
Energy Refining Balance with Ant Colony System
for Cloud Placement Machines

Hamed Tabrizchi & Marjan Kuchaki Rafsanjani

Received: 2 November 2019 /Accepted: 26 December 2020 /Published online: 20 February 2021

Abstract Cloud computing has been one of significant
domains of processing service in social networks like
the internet and local networks in recent years. One of
the main problems in cloud computing is placing a
virtual server onto physical servers. This problem will
have a remarkable effect on energy consumption, be-
cause if a suitable placement is not chosen for it, a great
amount of energy will be used to keep the physical
servers on. This paper aims to optimize the use of energy
in physical servers and in order to achieve it, the last
placement in Virtual Machines (VMs) and Physical
Machines (PMs) is considered. The proposed approach
for allocating resources to VMs is the use of ant colony
algorithm. This approach solves virtual machine place-
ment problem and attempts to have the least effects on
the environment and energy consumption.

Keywords Ant Colony optimization (ACO) . Cloud
computing . Virtual machine placement . Energy
consumption

1 Introduction

In recent year, cloud computing has become a popular
computing paradigm for hosting and delivering services
over the Internet [1]. In addition, it is generally consid-
ered a new field in internet computing, which processes
and saves the information and offers services to the
users based on their demands [2–5]. Further, this com-
puting paradigm mainly aims to provide access to a lot
of virtual computing resources. In a nutshell, all the
cloud services are virtually presented and the cloud
offers three types of services to the user through the
internet as follows [6–8]:

– Infrastructure as a Service (IaaS);
– Platform as a Service (PaaS);
– Software as a Service (SaaS).

Virtual Machine (VM) was first innovated in 1970,
and the idea was formed so that to make it possible to
use some computing environment onto the physical
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environment resulting in sharing the physical infrastruc-
ture for a large number of users instead of using separate
physical systems for every single user. Furthermore,
according to [6], VM placement is a process of mapping
VMs to Physical Machines (PMs). VM starts to operate
after processing the capacity of the physical server based
on the type of the operating system and the amount of
the required resources such as CPU, RAM, storage, and
bandwidth which are selected by the users.

VMs and PMs should be placed based on the avail-
able resources and demands. In fact, VMs use the avail-
able PM resources together. Placing the resources to-
gether only requires dovetailing the resources with the
demands. However, keeping and using physical servers
require spending money and energy, and thus attempts
are made to find the best placement in order to save the
energy. It is undeniable that the optimization of energy
consumption relies on network traffic, performance and
resource utilization optimization [9]. For this reason, an
optimal placement is the one in which the most possible
number of VMs are placed onto the last number of PMs
and the one which keeps the VMs off and wastes less
energy. Moreover, based on the most economical PMs,
giving priority to resource allocation is considered an-
other viewpoint which can optimize the energy con-
sumption when it varies in PMs.

The problem of optimizing the use of energy for
placing the VMs in cloud computing is called “NP-hard
problem” which is remarkably similar to the Bin pack-
ing problem [10]. Heuristic algorithm including First
Fit, as well as metaheuristic algorithms like Simulated
Annealing (SA) [11], Genetic Algorithm (GA) [12], and
Ant Colony Optimization (ACO) [13] can solve the
problem, though they are unable to find the best solu-
tion. Ant Colony Optimization is a meta-heuristic algo-
rithm that aims to find near-optimal solutions based on a
probabilistic technique. In the present paper, ACO has
been used due to the fact that this algorithm is efficient
for solving graph represented problems and also be
adaptable in dynamic applications. Moreover, ACO is
able to use to solve problems belonging to the NP class
and also there are numerous methods have been intro-
duced among which ACO method has succeeded in
finding better solutions compared to heuristic methods
[14]. For this reason, the Ant Colony Optimization
method has been used as a reference method in this
work.

Based onAnt Colony System (ACS) [15], the present
study introduces a method for optimizing VM place-
ment. This method aims to reduce the energy consump-
tion byminimizing the number of servers while working
and balancing the VMs. Achieving this goal involves
considerable computing expanses which nearly every
way considers for VM placement based on a single
resource while the present study considers the VMs
based on the multiple resources such as CPU, RAM,
and I/O. This further challenge the computation and
makes it closer to the reality. Additionally, this paper
proposes and elucidates Energy Refining Balance
(ERB) approach for ACS in order to refine the energy
consumption, which leads to the creation of ERBACS
algorithm.

In summary, the main contributions of this paper can
be considered as follows:

(1) The main purpose of this research is to present a
comprehensive method of placing virtual machines
on physical machines with respect to multiple re-
sources such as CPU, RAM, and I/O, with the least
amount of energy loss.

(2) This research presents a new ant colony based
approach with dual fitness for solving the problem
of placement in the cloud computing environ-
ments. Moreover, both novel functions evaluate
the solutions during the computational process of
the ant colony algorithm, taking into account the
energy loss and satisfying the virtual machine
placement constraints.

(3) To achieve the best possible solution after all iter-
ations, an innovative approach refined current best
solution of each iteration based on the all amounts
of used energy in active physical servers.

The remaining parts of the current study are organized
as follows. The preliminaries for explaining the VM
placement and defining the ACO are presented in
Section 2. In addition, Section 3 addresses current
achievements in this domain, and each achievement dis-
cusses similar results with different advantages. Further,
Section 4 expounds on phases of ERBACS approach.
Section 5 describes ERBACS algorithm. In Section 6,
the proposed approach is implemented and compared to
the other heuristic and metaheuristic methods, and final-
ly, the conclusion is drawn in Section 7.
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2 Preliminaries

This section focuses on the preliminaries of the online
VM placement problem and the definition of ant colony
system (ACS).

