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Abstract In this paper we propose a novel reservation
plan adaptation system based on machine learning. In
the context of cloud auto-scaling, an important issue
is the ability to define and use a resource reservation
plan, which enables efficient resource scheduling. If
necessary, the plan may allocate new resources upon
reservation where a sufficient amount of resources
is available. Our solution allows the updating of a
reservation plan initially prepared by an administra-
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tor. It makes it possible to adapt reservation plans
one or more weeks ahead. Hence, it allows time for
the administrator to analyze the plan and discover
potential problems with resource under-provisioning
or over-provisioning, which may prevent server over-
load in the former case and unnecessary expenses
in the latter. It also makes it possible to extract and
analyze the knowledge learned, which may provide
useful information about resource usage characteris-
tics. The proposed solution is tested on OpenStack
using real Wikipedia server traffic data. Experimental
results demonstrate that machine learning enables an
improvement in resource usage.

Keywords Automated cloud resource planning -
Supervised machine learning - Online plan adaptation

1 Introduction

One of the key features of cloud computing is scal-
ability, which is achieved by appropriate resource
scheduling. If requirements exceed current resources,
new resources are allocated. However, in order for
a request for cloud resources to be fulfilled, a suffi-
cient amount of resources should be available. This
is why resource reservation is an important feature
in any virtualization-based system. There are two
basic use cases where reservation plays a crucial role:
(i) resource reservation for immediate use; and (ii)
resource reservation for future use.
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The first case refers to a situation where — even if
some reserved resources are to be consumed instantly
— there is latency between the issuance of a resource
reservation request and the actual allocation of the
resources requested. During such latency period, the
resource capacity in question could change, e.g. due
to a failure or allocation to a different request. There-
fore, system response to a request concerning resource
reservation for immediate use should have a validity
period indicating the time limit until which the sys-
tem can reserve the resources requested. During this
time limit, the system should proceed to allocation if
the user wishes to use the resources requested. If allo-
cation does not occur within the validity period, the
system response to the resource reservation request
in question becomes invalid and the system is not
obliged to provide these resources anymore. Reserva-
tion requests for immediate use do not have a start time
but may have an end time.

The second use case addresses a scenario where cloud
operators may want to reserve extra resources for future
use. Such a necessity could arise from predicted con-
gestion, e.g. due to local traffic increase in office hours
during a specific day or week, natural disasters etc.
In such a case, a resource reservation request sent to
the system includes a start time (and an end time if
necessary). The start time indicates at what time the
resource reserved should be available to the consumer
in question. Here, the requirement is that the resources
reserved should be available when the start time
arrives. After the start time has arrived, the resources
reserved could be allocated to the consumer(s) in
question when an explicit allocation request is issued.
Resource reservation requests over a future period
constitute a resource reservation plan.

This paper addresses the second scenario. The
availability of a comprehensive reservation plan is
especially important in the case of private clouds with
limited resources, which require auto-scaling func-
tionality to preserve QoS under changing load con-
ditions, e.g. a problem emerges with 5G technology
where Network Function Virtualization (NFV) based
on cloud infrastructure is used [1, 2].

The accessibility of the reservation plan within
a longer time horizon may also be very important
in some applications as it makes it possible to dis-
cover potential problems with insufficient resources in
advance, leaving enough time to mitigate them. For
instance, new resources may be added from another
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(public) cloud or transferred into the cloud from
another tenant or application.

A reservation plan may be drawn up manually
in advance by administrators. However, such plan-
ning is complex and very imprecise because it
requires knowledge about future system load and
accurate predictions of future demand. Therefore,
many researchers [3, 4] are working on methods which
enable the automatic development of such plans and
adapting them to new operating conditions.

The contribution made by this paper consists in
putting forward a novel reservation plan adaptation
system based on machine learning (ML) which is
meant to improve plan accuracy. This system allows
iterative adaptations, using the MAPE-K (Monitor-
Analyze-Plan-Execute over a shared Knowledge) pat-
tern [5, 6], of initial versions of long-term reservation
plans (e.g. made a week or a month ahead) during sys-
tem operation. Machine learning algorithms are lever-
aged to create resource demand models on the basis
of the knowledge obtained. The manner in which this
system can be used with OpenStack-related resource
reservation systems such as Blazar and Promise is
elaborated.

In this paper we assume that resources are allocated
in units that correspond to Virtual Machine (VM) pro-
files. To detect insufficient (or excessive) resource
allocation, VM CPU usage is measured. In the context
of VM auto-scaling [7, 8], an important issue is the
ability to define and use a resource reservation plan
[9], which guarantees the availability of a certain num-
ber of VMs within a given period. Simultaneously, it
limits the ability to use non-reserved resources.

