This link, which is first estab-
lished in the application specification, would later
be interpreted as a port to expose, for the tar-
get node, and as a container link, for the source
node.

A DU can also be equipped with persistent stor-
age capabilities through the support of a volume. In
our application description, volumes work similarly to
container’s connections. The source node, which is the
one being provided with the additional storage, spec-
ifies a tosca.capabilities.Storage requirement, which
must be fulfilled by the target node. The resource
instantiation for the storage and the volume bindings
are automatically managed by TORCH at a later stage
of the orchestration process.

An example of our approach is presented in
Fig. 5. The Wordpress container node type (Fig. 5a)
is defined using the extended Container.WebAp-
plication type and can be employed to describe
a Wordpress container in a scenario (Fig. 5b).
The derivation from Container.WebApplication helps
to specify the role that the container would
play in the overall application. The example also
presents a WORDPRESS_DB_HOST requirement that
could be used to establish a connection to a
database. Such requirement could be naturally sat-
isfied either by a Container.Database node or
by any Container.Application node possessing the
tosca.capabilities.Endpoint.Database capability.

A TOSCA YAML application can be sketched
using any text editor. To facilitate the process of cre-
ating a scenario and reduce the framework learning
curve, TORCH provides a graphical tool to sketch
YAML applications. The TOSCA Modeller, which is
accessible from the Dashboard, allows to draw an
application topology as a graph and, then, automati-
cally convert it into a TOSCA Simple Profile template
and download the resulting file(s).

derived_from: >
requirements:
— WORDPRESS_DB_HOST:
capability: >

relationship: >

tosca.nodes.Container.WebApplication.Wordpress:

tosca.nodes.Container.WebApplication

tosca.capabilities.Endpoint.Database

tosca.relationships.ConnectsTo

wordpress_container

Container.WebApplication.Wordpress

Requirements

R
Endpoint
WORDPRESS_DB_HOST:
mysql_container
Container
host: wordpress_du

Lifecycle.Standard

create: wp_image ‘

(a)

(b)

Fig. 5 Wordpress container node type definition (a) and instance example (b)

@ Springer

J Grid Computing (2021) 19: 5

Page 9 of 25 5

The Dashboard is the main endpoint for the cloud
users to interact with the framework. After complet-
ing the registration process, every user gets access to
a management panel which allows to create/upload
new applications and monitor the deployment of the
existing ones.

In conformance with the standard, uploading a new
application expects a YAML or CSAR file which
is straightaway validated by TORCH before being
pushed to the user applications’ database. Then, it is
possible to deploy the application from a dedicated
panel. At the moment of starting the deployment,
the cloud user is required to provide a few deploy-
ment properties, such as cloud provider, container
technology (where necessary), and retry settings.

The TOSCA YAML application specification,
along with the deployment properties, are sent to the
TOSCA Processor, which will process them and start
the orchestration process. Finally, once the deploy-
ment process is launched, the provisioning status is
monitorable from the application-dedicated panel.

3.4 Orchestration Layer

The TOSCA Processor (see Fig. 2) allows to convert
TOSCA YAML templates into BPMN Data Inputs
to configure pre-modelled BPMN models that the
BPMN engine executes. These models define a work-
flow of fault-tolerant provisioning activities that can
detect faults and, consequently, react in order to pre-
serve the continuity of the provisioning process. All
recoverable faults are autonomously managed by the

process tasks, resulting in a minimised recourse to
human intervention (referred to below as escalation).

In our previous work [20], we reviewed the poten-
tial faults which may occur at both provider side and
client side. Depending on their nature, while some
faults might be transient and hence recoverable by
retrying the faulty operation, some others might be
permanent thus requiring human intervention.

Based on the requirements for fault management
services, we devised a set of BPMN provisioning
models and extended them to support application
deployments on container clusters. In Fig. 6, the over-
all service provision workflow is depicted. The input
to the diagram is the set of all TOSCA nodes as pro-
duced by the TOSCA Processor. Originally, a TOSCA
node was either a cloud resource or a software pack-
age. Afterwards, we expanded the BPMN plans for
our purpose, modelling a workflow path for deploy-
ment unit nodes.

The diagram is composed of a parallel multi-
instance sub-process, i.e., a set of sub-processes
(called “Instantiate Node”) each processing a TOSCA
node in a parallel fashion. Depending on the TOSCA
node type, a sub-process can proceed to a ‘“‘create
cloud resource”, a “create deployment unit’, or a
“deploy package” sub-process. In these sub-processes,
whenever an error is detected, an escalation is thrown
by the relative “escalation end event” (“cloud resource
error”, “deployment unit error”, or “package error’)
in the parent sub-process (“Instantiate Node”). The
selective escalation was conceived to end only the
faulty “Instantiate Node” sub-process and keep all

= Instantiate Node

=

node

cloud resource

[cloud resource]

=
A node
" [deployment unit]====sfroreeese e >1

begin deployment un|

node package

[<cloud resource

- p-I<deployment unit

[package]

cloud resource
any error error

any error 7 AN
create escalation ‘Q:A;,’ > @
error

escalation

deployment unit
any error error

®W—®

create

O —O

complete

deploy
<package>

any error package
error

Fig. 6 Overall provision workflow

@ Springer

5 Page 10 of 25

J Grid Computing (2021) 19: 5

other sub-processes alive and running, while the faulty
sub-process is being recovered.

For the sake of brevity, the workflows of the
“create cloud resource” and “deploy package” sub-
processes were omitted. We refer the reader to our
previous work [20, 21] for further details. In addition
to reporting the BPMN provisioning models for cloud
resources and packet-based services, we presented the
BPMN Choreography and Collaboration diagrams for
a simple WordPress use case showing how individual
components interact with each other.

In Fig. 7, the detailed workflow for a deployment
unit node is depicted. The top pool called “Node
Instance” represents the pool of all instances of either
the “create cloud resource” sub-process or the “create
deployment unit” sub-process, which are running in
parallel with the “create deployment unit” sub-process
being analysed. The bottom pool called “Container
Cluster Service Connectors” represents the pool of
the software connectors deployed on the Service Bus.
In the middle pool, the sequence of tasks carried
out to create and instantiate a deployment unit are
depicted.

The creation of a deployment unit starts with a
task awaiting notifications from the preceding sub-
processes, which may consist of the “create cloud
resource” sub-process for the creation of the cluster,
in case this was not instantiated before, or other “cre-
ate deployment unit” sub-processes. A service task
will then trigger the actual instantiation by invok-
ing the appropriate Connector on the Service Bus.
If a fault occurs, it is immediately caught and the
entire sub-process is cancelled. Following the path

up to the parent process, an escalation is engaged. If
the creation step is successful, a “wait-until-created”
sub-process is activated.

Checks on the status are iterated until the cluster
platform returns an “healthy status” for the deployed
instance. The ‘“check deployment unit create status”
service task invokes the Connector on the Service Bus
to check the status on the selected swarm service.
The deployment unit’s status is strongly dependent
on the hosted containers’ status. However, container
cluster platforms automatically manage the life-cycle
of containers, then the check is executed to detect
errors which are strictly related to deployment units’
resources.

Checking periods are configurable, so is the time-
out on the boundary of the sub-process. An error event
is thrown either when the timeout has expired or when
an explicit error has been signalled in response to a
status check request. In the former case, the escala-
tion is immediately triggered; in the latter case, an
external loop will lead the system to autonomously re-
run the whole deployment unit creation sub-process
a configurable number of times, before yielding and
triggering an escalation event. Moreover, a compen-
sation mechanism (“dispose deployment unit” task)
allows to dispose of the deployment unit, whenever a
fault has occurred.

Lastly, the “configure deployment unit” task may
be invoked to execute potential configuration opera-
tions on the deployed containers. When the workflow
successfully reaches the end, a notification is sent.
Otherwise, the occurred faults are caught and handled
via escalation.

| Node Instance

<deployment unit>
dispose

@@

g
decrement
retry counter

<deployment unit>
create error

=
node
[deployment unit]]

<deployment unit>
Create start

)

pz

await create
notifications
[l

<deployment
unit> _

create <deployment unit>

& dispose
- <deployment
unit=
«

wait until created

<deployment unit>
create timeout

create
timeout

create

check period error

ﬁconﬂgure

<deployment
unit> I <deployment unit>|
error "#30Y

configuration

error

g ¢ v

Container Cluster Service Connectors

Fig. 7 Deployment Unit provision workflow

@ Springer

J Grid Computing (2021) 19: 5

Page 11 of 25 5

3.5 Service Binding Layer

The Service binding layer manages the provisioning
of all the resources and services needed to deploy an
application. It consists of four components: Service
Bus, Service Registry, Service Broker, and Service
Connectors.