2.1 Virtual Machine Placement

The users impose their demands on every data center
based on the resources they need. Bandwidth is taken
into account for sending and receiving the information
between the resources required by the users. Therefore,
the bandwidth is regarded as part of the constraints
related to VM placement and the placement is consid-
ered such that to take into account the bandwidth while
the users have great access to the resources they
demand.

For example, suppose the situation depicted in Fig. 1.
There are three servers, each having a processor capable
of performing VMs. A simple process for VM place-
ment is as follows [16]:

(1) For each server, compute the resource require-
ments of the application using the resource usage
statistics of the server over a period of time;

(2) Select a target server with compatible virtualization
software and CPU types, similar network connec-
tivity, and usage of the shared storage;

(3) Place the first VM on the first server in step 2.
Then, place the second VM on the same server if it
can satisfy the resource requirements. Otherwise,
add a new PM and place the VM on this new
machine. Continue this step until each of the
VMs is placed on a PM and add a new PM when
required;

(4) The set of the resulting hosts at the end of step 3
comprises the consolidated server cluster.

There are N number of VMs and M number of PMs
which are regarded as a set. The sets of PMs and VMs
include all the PMs and VMs, respectively. The set used
for PMs is called R and it represents the resources.
Furthermore, the size of the set is the same as the
number of resources and is demonstrated by d, therefore
d = 3 and R = {CPU, RAM, I/O}.

Moreover, according to [17], a vector called the
“capacity of resource” is considered for every Pi, which
has d number of dimensions and is referred to as “Re-
source Capacity Vector” (RCV).

For each Pi∈PM ; there exists Ck
i ;

where Ck
i is total capacity of resource Rk

i ;where 1≤k ≤d

ð1Þ
Additionally, another vector called the “demand of

resource” exists for every Vj, which includes d number
of dimensions and indicates the amount of resource
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demand for VM. According to [17], this vector is called
“Resource Demand Vector” (RDV).

For each V j∈VM ; there exists Dk
j ;

where Dk
j is demand of resource Rk

i ;where 1≤k≤d

ð2Þ
In addition, another vector is presented as “Resource

Utilized Vector” (RUV) which is used to compute the
amount of the resource allocation to VMs by PMs and
keeps all the allocated resources.

Uk
i ¼ ∑Dk

j for∀xij ¼ 1
� � ð3Þ

xij ¼ 1; if v j is placed on pi
0 ; otherwise

�
ð4Þ

In the above-mentioned equation, the element of xij
equals to 1 if Pi includes Vj, otherwise, it is equal to 0. In
fact, xij determines the placement in physical and virtual
servers. However, some constraints should be consid-
ered while placing these servers [18].

∑
N

j¼1
VC j � xij≤PCi � yi ∀i ð5Þ

∑
N

j¼1
VM j � xij≤PMi � yi ∀i ð6Þ

∑
N

j¼1
VI j � xij≤PIi � yi ∀i ð7Þ

The elements VC, VM, and VI refer to the amounts of
the required VM [6] in the above-mentioned equations.
Further, PC, PM, PI determine the amount of available
resources in PM for CPU, memory, and I/O.

Furthermore, another vector called “Energy Con-
sumption Vector” (ECV) is presented for data center
energy consumption, which represents the amount of
every Piwhich is proportional to the allocated resources.

For each Pi∈P
there exists Ek

i ;where E is Energy consumption of resource Rk
i

ð8Þ
As previously mentioned, the present study seeks to

minimize the amount of energy consumption in PM and

to compute the energy use. Moreover, it is possible to
use ECV vector for a suitable placement which has the
least number of active PM and consumes the least
amount of energy. In other words, the energy consump-
tion vector holds the consumed energy per unit time by
considering the power consumption of PMs.

2.2 Ant Colony System (ACS)

The ACS computing approach is inspired by special
behavior of the ant. This method was first used to
find a solution for the Traveling Salesman Problem
(TSP) by metaheuristic computation of the ant from
the nest to the food. This system differs from the
previous ant colony algorithm due to three main
aspects [15]:

– The state transition rule provides a direct way to
balance between exploring the new edges and
exploiting a priori and accumulated knowledge
about the problem;

– The global updating rule is only applied to edges
which belong to the best ant tour;

– A local pheromone update rule is applied while the
ants construct a solution.

In this method, pheromone can typically be a help to
achieve a solution for the graph problems.

2.2.1 Pheromone

The ant can go through the pathway by a substance
called pheromone when leaving the nest to find
food. In fact, ants use heuristic information in the
pheromone to find the nearest path. The components
of the problem and its constraints should be taken
into account. Additionally, with considering the in-
formation in the problem, the probability of choos-
ing the path by artificial ants which is actually the
probability of placing Vj to Pi is found, based on the
constraints of the problem, resource and demands, as
is shown in the Fig. 2.

Heuristic quantities play a vital role in the process of
achieving a solution. In addition, the parameters of the
problem constraints should be considered for initializing
the quantities.
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So far, RUV and RCV vectors have been presented.
The RUV vector is equal to Cx +My + Iz in which I, M,
and C represent I/O, memory, and CPU, respectively.

Another vector named “Resource Imbalanced Vec-
tor” (RIV) equals (C −H)x + (M −H)y + (I −H)z, where
H is (C +M+ I). Based on the placement of the resource
dimensions, the balance is preserved when VMs are
placed on PMs in this vector [17].

│RIV│ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C−Hð Þ2 þ M−Hð Þ2 þ I−Hð Þ2

q
ð9Þ

3 Related Work

Placing virtual machines (VMs) for decreasing the en-
ergy consumption while increasing the efficiency in data
centers is one of the most considerable and interesting
issues in the cloud computing world. Hence, numerous
researches have been carried out in this field and various
approaches were introduced to solve the problem ac-
cordingly. The majority of these studies attempted to

find an approximate solution for VM placement prob-
lem and the obtained algorithms were categorized into
three general groups including heuristic, metaheuristic,
and compound.

