
Scheduling Algorithms for Heterogeneous Cloud
Environment: Main Resource Load Balancing Algorithm
and Time Balancing Algorithm

Weiwei Lin & Gaofeng Peng & Xinran Bian &

Siyao Xu & Victor Chang & Yin Li

Received: 27 October 2018 /Accepted: 29 October 2019
Springer Nature B.V. 2019

Abstract Cloud computing and Internet of Things
(IoT) are two of the most important technologies that
have significantly changed human’s life. However, with
the growing prevalence of Cloud-IoT paradigm, the load
imbalance and higher SLA lead to more resource wast-
age and energy consumption. Although there are many
researches that study Cloud-IoT from the perspective of
offloading side, few of them have focused on how the
offloaded workload are dealt with in Cloud. This paper
proposes two IoT-aware multi-resource task scheduling
algorithms for heterogeneous cloud environment name-
lymain resource load balancing and time balancing. The
algorithms aim to obtain better result of load balance,
Service-Level Agreement (SLA) and IoT task response
time and meanwhile to reduce the energy consumption

as much as possible. They both are devised to assign
single task to a properly selected Virtual Machine (VM)
each time. The task placed in a pre-processed queue is
assigned sequentially each time. And the VM selection
rule is carried out based on the newly inventive ideas
called relative load or relative time cost. Besides, two
customized parameters that influence the result of pre-
process tasks are provided for users or administrators to
flexibly control the behavior of the algorithms. Accord-
ing to the experiments, the main resource load balancing
performs well in terms of SLA and load balance, while
time balancing is good at saving time and energy. Be-
sides, both of them perform well in IoT task response
time.

Keywords Heterogeneous cloud . Task scheduling .

Loadbalance .Multi-resource scheduling . SLA .Energy
consumption . IoT

1 Introduction

As a popular way of computing paradigm and providing
IT services, cloud computing [1–3] can provide users
with on-demand and easy access and also stand out in
cost savings. With the growing prevalence of the appli-
cation of the cloud computing upon people’s daily life,
the requirements for cloud computing are also becoming
higher. Researchers who study cloud computing, there-
fore, aim the goal of making cloud computing capable
of better performance while consuming less energy. To
achieve this goal, one of the necessary steps that needs

https://doi.org/10.1007/s10723-019-09499-7

W. Lin (*) :G. Peng : S. Xu
School of Computer Science and Engineering, South China
University of Technology, Guangzhou, China
e-mail: linww@scut.edu.cn

W. Lin
Guangdong Luan Indusrty and Commerce Co.,Ltd., Guangzhou,
China

X. Bian
Shanghai Jiao Tong University, Shanghai, China

Y. Li
Institute of Software Application Technology, Guangzhou &
Chinese Academy of Sciences, Guangzhou, China

V. Chang
School of Computing, Engineering and Digital Technologies,
Teesside University, Middlesbrough, UK

J Grid Computing (2019) 17:699 726–

/ Published online: 19 November 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-019-09499-7&domain=pdf
http://orcid.org/0000-0001-6876-1795

to be done is that the assignment policy of tasks should
be reasonable. On the one hand, reasonable tasks sched-
uling policy can raise resource utilization which can
avoid less idle resource. On the other hand, it can
shorten tasks completion time and reduce energy con-
sumption. Unlike cloud environment, devices across
heterogeneous network domain are loosely connected
in IoT environment. In such environment, efficient
routing protocol can be critical for saving energy [4].
Baker et al. [5] first proposed a novel network-based
routing algorithm which can find optimally energy-
efficient route to transfer big data to cloud for further
processing, namely GreeDi. Based on GreeDi, Baker
et al. [6] further designed a novel reactive routing pro-
tocol for vehicle communications. It is capable of
selecting the most efficient routes for reducing power
consumption. The rapid growth of cloud computing and
IoT greatly affects people’s daily life. The technology of
IoT connects things together, even including human
beings. Additionally, it improves the intelligent manage-
ment of available resources [7]. Therefore, the integra-
tion of cloud and IoT is also necessary. Some re-
searchers present the need for the integration and dem-
onstrate the possible future directions. Botta et al. [8]
proposed a paradigm called CloudIoT, which could
integrate cloud with IoT. The new paradigm renders
IoT benefit from unlimited resources of cloud to break
through its native constrains. In this paradigm,
offloading is one of the key techniques that links IoT
to cloud.

1.1 The Role Offloading Plays in Cloud-IoT

Large-scale deployment of IoT devices faces the issues
caused by energy and performance constraints. Fortu-
nately, offloading is a promising technique that can
effectively address these issues. Zhao et al. [9] focused
on computational offloading for mobile devices. The
authors argued that the need for mobile devices to run
applications that require high computational load is
growing rapidly. Mobile phones still have limited com-
puting resources compared to traditional computing de-
vices, such as desktop computers. The limitation is
primarily due to their physical size. Mobile devices
can offload tasks to the cloud, yet it may degrade users’
experience if the delay is intolerable. To alleviate this
problem, fog computing has emerged and become a
good choice under some certain circumstances. Howev-
er, compared to the cloud, the fog still has less resources.

It might further bring negative impacts on the amount of
energy consumed by fog nodes. As is known to us, the
less powerful a device is, the longer time it will take to
execute the same workload. Therefore, the authors pro-
posed an offloading scheme that evaluates the energy
consumption generated by the fog and the cloud before
offloading. After that, the destination is finally decided.

Hasan et al. [10] presented a bunch of incentive-
based offloading schemes for mobile nodes. The authors
stated that the paradigm in communication and comput-
ing has changed because of the proliferation of IoT
devices. An ad hoc cloud of IoT and other computing
devices called Aura was proposed in the article. It can
exploit the idle resource, such as computing resources
from underloaded devices, as much as possible. The
core of the authors’ idea lies in how to make such
devices accept offloaded tasks from other devices so
that the idle resources can be outsourced. Therefore, a
mechanism of rewarding in the form of crypto-currency
was employed in the article. Runtime computational
offloading is a complicated process. It can bring side
effects because of the unavoidable cost of offloading
which the articles mentioned above did not consider. To
resolve this issue, M. Shiraz et al. [11] proposed a
computational offloading framework for mobile cloud
computing that considers component migration over-
head. It leverages application processing services in
the cloud data center to migrate the least number of
application instances at runtime.

Besides the Aura mentioned above, there are many
other computation offloading frameworks surveyed in
[12], such as Avatar, MALMOS, and MoSeC etc.

1.2 Offloaded Workload as a Type of Workload
in Cloud

It can be observed that there are many researches that
focus on offloading, yet most of them focus on the IoT
side from which the offloading starts. In this paper, we
will focus on the cloud side.

Once the offloaded computation workloads arrive in
cloud, they can be seen as common as other traditional
tasks or jobs. As we all know, the behaviors of work-
loads in clouds are always variant [13]. Among them,
some belong to the workload offloaded from IoT device.
The reason for uploading workloads from IoT devices is
that some workloads require too much computing re-
sources. Consequently, the device may choose to upload
several workloads to the Fog or Cloud. In many ways,

W. Lin et al.700

they can be deemed as common workloads. Thus, it is
necessary to consider how workloads are dealt with on
the data-center side.

1.3 Researches on Load Balancing Using VM
Migration Approaches

When talking about cloud, we usually consider load
balancing as an important technique used to distribute
workload among VMs.Without it, the unbalanced loads
in datacenter might cause resource wastage, perfor-
mance degradation and SLA conflicts [14]. As a result,
the usage of the technique can further improve the
utilization of servers and better guarantee Quality of
Service (QoS). To address the performance degradation
problem of cloud servers, there are a lot of discussions
about load balancing. Some of the researchers in this
field focus on virtual machine allocation or virtual ma-
chinemigration to achieve load balancing. This area will
be reviewed below.

In [15], the authors first stated the well-known reason
that results in unbalanced loads. They emphasized that it
is the disproportionate utilization of resource that leads
to load imbalance. Correspondingly, the idea of skew-
ness was introduced to indicate the magnitude of asym-
metry in resource usage of a host. They formulated the
problem as bin packing problem. By decreasing the
value of skewness, the overall utilization of servers
became better.

In [16], a self-adaptive virtual machine consolidation
scheme built on multi-threshold adjustment mechanism
was proposed. The mechanism was realized by compar-
ing the predicted requests for each multi-dimensional
infrastructure resource with their current resource usage
status. The dynamic multi-thresholds were used for
physical machine selection, which is the first step in
VM integration. Besides, a modified virtual machine
selection and allocation algorithm were proposed. Each
of the algorithms belongs to the next two steps of VM
consolidation.

In [17], the authors proposed an advanced version of
the modified best fit decreasing (MBFD) algorithm [18],
which focuses on reducing the number of active servers
and leaves a stable host to every VM. In this way, the
frequency of unnecessary migration can be reduced.
Prior works which used the bio-inspired methods, such
as Firefly optimization [19], also contribute a lot to this
field. In [19], the authors employed the meta-heuristic
technique to improve the energy efficiency for live

migration of VMs. It was aimed to minimize the number
of VM migrations and the number of hosts. Unfortu-
nately, their experiments did not evaluate some inborn
drawbacks of this type of technique, such as the conver-
gence rate and the tendency to be locally optimized.

1.4 Researches on Load Balancing Using Task
Scheduling Approaches

While server consolidation achieves considerable effec-
tiveness in capping energy consumption and operating
cost, it can also cause performance degradation if it is
not devised properly [20, 21]. On the one hand, server
consolidation attempts to consolidate virtual machines
on some servers, making it more likely for machine
overload to occur. On the other hand, the shutdown time
and communication cost incurred by server consolida-
tion is unavoidable and needs to be handled properly to
satisfy the delivered QoS [22, 23].

Besides VM, there are also research focusing on task
allocation to achieve load balancing. In [24], the authors
treated the problem of assigning tasks to virtual ma-
chines as a matrix. After putting it like that, a problem
called unbalanced assignment need to be considered.
Hence, the authors decided to employ the Hungarian
method to solve the problem. Some simple but well-
recognized heuristics, such as Round Robin, Random
Selection and First Come First Serve, have been applied
in this field. Malik et al. [25] developed a load balancing
algorithm based on Round Robin. Faced with the draw-
back of Round Robin, the tasks are first prioritized
based on required resources or processors, number of
users, runtime, job type, user type, and software used
cost. Then, they are assigned to various available hosts
in Round Robin fashion. While Mittal et al. [26] incor-
porated the advantages of existing algorithms such as
Max-Min,Min-Min and RASA. The authors proposed a
scheme to carry out load balancing amongst the various
types of resources to achieve better make-span by inte-
grating the advantages of these existing algorithms.

To better utilize the underlying information about the
tasks and VMs, Adhikari et al. [27] developed a new
heuristic-based algorithm for load balancing. The algo-
rithm is split into two phases: server configuration and
task-virtual machine mapping. The first phase is de-
signed for better utilizing the resources. This strategy
helps to make efficient use of resources. In the second
phase, a queueing model is employed to minimize the
task response time and the total make-span.