The Enterprise Service Bus (ESB) is responsible
for connecting the requests coming from the pro-
visioning tasks with the provisioning services. The
Service Registry is responsible for the registration and
discovery of the service connectors. The Service Bro-
ker is in charge of taking care of the requests coming
from the provisioning tasks.

Service Connectors (SC) are software modules that
include the logic to provision a specific resource or
service, interacting with the external providers. They
provide unified interface models for the invocation
of services, which allow to achieve service location
transparency and loose coupling between provision-
ing BPMN plans and provisioning services. Each
connector implements one of the three interfaces of
SC that are presented in Fig. 8.

Cloud Resource Connectors (Fig. 8a) enable the
provisioning of computational, networking and stor-
age resources from cloud providers, such as AWS
and OpenStack. For containerised applications, the

Instantiate Cluster connector interface provides an
endpoint to deploy different kinds of container clusters
on the cloud. Other generic interfaces comprise the
AddStorage and the InstantiateVM connectors. The
first is a generic connector to cloud storage services,
while the second is used for VM services.

Container Cluster Connectors (Fig. 8b) concern
the deployment of containerised units on different
container cluster platforms. The Instantiate DU inter-
face contains methods to interpret, deploy and con-
figure a DU on specific container-management plat-
forms, such as Kubernetes or Docker Swarm. The
process of interpreting, parsing and processing a
DU is facilitated by an additional software compo-
nent, the DU Translator, that is further described
in Section 4.

Packet-based Connectors (Fig. 8c) implement
interactions with all service providers that provide
packet-based applications. These applications are soft-
ware which should be executed on top of pre-
configured runtime environments. Packets may also
require installation, configuration and starting rou-
tines, which are reflected in the generic deployment
life-cycle of a packet, which is organised into create,
configure and start operations.

In general terms, all the connectors implement-
ing a certain interface hold the same provisioning

Cloud Resource Connectors ‘

Instantiate .
Cluster

Add Storage ° B (]

Container Cluster Connectors‘

Instantiate DU| e

Instantiate Instantiate Instantiate Add Add
Swarm Kubernetes| AWS Openstack
Cluster Cluster Cluster Storage Storage

Add Instantiate Instantiate Instantiate
Swarm Kubernetes
Storage DU DU DU

(a)

(b)

Packet-based Connectors‘

Create ° Configure| e Start °
S
[o8] [ws] (o8] [ws] (o8] [ws]
Create Create Create Configure Configure Configure Start Start Start
mysq|l apache2 mysq|l apache2 mysq|l apache2

Fig. 8 Service connectors

(©)

@ Springer

5 Page 12 of 25

J Grid Computing (2021) 19: 5

Fig. 9 Modeller sketching
a simple
Wordpress-MySQL

& TORCH

Generate YAML

+ Upload TOSCA Templats

containerised app

mysql_container

= HostedOn

ConnectsTo

wp_container

§ HostedOn

“.

logic. The difference among them lies in the imple-
mentation of the interface methods that should match
the correct cloud, container-cluster or packet-service
API. For example, in order to instantiate a DU on
Kubernetes a connector should implement the cre-
ate, check and configure DU methods (see Section 4
for more details). These would include the code that
communicates with the Kubernetes API to accomplish
the deployment of the DU, according to the “create
deployment unit” BPMN workflow.

At registration time, each Connector has to provide
the Service Registry with all the information regarding
the service being provided, such as a description, func-
tional and non-functional properties of the service, and
the URL. At the provisioning stage, the Service Bro-
ker attempts to meet the expectations of the requestors
by querying the Service Registry and selecting the
best-fitting Connectors. Finally, when a SC is invoked
to provision a resource, the implemented methods
from the connector interface are sequentially called,
according to the BPMN workflow.

4 TORCH Prototype Implementation

The aim of this section is to describe the details of
the implementation, providing a technical overview of
the different components of TORCH. The code for the
implementation is publicly available on GitHub.'

4.1 Application Specification Layer

The Dashboard is an interactive tool that simplifies
the management of the deployments. It comprises

! https://github.com/unict-cclab/TORCH

@ Springer

two main components: a VueJS-based front-end GUI,
which provides graphical tools to operate with the
framework, and an SQL database, where it stores users
and their respective templates and deployed applica-
tions. After registering into the system, a user gains
access to several services, which include the possi-
bility to model a TOSCA template, deploy a new
application or monitor a former deployment.

As for the template modelling, it is possible to
develop a new TOSCA template using the Mod-
eller, which is a web-based tool that allows to
graphically create, manipulate and, finally, generate
a TOSCA Simple Profile customised template. As
depicted in Fig. 9, the Modeller includes a graph
visualiser to display the topology of the sketched
application in real-time. Simple buttons are used to
invoke forms to add either a node or a relation-
ship between existing nodes to the topology. Finally,
the Generate YAML button invokes the processing
of the graph and the sketched template YAML is
outputted.

After a YAML application is uploaded into the
system, it is possible to visualise its topology, in
the format it would be deployed, and provide some
deployment properties that characterise the provision-
ing process. These features are shown in Fig. 10,
where the deployment panel for a Wordpress-MySQL
scenario is shown. On the right, some deployment
properties are visible: the parameters ‘Retry counter’,
‘Check period’ and ‘Create timeout’ represent the
retry settings to control the BPMN Engine behaviour
(see Section 3.4), while the ‘Cluster Platform’ param-
eter allows to choose the desired container cluster
technology among the available ones. This setting is
applied to all the Deployment Units in the application
scenario.

https://github.com/unict-cclab/TORCH

J Grid Computing (2021) 19: 5

Page 13 of 25 5

Fig. 10 Deployment panel
for a Wordpress-MySQL
containerised app

& TORCH

wordpress

After starting the deployment of an application, the
Dashboard allows to monitor the deployment process.
In order to do so, it communicates with the BPMN
Engine through the REST APIs and displays the data
to the user, as in Fig. 11. For each entity of the sce-
nario to be deployed, one of the following states is
associated:

— Success: the entity is successfully deployed.

— InProgress: the entity is being deployed.

— Waiting: the entity needs to wait for some entities
before being deployed.

— Failed: it was not possible to successfully deploy
the entity.

4.2 Orchestration Layer

All the requests from the Dashboard that require pro-
cessing or validating a YAML template are fulfilled
by the TOSCA Processor. This component has a dual
responsibility: the validation of the scenario, which
must comply with all the TOSCA-standard require-
ments, and the parsing of the corresponding TOSCA
graph, which comprehends defining the deployment
order of the DUs based on template dependencies
and extracting the properties of each DU. The imple-
mentation of the TOSCA Processor heavily relies on
the OpenStack TOSCA-Parser?, but introduces sev-
eral novelties: an ad-hoc parsing of the properties and
the artifacts of a node, the capability to work with
encoded-file formats (i.e. Base64Encoded), and the
generation of a JSON output.

The introduction of such novelties enables the inte-
gration of this component as a web-based service
in our framework. The JSON output generated by
the Processor encapsulates all the information of a

Zhttps://wiki.openstack.org/wiki/TOSCA-Parser

.
® Swarm
@ wordpress_deployment_unit
Retry counter 1
4
H 0
E seconds.

+ Upload TOSCA Template | +

Control Panel

Cluster Platform

£ mysql_deployment_unit

YAML template in a compact format. One example
of this approach is illustrated in Figs. 12 and 13,
where we present the YAML template for a Wordpress
Deployment Unit and its JSON processed version,
respectively.

The wordpress_deployment_unit node is translated
into a JSON object of type du which encloses the
wordpress_container object. The properties, the capa-
bilities and the artifacts adopted in the container
YAML are mapped into the container object proper-
ties in the JSON. Finally, the external requirements of
the Wordpress container are interpreted and copied in
the create requirements section of the JSON DU and
in the properties of the container object. If any volume
is expected in the YAML, that would be included in
the volumes list of the JSON. The Processor-generated
description can then be fed into a BPMN plan as a
Data Input, along with the deployment properties.