3.1 Heuristic Algorithms

In heuristic methods, a group of constraints are
highlighted to find a feasible solution for a specific
problem. Offering an effectively acceptable solution,
especially in a limited time is the advantage of
heuristic algorithms. Further, specific heuristic algo-
rithms are implemented more simply compared to
the metaheuristic algorithms. Heuristic algorithms
are performed quickly and thus are suitable for on-
line schedules. In a literal sense, most of the heuris-
tic algorithms employed to solve the placement
problem are better than other types of greedy algo-
rithms offered for Bin Packing problem. However,

Server 1

Server 2

Server 3

Server 4

VM 1 VM 2 VM 3 VM 4
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based on NP-hard placement problem, there is no
guaranty that greedy algorithms can find an optimal
solution. Furthermore, these algorithms are unable
to solve the problem based on the multiple resources
[19]. Constraint Programing (CP) is a type of logical
programing and uses a group of constraints which
can easily expand to have more dimensions. How-
ever, the search space is limited to the domain of
PMs and PMs and thus data center is constrained by
using the CP, which leads to the limitation of the
search space [20].

3.2 Metaheuristic Algorithms

During recent years, many researchers have present-
ed techniques to increase resource utilization and
reduce energy consumption in cloud data centers.
However, the heuristic bin packing methods suffer
from local-optimal solutions. For this reason, many
researchers have focused on the metaheuristic algo-
rithms that are inspired from nature or biologically
computing in order to manage the large scale prob-
lems in an efficient way [21]. The difference be-
tween heuristic and metaheuristic algorithms is that
the first one is a problem-specific method while the
latter one can be applied to a wide range of prob-
lems. In general, exploration and exploitation are
cons ide red two major componen t s o f the
metaheuristic algorithm. The exploration component
generates a solution to explore the search space on a
global scale, whereas the exploitation component
tends to focus on a current suitable achieved solu-
tion in the local region. In fact, the metaheuristic
algorithms are mainly inspired by the nature, such as
the ant colony algorithm [13], genetic algorithm
[22], and particle swarm optimization [23]. Consid-
ering metaheuristic algorithms, the obtained results
achieve a better solution including better energy
consumption and placement compared to heuristic
algorithms. However, metaheuristic algorithms need
more time for finding the final solution in the large
search space. Moreover, metaheuristic is generally a
random process, which convergence time and solu-
tion finding depend on the nature of the problem,
initialization of the experimental parameters, and
method of the solution searching [24, 25]. The
reordering grouping genetic algorithm (RGGA)
[22] is one of the proposed methods for the place-
ment problem. Using this algorithm leads to a lower

number of physical servers. Additionally, RGGA
works well for appropriate resource allocation while
it imposes a lot of overheads on the search space
due to lack of considering some of the solutions in
every generation and thus it fails to provide a suit-
able running time. Simulated Annealing (SA), which
is inspired by the annealing process in metallurgy, is
a probabilistic single-solution-based search method
where a solid is slowly cooled until its structure is
eventually frozen at a minimum energy configura-
tion. There are numerous SA variants. Experimental
results demonstrated that Simulated Annealing Vir-
tual Machine Placement (SAVMP) [26] can generate
better VM placement compared to First-Fit Decreas-
ing (FFD) [27]; however, it takes a very long time to
find the best solution when the search space of the
problem expands. In addition, another method pre-
sents a workload-optimized approach which is based
on a Discrete Particle Swarm Optimization (DPSO)
[28] in order to minimize the number of active PMs
in VM placement. The main contribution of this
method optimizes the host PM workload to achieve
an efficiency. Similar to many studies, placement
process seeks to minimize the number of active
PMs. Further, each PM should be efficiently used
when working under the maximum load. In [25], a
Power-Aware method is proposed to determine the
appropriate placement for the VMs. This Power-
Aware method uses a discrete version of PSO to
optimize power consumption by reducing the num-
ber of active servers along with the number of
overloaded hosts.

3.3 Compound Algorithms

In the compound algorithm, heuristic algorithms are
applied for initial VMs placement and VMs optimiza-
tion during the computation. Thus, metaheuristic algo-
rithms can be employed to generate a set of solutions for
the first time and then heuristic algorithms are used for
achieving an optimal solution based on these solutions.
As a result, both running time and solutions space
decrease while the complexity of implementation in-
creases [18, 28].

In this article, the proposed method is the compound
one. In various studies, cloud environment and the
schedule were emphasized in cloud computing. How-
ever, by comparing the present research with the other
studies, the method for placement of the virtual servers
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on the physical servers is clearly highlighted in the cloud
data center. The comparison of several VM placement
algorithms is represented in Table 1.

4 ERBACS: Proposed Approach

4.1 Initialization

Based on the ant colony algorithm, a method is used to
conclude that the consumption minimizes in the cloud
computing centers. In fact, ERBACS is employed to
achieve a solution with the least number of host servers
for the VMs. At initialization, the quantities are first
determined for the layers of the pheromone based on
every VM-PM. Furthermore, a matrix called τn ×mis
considered for the ants set of the PM and the shuffled
VM is taken into account for the quantities. Then, a
possible method is employed to achieve a different

solution for the ants based on a different order of VMs
[18].