It is possible to reserve either a vector of resources
(e.g., compute, storage and network) or each resource
separately. The reservation of a vector of resources is
much more complicated, which is why our research
started with computational resources as represented
by the VM. Our goal is to automatically create a VM
reservation plan based on an initial one and adapt it
subsequently. The initial plan may be drawn up by
an administrator or created automatically from mon-
itoring data. Currently, we assume that all VMs have
the same predefined configuration. As a result, the
scheduler checks CPU usage on VMs and in the case
of insufficient processing power, a new VM may be
allocated to the application because the reservation
guarantees sufficient processing power. The proposed
ML algorithm is used to adjust (increase or decrease)



VM Reservation Plan Adaptation Using Machine Learning in Cloud Computing 799

the number of VMs reserved in order to fit the pre-
dicted resource utilization. As a result, a plan is pro-
duced, which may be treated as a dynamic quota on the
number of VMs that guarantees a number that is nei-
ther too high nor too low. A slightly similar approach
was introduced in [10] where proactive prediction-
based statistical models where tested in anticipating
future resource requirements. The authors viewed the
issue as a time-series analysis problem and compared
the results obtained both with a sliding window and
without it.

It is important to point out that if a machine learning
algorithm with symbolic knowledge representation
(e.g. a decision tree) is used, then it is possible to visu-
alize the knowledge learned in a way that is suitable
for human analysis. As a consequence, completely
new kinds of useful information about resource usage
characteristics can be derived. To test the solution in
a realistic cloud environment, we decided to use the
OpenStack real-life cloud framework, which is among
the most popular solutions, for building and managing
private and public clouds [11, 12].

This paper has the following outline. At the begin-
ning, we analyze the literature related to cloud resources
and afterwards, we review OpenStack resource reser-
vation projects. Next, we propose a Knowledge-Based
Plan Adaptation Architecture using machine learning,
which provides the reservation plan adaptation func-
tionality and presents its implementation. Finally, we
present experimental results and conclusions.

2 Related Work

An important issue related to the use of cloud computing
is the ability to manage resources. Management mech-
anisms in the context of cloud computing (and in partic-
ular with respect to federated clouds) have been exten-
sively analyzed in [13]. The authors present resource
management functions in the federated cloud envi-
ronment such as resource pricing, resource discovery,
resource selection, resource monitoring, resource allo-
cation, and disaster management. Important functions
from the point of view of cloud computing system
management are primarily resource monitoring and
allocation which also enable resource prediction and
reservation. However, this study does not include a
broader analysis of resource reservation options aimed
at optimizing the use of resources or a discussion of

the possibility of using ML for resource management,
which appear to be important research directions.

Research on the use of ML for cloud resource man-
agement is presented, for example, in [14], where
the authors propose an intelligent resource manage-
ment mechanism which allows the optimization of
system operation costs and the adaptive allocation of
resources. To this end, they use deep reinforcement
learning mechanisms. However, there is a shortage of
research in the field of auto-scaling, resource reser-
vation and resource use prediction. In another article
[15], the authors also use ML algorithms for man-
aging cloud resources. Using neural networks, they
optimize VM migration, taking into account energy
consumption and SLA parameters. However, that arti-
cle only deals with some aspects of managing current
resources and does not discuss resource prediction and
adapting resource reservation plans.

A lot of research on cloud resource management
is primarily focused on resource allocation methods.
For example, in [16] the authors compare resource
(such as computing, storage, communication) alloca-
tion mechanisms based on their common features such
as time complexity, searching mechanisms, allocation
strategies, optimality, and operational environments.

An important aspect of resource management is
the possibility of auto-scaling. In [7], the authors
propose a system which analyzes the trend of work-
load changes and allows for automatic auto-scaling
without user-provided metrics and threshold values.
Most solutions take into account only the amount
of resources used rather than their cost. However,
there are studies which consider the costs of using
cloud resources, such as the auto-scaling mechanism
described in [17], which uses the Earliest Deadline
First (EDF) algorithm to schedule tasks. This mech-
anism is based on a monitor-control loop and makes
it possible to complete all jobs before user-specified
deadlines in a cost-efficient way.

However, only the resource reservation mechanism
makes it possible to set up the required resources in
advance and guarantee their availability. There are few
studies regarding the reservation of cloud resources.
In one of them [18], the authors designed the Kraken
system which enables the dynamic updating of min-
imum guarantees for both network bandwidth and
compute resources at runtime. This system does not
require prior knowledge of the resource needs of the
applications but is capable of modifying reservations
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at runtime. However, most studies do not take into
account the reservation of cloud resources, but only
forecasts of their consumption. The workload trace
from the Large Hadron Collider Computing Grid was
also used in [19]. This paper presents a time delay
neural network (TDNN) and polynomial regression
methods for predicting future workloads in the Grid or
Cloud platform.