Scheduling Algorithms for Heterogeneous Cloud Environment: Main Resource Load Balancing Algorithm and Time... 701

In order to solve the problem of load imbalance via
exploiting prior knowledge, Alaei et al. [28] proposed
and designed a reactive and active scheduling frame-
work that relies only on prior knowledge related to task
scheduling for load balancing. But the prior knowledge
is usually not rich. On the other hand, Singh et al. [29]
concluded that to better utilize the resource in Cloud,
their types (homogeneous and heterogeneous) should be
considered.Motivated by this consideration, Panda et al.
[30] proposed SLA-MCT and SLA-Min heuristic algo-
rithms for load balancing scheduling. The algorithms
are devised for heterogeneous environment. Both tech-
niques use the execution time and cost as SLA
parameters.

In addition, some other researches might employ
meta-heuristic (EA and other bio-inspired methods es-
pecially) to transform the bin packing or bin-packing-
like problem into near optimal solution space searching.
For example, Zhou et al. [31] proposed a multi-objective
hybrid BCO algorithm that solves the service combina-
tion and optimal selection problem. It takes QoS and
energy consumption into account. In the utilized bee
phase, an enhanced solution update equation with dif-
ferent dimensions of perturbation is used. The method
has its mechanism to avoid being trapped in local opti-
ma and the QoS is guaranteed. Aiming to reach opti-
mum task scheduling result, Shojafar et al. implemented
a hybrid approach called FUGE [32]. The approach can
perform optimal load balancing considering execution
time and cost. The core of the approach lies in its
exploitation of fuzzy theory to modify the standard
genetic algorithm. FUGE considers VM processing
speed, VMmemory, VMbandwidth, and the job lengths
when scheduling tasks. Despite all the advantages of the
above methods, it leads to low load balancing. In order
to achieve better load balancing, some researches em-
ploy the Inverted ACO [33]. The scheme proposed by
Asghari et al. [33] showed low cost and high load
balancing. However, it also shows high execution time
and does not consider QoS.

1.5 The Motivation of Using Heuristic-Based Approach

In spite of the many good qualities of some meta-
heuristic algorithms applied in some situation, which
in most cases tend to be suitable for global optimization,
they are not always successful or efficient. Moreover, if
a proposed method is designed to have less scheduling
overhead and to be as less complex as possible, it won’t

help. That is because they tend to use many equations
and complex operators [34]. Also, the tuning of param-
eters also increases the complexity. In this paper, the
proposed method, which is based on heuristic theory, is
employed to process the assignment of a batch of tasks
to virtual machines. We aim to develop a VM
heterogeneity-aware method that concerns load
balancing and multi-resource task allocation. And most
importantly, it should also be IoT workload-aware.
Hereby, we only discuss and compare the heuristic
methods.

1.6 Problem Statement

In the practice of Cloud-IoT, energy consumption and
QoS can be improved from the perspective of task
scheduling in data-center. The new paradigm consists
of two processes of workload being sent from end
devices and workload being processed by the more
centralized tiers. The existing approaches mentioned
above present how the energy consumption can be
reduced and how the QoS can be better through making
the IoT end devices submit or offload workload to the
data-centers or other edge servers. This field is well
researched. The problem is that they proposed many
schemes to offload workload from IoT devices but the
issues of how the workload should be tackled after
submitting are open.

The issues that we find include the following points:

& Bio-inspired meta-heuristic schemes are popular.
However, they can be too complex for problem
solving and be unstable in results.

& Users prefer having more powerful and more flexi-
ble control of the scheduling results.

& The simulation tool for verifying multi-resource ori-
ented schemes is few.

& There is no proper mathematical formulation to
model the task and VM in the heterogeneous cloud.

& Processing IoT offload workload from the perspec-
tive of task scheduling in data center means that our
scheme should be IoT-aware. The concern is how to
improve the IoT task response time without bringing
too much negative impact to others when IoT tasks
and other common tasks are mixed together for
scheduling.

& It is really difficult to make the scheme produce the
best results of SLA, QoS, energy consumption, and
load balancing at the same time. But we can choose

W. Lin et al.702

to make some trade-offs among them to some
extent.

1.7 Aims and Contributions

In summary, the algorithms proposed in this paper are
aimed to be heuristic-based, IoT-aware and focusing on
multi-resource task scheduling for heterogeneous envi-
ronment. The main novelty of our algorithms lies in the
way of selecting the proper task-VM mappings from
one queue of pre-processed tasks and the other set of
VMs. The pre-processing includes two phases in which
the first step is ordering the tasks by priority and the
second step is re-ordering the tasks by the category of
task. The priority of task reflects the urgency degree of
task to be assigned and the category includes IoT task
and Common task. There are two parameters provided
in these two steps respectively and they render the users
flexibly control the pre-processed results. The selecting
strategy is according to the task sequential positions in
the pre-processed queue and the mapping strategy is a
modified version of greedy algorithm. All the details
will be mentioned in the following sections.

In the meantime, the results, such as SLA, energy
consumption, and make-span, should be compared with
other existing algorithms to verify its effectiveness.
Moreover, the users or administrators should be able to
flexibly adjust the behaviors of the algorithms. To help
us take the first step, the comparisons of recent years’
related researches should be performed. Only in this
way, we can find out the clues and the related works
that can enlighten us. Table 1 provides an overview
picture of the existing studies.

An architecture that connects IoT devices, Fog, and
Cloud is provided. As shown in Fig. 1, there are four
major components on the cloud, namely people that
manage the platform, a batch of tasks, VMs on hosts,
and the task scheduler. At the very beginning, each task
is stored into the task queue. After that, the queue will be
sorted and reordered based on the given α and k. The
task scheduler is actually the process of mapping tasks
and VMs. They are the core ideas of this article’s pro-
posed algorithms. Both will be detailed in the following
sections. There are also some middlewares in the figure,
such as smart gateway, assisting the cloud in forwarding
the offloaded workload to fog [35]. However, we only
discuss the cloud here. The only reason they are includ-
ed in the figure is to keep the universal view related to

IoT. It should be noted that we reasonably assume that
all the workloads submitted to the data-centers are la-
belled. As a matter of fact, it is not a difficult technique
to label workloads as end devices or end users can
specify them right before submitting.

The specific contributions of this paper are listed as
follows:

& We design two algorithms for multi-resource task
scheduling in heterogeneous clouds: the main re-
source load balancing and the time balancing. Ac-
cording to the experiments, compared with the
existing approaches, the former algorithm produces
lower SLA and better trade-off between energy con-
sumption and make-span. Since they are IoT-aware,
both can produce low response time for IoT tasks.

& To realize the method introduced by the above re-
search results, we propose several mathematical
mode l s t o f a c i l i t a t e th e s imu l a t i on o f
heterogeneity-aware load balancing. The models
consider multi-resource and are heterogeneity-
aware, which means they consider hosts’ or VMs’
different capacity of resources.

We provide two parameters, namely α and k, to
enable users or administrators to flexibly control the
behaviors of the two algorithms. Firstly, the parameter
α determines the importance between the task run time
and the CPU demands. Secondly, the parameter k deter-
mines the importance of IoT tasks in execution queue.
Users or administrators can tune them according to the
variation of the recently submitted workload. As can be
seen, the algorithms are IoT-aware.

This paper is organized as follows. In section 2, the
related works on task scheduling and the tool used for
developing are discussed. In the third section, two pro-
posed algorithms are detailed. And in section 4, the core
concepts of the theory are further detailed and analyzed.
Evaluations of our study are presented in section 5 and
this paper is concluded in section 6.

2 Related Works

2.1 Energy Consumption Optimization in Cloud
Computing

Based on the limitations of previous researches on
energy-performance trade-offs in the elastic cloud

Scheduling Algorithms for Heterogeneous Cloud Environment: Main Resource Load Balancing Algorithm and Time... 703

T
ab

le
1

C
om

pa
ri
so
n
of

so
m
e
ex
is
tin

g
st
ud
ie
s

C
at
eg
or
y

E
ne
rg
y-

aw
ar
e

Io
T-

aw
ar
e

L
oa
d-

ba
la
nc
in
g

H
et
er
og
en
ei
ty
-

aw
ar
e

M
ul
ti-

re
so
ur
ce
-

aw
ar
e

M
ak
e-

sp
an
-

aw
ar
e

R
es
po
ns
e

tim
e-

aw
ar
e

Sc
he
du
lin

g
ov
er
he
ad
-

aw
ar
e

S
L
A
-

aw
ar
e

W
ea
kn
es
se
s

C
on
tr
ib
ut
io
ns

14
D
yn
am

ic
an
d

V
M

al
lo
ca
tio

n

Y
es

N
o

Y
es

Y
es

Y
es

N
o

N
o

N
o

Y
es

C
P
U
en
er
gy

is
co
ns
id
er
ed

on
ly
.

N
ew

co
nc
ep
tn

am
ed

sk
ew

ne
ss

m
ea
su
ri
ng

th
e
ev
en
es
s
of

se
rv
er

re
so
ur
ce

ut
ili
za
t-
io
n.

15
D
yn
am

ic
an
d

V
M

sc
he
du
lin

g

Y
es

N
o

N
o

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

U
ns
ta
bl
e
L
R
-b
as
ed

pr
ed
ic
-t
io
n
fo
r
ce
rt
ai
n

w
or
kl
oa
ds

W
ei
gh
te
d
V
M

m
ig
ra
tio

n
an
d

dy
na
m
ic
m
ul
ti-
th
re
sh
ol
ds

16
S
ta
tic

an
d
V
M

sc
he
d-
ul
in
g

Y
es

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

Y
es

R
ed
uc
e
V
M

m
ig
ra
tio

n
tim

-e
s
by

im
po
si
ng

a
st
at
ic
th
r-
es
ho
ld
.

R
ed
uc
e
th
e
nu
m
-b
er

of
ov
er
al
l

m
ig
ra
tio

ns
.

28
D
yn
am

ic
an
d

ta
sk

sc
he
du
lin

g

N
o

N
o

Y
es

N
o

N
o

Y
es

Y
es

N
o

N
o

To
o
si
m
pl
e
co
m
bi
na
tio

ns
of

al
go
ri
th
m
s.

Sw
itc
hi
ng

th
e
fa
m
ou
s
al
go
ri
th
-m

s
to

de
al
w
ith

th
e
ch
an
gi
ng

si
t-
ua
tio

ns
.

29
D
yn
am

ic
an
d

ta
sk

sc
he
du
lin

g

N
o

N
o

Y
es

Y
es

N
o

Y
es

Y
es

N
o

Y
es

S
er
ve
r
kn
ow

le
dg
e
is

ne
ed
ed
.

M
in
im

iz
ee

th
e
m
ak
e-
sp
an

by
sc
he
du
lin

g
th
e

w
ai
tin

g
ta
sk
s
ef
fi
ci
en
tly
.