4.2 Finding a Solution

The feasible solution is the right placement which is
proportional to the constraints of the resources and the
energy use in physical servers. As shown in Fig. 2, the
matrix with the dimension of Mt ×N is sleeked to pro-
vide the best possible placement based on the con-
straints andMt represents the number of active physical
servers attempting to reduce the number of them as
much as possible. In fact, Mt is different at the running
time for every ant. For instance, it can be declared that if
there are four servers on P = {P1, P2, P3, P4} and every
Pi has its how number of VMs which is based on the
path of the ants; Fig. 2 is drawn which illustrates the
moving ants as (X11,…, X14). When the ants move on
the node modelled as the graph, every VM is placed on
the PMs one by one. Then, VMs are placed based on the

Table 1 Comparison of VM Placement Algorithms

Criteria
Algorithms

Based on Resources
considered

Strengths Weaknesses Performance
better than

VMPACS
[6]

Ant colony system
algorithm

CPU,
network
&
storage

Near-optimal solution, Energy
efficient, Minimum resource
wastage

High computation time FFD, RGGA, SA

SAVMP
[25]

Simulation Annealing CPU,
memory
&
network

Within reasonable time limit,
VM placement that costs the
energy very close to the low
boundary

Problem size grows larger, the
time needed to find the
solution can be very long

First Fit
Decreasing

Enhanced
FFD
[26]

Bin Packing CPU More energy efficient System
throughput

Service-level agreement
violation

Greedy, Round
Robin & FFD
algorithms

RGGA
[22]

Genetic Algorithm CPU Reduced number of active PMs,
Improved CPU utilization

The overhead of number of
large searching spaces

Genetic
Algorithm
(genetic
algorithm never
solves it)

DPSO [27] Discrete particle
swarm
optimization-based
workload
optimization

CPU,
memory

Minimizing the number of active
physical machines

Not having the ability to
explore for better solutions.
(Early convergence)

FFD, BFD,
RGGA

PAPSO
[28]

Discrete particle
swarm optimization

CPU Reduced the power consumption
in data centers without
violating SLA

Needing more resources into
consideration such as
memory, bandwidth, and
network factors.

Power-Aware
Best Fit
Decreasing
algorithm
(PABFD)
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movement of the ant. AsN number of the steps are taken
to find a solution as N number of the VMs are placed,
and every step changes the accessibility of the physical
servers in this placement. Therefore, based on the avail-
able resources, the eqs. (5), (6), and (7) are considered
during the placing process.

The ants moved on the graphs by the impact of the
pheromones and heuristic quantities. In ERBACS algo-
rithm, pheromones are considered in VMs and VM-
PMs. Pheromones had an impact on placing VMj and
VMk or placing VMj on server Si. The following equation
is used to initialize the amount of pheromone for placing
VMj on Si.

τ i; jð Þ ¼ 1

jSij ∑
k∈Si

τα k; jð Þ; if Si≠0 τ0 ; otherwise
�

ð10Þ
where, Sidenotes the existing VMs set on the server i
and ∣Si∣ represents the number of VMs and is depen-
dent on the server i [9].

Ant colony optimization algorithm requires heu-
ristic information by the pheromones, along with
other heuristic information in order to find a better
option by the local searching strategies. Such infor-
mation is supposed to decrease the number of active
servers and to make the resource allocation reach the
highest level of allocation in a server. Thus, heuris-
tic information is considered such that it could bal-
ance the distribution of the resources. The scale for
this information is based on the balance in allocated
resources between the VM placement and the
servers.

ηij ¼ b� jRIV vð Þpj þ 1−bð Þ

� ∑
r∈R

RUVr
p þ RDVr

p

� �
ð11Þ

where, β represents a non-negative integer parame-
ter and the importance of the pheromones compared
to the heuristic information.

Fs ¼ SijSi true in Eqs: 5ð Þ; 6ð Þ and 7ð Þf g ð12Þ
Fs denotes a group of physical servers based on the

conditions in eqs. (5), (6), and (7).
Twomethods were used for selecting server i for VMj

in the Fs set. Therefore, parameter q is first initialized in
the range of 0 and 1. Then, a random number called q0 is
generated in the range of 0 and 1.

The server is selected if the random number is less
than parameter q based on the pheromone scale and
heuristic information. Otherwise, the server is selected
based on the roulette wheel selection which is based on
probability of distribution of the ants which choose the
path [18].

i ¼ argmaxl∈Fs jτ l; jð Þ � η l; jð Þ; if q0≤q
roulette wheel selection from Fsj ; otherwise

�
ð13Þ

4.3 Fitness Function

After finding the solution, a measure had to be provided
for evaluating the solution. The main aim of placing
VMs on the physical servers in ERBACS is based on
two constrains since, based on all the dimensional re-
sources required by VMs, the most possible capacity of
the resource is allocated based on the form of the place-
ment in PMs, and the amount of energy use decreased as
low as possible.

f 1 ant:solutionð Þ ¼ ∑
Mt

i¼1
yi ; if xij≥1

Mt þ 1 ; otherwise

8<
: ð14Þ

f 2 ant:solutionð Þ ¼ ∑
i∈yi

ECV ið Þ ð15Þ

In fitness function, Mt represents the number of
servers required for placing at the time of t. Moreover,
yi equals to one when the server i is active while it is
equal to zero when it is inactive. Therefore, f1 indicates
all the active servers for a solution, the number of which
should not exceed that of the Mt. Additionally, the
number of f1 equals to Mt + 1 if no placement can be
found for the solution since no solution is found for this
placement [18].

Fitness function f2 displays the amount of energy
consumption for a solution and it computes all amounts
of energy use in active physical servers based on ECV
vector. Thus, f1 is used in ERBACS computation for
evaluating the solutions. However, f2 is employed as the
measure of elevation if f1 is the same in both different
solutions. In fact, using the second evaluation function
improved the process of exploring the search space
when the search process for the best assignment is faced
with the convergence of solutions. These two functions
of evaluation aim to determine the number of active
servers and their energy consumption in order to achieve
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a more accurate difference between the solutions.