In [20], the authors predict application usage and
make cloud resources available to the user in advance.
The user determines initial and maximal demands.
Next, VM demands are monitored in subsequent time
windows (30min). The list of requested configurations
is compiled. Patterns may be discovered and used
for prediction. Another work about CPU, storage and
memory usage prediction is [8]. It is based on mod-
els learned from historical time series with Support
Vector Regression being used to predict future values.
Here, resources may be allocated in advance as well.

This work is continued in [21], where two Long
Short-Term Memory Recurrent Neural Networks
(LSTM-RNN) are used. They make it possible to rec-
ognize and learn long-term dependencies with up to
1,000-step time lags between relevant events. Input
data consist of the CPU usage observed while output is
a scaling decision. Here, resources are also measured
in VMs. Therefore, each scaling decision corresponds
to the number of VMs to scale up or down. This is cal-
culated according to the difference between predicted
CPU needs and current resources. The first LSTM-
RNN is employed to deal with normal workloads.
The second LSTM-RNN is used to deal with Slashdot
situations (unpredictable increases in requests). This
allows the system to detect Slashdot situations at ear-
lier stages and perform appropriate scaling actions.
Predictions are made by the network with the lower
current prediction error.

The problem of resource utilization and alloca-
tion is also important in other ICT domains such as
IoT where power is not taken for granted. For exam-
ple, in [22] the authors are trying to predict, using
weather forecasts, how much energy can be potentially
harvested and on that basis make decisions which
device peripherals can be used without overdrawing
the power budget predicted. We have also applied an
approach similar to the one described in [23, 24],
where machine learning algorithms are used to create
models predicting battery usage and computation time
for tasks executed on mobile devices.
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The need for managing and reserving resources occurs
in various systems, in particular in systems that allocate
virtualized resources such as VMware, Kubernetes
and OpenStack [25]. Currently, the most widespread
virtualization platform, used for example by telecom-
munications operators for NFV deployment, is Open-
Stack [26]. It enables the implementation of virtual
network functions and ensures the appropriate level
of QoS parameters. Therefore, ensuring the possibil-
ity of resource reservation on the OpenStack platform
seems particularly important. Considerations regard-
ing the OpenStack platform in the context of resource
reservation are presented in the next chapter.

The analysis of existing solutions in the field of
resource management in the cloud shows that there
is currently no broader research that would exploit
resource reservation plans while optimizing the use of
cloud resources. Models that are built when develop-
ing such reservation plans require certain parameters
whose values are not known in advance, and therefore
it is not possible to immediately develop an opti-
mal booking plan. Therefore, it is necessary to build
such models on the basis on some experience and
knowledge acquired (for instance, ML models). The
research conducted by the authors is an attempt to fill
the gap in the area of the use of resource reservation
plans in cloud computing and their improvement with
the use of ML models.

3 Resource Reservation in Open Stack Platform

As previously mentioned, one of the most popular
platforms that allocate virtualized resources is Open-
Stack. It is an open-source solution that enables the
creation of a cloud computing environment, which
consists of different types of storage, servers and net-
work devices, assuming a high level of scalability.
OpenStack is an laaS (Infrastructure as a Service)
solution in which the provider offers resources to
clients and enables them to create their own virtual
infrastructures. This environment consists of multiple
interoperable components such as Compute (Nova)
or Networking (Neutron). In the context of resource
reservation, OpenStack includes the Blazar service,
which enables users to reserve resources of a certain
type for a specific period and it leases these resources
to users based on their reservations. There is also
an independent solution, i.e. Promise, which makes
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Table 1 Comparison between Blazar and Promise

Blazar Promise

Integration with OpenStack

Maturity of the project

Type of reserved resources

Ability to specify parameters of reserved resources
Machine / calculation priorities

API documentation

Ability to check available resources

Prediction of reservation

Using ML to determine the reservation plan
Possibility to extend functionality

Native — plugin Separate application

Development phase Development phase

Bare metal and VMs Bare metal
Yes Yes

No No

Basic Complete
Yes Yes

No No

No No

Yes Yes

it possible to reserve and manage resources and can
be used with OpenStack. In our research, we use the
OpenStack platform because of its popularity and the
solutions available which allow for the reservation of
resources. However, the resource reservation problem
is general and exists in any system which allocates
resources.

Blazar! (ex. Climate) is an OpenStack plugin that
provides the resource reservation service in the Open-
Stack cloud for different resource types — both virtual
(instances) and physical (hosts). A Blazar user can
request cloud environment resources (virtual ones:
instances, volumes, networks, and hardware ones: full
hosts with specific RAM and CPU characteristics) to
be leased to his or her project for a specific time,
immediately or in future. At the moment, Blazar does
not support resource availability checking. Therefore,
it is possible to reserve more resources than a cloud
can provide. According to project website, this feature
is going to be added in subsequent releases, along with
volume and stack reservation.