22
D
yn
am

ic
an
d

m
ul
ti-
-

ob
je
ct
iv
e

Y
es

N
o

Y
es

N
o

N
o

Y
es

Y
es

Y
es

Y
es

U
ns
ta
bl
e
st
ra
-t
eg
y
ba
se
d

on
so
lu
tio

n
sp
ac
e

se
ar
ch
in
g.

D
ev
el
op

a
pa
r-
am

et
er

ad
ap
tiv

e
st
ra
te
gy
.

23
D
yn
am

ic
an
d

ta
sk

sc
he
du
lin

g

N
o

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

N
o

U
ns
ta
bl
e
st
ra
te
gy

ba
se
d
on

so
lu
tio

n
sp
ac
e
se
ar
ch
in
g

D
ev
is
e
a
fu
zz
y-
ba
se
d
st
ea
dy
-s
ta
te

G
A
.

36
D
yn
am

ic
an
d

V
M

sc
he
du
lin

g

N
o

N
o

Y
es

Y
es

N
o

N
o

N
o

Y
es

Y
es

P
ea
k
si
m
ila
ri
ty

on
ly

ba
se
d

on
C
P
U
.

P
la
ce

V
M

ba
se
d
on

pe
ak

w
or
kl
oa
d

si
m
ila
ri
ty
.

37
S
ta
tic

an
d
ta
sk

sc
he
du
lin

g
Y
es

N
o

Y
es

N
o

Y
es

Y
es

N
o

N
o

N
o

H
et
er
og
en
ei
ty

is
no
t

co
ns
i-
de
re
d.

D
ev
el
op

a
si
m
ul
at
io
n
to
ol

fo
r

m
ul
ti-
re
so
ur
ce

ta
sk
s
an
d
a
ta
sk

ba
la
nc
e
st
ra
te
gy
.

40
S
ta
tic

an
d
ta
sk

sc
he
du
lin

g
Y
es

N
o

N
o

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

Su
pp
or
to

f
el
as
tic

re
so
ur
ce
s
is
ne
ed
ed
.

C
om

pa
re

co
ns
tr
ai
nt

an
d
ob
je
ct
iv
e

ve
ct
or
s
in

di
ff
er
en
td

im
en
si
on
s

vi
a
no
rm

al
iz
at
io
n.

42
A
nd m

ul
ti-
-

ob
je
ct
iv
e

Y
es

N
o

N
o

Y
es

N
o

Y
es

Y
es

N
o

N
o

M
ig
ht

le
ad

to
lo
ad

im
ba
la
nc
e
an
d
lo
ts
of

kn
ow

le
dg
e
is
ne
ed
ed
.

E
ne
rg
y-
pe
rf
or
m
an
ce

tr
ad
e-
of
f

43
D
yn
am

ic
an
d

ta
sk

sc
he
du
lin

g

N
o

N
o

Y
es

Y
es

N
o

Y
es

Y
es

N
o

N
o

L
oa
d
im

ba
la
nc
e.

In
cr
ea
se

re
so
ur
ce

ut
ili
za
tio

n,
an
d

ac
hi
ev
e
hi
gh
er

th
ro
ug
hp
ut

W. Lin et al.704

environment, Yang J et al. [36] proposed an energy-
performance trade-off task scheduling algorithm. First-
ly, through virtualization technology, they successfully
simulated energy-aware task scheduling problem in
clouds. Then, an energy-aware resource provisioning
algorithm was developed for generating real-time tasks’
available allocation plans by incorporating the elasticity
of virtual resources. Finally, an energy-performance
trade-off task scheduling algorithm for final solution
selection based on multi-object optimization was devel-
oped. In the task scheduling process, the idea of Max-
Min fairness was employed, yet not the simplest version
of Max-Min. It should also be noted that their methods
are IoT-agnostic and their resource provisioning method
employs the VM migration technique which is not used
in our proposed schemes.

To be more energy efficient, Congyang Chen et al.
showed their detailed researches on the techniques and
scheduling algorithms of workflow optimization in [37].
They summarized the technique’s theory and applied
field, and divided them into three categories in terms

of single-objective optimization, multi-objective optimi-
zation and heuristic based. F. Juarez et al. [38] assumed
that the resource provider or user can pre-specify a
factor deciding the energy-performance importance.
They proposed a scheduler whose goal is to minimize
a bi-objective function. The function combines the en-
ergy consumption and the make-span. They are com-
bined by the importance factor. Hussain et al. [39]
proposed a task batch scheduling algorithm in dynamic
way. By considering the computing share of virtual
machines, the tasks are assigned to VMs based on the
idea of Max-Min fairness. However, they all are either
IoT-agnostic or not multi-resource scheduling.

2.2 MultiRECloudSim

Among those many cloud simulators, CloudSim [40] is
one of the most widely used platforms. As a matter of
fact, the platform supports various types of resources
including CPU, RAM, bandwidth, etc. Numerous pre-
vious studies are realized by CloudSim, such as research

Fig. 1 Overview of the proposed algorithms

Scheduling Algorithms for Heterogeneous Cloud Environment: Main Resource Load Balancing Algorithm and Time... 705

in [41]. The article proposed a VM placement scheme
which can place VMs with similar workload peaks
together and the authors verified the effectiveness of
the schemewith CloudSim. However, it should be noted
that CloudSim won’t regard it as mistakes even if the
required RAM or bandwidth exceeds what VMs or even
hosts actually have. In addition, CloudSim-based energy
simulation only supports CPU-aware scheduling and a
single task running in the simulation which assumes that
there is just one task performed by a virtual machine.
Hence, it limits the CloudSim-based energy simulation.
In order to resolve the underlying problem of multi-
resource-agnostic mentioned above, W. Lin et al. pro-
posed a simulator namedMultiRECloudSimwhich con-
siders multi-resource tasks’ scheduling and energy
simulation.

The most related research developments in
MultiRECloudSim are listed as follows [42]:

1) A new task model is designed for multi-resource.
IO is added as a new type of resource in the model.
The model regards that the fully-met demands of
IO, bandwidth, and RAM are indispensable for a
task to start while the CPU’s demand is not. But the
amount of CPU allocated to a task will influence the
speed of execution. Those demands exist in
SimCloudlet object respectively as attributes in
terms of IO, BW (bandwidth), RAM, MIPS.
Among them, only MIPS supports both static and
dynamic workload. Furthermore, the current re-
quested MIPS with the dynamic workload is calcu-
lated by the sum of the product of the requested
MIPS utilization of a task and the standard MIPS of
the task rather than the product of the total requested
utilization of MIPS overall running tasks and the
MIPS allocated to the VM. Those changes definite-
ly make the simulation closer to the real-world
scenario.

2) Two new definitions are introduced: the normal
resource load of task (NRLT) and the normal re-
source load of VM (NRLV). The former one is a
metric used to measure how much workload for the
resource a task has while the latter one is a metric
used to measure how much workload for the re-
source a VMhas. NRLT is calculated by the product
of the estimated execution time of task x and the
normalization of the average demand of task x for
resource ci, as shown in Eq. (1). NRLV is calculated
by the sum of the normal resource load of all

running tasks and the tasks to be executed in the
VM, as shown in Eq. (2). The meanings of nota-
tions are mentioned below. All the meanings of the
notations are listed in Table 2.

Load x; cið Þ ¼ time xð ÞNormal x; cið Þ ð1Þ

Load vmi; c j
� � ¼ ∑

x∈E ið Þ
Load x; c j

� � ð2Þ

3) Based on CloudSim’s previous task scheduler, a
new task scheduler suitable for multi-resource allo-
cation and multi-resource task scheduling. It sup-
ports the task waiting queue and uses the resource
allocators to manage and allocate resources. The
resource allocators are divided into three categories
as CPU allocator, RAM allocator, bandwidth allo-
cator, and IO allocator. Since the demand for CPU
must be met, it means that other types of resource
are reserved except CPU. When a task starts exe-
cuting in reservation mode, the largest amount
among CPU demands of all tasks will be allocated
to it and afterwards, each task will be allocated the
same amount of CPU in each time slot. The reser-
vation scheme can fully guarantee QoS but result in
resource idleness. Conversely, the non-reservation
scheme is an on-demand scheme so it cannot guar-
antee QoS.

4) It supports multi-resource including CPU, RAM,
IO, and bandwidth energy simulation. The basic
workflow of carrying out the simulation is listed
as follow: firstly, the energy consumption is calcu-
lated for every fixed time interval. According to the
first resource utilization and the last resource utili-
zation in the interval, the energy consumption is
calculated by linear fitting at resource-power
model.

There is an underlying problem of load balancing
algorithm proposed in [42]: it doesn’t consider the dif-
ference that the same task impacts on heterogeneous
VM. For example, given VM A with 2000 MIPS and
another VM B with 3000 MIPS, a task with CPU
demand in term of 1000 MIPS causes different impacts
onVMA and VMB. For VMA, its CPU utilization will
rise from 0 to 50%,whereas VMB is 0 to 33.3%. Hence,

W. Lin et al.706

the previous calculationmethod [42] on normal resource
load of VM disregards the VM heterogeneity. As we all
know, VMs might differ in configurations of CPU,
RAM, IO, and bandwidth.

Accordingly, a task assigned to different VMs should
present different loads for VMs. Fixed load value can’t
reflect non-uniform distribution of resources. In other
words, load value should vary from VM to VM.

Besides, when assigning a batch of tasks to VMs, the
tasks’ make-span depends on the VM that finishes the
last one task. If there were some tasks that finished
executing very early while some very late, the idle
resource of early finished VMs would be wasted.

Therefore, each VM’s make-span should be closed
to each other’s. To achieve this, basically, we will
arrange assignment of tasks with long execution time
earlier and the shorter ones later. In this way, we can
align VMs’ make-spans. In addition to the length of
tasks, it is extremely important to make full use of
VM’s performance at every moment. For example, a
VM with CPU utilization always at 90% is compared
with a VM with CPU utilization always at 60%.
There’s no doubt that the former one makes better
use of resource. Of course, the former one can finish
the execution of tasks earlier supposed that the two
VMs have the same MIPS.

Table 2 Meanings of the notations

x A task. Specifically, a cloudlet in MultiRECloudSim.

xi A task whose index is i in the executing task batch.

xiIoT
An IoT task whose index is i in the executing task batch.

S The task execution queue or cloudlet-list in CloudSim.

ci Any type of resource. Such as ccpu.

c*i The normal value of corresponding resource ci. Such as c*cpu.

vmi Any of the VMs.

pj Any of the hosts.

α The parameter for tuning tasks’ priorities.

target Current task’s main resource.

ci(x) The average demand of task x for resource ci. Such as ccpu(x).

ci(pj) The total amount of resource ci in host pj.

ci(vmj) The total amount of resource ci in VM j.

time(x) The estimated execution time of task x.

Normal(x, ci) or Nci
x

The normalization of task x’s average demand for resource ci. Used for deciding tasks’ main resource.