4.4 Updating Pheromones

The pheromones on the path indicated the information
in the history and behavior of the ant. The amount of the
pheromone on the path altered after the ant moved on
the graph modelled and built the solutions. Therefore,
the new amount had to be computed due to the change
of this amount. The amount of pheromone can be locally
or globally updated with different impacts on searching
behavior of the ant.

Local updating made the other ants go through the
new paths for resource allocation while global updating
forced the ants go through a harbinger path in order to
find better solutions. The equation below is used for the
local update.

τ k; jð Þ ¼ 1−ρð Þ � τ k; jð Þ þ ρ� τ0 ð16Þ

After providing a solution for every ant, local update
is given for VMs [15]. Equation (17) is applied to the
global update:

τα i; jð Þ ¼ 1−ρð Þ � τα i; jð Þ þ ρ� Δταij ð17Þ

The parameters ρ and Δτ represent the pheromone
evaporated from the path and the pheromone added to
the path, respectively [18].

Δταij ¼ nVM j

nActivePMi

þ 1

NRCi þ NRMi þ NRIi þ 1
ð18Þ

In the above equation, nVM is the number of
placed VMs and nActicePM denotes the number of
active physical servers. In addition, NRI, NRM,
NRC represent normalized remaining I/O, memory,
and CPU on the server i, respectively. Finally, glob-
al updating was performed when all the ants reached
their own solution and after each iteration based on
the best solution [15].

4.5 Local Energy Refining Balance

It is a vivid fact that cloud load balancing deals with
a great amount of distributing workloads across
multiple computing resources. For this reason, a
suitable balancing method is able to reduce energy
consumption and maximizes the availability of re-
sources [29, 30]. In ERB approach, the server is
actively placed based on the amount of energy con-
sumption. This approach is used at the end of every
iteration in the ERBACS algorithms. Further, it is
employed if there is no change in the amount of
fitness for the best solution ch times. Furthermore,
ERB approach worked such that if h number of ants
had a solution with the same amount of f1 fitness
function, then one ant is selected and the energy

S1 

S2 

S3 

S4 

CPU Memory I/O ECV 

VM1 VM1 VM1 VM2 VM2 VM2 

VM3 VM3 VM3 

VM4       VM5        VM 4         VM5      VM4     VM5 

 VM6         VM6      VM6 

Free Resource 

50.186 

kWh 

60.075 

kWh 

40.976 

kWh 

58.943 

kWh 

Fig. 3 Local refining energy
balance scheme
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consumption of that solution is refined based on the
amount of the second fitness for each of them by
using the roulette wheel method.

Moreover, the physical server with the greatest
amount of energy use is selected based on ECV
vector in order to refine the energy consumption in
the selected solution. Then, the physical server with
the least amount of allocated resources is selected
based on RUV vector. Next, VMs are placed on the
servers with considerable use from the least to the
greatest, respectively, when the two physical servers
are selected. Additionally, VMs were swapped by
the servers which had the least amount of allocated
resources based on the amount of the used CPU.
This was repeated to break the conditions in eqs.
(5), (6), and (7) otherwise, VMs failed to be
swapped (Fig. 3).

This method is only applied on one solution since it is
undesirable to be run on all the solutions by considering
the time. Therefore, it is attempted to use this method in
special situations.

5 ERBACS Algorithm

ERBACS algorithm is a method on ant colony aiming
at decreasing the energy consumption in the cloud
centers. Figure 4 displays the stages of the algorithm
in details.

The initialization, which includes the initial pher-
omone on the path, is considered as τ0 and the
number of ants in every iteration, which is regarded
as m is computed; in addition, g represents each ant.
Finally, parameter t denotes that the number of
iterations in the algorithm equals to 1 at this stage.
Further, mt=mmin–1 and mmin represents the least
number of active physical servers and mtrepresents
t number of active physical servers. Then, feasible
solutions are produced. To this end, VMs are ran-
domly shuffled and then, respectively selected to be
placed.

VMs are placed based on the available physical
servers and their capacity, as well as the required re-
sources. Furthermore, the constraints of the problems,
along with placing one VM is considered on only one
physical server.

Moreover, placement on the server is performed
when the capacity of the physical servers was large
enough to be filled. Then, the next VMs are placed on

the next physical servers after the server is filled. Next,
the servers are evaluated after building m number of
paths. Additionally, the local pheromone is updated in
the next stage. Afterward, the best solution is considered
as Global Best Solution (GBS) after initializing and
evaluating all the ants. In addition, mt in the fitness
function is updated. Then, the condition of using the
refining energy consumption method is evaluated. Fur-
ther, this method is applied for placement refining if
GBS failed to change the ch time. Furthermore, general
pheromones are updated. Moreover, GBS is evaluated
to find whether the updated GBS is used for updating
the general pheromone if ERB approach is applied
before this stage. Afterward, the final condition is proc-
essed; the algorithm stopped working when the maxi-
mum number of iterations is computed, otherwise, t =
t + 1, and it goes back to the second stage for the last
iteration.

Algorithm 1 indicates the high-level architecture of
our presented algorithm in more details. The detailed
pseudocode of our energy refine balancing method is
shown in Algorithm 2.
5.1 Time Complexity Analysis of ERBACS Algorithm

In general, the computational complexity of the
ERBACS reliant on the computational complexity
of ACO and the local energy refining balance meth-
od. In this subsection it is assumed that: n is the total
number of PMs; m is the number of VMs; A is the
number of ants; T is the total number of iterations.
The time complexity of each part in the algorithm is
defined as follows:

& Initializing ERBACS all k parameters: O (k).
& Producing the list of available PMs: O (n).
& Initializing the iteration number: O (1).
& Ensuring that placemet is in the valid range:

O (n ×m).
& Calculating the fitness function for each ant:

O (m × n).
& Energy refining balance: roulette wheel selection:

O (A2) + swapping the VMs: O (m)
& Incrementing the iteration number: O (T).
& Producing the final placemet: O (m)