Promise? is a resource reservation and management
project whose purpose is to identify NFV related require-
ments and to implement resource reservation for future
usage by the capacity management of resource pools with
respect to compute, network and storage. Reserved
resources are guaranteed to a given user/client for
a period expressed by its start and end times. The
Euphrates implementation of Promise is built with the

Blazar — https://docs.openstack.org/blazar

2OPNFV Promise Project —https:/wiki.opnfv.org/display/promi
se

YangForge data modeling framework, using a shim-
layer on top of OpenStack to provide Promise features
such as capacity/reservation/allocation management.

We have analyzed the Blazar and Promise projects.
Results of this comparison are presented in Table 1.
As we can see, both projects are similar. Blazar has
less comprehensive documentation, but it makes it
possible to reserve VMs and to add additional func-
tionality, which is crucial in our research. Therefore,
we have decided to concentrate further research on the
Blazar project in order to develop a plugin to the ML
model which makes it possible to refine the resource
reservation plan.

4 ML-Based Reservation Plan Adaptation

Based on the analysis of current research, we would
like to propose a new solution: ML-Based Reserva-
tion Plan Adaptation. Resource monitoring data are
used to build ML models, which are then used to adapt
the resource reservation plan. This process is repeated
and can be used to adapt the plan online. Details are
described below.

4.1 Adaptation Process

The ML-Based plan adaptation process is presented
in Fig. 1. A reservation plan is initially created by an
administrator. This plan is used by Blazar or Promise
to reserve resources. Resource usage is monitored and
results are stored in a database together with informa-
tion on reservation and fulfillment (resource utiliza-
tion in relation to the limits assumed). This database is
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Fig. 1 ML-Based plan
adaptation process

Users

used as training data by a machine learning algorithm
which creates the models stored in the knowledge
base. Using this knowledge, Planner updates the reser-
vation plan to provide sufficient resources and limit
over-reservation.

Our solution corresponds to the MAPE-K approach,
in which machine learning is responsible for Analy-
sis, Blazar/Promise for Execution and other modules
are strictly matched (Planner — Plan, Knowledge base
— Knowledge, Monitoring — Monitor, Cloud resources
— Managed resources). Depending on the machine
learning algorithm, knowledge may have various
forms. In the case of regression, we obtain predictions
of values for time stamps. In the case of classification,
we obtain information if the current plan reserves the
appropriate amount of resources, too few or too many
of them. In the case of rule or decision-tree induction,
knowledge may be readable and the administrator is
then able to verify and update it. In the case of Support
Vector Machines or Neural Networks, the knowledge
learned has a form which makes it difficult to analyze
it. However, these algorithms usually exhibit better
accuracy. Based on our research [23] in which Neural
Networks were successfully applied to task allocation
adaptation in Mobile Cloud, we decided to start with
this machine learning model for experiments. Subse-
quently, we have also applied linear regression and
decision trees to compare quality of results.
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4.2 Reservation Plan and its Quality

We assume that resources are reserved according to
a reservation plan. The plan P : T — N is defined
as a function over T — time interval of interest (hori-
zon), which is discretized and consists of time stamps.
As a result, P(t) represents the amount of a resource
reserved at time ¢.

In our research, VMs are reserved and the main
resource that is monitored is CPU usage. However, other
parameters (such as memory, network usage, etc.) can
also be taken into account. The goal is to maintain
the parameters monitored in a user-defined range (e.g.
VM CPU usage should be between 70% and 90%).
If it is too low or too high for a given time stamp,
the reservation plan should be updated and less or
more resources should be reserved in the future in such
conditions. It is assumed that a time stamp is repre-
sented not only by a specific date and hour, but also
by metadata, e.g. whether it is a workday, weekend
or a holiday, season, vacations, etc. As a result, the
knowledge learned is more general and makes it pos-
sible to modify reservations proactively for a longer
time horizon. The learning process and P modifica-
tion are performed periodically, e.g. at midnight, and
the process continues.

The metric Q is defined, which allows us to evaluate
the quality of the reservation plan P for a given obser-
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Fig. 2 Q metrics as a sum 4
of under- and over-
provisioning errors of a
reservation plan

Planned usage

Q area

Real resource usage

Resource usage, %

——

vation time period O, which is also discretized, and
O C T, taking into account R = {r'},co where
r! represents the resource usage value measured at
time stamp 7. In our case r' = (rf,r}, ..., r;,(t)) rep-
resents CPU utilization at all VMs measured in %.
The desired limits for rit are represented by L =
[Fmin, Fmax].- In our case L defines CPU utilization
limits. Q is defined as:

P(@)

Q(P,0, R, L)=Y > d"(], L), ()
teO i=1
where
0 ifrt e L
dP(rf, L) = rl = rmax ifrl > rpax 2)

t t
Fmin — 1 7] < Fmin

dP (rf, L) is a distance (it may be a power of the dis-
tance) between the usage of resource r measured at
time ¢ and the end of the range L if rl.’ is outside the
range or is equal to O if ri’ € L, assuming that for
time stamp ¢ the number of VMs ready to be used cor-
responds to P(¢). The Q value can be therefore seen
as a sum of under- and over- provisioning errors of a
reservation plan (see Fig. 2).