Normal(x, ci, vmj) or Nci
x vmj
� � The normalization of task x’s average demand for resource ci in VM j

Load(x, ci) The normal resource load of task (NRLT).

Load(x, ci, vmj) or Load(x, vmi) The relative load of task x for resource ci upon vmj or the relative execution time of task x upon VM i

Load(vmi, cj) or Load(vmi) The total relative resource load in a VM or the total relative execution time for VM i.

E(i) The set containing all the running and waiting tasks in vmi.

length(x) Task x’s length.

CloudletList The task queue in CloudSim.

Priority(x) Task x’s priority.

REFERENCE _ TIME or R _ T The given reference value of a task’s running time.

REFERENCE _CPU or R _C The given reference value of a task’s MIPS.

u (vm, ci) The resource ci utilization of a VM.

W (vm, ci) The load of a VM.

u (cpui) Any of the PE’s utilization.

ΔW(vm, ci) The increased load of a VM.

Scheduling Algorithms for Heterogeneous Cloud Environment: Main Resource Load Balancing Algorithm and Time... 707

In the context of static batch task scheduling, the
resource in which a task is assigned to are pre-
determined and remain unchanged till current batch
completes. The existing load balancing algorithm
tended to remain the same coping behaviors to varying
workload till the end. But that is not what a cloud
administrator wants to see.

Furthermore, the existing load balancing algorithm
is not IoT-aware. The offloaded workload from IoT
devices is also seen as the traditional or common
workload in the eye of data-center. However, they
are different from the common workload. The reason
why some workload is offloaded from IoT device is
that it requires too much computing resources. So, the
device might choose to upload some workload to the
Fog or the Cloud. In the meantime, the device should
carefully consider the overhead caused by workload
partitioning and workload uploading. Thus, the
offloaded workload is usually more delay-sensitive
than the common workload [43].

Based on the concerns mentioned above, we now
propose main resource load balancing algorithm and
time balancing algorithm for heterogeneous
environment.

3 Main Resource Load Balancing Algorithm
and Time Balancing Algorithm in Heterogeneous
Environment

3.1 Design of Main Resource Load Balancing
Algorithm in Heterogeneous Environment

3.1.1 The Introduction of Relative Load

In our theory, x means any one task, ci means ith
type of resource, ci(x) means the average demand
of task x for resource ci, c*i means the normal
value of resource ci, length(x) means task x’s
length, ccpu(x) means the average demand of task
x for MIPS, pj means jth host, ci(pj) means total
amount of resource ci in host pj, ci(vmj) means
total amount of resource ci in VM vmj. All the
tasks submitted to data-center are reasonably as-
sumed already labelled. We use Normal(x, ci) to
denote the normalization of average demand of
task x for resource ci, as shown in Eq. (3). Be-
sides, we use Normal(x, ci, vmj) to denote the

normalization of average demand of task x for
resource ci in vmj, as shown in Eq. (4).

Normal x; cið Þ ¼ ci xð Þ
c*i

ð3Þ

Normal x; ci; vmj
� � ¼ ci xð Þ

ci vmj
� � ð4Þ

Accordingly, there is Eq. (5).

Load x; ci; vmj
� � ¼ time xð Þ

� Normal x; ci; vmj
� � ð5Þ

Here, Load(x, ci, vmj) denotes the relative load of task
x for resource ci upon vmj. Then we easily deduce an
equation, as shown in Eq. (6). To be more straightfor-
ward, an example is presented below. Assuming that
there are two types of tasks (x1 and x2) whose estimated
demand for CPU are 1000 and 500 and estimated length
are 2000 and 1000, respectively, they are both ready to
be scheduled to vm1 and vm2 whose capacity of CPU are
2000 and 3000, respectively. Based on Eq. (4), there are
the distinct normalization values of x1’s demand for
CPU in vm1 and vm2: 0.50 and 0.33. Then according
to Eq. (5), there are the distinct relative CPU loads of x1
in vm1 and vm2: Load(x1, cpu, vm1) =1.00 and Load(x1,
cpu, vm2)= 0.66. Considering the machine heterogene-
ity, the same type of task can have different impacts on
different machines. Similarly, it is easy to get the equa-
tion: Load(x2, cpu, vm1)=0.50. By Adding this value to
Load(x1, cpu, vm1), the total relative CPU load of is got,
which is reflected in Eq. (6).

Load vmi; c j
� � ¼ ∑

x∈E ið Þ
Load x; c j; vmi

� � ð6Þ

E(i) denotes a set containing all running and waiting
tasks in vmi.

3.1.2 The Introduction of Parameter α

Priority(x), as shown in Eq. (7), denotes task x’s priority
which indicates the greater the priority is the earlier the
task x will be assigned to a vm.

Priority xð Þ ¼ α� time xð Þ
R T

þ 1−αð Þ � ccpu xð Þ
R C

ð7Þ

In Eq. (7), α denotes a value which is between [0,1],
R _ T denotes REFERENCE _ TIME, and R _C denotes

W. Lin et al.708

REFERENCE _ CPU. α is employed to balance the
relative importance between task execution time and
requested CPU. It is not difficult to find out that when
α=0, the priority of a task is only determined by CPU.
And the priority of a task is only determined by estimat-
ed execution time when α=1. It should be noted that
CPU consumes the most energy of a server. In other
words, the tuning of α can be deemed as balancing the
algorithm’s inclination to time-saving or energy-saving.

time(x) denotes task x’s estimated execution time and
REFERENCE _ TIME denotes the given reference value
of a task’s run time REFERENCE _CPU denotes the
given reference value of a task’s MIPS. Both reference
values are selected empirically and then used to calculate
the priority. The reference values are selected by the users
empirically. For example, the reference value of CPU
may take the initial value of the resource allocated toVM.

3.1.3 The Introduction of Parameter k

The parameter α is employed to determine all the tasks’
execution priorities. But unlike α, the given parameter k
is employed to determine the IoT tasks’ execution pri-
orities. It is only used after the execution queue has been
sorted by Eq. (7). In fact, it is a reordering process that
adjusts the already sorted tasks’ place in the queue. As
can be seen from the constraint (8), k should be greater
than the ratio by the sum of all the IoT tasks’ index in the
queue and the sum of all the tasks’ index in the queue.
To explain this constraint more clearly, an example is
provided. Assuming that k is 0.4 and there are 3 sorted
tasks: a, b, and c. c is an IoT task while others are all
common tasks. Based on the right side of the inequality,
the ratio is 0.5. It is obvious that the constraint is not
satisfied and the reordering is needed. Based on our
reordering scheme, c is placed 1 position leftward and
the final task list becomes acb. Similarly, the final list
becomes cab if the k is 0.2 originally. It can be seen that
smaller k results in more IoT tasks being placed leftward
after reordering. It further leads to shorter response
time of IoT tasks and being harder to satisfy the
QoS of common tasks. It should be noted that k
literally has a range and can be easily calculated
based on the inequality.

k≥

∑
xiIoT∈S

i

∑
xi∈S

i
ð8Þ

The proposed algorithm is IoT-aware and should
consider the response time of them since they are usu-
ally more delay-sensitive than others [43]. One of the
approaches is rendering all IoT tasks executing first. But
too much adjustment will harm the original execution of
non-IoT tasks. The mechanism of the proposed reorder
process based on the constraint (8) can avoid over-
adjusting and reduces the number of swapping places
as less as possible. It can guarantee the overall or rela-
tively superior execution order of IoT tasks, yet abso-
lutely superior.

3.1.4 The Algorithm Procedure

The main ideas of main resource load balancing algo-
rithm in heterogeneous environment and the one in non-
heterogeneous environment are almost the same except
two points. First, the former one will sort tasks and then
reorder before assigning them to VMs. Second, the idea
of relative load is introduced. Instead of the usage of
Normal(x, ci), Normal(x, ci, vmj) is used to represent the
added ci load of x upon VM j.

The procedure of main resource load balancing algo-
rithm in heterogeneous environment is that firstly the
tasks are sorted by their priorities in decreasing order.
Then, reordering is performed based on the constraint
(8). The sorting is pretty easy while the reordering needs
a little trick.

To reduce the number of swapping as less as possi-
ble, two pointers are used to indicate the current swap-
ping tasks, respectively. One of them starts from the
beginning of the queue and probes towards the end of
the queue. The other starts from the end of queue and
probes towards the beginning. While the lower pointer
is still lower than the higher, the lower pointer moves
forward one step each time trying to locate the first non-
IoT task and the higher pointer moves backward one
index each time to locate the first last IoT task. After
finishing the current swapping, the constraint (8) is
checked. If it is satisfied, the loop ends. Otherwise, the
loop continues. It should be noted that the validity of the
given k is pre-checked and the value of the step is also
pre-set by users. Only if the constraint is still not satis-
fied after the loop has ended, the value of the step will be
decreased by one. And then another loop begins until
the constraint is satisfied.

During the iteration of CloudletList, the unassigned
task in the sorted and reordered queue is assigned se-
quentially to a properly selected VM. To be more

Scheduling Algorithms for Heterogeneous Cloud Environment: Main Resource Load Balancing Algorithm and Time... 709

detailed, given a normal value of each type of resource,
the algorithm calculates the normalized average demand
of each task for each type of resource and the maximum
normalized average demand of each task is regarded as
the task’s main resource load. Then, it iterates around all
VMs and assigns the task to a VM with the minimum
added load of resource target (also known as Normal(x,
ci, vmj) here). The target denotes the to-be-assigned
task’s main resource. Finally, the VM which the current
task is assigned to calculates its own new load by adding
the newly arrived task’s relative resource load to its
previous load. If and only if a task finishes executing,
the VM subtracts the task’s relative resource load from
its load. The pseudo-code of the algorithm is shown as
Fig. 2.

It should be noted that S(VmList, HostList) denotes
the set of hash mapping from VMs to hosts. Here we
analyze the algorithm complexity. Supposed that there is
N tasks and M VMs. So, the complexity of sorting tasks
by their priorities based on our sorting algorithm is
O(N*logN). Then the calculation in Line 4 can be re-
solved in O(1) and greedily assign tasks to suitable VMs
by iterating around tasks is O(M). Hence, for both the
multi-resource scheduling algorithm for heterogeneous
environment their algorithm complexity is O(N*logN+
N*M+N).

3.2 Time Balancing Algorithm

Another algorithm is also proposed, namely time
balancing algorithm. Unlike the main resource load
balancing algorithm, this one does not consider the
factor of multi-resource. In fact, it is actually an extend-
e d v e r s i o n o f M a x -M i n [4 4] b a s e d o n
MultiRECloudSim. Max means that the task with max-
imum priority is served first. Min means that the VM
that can bring minimum execution time is selected first.
And time balancing algorithm only takes task’s estimat-
ed execution time (time cost) into account and greedily
assigns tasks to VMwith shortest total run time of tasks.
In other words, the time cost is seen as a type of special
load here. Therefore, the mechanism of this proposed
method renders itself lack of some good qualities which
the main resource load balancing has. It is only aimed to
reduce make-span.