In each iteration, quicksort algorithm (complexity of
O(m × log m)) was used to rank the ants. As a conse-
quence, the total time complexity for the presented
algorithm is O (T × A ×m).
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6 Implementation and Comparisons

In this section, implementations are taken into con-
sideration in order to evaluate the implementation

of ERBACS algorithm and to compare it with the
other methods. Additionally, every algorithm is im-
plemented in MATLAB software (2017b) and is

Algorithm 1. Pseudocode of ERBACS 

Input: 
Set of VMs with resource demand, set of PMs with capacity constraint and set of the 

parameters

Output:
Placement Graph (represented as a binary matrix)

1. Initializing parameters: , ρ, ε, β, h, ch
2. Initialize all pheromone values

3. Producing a list of the available hosts, Descending sorting for the VMs according to CPU 

utilization

4. Make feasible solutions:

5. for each ants do
6. for each PM do
7. Select a new individual VM from set of VMs

8. end for
9. Evaluate both fitness function for each ants

10. end for
11. Repeat
12. Local pheromone Update (Eq. (16))

13. Find current iteration global best ant

14. Check the improvement of the global best solution

15. Refined global best solution Energy Refine Balancing Method ()

16. Global pheromone Update (Eq. (17)) 

17. until the maximal number of Iterations is reached

18. return Placement Graph;

Algorithm 2. Pseudocode of Energy Refine Balancing Method

Input: 
Set of ants

Output:
Refined global best solution

1. Select one ant by using roulette wheel method

2. Repeat
3. Refine resource allocation for selected ant with regard to ECV and RUV vectors

4. Swap VMs

5. until break one of conditions in (Eq. (5,6,7))

6. return Refined global best solution
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run in a system with processing details of RAM
16GB, Intel Core i5.

Two experimental sets are considered from one dataset
to compare the methods of VM placement problem

(http://gwa.ewi.tudelft.nl/fileadmin/pds/trace-archives/grid-
workloads-archive/datasets/gwa-t-12/fastStorage.zip). The
server environment is taken into account as the real
heterogeneous world in both sets. In addition, the number
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of VMs to be placed is regarded as the difference between
the two sets. Therefore, five samples from the first set with
less number of VMs to be placed are displayed as S1 to
S5 while two samples from the second set with more
VMs for placement are represented as B1, and B2.
Furthermore, the setting of parameters in the proposed
approach had a direct effect on the algorithm
performance. Preliminary experiments which
determined the parameter values and the final
parameters are considered as q0=0.2, ρ = 0.1, ε = 0.1,
β = 2.0, h = 5, ch = 7, and maximum iteration T = 60.

Table 2 lists the initial parameters employed in sce-
narios A and B. In both scenarios, the number of indi-
vidual solutions is the same in all considered algorithms
(50).

6.1 Scenario a: Small Scale Environments

As shown in Table 3, ERBACS is compared with
SAVMP [26], RGGA [22], FFD [31], BFD [31], DPSO

[28], and VMPACS which is the basic method considered
for the proposed algorithm. Three dimensions are consid-
ered for CPU, memory, and I/O resources. The same
running time is set for each of above-mentioned resources
in order to fairly compare all the metaheuristic methods.
The comparison criterion in Scenario A is based on the
number of Active Physical Machines (APMs) with respect
to the placement. Moreover, Fig. 5 presents experimental
results comparisons in this scenario. Furthermore, it is
useless to consider a fixed time period for BFD and FFD
heuristic algorithms since they quickly converged. There-
fore, the running time is taken until they are implemented.
The number of active physical servers is considered in
order to evaluate the proposed solution by every compared
method. As shown in Table 3, 100–800 VMs are used in
five speared experiments to compare the results. A total of
800 heterogeneous PMs are used in all the experiments. In
samples S1 and S2, the results are not considerably differ-
ent from each other; however, they are useful when the
environment of the experiment expands.

Table 2 The initial parameters employed in scenarios A and B

Algorithms Parameters Values

ERBACS q0 0.2

ρ 0.1

ε 0.1

β 2.0

h 5

ch 7

Maximum iteration 60

SAVMP Initial temperature 0.99

Minimum difference between solutions 0.01

Initial acceptance probability 1

Maximum iteration 60

RGGA Crossover operator probability 0.8

Mutation operator probability 0.1

Weights Between 20,000 and 35,000

Maximum iteration 60

DPSO c1=c2 1.49445

ω 0.7

Vmax 0.8

Maximum iteration 60

VMPACS ρ 0.1

ε 0.1

β 2.0

Maximum iteration 60
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Moreover, both simulated annealing and genetic
algorithms require more time to achieve better solu-
tions when the environment of the experiment ex-
pands. Additionally, they find unsuitable answers
compared to FFD algorithm which has easier imple-
mentation. The ant colony algorithm archives better
results for the placement problem by this expansion
and therefore, it is better to find the probabilities for
a better amount of pheromone and better evaluation
of the ants. Although ACO is a suitable method for
achieving good results, ERBACS algorithm and the
refining method of the global best solution find
better results.

6.2 Scenario B: Large Scale Environments

Scenario A, as the comparison, was compared on
less number of heterogeneous servers while scenario
B, as the experimental samples, had a large number

of VMs and the servers are heterogeneous. By this
comparison, the amount of energy waste is taken
into account, along with considering the number of
active PMs. Given the comparison, the Table 4 in-
dicates that the ERBACS algorithm is considerably
successful in decreasing the amount of energy waste
in the data center. In addition, running time of the
ERBACS algorithm is quite slow compared to that
of the ACO algorithm due to adding some compu-
tational functions and thus the result is acceptable.
Figure 6 illustrates the amount of decreased energy
waste based on the passing of generations. As
shown, at first, ERBACS algorithm has the same
answers as ACO algorithm while energy refining
balance makes the solutions better and decrease the
amount of energy waste after passing of the gener-
ations and the iteration of the global best solutions
in several specific generations. The convergence
curves on experiment instances B1 and B2 are
depicted in the Fig. 7.