Fig. 3 Resource
reservation plan adaptation 1 begin
algorithm using machine 2
learning

(=2 I, B N

end

time

4.3 Adaptation Algorithm

Our hypothesis is that machine learning will allow
Q(P, O, R, L) to be minimized. We would like to
verify if supervised machine learning will be appropri-
ate for this purpose. The plan adaptation algorithm is
presented in Fig. 3. Supervised machine learning algo-
rithms are used to build a Knowledge base describing
resource usage. The base consists of M, model(s),
which make it possible to predict resource usage at a
given time point. The input for this model may consist
of a time point description (e.g. hour, day of the week,
holiday), historical resource usage values (e.g. from
the last 12 hours) and other potentially relevant data
(e.g. weather description). There may be a separate
model for every resource. Various learning algorithms
can be used (e.g. linear regression, random forest and
artificial neural network).

The plan adaptation algorithm obtains some initial
plan and monitoring data as inputs. It continuously
optimizes the plan based on monitoring data from a
certain observation period O C T (e.g. one day).
In line 3, it learns M, predicting » at t € 7. In
the next step, the plan P is updated based on M, to
maintain resource usage within limits L. We assume
that M, returns the number of VMs that should be

Input: Initial resource reservation plan P

Gather data R about the usage of resources reserved with regard to
the current plan P;

Learn or update resource approximation model M, : T' — N;

Update plan (P, M, a);

Goto 2;
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Fig. 4 Algorithm of the 1 begin
Instance Module 2

3

4

5

6

7

8

9 end

10 end

active. If machine learning algorithm allows incre-
mental learning, the model may be updated using last
R. Otherwise, it should be learned from scratch using
all (or some number of) R sets collected to date. It is
also possible to predict CPU usage and use it to calcu-
late the appropriate number of VMs. For updating the
plan (line 4), we propose to apply an approach similar
to the one used in reinforcement learning:

P(t) ;== | P(t) + a(M (1) = P(1))], 3)

where o € [0, 1] is learning speed. « values close to
0 mean slow changes to the plan. Values close to 1
mean rapid changes, but these may lead to oscillations.
This parameter should be adjusted experimentally and
its impact on plan adaptation speed is in fact tested in
experiments (see Section 6).

5 Implementation

In order to perform tests of the solution designed,
we have developed a system that applies machine-
learning-based resource plan adaptation using Open-
Stack and Blazar. To simulate CPU load and to cover
the functions which have not been provided in Blazar,
we had to implement additional features. The system
developed for performing experiments consists of the

[

Fig. 5 Algorithm of the begin

Read plan for this day/week from file into memorys;
Make a VM reservation using the Blazar plugin;
Create timer-tasks list containg time stamps which appear in the plan;
foreach task in timer-tasks do
Perform OpenStack server-create request;
Initialize the machine;
Send a signal to the Load Module that a new machine has been
created (and move part of the traffic to relieve the already
existing VM);

following three main components: the Instance Mod-
ule, the Load Module and the Machine Learning Mod-
ule. The Instance Module is responsible for loading
the plan P to the system and executing Blazar’s reser-
vation and VM initialization functions. Its algorithm
is presented in Fig. 4. Initially, it loads the plan and
reserves resources in Blazar (lines 2-3). Next, it cre-
ates timer-tasks at time stamps when VMs should be
created or destroyed (line 4). These tasks are executed
in a loop (lines 5-9).

The Load Module is used during experiments only.
It is not needed when the system is deployed and
processing a real load. During experiments, the Load
Module is responsible for simulating resource uti-
lization. This module sets CPU consumption on the
machines identified by their IP addresses to a specified
level. Its operation is presented in Fig. 5.

The Machine Learning Module (ML) is responsi-
ble for running ML algorithms and updating the plan.
This module is executed from time to time, e.g. once
a day or whenever a new plan needs to be created. Its
algorithm is presented in Fig. 6. In experiments, we
use several machine learning algorithms to learn M,.
The plan is updated according to (3).

The modules described above operate in a real-
life OpenStack environment. To simulate a time flow
faster than in reality (time compression), the Fast
Training Module was created. Its role is to deliver a

Load Module 2 Download IPs of all active machines from the Nova module;
3 Compute the CPU usage for current hour according to Wikipedia
traffic data;
4 foreach IP in IPs do
5 Log in to the VM via SSH;

7 end
8 end

@ Springer

Restart the script that will load the CPU to the new value of the
utilization parameter;
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Fig. 6 Algorithm of the 1 begin
Machine Learning Module 2

Download the plan P used and monitoring data R;

3 Train the model M, on R;
4 Update the plan P — correct the number of machines in the plan
according to the knowledge M,;

5 end

pre-trained network and therefore not only speed up
the experiment time but also allow the simulation of
long-term operation (e.g. for a year) according to pre-
defined load data during this period. It trains the M,
model as the Machine Learning Module, assuming
that the rest of the system (i.e. lease creation, instance
reservation, CPU loading and telemetry data collect-
ing mechanisms) is working as expected without any
deficiencies. In particular, it assumes that the instances
reserved are spawned rapidly and without any failures,
CPU usage is distributed perfectly equally among all
active VMs and it is constant within any given hour.
Therefore, it is possible to omit OpenStack and Blazar
integration and to test the concept of reservation sys-
tem operation (particularly, ANN performance) during
a long period in compressed time.