For all that, this algorithm considers the heterogene-
ity of VMs performance. It means that the same task will
add different load to different VMs. If we use Load(x,
vmi) to denote the relative time cost of task x that is
assigned to VM i, then we get the following two equa-
tions: Equations (9) and (10). Referring to these two
equations, it is not difficult to find out the similarity
between Max-Min and time balancing.

Also, time balancing algorithm integrates the afore-
mentioned sorting and reordering technique.

Load x; vmið Þ ¼ time xð Þ
ccpu vmið Þ

¼ length xð Þ
ccpu xð Þccpu vmið Þ

ð9Þ

Load vmið Þ ¼ ∑
x∈E ið Þ

Load x; vmið Þ ð10Þ

Load(x, vmi) here denotes the relative time cost of
task x upon VM i. The pseudo-code of the algorithm is
shown as Fig. 3.

Here we analyze the algorithm complexity. Supposed
that there is N tasks and M VMs. So, the complexity of
sorting tasks by their priorities based on our sorting
algorithm is O(N*logN). Then greedily assigning tasks
to suitable VMs by iterating around tasks is O(M).
Hence, for both the multi-resource scheduling algorithm
for heterogeneous environment their algorithm com-
plexity is O(N*logN +N*M).

Fig. 2 The main resource load balancing algorithm in heteroge-
neous environment

W. Lin et al.710

4 Theory Analysis of the Proposed Algorithms

This section will perform theory analysis on main
resource load balancing algorithm, Max-Min fair-
ness algorithm [45] and time balancing algorithm
in terms of weighed priority and relative load. It
should be noted that the Max-Min fairness algo-
rithm refers to a policy that successively assigns
tasks decreasingly based on the run time to a VM
with the shortest total run time after sorting them
by their run time.

4.1 Weighed Sorting

In section 3.1 we have mentioned task’s priority
and the greater the priority is the earlier the task
will be assigned. The priority is used to describe
the degree of a task’s impact on make-span of
total tasks and the later the tasks with higher
priorities being assigned will increase make-span.
Obviously, if a task with long run time were
arranged as the last finished one, there would
exist relatively greater possibility of increasing
make-span and vice versa. Besides, the tasks with
more requested CPU are also relatively hard to
assign. In all, we need to arrange the tasks with
longer execution time and more requested CPU
first.

4.1.1 The Readiness for the Analysis of the Priority
Function

In Eq. (7), α denotes a value which is between [0,1]. It
balances the relative importance between task estimated
execution time and requested CPU. In this section, it
was substituted by 0.7, the REFERENCE _ TIME was
substituted by 30, and REFERENCE _ CPU was
substituted by 900. Besides, through

time xð Þ ¼ length xð Þ
ccpu xð Þ ð11Þ

, there is:

Priority xð Þ ¼ 2length xð Þ
75ccpu xð Þ þ ccpu xð Þ

4500
ð12Þ

Therefore, after substitution, the Eq. (12) turns into
y ¼ 2L

75x þ x
4500, where L ∈ [1000, 90000], xϵ[100, 2000].

Here, L denotes the length of task and x denotes the
requested demand of task. The figure of this bivariate
function is shown as Fig. 4.

Based on Fig. 4, it is difficult to learn the relation
between x and L. So, we can assume that L is 1000,
10,000, and 90,000, respectively. In this way, the orig-
inal function turns into x-concerned only.

4.1.2 L = 1000

Based on Fig. 5, y is relatively small and generally
smaller than 0.45 when L=1000. In interval [0,1], y is

Fig. 3 The time balancing algorithm in heterogeneous
environment

Fig. 4 2D image of the priority function

Scheduling Algorithms for Heterogeneous Cloud Environment: Main Resource Load Balancing Algorithm and Time... 711

an increasing function of x which indicates that the
shorter tasks have smaller priorities and the relation
between CPU’s demand and priorities is proportional.

4.1.3 L = 10,000

As shown in Fig. 6 in which L=10,000, there is a
minimum value when x is approximately equal to
1100 and y has an interval of [0.49, 100,000]. When x
< 500, there is y > 0.6. When 500 < = x <= 2000, there is
y in an interval of [0.49, 0.6]. Therefore, small x leads to
high priority since the run time is long accordingly.With
the increase of x, there appears an inflection point which

indicates a balancing point of the relative importance
between task run time and requested CPU. Run time is
more important in the left side of inflection point and
vice versa. In another word, if tasks are similar to each
other in run time, tasks with more demand for CPU
should be scheduled first.

4.1.4 L = 90,000

When L=90,000, as shown in Fig. 7, we can find that y is
larger than 1 which means that y is generally large.
Besides, y is the decreasing function of x which indi-
cates that tasks with large length have high priority and
when the length is large enough, the larger the demand
of CPU is the less the run time is and the lower the
priority is. Hence, the weighed priority takes tasks’ run
time and CPU demand into comprehensive consider-
ation and sorts out tasks that need to be scheduled first
dependent on different scenarios.

In theMax-Min fairness algorithm [45], the tasks will
be sorted by estimated execution time only. That is to
say, it has Eq. (13).

y ¼ L
30x

ð13Þ

The coefficient 1/30, in fact, can be spare. But it’s
added here for better comparison with the discussion of
the weighed priority mentioned above. The number 30
denotes REFERENCE _ TIME. Its image is shown in
Fig. 8 where L=10,000.

The drawback of this way to calculate priority is very
obvious. For example, if there is a task named Awith a
length of 15,000 demanding 1000 MIPS, a task named

Fig. 5 Image of L = 1000

Fig. 6 Image of L = 10,000 Fig. 7 Image of L = 90,000

W. Lin et al.712

Bwith a length of 7500 demanding 500MIPS and a task
named C with a length of 28,000 demanding 2000
MIPS. It is easy to work out the run time of the three
tasks are 15 S, 15 S, and 14 S, respectively. Therefore, in
Max-Min fairness algorithm the relation among the
priorities of the tasks is Priority(A) = Priority(B) >
Priority(C). As for the weighted priority scheme, the
result is different. Their priorities are 0.62, 0.51 and
0.81, respectively. Although the run time of task A and
task B are the same, it is more difficult for scheduling
because A demands more CPU. Hence, the priority of A
should have been higher than B’s. With respect to C
whose run time is close to A and B’s, it demands far
more CPU than the previous two tasks’. The amount of
the demand of tasks C for CPU occupies 65% of the
workload of a CPUwith aMIPS of 3GHzwhile A and B
occupy 32% and 16%, respectively. Thus, C should be
scheduled first. In conclusion, the weighted priority
scheme is more suitable for defining the degree of a
task’s priority in scheduling.

4.2 Relative Load

When assigning tasks to VMs, a problem occurs if
we take the demand for the resource as the metric
of the load. Assuming that there are two VMs
named A and B with CPU frequency of 3GHz
and 2GHz, respectively. When the same situation
of tasks assignment inflicts on A and B, respec-
tively, there is still the left computing capability of
1GHz in A whose 33% of its CPU resource is not
exploited while B is fully loaded. Hence, it’s not a

good idea for heterogeneous hosts to take the
demand for the resource as the metric of the load.

It would be a better option to take the utilization of a
host as the metric of the load aiming to measure the load
of heterogeneous hosts more properly. The reasons are
as follows. First, each task’s demand for resource will be
mapped to a value belongs to the interval of [0, 1].
Second, the utilization can show us the change of load
brought by the same task to different hosts. For example,
a task demanding 1GHz will bring the load of 33.3% to
a one-core host with a frequency of 3GHz while 50.0%
to a 2GHz one.

On the other hand, the occupying time of resource is
also one of the most important factors. The longer it is,
the higher the load of hosts is. And vice versa, the
definition of the load of a host will be introduced below.

We can now define the load of a vm as this: during
a time range of t, the load of a vm for resource ci is t ∗
u (vm, ci) if the utilization of a VM for resource ci is
u (vm, ci). In all, the load of a vm is denoted by
W (vm, ci).

If there are m PEs each of whom possesses a fre-
quency of f in each host. Then the utilization of a host is
∑iu cpuið Þ

m if each PE’s utilization is u (cpui), (i = 1,…,m).
So, we get the load of a host for CPU denoted by

t ∑iu cpuið Þ
m .
The demand of a task x for ith types of resource is

denoted by ci(x). When x is assigned to a vm, the
increasing load of the vm is denoted as follow:

ΔW vm; cið Þ ¼ time xð Þ ci xð Þ
ci vmð Þ

¼ length xð Þ
ccpu xð Þ

ci xð Þ
ci vmð Þ

ð14Þ

Specifically, the increasing load of CPU is denoted as
follow:

ΔW1 vm; ccpu
� � ¼ length xð Þ

ccpu xð Þ
ccpu xð Þ
ccpu vmð Þ

¼ length xð Þ
ccpu vmð Þ

ð15Þ

If taking the demand for resources as the metric of the
load, which is what previous researchers usually did, the

Fig. 8 Image of y− 10000
30x

Scheduling Algorithms for Heterogeneous Cloud Environment: Main Resource Load Balancing Algorithm and Time... 713

increasing CPU load of a vm is shown as follow when
the task x is assigned to it.

ΔW2 vm; ccpu
� � ¼ time xð Þccpu xð Þ

¼ length xð Þ ð16Þ

In the main resource load balancing algorithm for
non-heterogeneous environment, the increasing CPU
load of a VM is shown as follow when the task x is
assigned to it. In Eq. (17), Ncpu

x is used to denote
Normal(x, ccpu).

ΔW3 vm; ccpu
� � ¼ time xð ÞNcpu

x

¼ length xð Þ
ccpu xð Þ

ccpu xð Þ
c*i

¼ length xð Þ
c*i

ð17Þ

While in the main resource load balancing algorithm
for heterogeneous environment, the relative increasing
load of a VM becomes this one, as shown in Eq. (18), in
which Normal(x, ccpu, vm) is replaced by Ncpu

x vmð Þ.
ΔW4 vm; ccpu

� � ¼ time xð ÞNcpu
x vmð Þ

¼ length xð Þ
ccpu xð Þ

ccpu xð Þ
ccpu vmð Þ

¼ length xð Þ
ccpu vmð Þ

ð18Þ

Since Max-Min is performed based on selecting a
task with maximum execution time and assign to the
resource which gives minimum completion time [46],
the increasing load of Max-Min fairness algorithm be-
comes the one shown in Eq. (19).

ΔW5 vm; ccpu
� � ¼ time xð Þ
¼ length xð Þ

ccpu xð Þ
ð19Þ

With respect to the time balancing algorithm, it is
shown in Eq. (20).