Table 3 Results Comparison in Small Scale Environments

Experiment
instances

#VM ERBACS SAVMP [25] RGGA [22] FFD [32] BFD [32] DPSO [27] VMPACS [6]

Time(s) APMs Time
(s)

APMs Time
(s)

APMs Time
(s)

APMs Time
(s)

APMs Time
(s)

APMs Time
(s)

APMs

S1 100 30 36.0 30 48.0 30 85.0 2.41 54.0 2.98 59.0 49 30 30 36.0

S2 200 30 71.0 30 81 30 167 6.88 96.0 7.04 101 80 30 30 69.0

S3 300 60 106 60 255 60 289 7.26 145 7.09 164 123 60 60 110

S4 600 60 141 60 501 60 567 10.72 179 11.34 182 161 60 60 150

S5 800 60 281 60 779 60 800 18.35 350 14.9 387 324 60 60 320
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Fig. 5 Experimental results
comparisons in scenario A
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7 Conclusion and Future Work

In general, energy consumption has the greatest cost in
cloud computing. Further, placing VMs on the physical
servers has a significant effect on the energy use. Thus,
it was attempted to optimize the energy use by consid-
ering the best placement. With the increasing number of

users who need computing resources, a large number of
real-life optimization problems have raised. Using
Metaheuristic algorithms has shown an increasing inter-
est in the scientific community, which provides robust
and efficient ways to address optimization problems in
the actual application. Accordingly, based on the ACO
system, ERBACS algorithm was presented in this paper
to solve the NP-hard problem. This algorithm aimed to
place VMs by considering the least number of active
physical servers with the least amount of energy con-
sumption and the placement was performed by artificial
ants. Furthermore, based on the available pheromones
on the path and other heuristic quantities related to the
Virtual Machines placement problem, suitable solutions
were gradually achieved by considering the probability
distribution function which may be used to define a
particular probability distribution.

The best solutions found by the ants in every gener-
ation were selected to refine the energy consumption
due to the energy refining balance approach considered
in ERBACS, and therefore this approach provided a
better placement with less amount of the consumed

Table 4 Results Comparison in Large Scale Environments

Experiment
instances

#
VM

ERBACS VMPACS [6] DPSO [27]

Time
(Min)

APMs Energy wastage
(kWh)

Time
(Min)

APMs Energy Wastage
(kWh)

Time
(Min)

APMs Energy Wastage
(kWh)

B1 3000 7.39 712 532.002 6.18 720 588.747 6.84 1389 745.263

B2 4000 11.02 952 542.335 10.66 961 592.418 10.89 1635 894.364
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Fig. 6 Comparison energy wastage between ERBACS,
VMPACS [6] and DPSO [28]
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energy. Another strength point regarding applying this
approach is that, it can be used to swap on the new
requirements after providing the placements. In most
cloud centers, new VMs are added to the centers in
every time period and accordingly, it is possible to use
energy refining approach only based on the last place-
ment and the amount of the required resources. As it is
clearly illustrated in the compresence, based on the
quality of the placement, the running time in this algo-
rithm is less complicated compared to the other
algorithms.

The results of the comparison indicated that large-
scale ERBACS in the environments obtained superior
results with the least amount of energy waste compared
to the other heuristic and metaheuristic methods. More-
over, based on results, the ERBACS algorithm in a large
environment considerably succeeded in decreasing the
number of active physical servers and the amount of
energy waste. Therefore, ERBACS algorithm is consid-
ered a suitable and useful approach for solving VM
placement problem and it attempts to have the least
effects on the environment and energy consumption by
using the computing device. In our upcoming research,
we will attempt to provide a temperature and energy-
aware VM placement algorithm by using combinatorial
metaheuristic algorithms with other objective functions
that make the algorithm much green as well.

Acknowledgements The authors would like to express their
thanks to the anonymous referees for their valuable comments
and suggestions that improved the paper.

Data Availability Data sharing not applicable to this article.

References

1. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-
of-the-art and research challenges. J. Internet Serv. Appl.
1(1), 7–18 (2010)

2. Stergiou, C., Psannis, K.E., Kim, B.G., Gupta, B.: Secure
integration of IoT and cloud computing. Futur. Gener.
Comput. Syst. 78, 964–975 (2018)

3. Manasrah, A.M., Gupta, B.B.: An optimized service broker
routing policy based on differential evolution algorithm in
fog/cloud environment. Clust. Comput. 22(1), 1639–1653
(2019)

4. Bhushan, K., Gupta, B.B.: Distributed denial of service
(DDoS) attack mitigation in software defined network
(SDN)-based cloud computing environment. J. Ambient.
Intell. Humaniz. Comput. 10(5), 1985–1997 (2019)

5. Al-Qerem, A., Alauthman, M., Almomani, A., Gupta, B.B.:
IoT transaction processing through cooperative concurrency
control on fog–cloud computing environment. Soft.
Comput. 24(8), 5695–5711 (2020)

6. Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-
objective ant colony system algorithm for virtual machine
placement in cloud computing. J. Comput. Syst. Sci. 79(8),
1230–1242 (2013)

7. Tabrizchi, H., Kuchaki Rafsanjani, M.: A survey on security
challenges in cloud computing: issues, threats, and solutions.
J. Supercomput. 76(12), 9493–9532 (2020)

8. Tabrizchi, H., Kuchaki Rafsanjani, M., Emilia Balas, V.: In:
Balas, V.E., et al. (eds.) Multi-task scheduling algorithm
based on self-adaptive hybrid ICA–PSO algorithm in cloud
environment, Part of the Advances in Intelligent Systems
and Computing book series, pp. 422–431. AISC 1222
Springer Nature, Switzerland (2021)