From the different VM images available for Open-
Stack, Ubuntu 16.04 LTS Xenial was selected to per-
form tests. The CPU of each VM was loaded to a spec-
ified percentage by using the stress-ng library.> With
respect to monitoring, the Ceilometer* and Gnocchi
4.0° plugins were employed. The former tracks VM
parameters within user-defined time intervals to mea-
sure ! at O time stamps. The latter is recommended
for the aggregation of measurements and as a metric
data storage backend. As a result, the R set was cre-
ated by querying CPU data usage for each VM via a
REST service. OpenStack and plugins were in the Pike
release version.

6 Evaluation

Evaluation is divided into two parts: learning effec-
tiveness and OpenStack integration. The first part was
performed using the Fast Training Module. This made
it possible to speed up the experiments (e.g. there was

3Stress-ng tool manual — http:/manpages.ubuntu.com/manpages/
xenial/man|1/stress-ng.1.html

4Ceilometer project documentation — https:/docs.openstack.
org/ceilometer/pike/

SGnocchi project site — https://gnocchi.xyz/

no need to wait for VM start) and requests from the
one-year period being used for experiments were pro-
cessed in around 15 minutes. This part of evaluation
is discussed below. In the integration experiment, we
tested the entire system consisting of three modules
with the OpenStack framework to check if it performs
well. Test results allow us to claim that the integra-
tion was successful and all modules cooperated well.
Such tests are time-consuming as VM startup takes
about 10 minutes and the monitoring system has lim-
ited resolution, so it is impossible to apply simulated
time compression to speed it up.

During the experiments, a virtual machine with
the following parameters was used: 4 cores (Intel
Xeon CPU E5-2680, 2.70 GHz), 16 GB of oper-
ating memory and 100 GB of disk space. On the
virtual machine, OpenStack and Blazar software (Pike
release), Gnocchi 4.0, deeplearning4j (version 0.8.0)
and Weka (version 3.8.2) were installed.

The data used in the experiments to generate load
originate from the Wikipedia monitoring system® and
represent requests submitted to Wikipedia servers
(page views of the Polish Wikipedia Project to be more
specific) in 2015. For every hour of 2015, there is a
file in which the number of page requests during that
hour is stated. We assume that 1K requests generate a
1% load on a single VM. This served as an input for
the Load Module described in Section 5.

Measurements were aggregated every hour. The
reservation plan P stores the number of VMs for every
hour for T representing one day. For the first day,
a constant initial value was selected manually. Sub-
sequently, it was modified using a machine learning
algorithm.

Initially, we applied a Multilayer Perceptron Net-
work from the DL4J Java library to create the M,
model. Training data were prepared by processing
each hour of load data using the algorithm presented
in Fig. 7. As a result, training data consist of the
pairs (t,n;), where ¢ is described by the following

SWikipedia server data — http:/dumps.wikimedia.org/other/
pagecounts-raw/ and http://grafana.wikimedia.org

@ Springer
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Fig. 7 Algorithm for
transforming load data
(nof requests) from hour
t, into a training example

g W oN

begin

input : t,, nof_requests, L = [r_min,r_mazx]

output: Training example

hour = extract hour from t,; hour = hour/23,;

date = extract date from ty;

day_of the_ week= extract day of the week from date;

if date €{2015/01/01, 2015/01/06, 2015/04/05, 2015/04,/06,
2015/05/01, 2015/05/08, 2015/05/24, 2015/06/04, 2015/08/15,
2015/11/01, 2015/11/11, 2015/12/25, 2015/12/26} then holiday =
true;

else holiday = false;

if day_of _the_week is between 'Monday’ and ’Friday’ then workday
= true;

else workday = false;

if day_of the_week = ’Saturday’ then Saturday = true;

10 else Saturday = false;

11 if day_of the_week = ’Sunday’ then Sunday = true;
12 else Sunday = false;

13 if date is between 2015/06/27 and 2015/08/31 then

summer_vacations = true;

14 else summer_vacations = false;
15 if date is between 2015/01/01 and 2015/06/30 or date is between

2015/10/01 and 2015/12/31 then academic_year= true;

16 else academic_year = false;

17 cpu_usage = nof _requests/1000;