Nowadays, most workflow engines directly support
the execution of BPMN processes. However, work-
flow engines usually implement only a subset of the
language features and they do it differently. We chose
Flowable? as BPMN engine. The following adjust-
ments were necessary for the BPMN workflows to be
executable by Flowable. Firstly, each process execu-
tion must be associated with a business key, which
allows to identify and filter all tasks that are part of
a process instance. Then, all the information concern-
ing the process instance is usually stored and managed
through process variables.

By way of illustration, Fig. 14 shows how the pro-
vision workflow for a deployment unit (depicted in
Fig. 7) was modelled in Flowable. Since multiple
installation instances may be involved in a provi-
sion process, synchronisation is necessary as TOSCA

3https://www.flowable.org/

@ Springer

https://wiki.openstack.org/wiki/TOSCA-Parser
https://www.flowable.org/

5 Page 14 of 25

J Grid Computing (2021) 19: 5

Fig. 11 Deployment
monitoring for a
Wordpress-MySQL
containerised app

& TORCH

wordpress

nodes may have precedence constraints. For that rea-
son, the creation of a deployment unit starts with the
“await notifications” subprocess modelled as a call
activity (see Fig. 15a).

This subprocess comprises, in turn, a parallel multi-
instance subprocess waiting for notifications from the
preceding instances. Depending on the number of DU
requirements, each notification is collected by means
of the “receive message” call activity referencing the
process in Fig. 15b. Here, an intermediate message
event catches messages with a specified name. In
addition to notifications, process variables are also
collected via the “merge” script task in Fig. 15a.

@ wordpress_deployment_unit

v e

Control Panel

Deployment Unit Status

wordpress_deployment_unit WAITING

mysql_deployment_unit WAITING

g mysql_deployment_unit

Once all the DU requirements are satisfied, an
HTTP task invokes an appropriate Connector on the
ESB in order to set off the instantiate process. When-
ever the creation is faulty, an error event is thrown and
then caught in the parent process. If no faults occur,
recurrent checks on the DU are performed until the lat-
ter becomes available for use. Once again, an HTTP
task invokes the Connector on the ESB to check the
resource status on the selected container cluster plat-
form. Upon successful completion of the DU status
check, the configuration step can take place whenever
configuration operations need to be executed on the
deployed containers. In the absence of any errors, a

wordpress_container:

requirements:
— host: wordpress_deployment_unit

capabilities:
app_endpoint:
properties:
port: 80
artifacts:
wp_image:
file: wordpress

repository: docker_hub
interfaces:
Standard:
create:
implementation: wp_image
inputs:

wordpress_deployment_unit:
type: tosca.nodes.Container.Runtime

type: tosca.nodes.Container.WebApplication.Wordpress

— WORDPRESS_DB_HOST: mysgl_container

type: tosca.artifacts.Deployment.Image.Container.Docker

port: { get_input: wp_host_port
WORDPRESS_DB_PASSWORD: { get_input: [mysqgl_pswd, password] }

}

Fig. 12 YAML template for a Wordpress deployment unit

@ Springer

J Grid Computing (2021) 19: 5 Page 15 of 25 5

"name":"wordpress_deployment_unit",

lltypell : lldull’

"requirements": {
"create":["mysgl_deployment_unit.configure"],
"configure":[]

}!

"containers": [

{
"name" :"wordpress_container",
"category":"wa",
"image":"wordpress",
"volumes":[],
"properties":{
"port":"80:80",
"WORDPRESS_DB_PASSWORD":"root",
"WORDPRESS_DB_HOST":"mysqgl_deployment_unit"
}l
"configuration_script":"no.configuration.script"
}

:| 4

"properties":{}

Fig. 13 Processor-generated JSON for a Wordpress deployment unit

decrement x <
retry counter N

<DU> create timeout

DU create start v‘@
() wait until created N
{\ / create error create timeout

<DU=> create error

check |period

wip

«

«
await any error| r check create
notifications P> merge create map— create <DU> — _ status
=
®
any grror
create error
<DU> configure error
®
& P (<)
any error
O‘— <DU> ready <@——— configure <DU>
Fig. 14 Deployment Unit provision workflow in Flowable
Fig. 15 (a) Await
Notifications and (b) subProcess
Receive Message 5

workflows in Flowable N\ - -
K‘ /—_» C)_F r;%‘;i';’;e —_— merge —DO —()

(@)
O &
(b)

@ Springer

5 Page 16 of 25

J Grid Computing (2021) 19: 5

1 import it.unict.vertx.esb.du.InstantiateDU;

2 | import it.unict.vertx.esb.common.Translator;

3 | import io.kubernetes.client.ApiClient;

4

5 | public class InstantiateDUKubernetes implements InstantiateDU

6 | {

7 @Override

8 public void createDU(String nodeJson)

9 {

10 String duSpecification = Translator.translate (nodeJson,

11 K8sTranslatorPlugin.class);
12 ApiClient k8sClient = initialiseClient(...);

13 String deploymentId = deployDu(k8sClient, duSpecification);
14 return deploymentId;

15 }

16 @Override

17 public void checkDU(...) {

18 @Override

19 public void configureDU(...) { }

20 |}

Fig. 16 Skeleton of the InstantiateDU connector for Kubernetes

service task sends a notification to all of the blocked
instances.

4.3 Service Binding Layer

Service Connectors are Java-based pieces of software
that communicate with the rest of the architecture
using the Vert.x* REST APIL Each of them imple-
ments one of the three main interfaces presented in
Section 3.5. The interfaces follow the flow of the
BPMN plans orchestrated by the Engine, defining the
methods that would be invoked at provisioning time.

In order to grant loose coupling between provision-
ing BPMN plans and provisioning services, Connec-
tors are provider-specific. From a practical perspec-
tive, this means that different implementations of the
same interface would be needed to work on different
providers.

For instance, to deploy a DU on the Kubernetes
platform, an implementation of the generic Instanti-
ateDU is needed. Figure 16 shows the skeleton of a
potential implementation. The three methods creat-
eDU, checkDU and configureDU, which conform with
the HTTP tasks of the create DU workflow (Fig. 14),
need to communicate with the Kubernetes API to per-
form the provisioning operations. To deploy a DU on a
different container cluster technology, a new Service
Connector should be implemented, having the same
three methods just seen, but including mechanisms to

“https://vertx.io/

@ Springer

communicate with the chosen container cluster API.
For the sake of clarity, a potential implementation of
the createDU method is provided in the Figure.

In order to work with the generic Deployment
Unit entity, a platform-specific Container Cluster Ser-
vice Connector needs to translate from the BPMN
Engine data inputs to the platform-specific applica-
tion description format. To furnish a reusable asset,
we provide a generic TranslatorPlugin Java
interface. This interface contains the translateDU
method that must be implemented to generate a DU
specification in the corresponding Service Connector
format.

To further facilitate the creation of translation plu-
gins, we also included a DU Translator that can parse
the data inputs provided by the BPMN Engine into a
DeploymentUnit Java object. This enables to imple-
ment a translation plugin with no need to know the
JSON data-input specification format. An example
of how to use the Translator and translator plugins
is presented at line 10 of Fig. 16, where the JSON
description of a node is parsed and translated to the
Kubernetes application specification format.

5 Use Case

The application modelling use case taken into consid-
eration is Sock Shop>, which is an open-source web

Shttps://microservices-demo.github.io/

https://vertx.io/
https://microservices-demo.github.io/

J Grid Computing (2021) 19: 5

Page 17 of 25 5

application simulating the user-facing part of an e-
commerce website that sells socks. It is a well-known
multi-component demo application in the microser-
vice landscape, which is intended to aid the demon-
stration and testing of microservice and cloud native
technologies.

The Sock Shop application is intentionally poly-
glot, packaged in Docker containers and composed of
13 components. The Front-end displays a graphical
user interface for e-shopping socks. Pairs of services
and databases are used for storing and managing
the catalogue of available socks (i.e., Catalogue and
Catalogue-DB), the users (i.e., Users and Users-DB),
the users’ shopping carts (i.e., Carts and Carts-DB),
and the users’ orders (i.e., Orders and Orders-DB).
Payment and Shipping services simulate the payment
and shipping of orders, respectively. The Queue is a
message queue that is filled with shipping requests by
the Shipping service. The shipping requests are then
consumed by the Queue-Master to simulate the actual
shipping of orders.

