
J Grid Computing (2019) 17:97–118
https://doi.org/10.1007/s10723-019-09478-y

End-to-End Voting with Non-Permissioned
and Permissioned Ledgers

Stefano Bistarelli · Ivan Mercanti ·
Paolo Santancini · Francesco Santini

Received: 3 September 2018 / Accepted: 26 February 2019 / Published online: 20 March 2019
© Springer Nature B.V. 2019

Abstract We propose a decentralised end-to-end vot-
ing platform (from voter to candidate) based on the
block-chain technology. In particular, we study and
exploit both the non-permissioned ledger of Bitcoin,
and the MultiChain permissioned ledger. We describe
the main architectural choices behind the two imple-
mentations, including the pre-voting and post-voting
phases. Similar approaches are not as decentralised as
our application, where it is possible to directly cast
a vote to the block-chain, without any intermediate
level. Benefits and drawbacks of each implementa-
tion are explained. The Bitcoin block-chain consists
in a large number of already available nodes in the
related peer-to-peer network; moreover, its reliabil-
ity and resistance to attacks are also well established.
With MultiChain we instead exploit a fine-grained
permission system:MultiChain is a permissioned pub-
lic ledger. Hence, with it we can also satisfy two more
properties of end-to-end voting systems: uncoercibil-
ity and receipt-freeness and data confidentiality and
neutrality. Moreover, we can avoid costs and price
fluctuations related to Bitcoin.

Keywords E-voting · Distributed ledger ·
Permissioned block-chain · Bitcoin · Coloured coin ·
MultiChain

S. Bistarelli · I. Mercanti · P. Santancini · F. Santini (�)
Department of Mathematics and Computer Science,
University of Perugia, Perugia, Italy
e-mail: francesco.santini@unipg.it

1 Introduction and Motivations

In short, electronic voting [24] (also known as e-
voting) is voting by using electronic systems to aid
casting and counting votes. These systems often
employ cryptographic methods to craft receipts that
allow voters to verify that their votes have not been
modified. We propose an end-to-end (E2E) verifi-
able system [15] by exploiting different block-chain
technologies [37, 46, 47]. In particular, we study and
implement a voting system whose engine is a non-
permissioned ledger (Bitcoin [4, 37] in our case),1

and one based on a permissioned [2] one (Multi-
Chain [23], see Section 6). A permissioned ledger is
a ledger where individuals need permission to access
a ledger. Among all other possible protocols (other
examples are Ethereum,2 or the HyperLedger fam-
ily of block-chains,3 MultiChain was selected in this
study because of its similarity with respect to Bitcoin:
it is directly derived from the Bitcoin Core software at
the heart of Bitcoin (see Section 6). The goal in this
paper is to show Bitcoin-related implementations of
an end-to-end voting scheme.

In general, some advantages of e-voting versus
paper-based voting come directly from managing all
the information automatically: the main benefits are

1In the paper we use “Bitcoin” to refer to the network or
protocol, and “bitcoin” to the currency.
2Ethereum: https://www.ethereum.org.
3HyperLedger: https://www.hyperledger.org.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-019-09478-y&domain=pdf
http://orcid.org/0000-0002-3935-4696
mailto:francesco.santini@unipg.it
https://www.ethereum.org
https://www.hyperledger.org

98 S. Bistarelli et al.

represented by reduced costs, automated tallying,
means for an immediate comprehensive reporting, and
a direct archiving of results. For the elector, two bene-
fits are the improved ability to correct mistakes (before
the final submission) and, the possibility of increasing
the ease of voting. In the following we will con-
sider the term “election” with its broad meaning, not
necessarily restricting it to political elections.