ΔW6 vm; ccpu
� � ¼ Load x; vmð Þ
¼ length xð Þ

ccpu xð Þccpu vmð Þ
ð20Þ

It can be seen from Table 3 that the scenario 1 is the
reference definition, which takes the product of the
resource amount and the resource occupation time as
the resource load, given by us. As we have discussed

before, it’s impossible to balance the resource heteroge-
neity existing among hosts if taking the amount of the
demand for resource as the load definition as demon-
strated in scenario 2. Scenario 3 is similar to scenario 2
except for the fact that the normal values of different
resources are introduced to eliminate the dimensionality
between all resources. The normal values are fixed so it
cannot reflect the different configuration among differ-
ent hosts. Scenario 4 is closest to scenario 1 but it
overcomes the shortcoming of the fixed normal values
in scenario 3. The key lies in the use of the coefficient
1/m in which the m denotes the number of PEs or VMs.
But if the changes of load refer to hosts it will still be the
same. Its purpose is to consider the issue from the
perspective of the host. It’s designed to optimize hosts
rather than VMs. None of scenario 5 and 6 considers the
factor of multi-resource scheduling and they only focus
on developing the scheduling scheme based on single
dimension factor which is the task completion time.
That may lead to high efficiency by the two algorithms.
In contrast, scenario 6 outperforms scenario 5 in effi-
ciency since it takes the heterogeneity among VMs into
account. However, the main resource load balancing
algorithm for heterogeneous environment might have
advantages in resource load balancing and energy
consumption.

Table 3 The different calculation method of the load in different
algorithms.

ΔW(vm, ci) CPU Non-CPU

1 Reference
length xð Þ
ccpu vmð Þ

length xð Þ
ccpu xð Þ �

ci xð Þ
ci vmð Þ

2 Taking the demand for resources as
the metric of the load

length(x)
length xð Þ
ccpu xð Þ �
ci(x)

3 The main resource load balancing
algorithm for non-heterogeneous
environment

length xð Þ
c*cpu

length xð Þ
ccpu xð Þ �

ci xð Þ
c*i

4 The main resource load balancing
algorithm for heterogeneous
environment

length xð Þ
ccpu vmð Þ

length xð Þ
ccpu xð Þ � ci xð Þ

ci vmð Þ

5 The Max-Min fairness
length xð Þ
ccpu xð Þ

6 The time balancing
length xð Þ

ccpu xð Þccpu vmð Þ

W. Lin et al.714

5 Experiments and Results

All the evaluations are performed on the platform of
MultiRECloudSim. The simulation settings are listed in
Tables 4, 5, 6, and 7.

In Table 4, some global settings and the class we used
are listed. We assumed that there was only data-center in
Cloud. We could have increased the number of data-
centers but it was unnecessary and redundant for
explaining the proposed ideas. Therefore, the number
of hosts remained unchanged during the execution pro-
cess. Since each host has a fixed number of VMs (ac-
cording to Table 5), the total number of VMs also
remained unchanged.

As we have mentioned that the proposed ideas try to
avoid VMmigration, PowerVmAllocationPolicyByHost
was used as the global setting as well. This policy does
not consider the run-time VMmigration and will arrange
VMs based on the current host type. It should be noted
that the policy was written by the authors of CloudSim.
The rest in Table 4 mostly was developed by the authors
of MultiRECloudSim, except for SimProgress-
CloudletIoT and SimPowerHostMultiR. The
SimProgressCloudletIoT was extended for indicating
that the current task is an IoT task or a Common task.

According to Tables 5 and 6, it is not difficult to find
that the each type of VM’s configurations are averaged

based on the configurations of the corresponding type of
host. That is because we reasonably assumed that each
VM can only have one PE. In this way, the VM alloca-
tion process is much more simplified and we can pay
more attention to the working of task scheduling. The
VM configurations can be much more complex than
what are shown in Table 6 but still it is unnecessary
and redundant.

As seen in Table 7, there are three major types of
tasks. We synthesized the tasks based on the related
article [47] and stored them into a file. The ranges mean
that the values were selected randomly within the
ranges. Each task’s configurations are separated by a
tab space and stored as a whole in a line of the file. In the
end, in order to differentiate the IoT tasks and the
Common tasks, the labelling process must be done
based on a rule. The rule is that the chosen lines in the
file will be labelled as IoT while the rest lines will be
labelled as Common. During the creation of
SimProgressCloudletIoT, those information will be used
to set up the cloudlets.

In this section, six different algorithms were used to
perform experiments to verify the effectiveness of the
proposed algorithms, including first come first serve
(Algo1), random assignment (Algo2), trade-off
(Algo3) [36], main resource load balancing (Algo4),
time balancing (Algo5), and main resource task balance

Table 4 Global settings

Parameters or class Value

Interval 5 s

Number of hosts 40

Number of VMs 340

Number of tasks 8000

VmScheduler SimVmSchedulerTimeSharedOverSubscription

CloudletScheduler SimCloudletSchedulerDynamicWorkload

AllocationPolicy PowerVmAllocationPolicyByHost

Cloudlet SimProgressCloudletIoT

VM SimPowerVm

Host SimPowerHostMultiR

Broker SimDatacenterBroker

Datacenter SimPowerDatacenter

CPU/Ram/IoAllocator CPU/Ram/IoAllocatorSimple

Cloudlet resource utilization UtilizationProgressModelByFile

PeProvisioner PeProvisionerSimple

Ram/IoProvisioner SimRam/IoProvisionerSimple

Scheduling Algorithms for Heterogeneous Cloud Environment: Main Resource Load Balancing Algorithm and Time... 715

(Algo6) [42], and. It should be noted that TB is actually
an extended version of Max-Min based on
MultiRECloudSim and TO was implemented based on
the idea of [36]. In Table 8, some algorithms’ particular
parameters are presented.

5.1 Evaluation on the Awareness of IoT

In this section, the response time of IoT tasks by differ-
ent algorithms will be evaluated. To be more detailed,
the task’s finish time is regarded as the corresponding
response time. As we all know, the network delay is
unavoidable and sometimes out of the cloud provider’s
control. But it is also fair for all the submitted tasks.
Therefore, if we want to know how well different algo-
rithms’ response the request from IoT devices, we
should just compare the task finished time.

Figure 9 illustrates the overall cloudlets’ response
time produced by different algorithms. It is not difficult
to find that Algo5 has the minimum maximum response
time and the minimum response time. The symbol on
each box’s middle stands for the average value.

In Table 9, the detailed values are listed. In fact, both
Algo4 and Algo5 perform well in term of the response
time of IoT tasks. But Algo4 performs 19.97% worse
than Algo5. That’s because compared to Algo4, Algo5
only considers task execution time when assigning
tasks.

5.2 Evaluation on the Host SLA

Figure 10 shows the comparison of part of hosts’ SLA
results. The SLA is calculated by the ratio of the total
service violation time and the total execution time. In
CloudSim, the host will update its state history every
time interval. And the current requested resources and
allocated resources are recorded in the state history
entry. Therefore, it is not difficult to get the SLA result.

Due to the limited space of the chart, only part of
hosts is presented in the figure. It can be seen that the
SLA produced by Algo4 is either the lowest or the
second lowest. To be more convincible, detailed analy-
sis is listed in Table 10. In all, the SLA result produced
by Algo4 is the best.

While Algo4 performs well in term of host SLA,
Algo5 performs 42.54%, 79.70%, and 20.91% worse
than Algo3, Algo4, and Algo6, respectively. The reason
is simple and has been mentioned at the end of section
5.1.T

ab
le
5

H
os
tc
on
fi
gu
ra
tio

n
pa
ra
m
et
er
s

Pa
ra
m
et
er
s

Ty
pe

on
e

Ty
pe

tw
o

Ty
pe

th
re
e

Ty
pe

fo
ur

N
um

be
r
of

P
E
s

4
6

8
16

Fr
eq
ue
nc
y
of

ea
ch

PE
29
33

M
H
z

30
67

M
H
z

20
48

M
H
z

35
00

M
H
z

R
A
M

4
G
B

12
G
B

6
G
B

16
G
B

IO
30
0
M
B
/s

50
0
M
B
/s

40
0
M
B
/s

30
0
M
B
/s

C
PU

po
w
er

m
od
el

Po
w
er
M
od
el
Sp

ec
Po

w
er
I

bm
X
35
50
X
eo
nX

56
75

Po
w
er
M
od
el
Sp

ec
P
ow

er
H
pP

ro
L
ia
nt

M
l1
10
G
5X

eo
n3
07
5

Po
w
er
M
od
el
Sp

ec
Po

w
er
H
pP

ro
L
ia
nt

M
l1
10
G
3P

en
tiu

m
D
93
0

Po
w
er
M
od
el
Sp

ec
Po

w
er
H
pP

ro
L
ia
nt

M
l1
10
G
5X

eo
n3
07
5

R
A
M

po
w
er

m
od
el

Po
w
er
M
od
el
R
am

Si
m
pl
e

IO
po
w
er

m
od
el

Po
w
er
M
od
el
Io
Si
m
pl
e

W. Lin et al.716

5.3 Evaluation on the Degree of Load Balance

To evaluate the degree of load balance produced by
different algorithms, we use the variance of all VMs’
resource utilization as the degree of load balance. In
Figs. 11, 12, and 13, the runtime changing of VMs’
utilization are presented. Each type of colors stands for
a VM and the numbers in the legend represent VMs’ ID.
Due to the limited space of the article, only Algo4’s part
of VMs’ runtime results are presented As can be seen in
Figs. 11, 12, and 13, the runtime utilization changed a
lot and unstable. Therefore, we decide to use the average
of utilization of runtime VM to stand for the VM’s
resource utilization.

In Table 11, the comparison of degree of load balance
produced by different algorithms are presented. Since

mul t i - resource schedul ing is suppor ted on
MultiRECloudSim, three types of resource are consid-
ered in the comparison. It can be seen that the CPU’s
degree of load balance produced by Algo4 are much
better that the others. The other types of resource’s
degree of load balance are not the best but still are not
bad. Compared with Algo3, Algo3 is 8.05% better than
Algo4 in RAM balance. Compared with Algo1, Algo1
is 1.18% better than Algo4 in IO. But neither Algo1 nor
Algo3 is better than Algo4 in terms of SLA and IoT task
response time.

At last, the overall degree of each algorithm is pro-
vided in Table 11. Without any doubt, Algo4 performs
best in load balancing out the 6 algorithms.

While Algo4 performs well in term of load balance,
Algo5 performs 26.64%, 71.16%, and 22.06% worse
than Algo3, Algo4, and Algo6, respectively.

5.4 Evaluation on the Make-Span

The make-span of the algorithm is obtained via
subtracting the simulation start time from the simulation
stop time. As can be seen from Fig. 14, Algo4 no longer
stands for the best. Instead, it costs 31.81%, 27.60%,
and 10.38% more time than Algo3, Algo5, and Algo6
do, respectively.

While Algo4 performs bad in term of make-span,
Algo5 saves 21.62% and 13.49%more time than Algo4
and Algo6 do, respectively. It only cost 3.3% more time
than Algo3 does.