9. López-Pires, F., Barán, B.: Many-objective virtual machine
placement. J. Grid Comput. 15(2), 161–176 (2017)

10. Békési, J., Galambos, G., Kellerer, H.: 5/4 linear time bin
packing algorithm. J. Comput. Syst. Sci. 60(1), 145–160
(2000)

11. Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing, in
Simulated annealing: Theory and applications, pp. 7–15.
Springer, Netherlands (1987)

12. Deb, K.: An introduction to genetic algorithms. Sadhana.
24(4–5), 293–315 (1999)

13. Dorigo, M., Birattari, M.: Ant colony optimization, in
Encyclopedia of machine learning, pp. 36–39. Springer,
US (2017)

14. Kansal, N.J., Chana, I.: Energy-aware virtual machine mi-
gration for cloud computing - a firefly optimization ap-
proach. J. Grid Comput. 14(2), 327–345 (2016)

15. Dorigo, M., Gambardella, L.M.: Ant colony system: a co-
operative learning approach to the traveling salesman prob-
lem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

16. Khanna, G., Beaty, K., Kar, G., Kochut, A.: Application
Performance Management in Virtualized Server
Environments, pp. 373–338. IEEE/IFIPNOMS 2006,
Vancouver (2006)

17. Ferdaus, M.H., Murshed, M., Calheiros, R.N., Buyya, R.:
Virtual Machine Consolidation in Cloud Data Centers Using
ACO Metaheuristic, pp. 306–317. Euro-Par, Grenoble,
France (2014)

18. Liu, X.-F., Zhan, Z.-H., Deng, J.D., Li, Y., Gu, T., Zhang, J.:
An energy efficient ant colony system for virtual machine
placement in cloud computing. IEEE Trans. Evol. Comput.
22(1), 113–128 (2018)

19. Zhang, Y., Ansari, N.: Heterogeneity Aware Dominant
Resource Assistant Heuristics for Virtual Machine
Consolidation, pp. 1297–1302. IEEE GLOBECOM,
Atlanta (2013)

20. Dhyani, K., Gualandi, S., Cremonesi, P.: A Constraint
Programming Approach for the Service Consolidation
Problem, pp. 97–101. CPAIOR, Bologna (2010)

21. Aryania, A., Aghdasi, H.S., Khanli, L.M.: Energy-aware
virtual machine consolidation algorithm based on ant
Colony system. J. Grid Comput. 16(3), 477–491 (2018)

7 Page 16 of 17 J Grid Computing (2021) 19: 7



22. Wilcox, D., McNabb, A., Seppi, K.: Solving Virtual
Machine Packing with a Reordering Grouping Genetic
Algorithm, pp. 362–369. IEEE CEC, New Orleans
(2011)

23. Kennedy, J.: Particle swarm optimization, in Encyclopedia
of machine learning, pp. 760–766. Springer, US (2017)

24. Scarpiniti, M., Baccarelli, E., Naranjo, P.G.V., Uncini, A.:
Energy performance of heuristics and meta-heuristics for
real-time joint resource scaling and consolidation in
virtualized networked data centers. J. Supercomput. 74(5),
2161–2198 (2018)

25. Ibrahim, A., Noshy, M., Ali, H.A., Badawy, M.:
PAPSO: a power-aware VM placement technique based
on particle swarm optimization. IEEE Access. 8,
81747–81764 (2020)

26. Wu, Y., Tang, M., Fraser, W.: A Simulated Annealing
Algorithm for Energy Efficient Virtual Machine
Placement, pp. 1245–1250. IEEE SMC, Seoul (2012)

27. Alahmadi, A., Alnowiser, A., Zhu, M.M., Che, D.,
Ghodous, P.: Enhanced first-fit decreasing algorithm for
energy-aware job scheduling in cloud, vol. 2, pp. 69–74.
CSCI’14, Las Vegas (2014)

28. Yan, J., Zhang, H., Xu, H., Zhang, Z.: Discrete PSO-based
workload optimization in virtual machine placement. Pers.
Ubiquit. Comput. 22(3), 589–596 (2018)

29. Ghobaei-Arani, M., Souri, A., Rahmanian, A.A.: Resource
management approaches in fog computing: a comprehensive
review. J. Grid Comput. 18(1), 1–42 (2019)

30. Hosseinzadeh, M., Ghafour, M.Y., Hama, H.K., Vo,
B., Khoshnevis, A.: Multi-objective task and workflow
scheduling approaches in cloud computing: a compre-
hensive review. J. Grid Comput. 18(3), 327–356
(2020)

31. Chen, M., Zhang, H., Su, Y.-Y., Wang, X., Jiang, G.,
Yoshihira, K.: Effective VM Sizing in Virtualized Data
Centers, pp. 594–601. IFIP/IEEE IM, Dublin (2011)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional
affiliations.

J Grid Computing (2021) 19: 7 Page 17 of 17 7


	Energy Refining Balance with Ant Colony System for Cloud Placement Machines
	Abstract
	Introduction
	Preliminaries
	Virtual Machine Placement
	Ant Colony System (ACS)
	Pheromone


	Related Work
	Heuristic Algorithms
	Metaheuristic Algorithms
	Compound Algorithms

	ERBACS: Proposed Approach
	Initialization
	Finding a Solution
	Fitness Function
	Updating Pheromones
	Local Energy Refining Balance

	ERBACS Algorithm
	Time Complexity Analysis of ERBACS Algorithm

	Implementation and Comparisons
	Scenario a: Small Scale Environments
	Scenario B: Large Scale Environments

	Conclusion and Future Work
	References