Figure 17 displays how the Sock Shop application
has been represented in TOSCA. All the contain-
ers are implemented using the Container.Application
type or an extension of it. In particular, a few
nodes take advantage of the expressiveness of
the Container.Application extensions proposed in
Section 3.3: the Front-end, which adopts the Con-
tainer. WebApplication type, and the database-typed
containers, which extend from the proposed Con-
tainer.Database type. Furthermore, each of the nodes
presents one or more dependencies: all of them
have a HostedOn relationship with respect to a dedi-
cated Container.Runtime node, which in the Figure is
depicted as part of the node itself, and some nodes
have DependsOn relationships, which are used to
describe the links between the nodes and define a
deployment order.

We adopted the Sock Shop scenario as an exem-
plary use case to assess the capabilities and the
performance of TORCH. Our testbed consists of a
machine running the full framework, along with the

front-end
[e J——
Container.WebApplication
HostedOn

Container.Runtime

orders payment user catalogue carts
Type Type Type Type Type
Container.Application Container.Application Container.Application.UserApp Container.Application Container.Application
Container.Runtime Container.Runtime Container.Runtime Container.Runtime Container.Runtime
c
o
2
B
e
3
-3
o
(]
user-db catalogue-db carts-db
orders-db Type '7 W W
Type Container.Database.MongoDB Container.Database.MySQL Container.Database.MongoDB
Container.Database.MongoDB Hostedon HostedOn HostedOn
HostedOn Container.Runtime Container.Runtime Container.Runtime
Container.Runtime

shipping queue
=]) [oo
Container.Application —.u')s Container.Application.RabbitMQ —'u')s
@7 HostedOn
Container.Runtime Container.Runtime

Fig. 17 Sock Shop container-based application representation

queue-master
Type
Container.Application

HostedOn

Container.Runtime

@ Springer

5 Page 18 of 25

J Grid Computing (2021) 19: 5

Table 1 Steady state resource statistics about the testing system

CPU avg MEM avg NET IN avg NET OUT avg
no activity 0.39% 1.53 GiB 32.9 kbps 0 kbps
TORCH running 0.94% 4.89 GiB 33.4 kbps Okbps

monitoring tools to collect some metrics about the
system performance.

We used the Prometheus® toolkit together with the
Node Exporter’ metrics collector to monitor the CPU,
the memory and the network usage of the system. The
machine used for the tests is equipped with an Intel(R)
Core(TM) i7-4770 processor, 16 GB RAM, a 1 TB
hard-drive and a 128 GB SSD, and it runs the Ubuntu
16.04 x86-64 Linux distribution.

Table 1 displays the average values for the met-
rics when the machine is found in a steady state with
and without the TORCH framework running. The met-
rics have been collected on a 5-minutes time frame
and averaged over time, to prevent occasional sys-
tem processes from interfering with our analysis. The
table shows that TORCH has a major impact on the
RAM of the system, with around 3.45 GiB employed,
a small impact on the CPU, with an increase of about
0.55% usage, and almost no impact on the network
traffic. This is due to the absence of incoming network
requests when the machine is in a steady state.

Overall, our tests utilise TORCH in an end-to-
end fashion. The testbed machine, hosting the whole
framework, is accessed to upload the Sock Shop sce-
nario and provide any deployment properties, by using
the Dashboard. Then, at the provisioning stage, the
framework communicates with an OpenStack cluster
to accomplish the deployment of the scenario.

The OpenStack cluster is deployed on off-the-shelf
PCs and it consists of two computers: a Controller
node and a Compute node. The Controller is equipped
with an Intel(R) Core(TM) 17-4770S, 8 GB RAM and
a 1 TB hard drive, and it also runs the Heat and
Magnum services. The Compute is equipped with an
Intel(R) Core(TM) 15-4460, 8 GB RAM, a 128 GB
SSD and a 1 TB hard drive. Both nodes run the Ubuntu
Server 18.04 x86-64 Linux distribution.

The deployment of Sock Shop is tested on two dif-
ferent container cluster technologies: Kubernetes and

Shttps://prometheus.io/
"https://github.com/prometheus/node_exporter

@ Springer

Docker Swarm, whose cluster deployments are avail-
able through the OpenStack Magnum service. All the
clusters created for the tests were composed of a mas-
ter node and a slave node, both equipped with 4 GB
RAM and 100 GB of storage.

To communicate with all these platforms, four Ser-
vice Connectors have been implemented: two Open-
Stack InstantiateCluster connectors to create each
of the clusters, using the OpenStack4J library®, the
Kubernetes InstantiateDU connector, using the offi-
cial Kubernetes Java client’, and the Swarm Instanti-
ateDU connector, using the Spotify Docker client!?.

The Sock Shop application has been correctly
deployed on both Kubernetes and Swarm. The deploy-
ment times are shown in Table 2. The table displays
the average times =+ the standard deviation of ten
deployment trials. Data is provided about the total
amount of time needed to complete the deployment,
but we also distinguish the necessary time to create the
container cluster from the time employed to deploy all
the DUs.

In general terms, the deployments are faster on the
Swarm platform. This applies to both the cluster and
the DU deployments, and it is likely due to the major
resource requirements of Kubernetes. We detail the
testbed machine resource usage in Fig. 18. The plots
show the CPU, memory and network traffic states over
time, for Kubernetes and Swarm deployment trials.
We highlight the presence of three operational stages
in the plots: the setup, the cluster creation and the
DU creation. Overall, the performance of the testbed
is very similar for the two container cluster platforms
tested, across all the phases.

The setup stage consists of the pre-deployment
operations that are required to start the orchestration
process, such as the communication of the application
description to the orchestrator and the check of provi-
sioning services that are adequate for the deployment.

8http://www.openstack4j.com/
“https://github.com/kubernetes-client/java
1Ohttps://github.com/spotify/docker-client

https://prometheus.io/
https://github.com/prometheus/node_exporter
http://www.openstack4j.com/
https://github.com/kubernetes-client/java
https://github.com/spotify/docker-client

J Grid Computing (2021) 19: 5

Page 19 of 25 5

Table 2 Deployment average times

Kubernetes Docker Swarm

Value Percentage Value Percentage
create cluster Smin 31s £ 3s 50.22% 4min 3s + 15s 53.29%
create du Smin 28s =+ 8s 49.78% 3min 33s £+ 9s 46.71%
total 10min 59s + 13s Tmin 36s £ 5s 100%

As for the plots, this stage implies a small increase
in the CPU usage and a high peak in the network
transmitted traffic.

The cluster creation phase entails an increase in the
CPU usage, reaching peaks of 2-2.5%. There are no
heavy network requests, but steady spikes are present
in the network plots because of the requests sent
by the orchestrator monitoring the resources’ provi-
sioning status and by the Dashboard monitoring the
deployment state of the DUs.

Finally, in the DU creation stage it occurs the
largest CPU increase over time. This is mainly due
to the parallelism capabilities of TORCH, which is
able to deploy multiple DUs at the same time, exploit-
ing the resource availability of the testbed machine.
The network traffic is mainly busy with the transmis-
sion of monitoring information, even though we can
notice a small increase in the received traffic, likely
due to the numerous parallel incoming connections,

Fig. 18 Testbed machine
resource usage.

(a) Kubernetes deployment.
(b) Swarm deployment

communicating information about the DU deployment
status.

The results of our test show that TORCH is a
computationally inexpensive framework. In our eval-
uation, the CPU usage rarely goes beyond the 5%
threshold and we often find the value to be lower than
3%. From a memory perspective, TORCH requires a
few GiB of RAM for being setup but then, at the pro-
visioning stage, the framework is parsimonious in the
memory management and does not require substan-
tial additional resources. Finally, we noticed a regular
network usage during all the provisioning phases.