In both the proposed solutions, electors anony-
mously authenticate online (multiple schemes can be
used, e.g., Anonymous Kerberos [45, 49] or Blind sig-
nature [14]) and, as a consequence, receive a token
to vote (i.e., a fraction of an “asset”) in their wallet.
Afterwards, a voter can “spend” such a token by trans-
ferring it to the address of the desired candidate with a
transaction from its wallet. This is recorded, once for
all, in the block-chain, which consists in a distributed-
ledger of sequential transactions. Such a procedure
avoids the need to have a centralised database man-
aged by a trusted third-party. Finally, the result can
be verified by quickly counting in the block-chain
the tokens transferred to each candidate. An imple-
mentation trough a block-chain automatically inherits
transparency, decentralisation and immutability from
this technology.

In Section 4 we implement an E2E voting platform
by using the Bitcoin block-chain [37]. In this case, the
evident advantage consists in i) the immediate avail-
ability of the underlying infrastructure (the Bitcoin
peer-to-peer network), ii) the reliability of Bitcoin,
with a large number of full nodes deployed world-
wide,4 and iii) the long-term history of Bitcoin (since
2009), proving its security (see Section 5). We also
provide an estimation of costs when using Bitcoin and
considering different numbers of electors.

In Section 6 we propose a solution where we
enforce two properties, desirable in e-voting platforms
(see Section 7): i) uncoercibility and receipt-freeness
(voters should not be able to prove how they voted),
and ii) data confidentiality and neutrality (votes must
be protected from external reading during the vot-
ing process). Differently from Section 4, where such
two properties are not satisfied, we adopt a differ-
ent platform for building permissioned block-chains,
i.e., MultiChain. Thanks to MultiChain permissions
management, it is possible to prevent anyone from

4A constantly updated map with full nodes in Bitcoin can be
found at: https://bitnodes.earn.com.

reading votes in the block-chain, and grant instead
this right to specific users at a given time. In addition
to the above-mentioned properties, a further benefit
in implementing a voting application by using Mul-
tiChain is that we become independent from bitcoin
price and fees. In fact, in the MultiChain implementa-
tion, the voting token comes at null price, and fees are
not required at all.

This paper extends [9], where only some results
on Bitcoin are presented; in the following we will
discuss about both Bitcoin and MultiChain imple-
mentations. Section 2 introduces the background on
Bitcoin. Section 3 represents the core of the paper,
adapting the decentralised payment-system to an e-
voting system. Section 4 describes an implementation
using the Bitcoin block-chain and an estimation of
costs by considering different numbers of electors.
Section 5 reports some known attacks to Bitcoin, and
if/how they can be perpetrated also for the voting plat-
form. Section 6 describes an implementation using a
permissioned ledger, i.e.,MultiChainwith the purpose
to satisfy more properties of voting systems, and be
detached from Bitcoin costs. Section 7 reports which
properties can be satisfied by the two proposed imple-
mentations. Section 8 collects related work, while
Section 9 finally wraps up the paper with conclusions
and future work.

2 Bitcoin

The white-paper on Bitcoin appeared in Novem-
ber 2008 [37], written by a computer programmer
using the pseudonym “Satoshi Nakamoto”. His inven-
tion is an open-source, peer-to-peer digital currency
(being fully electronic, with no physical manifesta-
tion). Money transactions do not require a third-party
intermediary, with no traditional financial-institution
involved in transactions. Therefore, the Bitcoin net-
work is completely decentralised, with all the parts of
transactions performed by the users of the system.

The buyer and seller directly interact (peer-to-peer),
but without using their real identities, and no personal
information is transferred from one to the other. How-
ever, unlike a fully anonymous transaction, there is
a transaction record. A complete transaction record
of every bitcoin and every Bitcoin user’s encrypted
identity is maintained on a public ledger, called the
block-chain. For this reason, Bitcoin transactions are

https://bitnodes.earn.com

End-to-End Voting with Non-Permissioned and Permissioned Ledgers 99

thought to be pseudonymous, not anonymous: Bitcoin
addresses are pseudonyms of real individuals (one can
have several pseudonyms).