18 mid = (r-min + r_max)/2;

19 ny = max(round(cpu_usage/mid), 1);

20 return ((hour, day-of the_week,workday, Saturday, Sunday,

21 end

attributes: hour, holiday, workday, Saturday, Sunday,
summer vacation, academic year. The first attribute
is a natural number from O to 23, which is normal-
ized to the range [0, 1]. The rest of attributes are
binary (0 or 1) and represent holidays, summer vaca-
tions, and the academic year. These calendar dates are
real’ and their impact on Wikipedia logs is noticeable.
Poland lies within a single time zone, which simpli-
fies the relationship between the time of the day and
the resource load level considerably. n, is the number
of VMs which keeps VM loads closest to the mid-
dle of the desired range L during ¢ (lines 18-19),
L = [50%, 70%]. t is an input vector for the model.

"Holidays fall on the following days: 2015/01/01, 2015/01/06,
2015/04/05, 2015/04/06, 2015/05/01, 2015/05/03, 2015/05/24,
2015/06/04, 2015/08/15, 2015/11/01, 2015/11/11, 2015/12/25,
2015/12/26. Summer vacations are from 2015/06/27 to
2015/08/31. Academic year is from 2015/01/01 to 2015/06/30
and from 2015/10/01 to 2015/12/31.

@ Springer

summer_vacations, academic_year), ng);

n; is its desired output. It is normalized to the range
[0, 1].

Four neural network architectures have been tested.
These are shown in Table 2. Two of them (architec-
ture 1 and 2) included one hidden layer each and the
rest included two hidden layers each. All layers are
fully connected. We have tested the following learn-
ing rates: 1072, 1073, 1073, 107® and 10~7. Weights
are updated at the end of each day via the stochas-
tic gradient descent algorithm using data from the day

Table 2 Network architectures tested — numbers of neurons in
layers

Network architecture 1 2 3 4
Input 7 7 7 7
Hidden 1 7 14 14 21
Hidden 2 N/A N/A 14 14
Output 1 1 1 1
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in question. The number of epochs is equal to 1,000,
and the number of iterations is set to 1. The alpha
parameter is disabled. Network 4 with a learning rate
of 107% exhibited the best performance in minimizing
the Q value, hence it was used exclusively in further
experiments.

In our case, according to (1), Q represents a sum of
loads that are outside of the L range over all VMs and
hours of a day (O represents 24 hours). The figures
present average Q(t)/h values, i.e. Q value per hour
(Q is divided by 24).

The chart in Fig. 8 presents the 14-day moving
average of the Q(t)/h value for the entire year and
four learning rates: « = 0.1, « = 0.2, « = 0.5 and
a = 1.0. Q(¢) for the day is computed as defined in
(1), wheret € O =(0,1,2,...,23).

Plans were generated one day ahead. As we can
see, machine learning makes it possible to improve the
Q value. For @« = 1.0, the starting value is ca. 140.
At the end of the year, this drops to around 10 which
means that the average reservation error (summed over
all VMs) per hour is equal to 10%. The improve-
ment is the most pronounced at the beginning, because
the learning algorithm obtains new data, which has
a large impact on system performance. Subsequently,
the O value stabilizes. Reducing the learning rate to
o = 0.5 results in a slight deterioration of results.
For o = 0.2, the performance is much worse. More-
over, there are two periods when Q increases by up
to approximately 40 (around days 190 and 320), while
for larger o values there are no such increases. Results

300

—— —a=0.1
» =02
25 N e a=05

a=1

time, days

Fig. 8 14-day simple moving average of the Q(¢)/h value for
365 days

for « = 0.1 are the worst. At the beginning, there is
a decrease of performance instead of an increase. For
this value, the plan adaptation process is incomparably
slower.

Having analyzed the results, we may formulate the
following conclusions. The system operates correctly
and allows the plan to be adapted to decrease Q val-
ues. For plans created one day ahead, o should not be
much smaller than 0.5 because for such values plan
updates are too small. To achieve good results with
Wikipedia data, the system needs data from about two
months, starting from a very simple plan according to
which four VMs are needed all the day. This period
will be shorter if the initial plan is closer to the opti-
mal one, which will be the case when such a system
is applied in practice. Also importantly, any cloud
monitoring data recorded beforehand may be used in
advance to train the initial network and prepare it for
real-life applications.

The next three charts in Fig. 9 present 7-day length
periods for the o value equal to 1: at the beginning
of learning, 6-12 January (top chart), intermediate
results, 1-7 May (middle chart), and at the end of the
process, 7-14 December (bottom chart). Each chart
contains four values:

—  Tmin — lower desired usage bound (VM_count *
50%);

—  Fmax — upper desired usage bound (VM _count *
70%);

—  Real —real total CPU usage summed over all VMs
(in %);

— QO - sum of loads that are outside of the L range
over all VMs and hours of a day divided by 24

(Q(0)/ h).

where VM _count is the number of virtual machines
active during any particular hour.