Because of hardware constraints, we were able to
test the framework only on single-cluster and single-
scenario use cases. However, looking at the achieved
performance, TORCH promises to efficiently scale
also for the deployment of several applications, con-
currently. Anyway, extensive scalability tests will be
part of our future work.

cPu cPU

DU | Setup | Cluster \ DU

Network Traffic Network Traffic

| Setup |

(2) ()

@ Springer

5 Page 20 of 25

J Grid Computing (2021) 19: 5

6 Related Work

In this section, we position TORCH in respect to other
business-oriented and research projects for orchestrat-
ing multi-component cloud applications with contain-
ers and/or TOSCA.

Cloudify [29] delivers container orchestration inte-
grating multiple technologies and providers. Despite
graphical tools for sketching and modelling an appli-
cation, its data format is based on the TOSCA stan-
dard. Alien4Cloud [52] is an open-source platform
which provides a TOSCA nearly-normative set of
types for Docker support. Kubernetes and Mesos
orchestrators are available through additional plugins.
Both works implement the interoperability between
different clusters and providers by defining complex
sets of nodes in a technology-specific way. Their
TOSCA implementations rely on Domain-Specific
Languages (DSLs) which, despite sharing the TOSCA
template structure, divert from the node type hierar-
chy defined in the standard. With respect to Cloudify,
TORCH focuses on TOSCA-compliant application
descriptions, making no prior assumptions regarding
the technology stack to be established.

Apache ARIA TOSCA [53] is an open-source
framework offering an implementation of the TOSCA
Simple Profile v1.0 specification. Unlike Cloudify
and Alien4Cloud, it provides an extension of TOSCA
normative types for Docker support. Compared to
TORCH, the derived node types still lack the possi-
bility to use role-specific containers (see Section 3.3).
In addition, no cluster orchestrators are natively sup-
ported.

Apache Brooklyn [41] is an open-source frame-
work for modelling, deploying, and managing dis-
tributed applications using declarative blueprints writ-
ten in Brooklyn’s DSL. Brooklyn’s YAML format
follows the CAMP specification, but it uses a few
custom extensions. With respect to TORCH, Brook-
lyn provides no native support for TOSCA yet, even
though some work [54] has been done over the past
years. Containerisation is not supported out of the
box, but it can be integrated via separate projects (e.g,
Cloudsoft Clocker [55]).

Apache Stratos [56] is an open-source PaaS frame-
work which allows developers to build distributed
applications and services. It defines configurations
and applications in a specific JSON format, and lever-
ages Kubernetes as a cluster orchestration framework

@ Springer

in order to provide containerisation. As compared with
TORCH, Stratos does not support either TOSCA or
any containerised clusters other than Kubernetes.

In [57] the authors present MiCADO, an orches-
tration framework which guarantees out-of-the-box
reliable orchestration, by working closely with Swarm
and Kubernetes. Unlike the precedent approaches,
MiCADO does not overturn the TOSCA standard
nodes, but the cluster orchestrator is still hardcoded in
the Interface section of each node of the topology.

TosKer [58] presents an approach which leverages
the TOSCA standard for the deployment of Docker-
based applications. TosKer approach is very different
from the one proposed in this paper, since it does not
provide any automatic provisioning of the deployment
plan and it is based on the redefinition of several nodes
of the TOSCA standard. Clustered scenarios are also
out of the picture, even though some recent work [59]
has been done to deploy applications on top of existing
Docker-based container orchestrators.

In [60] the authors propose a two-phase deploy-
ment method based on the TOSCA standard. They
provide a good integration with Mesos and Marathon,
but they do not either support other containerised clus-
ters or furnish automation for the cluster deployment.

In [61] the authors present a cloud resource deploy-
ment framework which leverages a unified config-
uration knowledge-base, where a process modelling
notation, implemented by extending BPMN, is used
to describe configurations and orchestration of feder-
ated cloud resources. Our approach differs from this
work in two ways. On the one hand, resource mod-
elling is based on TOSCA; on the other one, resource
orchestration is grounded on native BPMN.

In [62] the authors introduce Cafe, a framework
to model, configure and automatically provision com-
posite cloud applications. Based on the application
and variability models, cloud applications can be
provisioned via a generic provisioning flow. Both
TORCH and Cafe exploits pre-modelled configurable
workflows for deployment orchestration. Whereas the
former employs TOSCA-based application modelling
and BPMN-based orchestration, the latter employs
XML-based application modelling and BPEL-based
orchestration.

Other approaches worth mentioning are Open-
TOSCA [63], Cloudiator [64, 65], Roboconf [66],
Indigo-DataClouds [67, 68], MODAC]Iouds [69, 70],
and SeaClouds [71, 72].

J Grid Computing (2021) 19: 5

Page 21 of 25 5

OpenTOSCA is a famous open-source ecosystem
for modelling, deploying and managing TOSCA-
based applications. It mainly consists of the fol-
lowing tools: Winery [73], OpenTOSCA Container
[74] and Vinothek [75]. Winery is a graphical mod-
elling tool to create both TOSCA topology models
and management plans using the workflow language
BPMN4TOSCA [76]. The OpenTOSCA Container
is a runtime environment for the provisioning and
management of TOSCA applications packaged as
CSARs. Applications can be automatically deployed
based on the contained artifacts, the Plan Genera-
tor [77] and the Management Bus [78]. Vinothek
is a self-service portal which enables to list, select
and instantiate TOSCA-based applications. Our work
bears some similarities with OpenTOSCA. Both
TORCH’s Dashboard and Winery allow to model
and/or import/export TOSCA applications as CSARs,
but the former also enables to configure, trigger
and monitor application deployments. Both TORCH
and OpenTOSCA separate management plans (BPMN
plans for the former, BPEL plans for the latter) from
management operations by means of a bus hiding
all the details of the employed technologies. While
TORCH is extensible by adding new Connectors to
the Service Binding Layer, OpenTOSCA is exten-
sible by adding new plugins to the Management
Bus.

Cloudiator is an open-source cross-cloud orches-
tration framework supporting many public and private
cloud platforms. The application description consists
of individual components, which are assembled to
form a full application and run within Docker con-
tainers. Roboconf is an open-source scalable orches-
tration framework for multi-cloud platforms. Many
IaaS providers as well as Docker containers are sup-
ported by using special plugins. Roboconf describe
applications and their execution environments in a
hierarchical way by means of a CSS-inspired DSL.
However, in contrast to TORCH, both Cloudiator and
Roboconf do not comply with either TOSCA or any
other modelling standards.

INDIGO-DataCloud is an open-source data and
computing platform, targeted at scientific commu-
nities, for the automatic distribution of applications
and/or services over a hybrid and heterogeneous set
of lTaaS infrastructures. It adopts an extension of
TOSCA for describing applications and services, and

leverages Docker containers as the preferred under-
lying technology to encapsulate user applications.
INDIGO-DataCloud also provides a good integration
with Mesos and Marathon/Chronos, but it does not
support other containerised clusters.

MODACIouds is an open-source design-time and
run-time platform for developing and operating multi-
cloud applications with guaranteed QoS. Despite
leveraging a Model Driven Engineering (MDE)
approach in order to support interoperability between
cloud providers, no support is provided for TOSCA.
SeaClouds is an open-source middleware solution for
deploying and managing multi-component applica-
tions on heterogeneous clouds. As opposed to MODA-
Clouds, SeaClouds fully supports TOSCA. However,
both works lack a support for Docker containers,
which makes them not suitable for orchestrating the
management of multi-component applications includ-
ing Docker containers.

In summary, all the current works achieve con-
tainer cluster interoperability, or partial interoperabil-
ity, either by linking platform-specific information to
the nodes of the topology template or by redefining
the TOSCA standard nodes. Thus, in order to work
with the above mentioned frameworks, it is necessary
to know in advance both the technological stack and
the framework-specific nodes to use. Our work differ
from all existing works in terms of high interoper-
ability between different technologies and providers,
no overturning of the standard-defined types, and no
prior assumptions about the technology stack to be
established.

7 Conclusion and Future Work

The ever-growing popularity of cloud computing
among both research and industry communities has
fostered a business landscape populated by quite a
number of cloud providers, competing with each other
but offering similar services in terms of functional-
ity. Customers usually entrust cloud service brokers to
pick the cloud services that best suit their own needs
and to properly manage the life-cycle of their cloud
applications. In the last decade, a number of cloud
orchestration tools have appeared on the scene promis-
ing to facilitate the operations underlying the entire
application’s life-cycle management.