Bitcoin [4] is a currency with a finite supply: a
cap of (slightly less than) 21 million bitcoins is set by
default. Hence, Satoshi designed Bitcoin to eventually
become a deflationary currency. The only way to cre-
ate new bitcoins is through the mining process: miners
are the nodes that verify the transactions and add them
to the block-chain. The number of bitcoins created
each time a miner discovers a new block represents a
reward for its job, which consists of the computation
of the proof-of-work (more details in the following of
this section). The reward (12.5 bitcoins at the time
of writing) is designed to be halved every 210,000
blocks, approximately four years.

Figure 1 shows the main actors in the Bitcoin net-
work. Generic users own a wallet associated with
couples of private/public cryptographic keys. In Bit-
coin, a private key is a 256 bit random number, and by
using the Elliptic Curve Digital Signature Algorithm
(ECDSA) [27], a 512 bit public key can be obtained
from it. Afterwards, from the public key it is possible
to obtain a Bitcoin address, e.g., applying an hashing
function on it. Users use these keys to sign the trans-
actions they generate in order to transfer their money
to other users; transactions are then broadcast to the
Bitcoin peer-to-peer network. The miners update the
block-chain, a public distributed data-structure that
implements the database of every transaction ever
executed.5

In the following of this section we detail trans-
actions and how they are aggregated into the block-
chain.

Transactions Transactions are the basic brick of Bit-
coin: they represent the mechanism that allows a user
to cede money to another user, e.g., from a buyer to
a seller in Fig. 1. The new owner can prepare a new
transaction referring to the ones through which she
received money, called the (multiple) inputs of this
new transaction. The output of a transaction describes
the destination of bitcoins instead. There can be mul-
tiple outputs, allowing a owner to make multiple pay-
ments at once; one output often represents the change
w.r.t. a previous transaction.

5Genesis block (block number #0) created on 3 January 2009,
first transaction on 12 January 2009, from Satoshi Nakamoto to
Hal Finney, a developer and cryptographic activist (block #170).

Fig. 1 The Bitcoin peer-to-peer network in a glimpse. Nodes
can be nuyers and sellers, exchange services that change bit-
coins to other currencies and viceversa, and miners

The bitcoin transactions language Script is a
Forth-like [41] stack-based execution language. Script
requires minimal processing and it is intentionally
not Turing-complete (no loops) to lighten and secure
the verification process of transactions. An interpreter
executes a script by processing each item from left to
right in the script. Script is a stack-based language:
data is pushed onto the stack, as well as opera-
tions, which can push or pop one or more parameters
onto/from the execution stack, operate on them and
possibly push their result onto the stack.

For example, the operator OP ADD pops two items
from the stack, add them, and finally push the result-
ing sum onto the stack [4]. There are also conditional
operators as OP EQUAL: it pops two items from the
stack and pushes TRUE (represented by number 1) if
operands are equal, or FALSE (represented by 0) if
they are not equal. In Bitcoin, transaction scripts usu-
ally contain a final conditional operator, so that they
can produce the result TRUE, which points to a valid
transaction.

An input must store the proof it belongs to whom
wants to reuse the money received in a previous trans-
action. We refer to the chain of transactions in Fig. 2 to
explain this. Alice wants to send 0.02 bitcoins to Bob,
thus she refers to transaction with id 20, where she has
received 1 bitcoin from Joe; she prepares the transac-
tion to Bob by adding the public key of Bob and then
signing the whole transaction with her (Alice’s) pri-
vate key. Hence, 0.02 bitcoins are irreversibly linked
to Bob’s public-key, who is the only one possessing

100 S. Bistarelli et al.

Fig. 2 An example of a
chain of three transactions
between Joe, Alice, Bob,
and Charlie

the corresponding private-key, as Alice is the only one
who can reuse 1 bitcoins received from Joe. Transac-
tion 35 in Fig. 2 has two outputs, one is the change
(0.15 − 0.02 = 0.13 bitcoins).