Table 6 VM configuration parameters

Parameters Type one Type two Type three Type four

Number of VMs in each corresponding host type 4 6 8 16

Frequency 2933 MHz 3067 MHz 2048 MHz 3500 MHZ

RAM 1 GB 2 GB 0.75 GB 1 GB

IO 75 MB/s 83 MB/s 50 MB/s 18.75 MB/s

Table 7 Task parameters

Length CPU (MHz) RAM (MB) IO (MB/s) Quantity ratio

Type one 5655–110,157 800–1600 256 5 2

Type two 100–800 384–896 5 1

Type three 100–800 256 20–60 1

Table 8 Algorithm parameters

Parameters MRLB/MRTB/TB

Normal value of the length 1000

Normal value of CPU 3067

Normal value of RAM 1024

Normal value of IO 83

Time weight in sorting (α) 0.7

CPU weight in sorting 0.3

k 0.2

Reference value of time for priority 30

Reference value of CPU for priority 900

Scheduling Algorithms for Heterogeneous Cloud Environment: Main Resource Load Balancing Algorithm and Time... 717

In fact, those results are not difficult to understand.
Just as what had been mentioned above, Algo5 is actu-
ally a variant of Max-Min and it only considers how to
shorten the execution time cost as much as possible. Yet,
Algo4 considers more than that and it can only achieve
the trade-off between make-span and the others to some
extent.

5.5 Evaluation on the Energy Consumption

As can be seen from Fig. 15, Algo4 still is the worst
among the last four algorithms. It generates 21.24%,
20.64%, and 5.97% more energy than Algo3, Algo5,
and Algo6 do, respectively. Those result are also easy to
explain. In CloudSim or some other similar cloud sim-
ulation platforms, if the simulation settings and the
hardware specifications remain unchanged, the power
consumption also remains unchanged. Therefore, in

general, the longer the make-span or execution time is,
the more the energy is consumed.

5.6 Evaluation on the k

To evaluate what impacts will be produced via
changing k, we should fix other experiment set-
tings mentioned above. It should be noted that this
evaluation is of qualitative analysis rather than of
quantitative analysis. It aims to tell the differences
which is caused by different k.

For simplicity and also for generality, Algo4 is used
to evaluate. The same impacts will also be observed
from Algo5 because k only influences the process of
deciding tasks’ places in the task queue. And both
Algo4 and Algo5 have the same process. Here, 6 differ-
ent values are provided for evaluation on k, as shown in
the legend of Fig. 16.

Fig. 9 The comparison of algorithms’ IoT task response time

Table 9 The comparison of algorithms’ IoT average task response time

Algo1 Algo2 Algo3 Algo4 Algo5 Algo6

Average response time (Seconds) 270.19 293.65 367.63 255.74 213.17 273.45

W. Lin et al.718

In Fig. 16, it can be seen that the SLA results are
the same when k=0.1, k=0.2, k=0.3, k=0.4, k=0.5,
and k=0.6. The reason is that k has its own legal
range. This can be proved according to the con-
straint (8). The range is decided by the number of
IoT tasks and the number of all kinds of tasks.
Besides, we have also mentioned that in the section
3.1. To original statement is that “It should be noted
that the validity of the given k is pre-checked and
the value of the step is also pre-set by users”. There-
fore, if k is out of legal range, it will not influence
the algorithms any more.

Based on this result, we decide to modify the values
to (0.2, 0.22, 0.24, 0.26, 0.28, 0.3). The new results are
shown in Table 13. It can be seen from the table that the

relation between SLA and k is not monotonous. There is
a minimum SLA point between 0.2 and 0.24.

There are also evaluations on IoT task response time,
load balance, energy consumption, and make-span.
They are all presented in Tables 12 and 13. About the
IoT task response time, the relation is undoubtedly
monotonically increasing. Because greater k means
more IoT tasks are placed behind. About load balance,
the relation between load balance and k is not monoto-
nous. There is an optimal load balance point between
0.2 and 0.24. About energy consumption and make-
span, they are more unstable than the other parameters
when k changes. As shown in Fig. 17, the values slightly
fluctuate around a line. Therefore, there make-span and
energy consumption have no direct relation with k.

Fig. 10 The comparison of algorithms’ host SLA

Table 10 The comparison of algorithms’ average host SLA

Algo1 Algo2 Algo3 Algo4 Algo5 Algo6

Average of all hosts’ SLA (%) 8.14 6.52 5.03 3.99 7.17 5.93

Scheduling Algorithms for Heterogeneous Cloud Environment: Main Resource Load Balancing Algorithm and Time... 719

5.7 Evaluation on the α

To evaluate what impacts will be produced via chang-
ing α, we should fix other experiment settings

mentioned above. It should be noted that this evalua-
tion is also of qualitative analysis rather than of quan-
titative analysis. It aims to tell the differences which is
caused by different α.

Likewise, Algo4 is used to evaluate. The same im-
pacts will also be observed from Algo5 because α only
influences the process of deciding tasks’ places in the
task queue. And both Algo4 and Algo5 have the same
process. Here, α is set to be 0.2, 0.3, 0.4, 0.5, 0.6, and
0.7 during the experiments, respectively.

In Table 14, IoT task response time, load balance,
energy consumption, SLA, and make-span are all pre-
sented. It is not difficult to find that IoT task response
time, load balance, and SLA do not have regular rela-
tions with α. But the energy consumption and make-
span have. According to Fig. 18, with the growth of α,
the general trend of both energy consumption andmake-

Fig. 11 Part of VMs’ CPU utilization of Algo4

Fig. 12 Part of VMs’ RAM utilization of Algo4

Fig. 13 Part of VMs’ IO utilization of Algo4

Table 11 The comparison of algorithms’ degree of load balance
(the smaller the better)

Algo1 Algo2 Algo3 Algo4 Algo5 Algo6

CPU 18.33 11.94 7.76 2.21 10.54 6.73

RAM 24.85 21.55 8.67 9.43 13.29 10.87

IO 12.46 13.37 16.32 12.61 17.65 16.40

Overall 18.54 15.62 10.92 8.08 13.83 11.33

W. Lin et al.720

Fig. 14 The comparison of algorithms’ make-span

Fig. 15 The comparison of algorithms’ energy consumption

Scheduling Algorithms for Heterogeneous Cloud Environment: Main Resource Load Balancing Algorithm and Time... 721

Fig. 16 Different k’s impacts on the host SLA of Algo4

Table 12 The comparison of algorithms’ energy and make-span

Algo1 Algo2 Algo3 Algo4 Algo5 Algo6

Energy (KWh) 1748.97 1648.09 1178.37 1428.71 1184.20 1348.20

Make-span (seconds) 2410.10 1980.10 1210.10 1595.10 1250.10 1445.10

Table 13 The comparison of different k’s impacts

k=0.2 k=0.22 k=0.24 k=0.26 k=0.28 k=0.3

Average response time (Seconds) 255.74 273.39 308.41 324.37 339.98 373.49

Average of all hosts’ SLA (%) 3.994 2.5809 3.224 3.438 3.486 3.694

Energy (KWh) 1428.71 1439.75 1427.31 1399.51 1414.41 1399.99

Make-span (seconds) 1595.10 1660.10 1600.10 1605.10 1640.10 1585.10

Degree of CPU balance 2.215 2.350 2.146 2.150 2.079 2.019

Degree of RAM balance 9.413 11.063 10.630 10.378 10.045 9.396

Degree of IO balance 12.692 13.429 12.642 11.697 11.438 11.076

Overall balance 8.107 8.947 8.473 8.075 7.854 7.497

W. Lin et al.722

span are decreasing. It is easy to explain such situations.
As what has been mentioned in section 5.5, longer
make-span mean more energy is consumed. And in the
second part of the section 3.1, we have demonstrated
that “the priority of a task is only determined by esti-
mated execution time whenα=1”. Therefore, the greater
α is, the more time the algorithms will save. This result
fully proves that the tuning of α does control the behav-
ior of the algorithms.

6 Conclusion and Future Work

Two novel IoT-aware multi-resource task scheduling
algorithms are presented, aiming to achieve better re-
sults in load balancing, SLA, and IoT task response time
while producing trade-offs between make-span and en-
ergy consumption to some extent. They sequentially
assign tasks from the sorted and reordered task queue
to a properly selected VM. Under the control of two

Fig. 17 The impacts on energy and make-span by different k

Table 14 The comparison of different α’s impacts

α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7

Average response time (Seconds) 256.48 251.57 255.33 252.42 253.02 255.74

Average of all hosts’ SLA (%) 2.96 2.51 3.89 3.12 3.08 3.99

Energy (KWh) 1493.88 1480.77 1479.95 1467.92 1473.94 1428.71

Make-span (seconds) 1865.10 1740.10 1725.10 1725.10 1720.10 1595.10

Degree of CPU balance 2.226 2.083 2.251 1.999 2.357 2.215

Degree of RAM balance 10.129 8.711 9.512 9.427 9.618 9.413

Degree of IO balance 12.394 11.435 12.525 11.972 12.130 12.692

Overall balance 8.250 7.410 8.096 7.799 8.035 8.107

Scheduling Algorithms for Heterogeneous Cloud Environment: Main Resource Load Balancing Algorithm and Time... 723

parameters, the pre-processed task queue is produced. In
the main resource load balancing algorithm (MRLB),
the VM is chosen based on the least relative load. While
in the time balancing algorithm (TB), the VM is chosen
based on the least cost of time. This distinction results in
different outcomes of energy consumption and make-
span.

With the rise of Cloud-IoT, our algorithms ad-
dress the growing need of optimizing QoS and
load balancing while guaranteeing energy con-
sumption to some extent. They also provide two
parameters for engineers from cloud background to
flexibly control the behaviors of the algorithms.
Using the advanced version of simulation platform
modified from the well-known CloudSim, our
findings are evaluated against two traditional and
two recently developed related approaches.

We will extend our work into the field of online and
dependent task scheduling. It means that the relationship
or dependency between tasks should be considered in
the pre-processing of task queue. Future work avenues
might aim to address the application scenarios of the
much more light-weight containers and incorporate the
approaches of workload prediction for resizing
containers.

Acknowledgements This work is supported by National Natu-
ral Science Foundation of China (Grant Nos. 61772205,
61872084), Guangdong Science and Technology Department
(Grant No. 2017B010126002), Guangzhou Science and Technol-
ogy Program key projects (Grant Nos. 201802010010,
201807010052, 201902010040 and 201907010001), Guangzhou
Development Zone Science and Technology(Grant No.
2018GH17), Special Funds for the Development of Industry and
Information of Guangdong Province (big data demonstrated ap-
plications) in 2017, and the Fundamental Research Funds for the
Central Universities, SCUT(Grant No. 2019ZD26).