@ Springer

5 Page 22 of 25

J Grid Computing (2021) 19: 5

In this paper we have introduced TORCH, a
TOSCA-enabled cloud orchestrator capable of seam-
lessly interfacing with multiple providers of cloud
resources and provisioning services. With respect to
other cloud orchestrators, TORCH stands out for its
innovative approach that abstracts the provisioning
workflow away from the actual invocation of the pro-
visioning services. This separation enables the “design
once, deploy anywhere” pattern, according to which
the application provisioning workflow is decoupled
from the specific cloud provider’s API, while ad-
hoc developed software connectors are responsible
for invoking actual proprietary API. Exploiting the
separation of concerns, we were able to entrust the
provisioning activities to an off-the-shelf workflow
engine.

The benefit of this approach is two-fold: code
development efforts just need to focus on the imple-
mentation of connectors; increased workloads can
be easily accommodated, since the workflow engine
natively exhibits scaling capabilities. A software pro-
totype of the framework was developed and experi-
ments were conducted on a small-scale test-bed. Pre-
liminary results prove the viability of the approach.
In the future, tests will be extended to different cloud
providers and carried out in a larger environment to
assess the maturity of the solution at industrial scale.

Acknowledgments This work has been partially funded by
University of Catania through the research project “MANGO -
Piaceri 2020-2022 - Linea 2”.

Funding Open Access funding provided by Universit degli
Studi di Catania

Data Availability Data sharing not applicable to this article as
no datasets were generated or analysed during the current study

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated oth-
erwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

@ Springer

References

10.

12.

13.

. Baur, D.,

. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghal-

sasi, A.: Cloud computing, -the business perspective. Decis.
Support. Syst. 51(1), 176 (2011). https://doi.org/10.1016/j.
dss.2010.12.006

. Dikaiakos, M.D., Katsaros, D., Mehra, P., Pallis, G., Vakali,

A.: Cloud Computing: Distributed Internet Computing
for IT and Scientific Research. IEEE Internet Computing
13(5), 10 (2009). https://doi.org/10.1109/MIC.2009.103

. Flexera: Flexera 2020 State of the cloud report. https://info.

flexera.com/SLO-CM-REPORT-State-of-the-Cloud-2020.
Last accessed on 18-06-2020 (2020)

. Duan, Y., Fu, G., Zhou, N., Sun, X., Narendra, N.C.,

Hu, B.: Everything as a Service (XaaS) on the Cloud:
Origins, current and future trends. In: 8th International
Conference on Cloud Computing, pp. 621-628 (2015).
https://doi.org/10.1109/CLOUD.2015.88

. Ranjan, R., Benatallah, B., Dustdar, S., Papazoglou, M.P.:

Cloud resource orchestration programming: Overview,
issues, and directions. IEEE Internet Computing 19, 46
(2015). https://doi.org/10.1109/MIC.2015.20

Seybold, D., Griesinger, F., Tsitsipas,
A., Hauser, C.B., Domaschka, J.: Cloud Orchestra-
tion Features: Are Tools Fit for Purpose? In: 2015
IEEE/ACM 8th International Conference on Utility and
Cloud Computing, UCC, 2015, pp. 95-101 (2015).
https://doi.org/10.1109/UCC.2015.25

. Bousselmi, K., Brahmi, Z., Gammoudi, M.M.: Cloud

services orchestration: A comparative study of exist-
ing approaches. In: IEEE 28th International Confer-
ence on Advanced Information Networking and Applica-
tions Workshops, (WAINA 2014), pp. 410416 (2014).
https://doi.org/10.1109/WAINA.2014.72

. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg,

A.: Towards model-driven provisioning, deployment, mon-
itoring, and adaptation of multi-cloud systems. In: 2013
IEEE Sixth International Conference on Cloud Computing,
pp- 887-894 (2013). https://doi.org/10.1109/CLOUD.2013.
133

. Petcu, D.: Consuming resources and services from multi-

ple clouds. Journal of Grid Computing 12(2), 321 (2014).
https://doi.org/10.1007/s10723-013-9290-3

Petcu, D., Vasilakos, A.: Portability in Clouds:
Approaches and Research Opportunities. Scalable Com-
puting: Practice and Experience 15(3), 251 (2014).
https://doi.org/10.12694/scpe.v15i3.1019

. Ferry, N., Rossini, A.: CloudMF: Model-driven manage-

ment of multi-cloud applications. ACM Tran. Internet
Technol 18(2), 16 (2018). https://doi.org/10.1145/3125621
OASIS: Cloud application management for platforms ver-
sion 1.1. http://docs.oasis-open.org/camp/camp-spec/v1.1/
camp-spec-vl1.l.html. Last accessed on 15-02-2017 (2014)
OASIS: Topology and orchestration specification for cloud
applications version 1.0. http://docs.oasis-open.org/tosca/
TOSCA/v1.0/0s/TOSCA-v1.0-0s.html. Last accessed on
10-04-2018 (2013)

. Bellendorf, J., Mann, Z.A.: Cloud topology and orches-

tration using TOSCA: A systematic literature review. In:
Kritikos, K., Plebani, P., de Paoli, F. (eds.) Service-Oriented

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/10.1016/j.dss.2010.12.006
https://doi.org/10.1109/MIC.2009.103
https://info.flexera.com/SLO-CM-REPORT-State-of-the-Cloud-2020
https://info.flexera.com/SLO-CM-REPORT-State-of-the-Cloud-2020
https://doi.org/10.1109/CLOUD.2015.88
https://doi.org/10.1109/MIC.2015.20
https://doi.org/10.1109/UCC.2015.25
https://doi.org/10.1109/WAINA.2014.72
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1109/CLOUD.2013.133
https://doi.org/10.1007/s10723-013-9290-3
https://doi.org/10.12694/scpe.v15i3.1019
https://doi.org/10.1145/3125621
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

J Grid Computing (2021) 19: 5

Page 23 of 25 5

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

and Cloud Computing, pp. 207-215. Springer International
Publishing (2018). https://doi.org/10.1007/978-3-319-998
19-0_16

Pahl, C.: Containerization and the PaaS Cloud. IEEE Cloud
Computing 2(3), 24 (2015). https://doi.org/10.1109/MCC.
2015.51

Ruan, B., Huang, H., Wu, S., Jin, H.: A performance study
of containers in cloud environment. In: Wang, G., Han, Y.,
Martinez Pérez, G. (eds.) Advances in Services Comput-
ing, pp. 343-356. Springer International Publishing (2016).
https://doi.org/10.1007/978-3-319-49178-3_27

Docker Inc.: Docker Swarm. https://docs.docker.com/
engine/swarm/. Last accessed on 25-06-2020

C.N.C. Foundation. Kubernetes. https://kubernetes.io/. Last
accessed on 25-06-2020

Apache Software Foundation. Mesos. http://mesos.apache.
org/. Last accessed on 25-06-2020

Calcaterra, D., Cartelli, V., Di Modica, G., Tomarchio, O.:
Exploiting BPMN features to design a fault-aware TOSCA
orchestrator. In: Proceedings of the 8th International
Conference on Cloud Computing and Services Science
(CLOSER 2018) (Funchal-Madeira (Portugal)), pp. 533—
540 (2018). https://doi.org/10.5220/0006775605330540
Calcaterra, D., Cartelli, V., Di Modica, G., Tomarchio, O.:
Implementation of a fault aware cloud service provisioning
framework. In: 2018 IEEE 6th International Conference on
Future Internet of Things and Cloud (FiCloud), pp. 9-16
(2018). https://doi.org/10.1109/FiCloud.2018.00010
Calcaterra, D., Di Modica, G., Mazzaglia, P., Tomarchio,
O.: Enabling container cluster interoperability using a
TOSCA orchestration framework. In: Proceedings of the
10th International Conference on Cloud Computing and
Services Science (CLOSER 2020), pp. 127-137 (2020).
https://doi.org/10.5220/0009410701270137

Weerasiri, D., Barukh, M.C., Benatallah, B., Sheng, Q.Z.,
Ranjan, R.: Taxonomy and survey of cloud resource orches-
tration techniques. ACM Comput. Surv. 50(2), 26:1 (2017).
https://doi.org/10.1145/3054177