A significant improvement in reservation quality
can be seen between each of the periods. In the last
period, even rapid peaks are well handled and fit per-
fectly into the desired workload per machine defined
by the user. At the beginning, daily fluctuations in
usage (daily cycle) are the largest cause of highly inad-
equate provisioning (see Fig. 9, top chart). Machine
learning makes it possible to predict this cycle (see
Fig. 9, bottom chart). As a result, Q(¢)/h values drop
as much as around 10 times.
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Fig. 9 Plan adaptation
results from January (top
chart), May (middle chart),
December (bottom chart)
for Neural Network with
a=1
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Table 3 Comparison of selected machine learning algorithms

Algorithm Sum of Q values Learning time, s
Neural Network 116445 3.568

Linear regression 323706 0.01

RepTree 107958 0.02

MS5P 185589 0.06

Bold entries means the best results, i.e. the smallest sum of
values and the shortest time

We have also compared performance of the best
Neural Network with three other machine learn-
ing algorithms: linear regression, RepTree and MSP
implemented in Weka [27]. To compare results, we
have used the sum of Q values over all 365 days. For
linear regression, we have checked ridge parameter
values from the [1071°, 1000] range. The best perfor-
mance was achieved for 107>, RepTree was executed
with and without pruning for the maximum tree depth
limit set to 1, 2, 5 and with no limit. The best result
was achieved without pruning and without a tree depth
limit. M5SP was executed with pruning and smooth-
ing switched on and off. The minimum number of
instances per leaf was set to 2, 4 and 6. The best
results were achieved without pruning and smoothing
for a minimum number of instances per leaf set to 2.
We have also measured learning time. The results are
presented in Table 3.

As we can see, the RepTree algorithm performed
the best, 7% better than the Neural Network. We have
also checked performance of RepTree during 7-day
periods, similarly as for the Neural Network. The
results are presented in Fig. 10. The results show that
RepTree learns faster than the Neural Network. Even
in January, it achieves relatively good results. This
explains the lower sum of Q values than for the Neu-
ral Network, which is in the second place. However,
the quality of RepTree predictions does not improve as
much as in the case of the Neural Network. In Decem-
ber, Q values are around 20, while for the Neural
Network these are below 10. As a result, in the long
term, the Neural Network model outperforms.

The overhead of the solution proposed consists
of two components: telemetry services and model
learning. In the production system, telemetry should
be turned on independently of our solution (e.g. for

alarms to be generated in case of problems). We have
no influence over this overhead component. Model
learning is executed once a day and this process
depends on the learning algorithm chosen. The learn-
ing time for the Neural Network is the highest: 3.5
seconds. However, it is low enough not to introduce
any significant overhead.

7 Conclusions

The approach proposed allows for online (during sys-
tem usage), autonomous plan adaptation. This is a
closed-loop solution: it automatically generates and
adopts the plan using monitoring data and compar-
ing reservations to demands. As it was successfully
demonstrated, it is possible to verify the updated plan
in advance and discover potential problems within
both short and longer periods. This is a very important
aspect for planning the operation of both private and
public clouds.

The paper presents a rather general framework. The
reservation process is based on load prediction, and
thus various ML models can be used in the solution
proposed. The application of machine learning models
is very much dependent on the availability of real-life
historical data representing load changes over fairly
long periods and also on online access to current sys-
tem load. Detailed results of the evaluation performed
in this study are dependent upon characteristic fea-
tures of the load observed in the system, therefore
it is difficult to arrive at general conclusions about
numerical results.

In a real-world application, the historical data could
be used for the initial training and parameter setting
of ML models before their deployment and further
refinement during system runtime. The initial train-
ing, as it was demonstrated, could be performed in a
compressed time scale. This makes it possible to use
already pre-trained models and observe the advantage
resulting from the use of ML algorithms during system
operation almost immediately.

Experimental results demonstrate that this solution
improves cloud resource utilization. It was tested on
VM reservations, but the solution is general and may
be applied to other resources as well.

Performance of four machine learning algorithms
was compared: Neural Networks, linear regression,
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RepTree and M5P. RepTree was learning faster than
the Neural Network; however, the Neural Network
ultimately yielded better predictions.

There are many areas which should be analyzed
in the future research. More experiments should be
performed in a real-life environment. The solution
proposed is general and it should work with other
resources as well. Therefore, we would like to conduct
experiments (e.g. involving memory, network or GPU
compute) in a real-life environment. Additionally, we
would also like to consider more complex cases where
multiple resources are taken into account simultane-
ously and also how changes to hardware (e.g. new
processors) influence system performance. We are
also planning to enable various VM configurations.
Last but not least, hybrid models (e.g. consisting of the
Neural Network and RepTree) should be examined,
since they can combine the fast learning of RepTree
with the better accuracy of Neural Networks.
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