To go more into the details, an example of trans-
action in a human-readable format is provided in
Fig. 3. Line 1 shows the hash of the transaction,
which uniquely identifies it. Line 2 shows the Bit-
coin protocol version. Line 3 reports the time at which
a particular transaction can be added to the block-
chain. If it is less than 500 million it is interpreted
as a block-height (miners wait until that block-height
has been reached before adding it to a block), while
if it is above 500 million it is converted to a Unix
time-stamp. From line 4 to line 14 we find the (sin-
gle, in this case) input of a transaction: in particular

line 5 refer to the previous transaction (the hash of it)
from where money comes from, and line 6 specifies
the reference output (i.e., 0) in that transaction. Lines
7-11 report the signature of the sender followed by
her public-key; together can be used to check if she
is the real owner of these bitcoins. Line 13 shows the
address of the input transaction, while line 14 shows
the amount of sent bitcoin (1 bitcoin). Lines 15-26 in
Fig. 3 show the two outputs ot this transaction. The
second output is what transferred by this transaction,
i.e., 0.67407245 bitcoins, while the first output rep-
resents the change between the input transaction and
what paid, that is 1 − 0.67407245 = 0.32542755
bitcoins. Line 18 and line 23 are statements in the Bit-
coin scripting language. They define the conditions
under which money can be unlocked; for instance,

Fig. 3 A real example of a Bitcoin transaction

End-to-End Voting with Non-Permissioned and Permissioned Ledgers 101

8655298c2fac774d85084e67e9b3c7ea7473bd22 (line
23) is the destination address, while the other codes
impose to present a signature created with the private
key corresponding to the public-key of the receiver
(i.e., OP EQUALVERIFY). Line 26 reports the fee
paid to miners (0.0005 bitcoins).

Note that OP RETURN is a script opcode used to
mark a transaction output as invalid. Since the data
after OP RETURN are irrelevant to Bitcoin payments,
arbitrary data can be added into the output after an
OP RETURN, as a text message.

Finally Alice broadcasts her transaction to the Bit-
coin network, and miners are in charge of adding it to
the block-chain.

Block-Chain Miners keep the block-chain consistent,
complete, and unalterable: they repeatedly verify and
collect newly broadcast transactions into a new group
of transactions, called a block. Mining is also the
mechanism used to introduce bitcoins into the system
(reward plus fees). This both serves the purpose of
disseminating new coins in a decentralised manner as
well as motivating people to provide security for the
system.

The first step accomplished by a miner, after col-
lecting transactions, is to perform a verification step
on them. This implies to check a set of rules, e.g., if
their format is syntactically correct w.r.t to the pro-
tocol, or to reject it if the sum of input values is
less than sum of output values. Transactions are also
checked w.r.t. the ones already in the block-chain: they
are rejected in case they have been already registered
there. A miner also relays transactions to the other
peers in the network.

Valid transactions (all checks are passed) are added
to a block. A block consists of a header and a list of

transactions (the block body). In Fig. 4 we show a fic-
titious excerpt of the block-chain (only two blocks),
with a simplified structure (e.g., we show the main
fields of the header). Inside a block, transactions are
organised as a Merkle tree [34], which is a tree where
every non-leaf node is labelled with the hash of the
labels or values (in case of leaves) of its child nodes.
Hash trees allow an efficient and secure verification
of the contents of large data structures. In the header
of a block, the Merkle root (Tx Root) is the hash of
all the hashes of all the transactions in the block.
Timestamp in Fig. 4 is the current (Unix) time. Each
block contains information that chains it to the pre-
vious block in the block-chain, that is a hash of the
previous block (Prev Hash in Fig. 4). Thank to this
field, a block (and consequently the block-chain) is
computationally impractical to be modified, since
every block after it would also have to be regener-
ated. The remaining field of the header, i.e., Nonce, is
obtained from the computation of the proof-of-work.