Amazon. CloudFormation. https://aws.amazon.com/
cloudformation/. Last accessed on 25-06-2020

Flexera software. Cloud management platform. https://www.
flexera.com/products/agility/cloud-management-platform.
html. Last accessed on 25-06-2020

RedHat. CloudForms. https://access.redhat.com/products/
red-hat-cloudforms. Last accessed on 25-06-2020

IBM. Cloud Orchestrator. https://www.ibm.com/us-en/
marketplace/deployment-automation. Last accessed on 25-
06-2020

OpenStack. Heat. https://wiki.openstack.org/wiki/Heat.
Last accessed on 25-06-2020

GigaSpaces Technologies. Cloudify. https://cloudify.co/.
Last accessed on 25-06-2020

Red Hat. Ansible. https://www.ansible.com/. Last accessed
on 25-06-2020

Chef. Chef. https://www.chef.io/. Last accessed on 25-06-
2020

Puppet. Puppet. https://puppet.com/. Last accessed on 25-
06-2020

SaltStack Inc. Salt.
accessed on 25-06-2020

https://www.saltstack.com/. Last

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

Morris, K. Infrastructure as Code: Managing Servers in the
Cloud, 1st edn. O’Reilly Media, Inc, Newton (2016)
HashiCorp. Terraform. https://www.terraform.io/.
accessed on 25-06-2020

OASIS: Web services business process execution lan-
guage version 2.0. https://www.oasis-open.org/committees/
wsbpel/. Last accessed on 10-04-2018 (2007)

OMG: Business Process Model and Notation (BPMN 2.0).
http://www.omg.org/spec/BPMN/2.0/. Last accessed on 10-
04-2018 (2011)

Vargas-Santiago, M., Hernandez, S.E.P., Rosales, L.A.M.,
Kacem, H.H.: Survey on web services fault tolerance
approaches based on checkpointing mechanisms. JSW
12(7), 507 (2017). https://doi.org/10.17706/jsw.12.7.507-
525

Kolb, S., Wirtz, G.: Towards application portability in
platform as a service. In: IEEE 8th International sympo-
sium on service oriented system engineering, pp. 218-229.
https://doi.org/10.1109/SOSE.2014.26 (2014)

Oberle, K., Fisher, M.: ETSI CLOUD - Initial standard-
ization requirements for cloud services. In: Proceedings of
the 7th International Conference on Economics of Grids,
Clouds, Systems, and Services, GECON’10, pp. 105-115.
https://doi.org/10.1007/978-3-642-15681-6_8. Springer
(2010)

Apache software foundation. Brooklyn. https://brooklyn.
apache.org/. Last accessed on 25-06-2017

OASIS: TOSCA Simple Profile in YAML Version 1.3.
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.3. Last accessed on 26-02-2020 (2020)

Soltesz, S., Potzl, H., Fiuczynski, M.E., Bavier, A., Peter-
son, L.: Container-based operating system virtualization:
A scalable, high-performance alternative to hypervisors.
In: Proceedings of the 2nd ACM SIGOPS/EuroSys Euro-
pean conference on computer systems 2007, EuroSys "07,
pp. 275-287. https://doi.org/10.1145/1272996.1273025
(2007)

Singh, S., Singh, N.: Containers & Docker: Emerging roles
& future of Cloud technology. In: 2nd International Con-
ference on Applied and Theoretical Computing and Com-
munication Technology (iCATccT), pp. 804-807 (2016).
https://doi.org/10.1109/ICATCCT.2016.7912109
Docker Inc. Docker. https://www.docker.com/.
accessed on 25-06-2020

Sysdig: Sysdig 2019 container usage report. https:/sysdig.
com/blog/sysdig-2019-container-usage-report/. Last
accessed: 2019-12-23 (2019)

Cloud native computing foundation. containerd. https://
containerd.io/. Last accessed on 25-06-2020

Cloud native computing foundation. CRI-O. https://cri-o.
io/. Last accessed on 25-06-2020

Apache Software Foundation. Mesos Containerizer. http://
mesos.apache.org/documentation/latest/mesos-containerizer/.
Last accessed on 25-06-2020

Mesosphere Inc. Marathon. https://mesosphere.github.io/
marathon/. Last accessed on 25-06-2020

OpenStack. Magnum. https://wiki.openstack.org/wiki/
Magnum. Last accessed on 25-06-2020

FastConnect. Alien4Cloud. https://alien4cloud.github.io/.
Last accessed on 25-06-2020

Last

Last

@ Springer

https://doi.org/10.1007/978-3-319-99819-0_16
https://doi.org/10.1007/978-3-319-99819-0_16
https://doi.org/10.1109/MCC.2015.51
https://doi.org/10.1109/MCC.2015.51
https://doi.org/10.1007/978-3-319-49178-3_27
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
http://mesos.apache.org/
http://mesos.apache.org/
https://doi.org/10.5220/0006775605330540
https://doi.org/10.1109/FiCloud.2018.00010
https://doi.org/10.5220/0009410701270137
https://doi.org/10.1145/3054177
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://www.flexera.com/products/agility/cloud-management-platform.html
https://www.flexera.com/products/agility/cloud-management-platform.html
https://www.flexera.com/products/agility/cloud-management-platform.html
https://access.redhat.com/products/red-hat-cloudforms
https://access.redhat.com/products/red-hat-cloudforms
https://www.ibm.com/us-en/marketplace/deployment-automation
https://www.ibm.com/us-en/marketplace/deployment-automation
https://wiki.openstack.org/wiki/Heat
https://cloudify.co/
https://www.ansible.com/
https://www.chef.io/
https://puppet.com/
https://www.saltstack.com/
https://www.terraform.io/
https://www.oasis-open.org/committees/wsbpel/
https://www.oasis-open.org/committees/wsbpel/
http://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.17706/jsw.12.7.507-525
https://doi.org/10.17706/jsw.12.7.507-525
https://doi.org/10.1109/SOSE.2014.26
https://doi.org/10.1007/978-3-642-15681-6_8
https://brooklyn.apache.org/
https://brooklyn.apache.org/
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3
https://doi.org/10.1145/1272996.1273025
https://doi.org/10.1109/ICATCCT.2016.7912109
https://www.docker.com/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://containerd.io/
https://containerd.io/
https://cri-o.io/
https://cri-o.io/
http://mesos.apache.org/documentation/latest/mesos-containerizer/
http://mesos.apache.org/documentation/latest/mesos-containerizer/
https://mesosphere.github.io/marathon/
https://mesosphere.github.io/marathon/
https://wiki.openstack.org/wiki/Magnum
https://wiki.openstack.org/wiki/Magnum
https://alien4cloud.github.io/

Page 24 of 25

J Grid Computing (2021) 19: 5

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Apache Software Foundation. ARIA TOSCA. https:/
ariatosca.incubator.apache.org/. Last accessed on 25-06-
2020

Carrasco, J., Cubo, J., Duran, F., Pimentel, E.: Bidi-
mensional cross-cloud management with TOSCA and
Brooklyn. In: 2016 IEEE 9th International Conference
on Cloud Computing (CLOUD), pp. 951-955 (2016).
https://doi.org/10.1109/CLOUD.2016.0143

Cloudsoft. Clocker. http://www.clocker.io/. Last accessed
on 25-06-2020

Apache Software Foundation. Stratos.
apache.org/. Last accessed on 25-06-2020
Kiss, T., Kacsuk, P., Kovacs, J., Rakoczi, B., Hajnal, A.,
Farkas, A., Gesmier, G., Terstyanszky, G.: MiCADO—
Microservice-based cloud application-level dynamic
orchestrator. Futur. Gener. Comput. Syst. 94, 937 (2019).
https://doi.org/10.1016/j.future.2017.09.050

Brogi, A., Rinaldi, L., Soldani, J.: Tosker: A synergy
between tosca and docker for orchestrating multicomponent
applications. Software: Practice and Experience 48(11),
2061 (2018). https://doi.org/10.1002/spe.2625

Bogo, M., Soldani, J., Neri, D., Brogi, A.: Component-
aware orchestration of cloud-based enterprise applica-
tions, from TOSCA to Docker and Kubernetes. Soft-
ware: Practice and Experience 50(9), 1793-1821 (2020).
https://doi.org/10.1002/spe.2848