References

1. Gill, S.S., Buyya, R.: Resource provisioning based schedul-
ing framework for execution of heterogeneous and clustered
workloads in clouds: from fundamental to autonomic offer-
ing. J Grid . Comput. 1–33 (2018)

2. Bera, Samaresh, Sudip Misra, and Joel JPC Rodrigues.
"Cloud computing applications for smart grid: A survey."
IEEE Transactions on Parallel and Distributed Systems 26.5
(2014): 1477-1494.

3. Mell P., Grance T.: The NIST definition of cloud
computing[J]. (2011)

4. Baker, T., et al.: Energy efficient cloud computing environ-
ment via autonomic meta-director framework. 2013 Sixth
International Conference on Developments in eSystems
Engineering. IEEE. (2013)

Fig. 18 The impacts on energy and make-span by different α

W. Lin et al.724

5. Baker, T., et al.: GreeDi: an energy efficient routing algo-
rithm for big data on cloud. Ad Hoc Netw. 35, 83–96 (2015)

6. Baker, T., et al.: Greeaodv: an energy efficient routing pro-
tocol for vehicular ad hoc networks. International
Conference on Intelligent Computing. Springer, Cham.
(2018)

7. Rathore, M.M., et al.: Urban planning and building smart
cities based on the internet of things using big data analytics.
Comput. Netw. 101, 63–80 (2016)

8. Botta, A., et al.: On the integration of cloud computing and
internet of things. 2014 international conference on Future
internet of things and cloud (FiCloud). IEEE. (2014)

9. Zhao, X., Zhao, L., Liang K.: An energy consumption
oriented offloading algorithm for fog computing. In:
International Conference on Heterogeneous Networking
for Quality, Reliability, Security and Robustness, Springer,
pp. 293–301 (2016)

10. Hasan, R., Hossain, M., Khan, R.: Aura: an incentive-driven
ad-hoc IoT cloud framework for proximal mobile computa-
tion offloading. Future Gener. Comput. Syst. (2017)

11. Shiraz, M., et al.: Energy efficient computational offloading
framework for mobile cloud computing. J. Grid. Comput.
13(1), 1–18 (2015)

12. Deshmukh, S., Shah, R.: Computation offloading frame-
works in mobile cloud computing: a survey. 2016 IEEE
International Conference on Current Trends in Advanced
Computing (ICCTAC). IEEE (2016)

13. Moreno, I.S., et al.: Analysis, modeling and simulation of
workload patterns in a large-scale utility cloud. IEEE T.
Cloud. Comput. 2(2), 208–221 (2014)

14. Gutierrez-Garcia, J.O., Ramirez-Nafarrate, A.: Agent-based
load balancing in cloud data centers. Clust. Comput. 18(3),
1041–1062 (2015)

15. Bala, M.: Proportionate resource utilization based VM allo-
cation method for large scaled datacenters. Int. J. Inf.
Technol. 10(3), 349–357 (2018)

16. Xie, Lei, et al. "A Novel Self-Adaptive VM Consolidation
Strategy Using Dynamic Multi-Thresholds in IaaS Clouds."
Future Internet 10.6 (2018): 52.

17. Kaur, A., Kalra, M.: Energy optimized VM placement in
cloud environment. 2016 6th International Conference-
Cloud System and Big Data Engineering (Confluence).
IEEE (2016)

18. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware re-
source allocation heuristics for efficient management of data
centers for cloud computing. Futur. Gener. Comput. Syst.
28(5), 755–768 (2012)

19. Kansal, N.J., Chana, I.: Energy-aware virtual machine mi-
gration for cloud computing-a firefly optimization approach.
J. Grid. Comput. 14(2), 327–345 (2016)

20. Singh, G., Gupta, P.: A review on migration techniques and
challenges in live virtual machine migration[C]//2016 5th
international conference on reliability, Infocom technologies
and optimization (trends and future directions) (ICRITO).
IEEE, 542–546 (2016)

21. Boutaba, Raouf, Qi Zhang, and Mohamed Faten Zhani.
"Virtual machine migration in cloud computing environ-
ments: Benefi ts , chal lenges, and approaches."
Communication Infrastructures for Cloud Computing. IGI
Global, 2014. 383-408.

22. Zhao, H., et al.: Power-aware and performance-guaranteed
virtual machine placement in the cloud. IEEE T. Parall. Distr.
29(6), 1385–1400 (2018)

23. Mohapatra, S, Majhi, B.: An evolutionary approach for load
balancing in cloud computing. Handbook of research on
securing cloud-based databases with biometric applications.
IGI Global, 433–463 (2015)

24. Mondal, R. K., et al.: Load balancing of unbalanced matrix
problem of the sufficient machines with min-min algorithm.
Methodologies and application issues of contemporary com-
puting framework, pp. 81–91. Springer, Singapore (2018)

25. Malik, A., Chandra, P.: Priority based round robin task
scheduling algorithm for load balancing in cloud computing.
Journal of Network Communications and Emerging
Technologies (JNCET) www. jncet. org 7(12) (2017)

26. Mittal, S., Katal, A.: An optimized task scheduling algorithm
in cloud computing. 2016 IEEE 6th International
Conference on Advanced Computing (IACC). IEEE (2016)

27. Adhikari, M., Amgoth, T.: Heuristic-based load-balancing
algorithm for IaaS cloud. Futur. Gener. Comput. Syst. 81,
156–165 (2018)

28. Alaei, N., Safi-Esfahani, F.: RePro-active: a reactive–
proactive scheduling method based on simulation in cloud
computing. J. Supercomput. 74(2), 801–829 (2018)

29. Singh, S., Chana, I.: A survey on resource scheduling in
cloud computing: issues and challenges. J. Grid. Comput.
14(2), 217–264 (2016)

30. Panda, S.K., Jana, P.K.: SLA-based task scheduling algo-
rithms for heterogeneous multi-cloud environment. J.
Supercomput. 73(6), 2730–2762 (2017)

31. Zhou, J., Yao, X.: Multi-objective hybrid artificial bee colo-
ny algorithm enhanced with Lévy flight and self-adaption
for cloud manufacturing service composition. Appl. Intell.
47(3), 721–742 (2017)

32. Shojafar, M., Javanmardi, S., Abolfazli, S., et al.: FUGE: a
joint meta-heuristic approach to cloud job scheduling algo-
rithm using fuzzy theory and a genetic method[J]. Clust.
Comput. 18(2), 829–844 (2015)

33. Asghari, S., Navimipour, J. N.: Cloud services composition
using an inverted ant colony optimization algorithm. Int. J.
Bio-Inspired Comput. (2017, in press) (2017)

34. Beheshti, Z., Shamsuddin, S.M.H.: A review of population-
based meta-heuristic algorithms. Int. J. Adv. Soft Comput.
Appl. 5(1), 1–35 (2013)

35. Aazam, M., Zeadally, S., Harras, K.A.: Offloading in fog
computing for IoT: review, enabling technologies, and re-
search opportunities. Futur. Gener. Comput. Syst. 87, 278–
289 (2018)

36. Yang, J., Xu, X., Tang, W., et al.: A task scheduling method
for energy-performance trade-off in Clouds[C]. 18th
International Conference on High Performance Computing
and Communications; IEEE 14th International Conference
on Smart City; IEEE 2nd International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), 2016 IEEE.
IEEE, 1029–1036 (2016)

37. Chen, Congyang, et al. "Research on workflow scheduling
algorithms in the cloud." International Workshop on
Process-Aware Systems. Springer, Berlin, Heidelberg, 2014.

38. Juarez, F., Ejarque, J., Badia, R.M.: Dynamic energy-aware
scheduling for parallel task-based application in cloud com-
puting. Futur. Gener. Comput. Syst. 78, 257–271 (2018)

Scheduling Algorithms for Heterogeneous Cloud Environment: Main Resource Load Balancing Algorithm and Time... 725

39. Hussain, A., et al.: RALBA: a computation-aware load
balancing scheduler for cloud computing. Clust. Comput.
21(3), 1667–1680 (2018)

40. Calheiros, R.N., Ranjan, R., Beloglazov, A., et al.:
CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provi-
sioning algorithms. Software Pract. Exper. 41(1), 23–50
(2011)

41. Lin, W., Xu, S., Li, J., et al.: Design and theoretical analysis
of virtual machine placement algorithm based on peak work-
load characteristics[J]. Soft. Comput. 21(5), 1301–1314
(2017)

42. Lin, W., Xu, S., He, L., et al.: Multi-resource scheduling and
power simulation for cloud computing[J]. Inf. Sci. (2017)

43. Flores, H., et al.: Large-scale offloading in the Internet of
Things. 2017 IEEE International Conference on Pervasive
Computing and Communications Workshops (PerCom
Workshops). IEEE (2017)

44. Panda, S.K., Agrawal, P., Khilar, P.M., Mohapatra, D.P.:
Skewness-based min–min max–min heuristic for grid task
scheduling. In: Proceedings of the 2014 Fourth International

Conference on Advanced Computing & Communication
Technologies, pp. 282–289 (2014)

45. Alharbi, F., Rabigh, K.S.A.: Simple scheduling algorithm
with load balancing for grid computing[J]. Asian
Transactions on Computers. 2(2), 8–15 (2012)

46. Santhosh, B., Manjaiah, D.H.: An improved task scheduling
algorithm based on max-min for cloud computing.
International Journal of Innovative Research in Computer
and Communication Engineering. 2(2), 84–88 (2014)

47. Wang, G, et al.: Towards synthesizing realistic workload
traces for studying the hadoop ecosystem. 2011 IEEE 19th
Annual International Symposium on Modelling, Analysis,
and Simulation of Computer and Telecommunication
Systems. IEEE (2011)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

W. Lin et al.726

	Scheduling Algorithms for Heterogeneous Cloud Environment: Main Resource Load Balancing Algorithm and Time Balancing Algorithm
	Abstract
	Introduction
	The Role Offloading Plays in Cloud-IoT
	Offloaded Workload as a Type of Workload in Cloud
	Researches on Load Balancing Using VM Migration Approaches
	Researches on Load Balancing Using Task Scheduling Approaches
	The Motivation of Using Heuristic-Based Approach
	Problem Statement
	Aims and Contributions

	Related Works
	Energy Consumption Optimization in Cloud Computing
	MultiRECloudSim

	Main Resource Load Balancing Algorithm and Time Balancing Algorithm in Heterogeneous Environment
	Design of Main Resource Load Balancing Algorithm in Heterogeneous Environment
	The Introduction of Relative Load
	The Introduction of Parameter α
	The Introduction of Parameter k
	The Algorithm Procedure

	Time Balancing Algorithm

	Theory Analysis of the Proposed Algorithms
	Weighed Sorting
	The Readiness for the Analysis of the Priority Function
	L = 1000
	L = 10,000
	L = 90,000

	Relative Load

	Experiments and Results
	Evaluation on the Awareness of IoT
	Evaluation on the Host SLA
	Evaluation on the Degree of Load Balance
	Evaluation on the Make-Span
	Evaluation on the Energy Consumption
	Evaluation on the k
	Evaluation on the α

	Conclusion and Future Work
	References