Simply speaking, with such a calculation a miner
aims at finding a random nonce (a little random data)
that becomes part of a block and makes it have a hash
that starts with a given amount of zeroes. This nonce
corresponds to a 32-bit field that, once inserted into
the current block-header, makes its hash be less in
value than the current target. The target is a 256-bit
number (extremely large) that all Bitcoin nodes share.
The most widely scheme for hashing is SHA256 [21],
similarly to Adam Back’s Hashcash [7].

This proof is easy to verify, but extremely time-
consuming to generate: the demanded work is expo-
nential in the number of “zero bits” required in the
head of the block-hash, but it can be verified by other
peers in a single hash. Such amount of effort is con-
tinuously adjusted: every 2016 blocks the target is

Fig. 4 An simplified model
of the block-chain with only
two blocks, one of which
detailed with the structure
of its Merkle tree

102 S. Bistarelli et al.

decreased by all the nodes, with the aim of keeping
the average time between new blocks at 10 minutes.6

Additionally, the miner is awarded the transaction fees
in a block.

2.1 Open Assets Protocol

In Section 3 (i.e., in the description of the voting
phases) and Section 4 (i.e., in the implementation) we
will use an evolution of the concept of coloured coins.
This concept has been designed to be a logical layer on
top of standard Bitcoin: in fact, it does not require any
change to the existing Bitcoin protocol. The purpose
is to create a new set of information about coins being
exchanged: by using coloured coins, bitcoins can be
“coloured” with specific attributes. This enhancement
effectively turns coins into tokens, which can be then
used to represent anything: coloured coins can repre-
sent, for instance, deeds for a house, stocks (which can
be traded frictionlessly through the Bitcoin infrastruc-
ture), bonds or futures.

Such an extension of coloured coins is imple-
mented in the Open Assets Protocol7 (OAP). It allows
issuance and transfer of user-created assets: outputs
can encapsulate a quantity of a user-defined asset on
top of that Bitcoin amount. The transaction outputs
have two main features:

– The ID is a RIPEMD-160 hash of the SHA-256
hash of the output script referenced by the first
input of the transaction that initially issued that
asset. It is used to uniquely identify the stored
asset. An issuer can reissue more of an already
existing asset, as long as the private key for that
asset ID is retained.

– The quantity is an unsigned integer representing
how many units of that asset are stored on the
output.

Transactions relevant to OAP need to have a spe-
cial output called marker output, which allows clients
to recognise such transactions. OAP transactions can
be used to issue new assets, or transfer ownership of
assets. The marker output can have a zero or non-
zero value, and it starts with the OP RETURN opcode,
and can be followed by any sequence of opcodes,

6The average current time between two consecutive blocks is
9’44” (July 2018).
7https://github.com/OpenAssets/open-assets-protocol.

but it must contain a PUSHDATA opcode containing
an OAP marker payload. The payload, as defined by
OAP, has a format that includes, a marker (2 bytes), a
version number (2 bytes), an asset quantity count (rep-
resenting a number of items in the next file, 1-9 bytes),
an asset quantity list (unsigned integers represent-
ing the asset quantity of every output in order, bytes
variable), metadata length (1-9 bytes), and metadata,
which consists of arbitrary metadata to be associated
with a transaction (it can be empty).

Each output in the Block-chain can be either
coloured or uncoloured: uncoloured outputs have no
asset ID and no asset quantity (they are both unde-
fined), while coloured ones have a strictly positive
asset quantity, and a non-null asset ID.

By colouring bitcoin we can create special token
dedicated to the election. This approach offers many
desirable characteristics: for example, i) clients can
identify coloured outputs simply by traversing the
block-chain, ii) the cost of issuing or transferring an
asset is completely independent from the quantity,
and iii) the entire cryptographic infrastructure used by
Bitcoin for securing the spending of outputs is reused
for securing the ability to issue assets.

3 Voting with the Bitcoin Block-Chain

In this section we describe how to use the Bit-
coin block-chain to implement an E2E voting-system.
According to the high-level models of election sys-
tems [13], and to many proposals in the literature as
the taxonomy in [43] recollects, e-voting has three
phases with two/three sub-phases each:

1) Pre-voting Phase: (a) Candidate nomination and
registration process, (b) Voter registration pro-
cess.