Kehrer, S., Blochinger, W.: TOSCA-based container
orchestration on Mesos. Comput. Sci. Res. Dev. 33(3), 305
(2018). https://doi.org/10.1007/s00450-017-0385-0
Weerasiri, D., Benatallah, B., Barukh, M.C.: Process-
driven configuration of federated cloud resources. In:
Renz, M., Shahabi, C., Zhou, X., Cheema, M.A. (eds.)
Database Systems for Advanced Applications, pp. 334—
350. Springer International Publishing, Cham (2015).
https://doi.org/10.1007/978-3-319-18120-2_20

Mietzner, R., Leymann, F.: A self-service por-
tal for service-based applications. In: 2010 IEEE
International Conference on Service-Oriented Com-
puting and Applications (SOCA), pp. 1-8 (2010).
https://doi.org/10.1109/SOCA.2010.5707165
Breitenbiicher, U., Endres, C., Képes, K., Kopp, O., Ley-
mann, F, Wagner, S., Wettinger, J., Zimmermann, M.:
The opentosca ecosystem - concepts & tools. In: European
space project on smart systems, big data, future internet
- Towards serving the grand societal challenges - volume
1: EPS Rome 2016,. INSTICC, pp. 112-130. SciTePress
(2016). https://doi.org/10.5220/0007903201120130

Baur, D., Domaschka, J.: Experiences from building a
cross-cloud orchestration tool. In: Proceedings of the 3rd
Workshop on CrossCloud Infrastructures & Platforms,
CrossCloud ’16, pp. 4:1-4:6. https://doi.org/10.1145/
2904111.2904116. ACM (2016)

Baur, D., Seybold, D., Griesinger, F., Masata, H.,
Domaschka, J.: A provider-agnostic approach to multi-
cloud orchestration using a constraint language. In: 18th
IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), pp. 173-182 (2018).
https://doi.org/10.1109/CCGRID.2018.00032

https://stratos.

@ Springer

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

Pham, L.M., Tchana, A., Donsez, D., de Palma, N., Zur-
czak, V., Gibello, P.: Roboconf: A hybrid cloud orchestrator
to deploy complex applications. In: IEEE 8th International
Conference on Cloud Computing, pp. 365-372 (2015).
https://doi.org/10.1109/CLOUD.2015.56

Caballer, M., Zala, S., Garcia, A.L., Molté, G., Fernandez,
P.O., Velten, M.: Orchestrating complex application archi-
tectures in heterogeneous clouds. Journal of Grid Comput-
ing 16(1), 3 (2018). https://doi.org/10.1007/s10723-017-
9418-y

Salomoni, D., Campos, I., Gaido, L., et al.: INDIGO-
DataCloud: a platform to facilitate seamless access to
e-infrastructures. Journal of Grid Computing 16(3), 381
(2018). https://doi.org/10.1007/s10723-018-9453-3
Ardagna, D., Di Nitto, E., Mohagheghi, P., Mosser, S., Bal-
lagny, C., D’ Andria, F., Casale, G., Matthews, P., Nechifor,
C., Petcu, D., Gericke, A., Sheridan, C.: MODACIlouds:
a model-driven approach for the design and execution of
applications on multiple clouds. In: 4th International Work-
shop on Modeling in Software Engineering (MISE), pp. 50—
56 (2012). https://doi.org/10.1109/MISE.2012.6226014

Di Nitto, E., Matthews, P., Petcu, D., Solberg, A.: Model-
driven Development and Operation of Multi-cloud Applica-
tions: The MODAC]Iouds approach. Springer International
Publishing, Berlin (2017)

Brogi, A., Carrasco, J., Cubo, J., D’Andria, F., Ibrahim,
A., Pimentel, E., Soldani, J.: SeaClouds: Seamless adaptive
multi-cloud management of service-based applications. In:
17th Conferencia Iberoamericana en Software Engineering
(CIbSE 2014), pp. 95-108 (2014)

Brogi, A., Fazzolari, M., Ibrahim, A., Soldani, J., Wang, P.,
Carrasco, J., Cubo, J., Duran, F., Pimentel, E., Di Nitto, E.,
D’Andria, F.: Adaptive management of applications across
multiple clouds: the SeaClouds approach. CLEI Electronic
Journal 18, 2 (2015). https://doi.org/10.19153/cleiej.18.1.1
Kopp, O., Binz, T., Breitenbiicher, U., Leymann, F.: Win-
ery — a modeling tool for TOSCA-based cloud applications.
In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) Service-
Oriented Computing, pp. 700-704. Springer, Berlin (2013).
https://doi.org/10.1007/978-3-642-45005-1_64

Binz, T., Breitenbiicher, U., Haupt, F., Kopp, O., Leymann,
F.,, Nowak, A., Wagner, S., OpenTOSCA —, A.: Runtime for
TOSCA-Based Cloud Applications, pp. 692-695. Springer,
Berlin (2013)

Breitenbiicher, U., Binz, T., Kopp, O., Leymann, F.
Vinothek - A self-service portal for TOSCA. In: Herzberg,
N., Kunze, M. (eds.) Proceedings of the 6th Central-
European Workshop on Services and their Composition,
ZEUS 2014, Potsdam, Germany, February 20-21, 2014,
CEUR Workshop Proceedings, vol. 1140, pp. 69-72.
CEUR-WS.org (2014)

Kopp, O., Binz, T., Breitenbiicher, U., Leymann, F.
BPMN4TOSCA: A Domain-Specific Language to Model
Management Plans for Composite Applications, pp. 38-52.
Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-
33155-8.4

Breitenbiicher, U., Binz, T., Képes, K., Kopp, O., Ley-
mann, F., Wettinger, J.: Combining declarative and imper-

https://ariatosca.incubator.apache.org/
https://ariatosca.incubator.apache.org/
https://doi.org/10.1109/CLOUD.2016.0143
http://www.clocker.io/
https://stratos.apache.org/
https://stratos.apache.org/
https://doi.org/10.1016/j.future.2017.09.050
https://doi.org/10.1002/spe.2625
https://doi.org/10.1002/spe.2848
https://doi.org/10.1007/s00450-017-0385-0
https://doi.org/10.1007/978-3-319-18120-2_20
https://doi.org/10.1109/SOCA.2010.5707165
https://doi.org/10.5220/0007903201120130
https://doi.org/10.1145/2904111.2904116
https://doi.org/10.1145/2904111.2904116
https://doi.org/10.1109/CCGRID.2018.00032
https://doi.org/10.1109/CLOUD.2015.56
https://doi.org/10.1007/s10723-017-9418-y
https://doi.org/10.1007/s10723-017-9418-y
https://doi.org/10.1007/s10723-018-9453-3
https://doi.org/10.1109/MISE.2012.6226014
https://doi.org/10.19153/cleiej.18.1.1
https://doi.org/10.1007/978-3-642-45005-1_64
https://doi.org/10.1007/978-3-642-33155-8_4
https://doi.org/10.1007/978-3-642-33155-8_4

J Grid Computing (2021) 19: 5

Page 25 of 25 5

78.

ative cloud application provisioning based on TOSCA. In:
2014 IEEE International Conference on Cloud Engineering,
pp- 87-96 (2014). https://doi.org/10.1109/IC2E.2014.56

Wettinger, J., Binz, T., Breitenbiicher, U., Kopp, O., Ley-
mann, F.: Streamlining cloud management automation by
unifying the invocation of scripts and services based on

TOSCA. Int. J. Organ. Collect. Intell. 4(2), 45 (2014).
https://doi.org/10.4018/ijoci.2014040103

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and institu-
tional affiliations.

@ Springer

https://doi.org/10.1109/IC2E.2014.56
https://doi.org/10.4018/ijoci.2014040103

	TORCH: a TOSCA-Based Orchestrator of Multi-Cloud Containerised Applications
	Abstract
	Introduction
	Background
	Cloud Orchestration
	Cloud Portability
	Containerisation

	TORCH Design
	Design Principles
	Framework Architecture
	Application Specification Layer
	Orchestration Layer
	Service Binding Layer

	TORCH Prototype Implementation
	Application Specification Layer
	Orchestration Layer
	Service Binding Layer

	Use Case
	Related Work
	Conclusion and Future Work
	References