2) Voting Phase: (a) Voter authentication, (b) Vote
casting, (c) Vote transmission and confirmation.

3) Post-voting Phase: (a) Counting, (b) Result, (c)
Audit administration.

Pre-Voting Phase Step 1(a) is the process of approv-
ing nominees as eligible candidates for certain posi-
tions in an election. A candidate in this context can be
a named individual or a party. The aim is to retrieve
a list of candidates that own a couple of asymmet-
ric keys: the public one is associated with the identity

https://github.com/OpenAssets/open-assets-protocol

End-to-End Voting with Non-Permissioned and Permissioned Ledgers 103

of the candidate8 and it has to be freely available to
all the voters, while the related private-key has to be
kept secret by each candidate. Candidates’ public-keys
listed on (government) official Web-sites may suffer
from phishing attacks (e.g., if the Web page is manip-
ulated), driving the user to transfer bitcoins to a differ-
ent wallet, instead of really voting. To prevent this, we
require the user receives the list of verified public-keys
at the same time she obtains the voting token, from the
same token distribution-service used in phase 1(b). In
this setting, we suppose candidates register themselves
in person, by showing an ID and communicating their
public key (only) to the authority. Otherwise, a digi-
tal registration can be implemented for candidates as
well, similar to what proposed for voters in phase 1(b).

Step 1(b) concerns the process of approving voters
instead of candidates. Due to its nature (e.g., the possi-
bly large number of voters), such a step has to be fully
digital. The public key of an approved voter will be
charged with an amount of bitcoins, which represents
the election token to be spent as a vote.9 The related
private key will be instead used by the voter’s wallet
to cast a preference in the voting phase, by signing the
transaction. Each voter generates her public-private
keys, associated to her wallet.

However, a public key cannot be directly associated
to the voter’s identity, otherwise the anonymity prop-
erty would be not guaranteed (see Section 7); clearly,
anonymity is one of the main properties we need to
satisfy (if not “the” property). In order to guarantee it
we propose the Anonymous Kerberos authentication-
protocol [45, 49]. Note that this is only one among
different anonymous-authentication approaches that
can be exploited to anonymise voters; in Remark 2
we propose other anonymous authentication schemes.
In our implementation (Section 4) we have opted for
a variant of the Anonymous Kerberos protocol, as
explained in the following paragraph.

Anonymous Kerberos [45, 49] provides a mechanism
for principals to authenticate to a remote service with-
out disclosing their identity. We suppose the sequence
is initiated by Alice (one of the voters), who logs

8A Bitcoin recipient address is the hash of the recipient’s
public-key.
9In Section 4 we propose two different implementations of
a token, based either directly on Bitcoin or the OAP (see
Section 2.1), which lead to different election costs.

into the Kerberos Client (KC) with her username
and password (or biometric features). The other two
participants involved in the protocol are the Authenti-
cation Server (AS), and the Token Distribution Server
(TDS). AS is in charge of authenticating Alice, while
at the second step TDS transfers (via Bitcoin) the
voting token to Alice by using her public key. In
Fig. 5 we show the sequence diagram of the messages
exchanged among these three entities. KAlice, KAS ,
and KT DS in Fig. 5 are the secret keys of Alice, AS,
and TDS respectively: see [45, 49] for a description
about how they are created. In order to separate the
authentication from a token (i.e., the “ballot”), it is
important that AS releases an anonymous credential
(i.e., AnonymousID) to Alice, used by her to access
to TDS together with a session key (Ksession2). In this
way, AS will be aware of the identity of Alice with-
out being able to associate it with her public key. On
the other hand, TDS will not be aware of the iden-
tity of Alice. For the sake of duties separation, AS
and TDS need to be implemented by distinct entities:
for instance, a delegation of voters may (distributedly)
implement AS, and a delegation of candidates may
(distributedly) implement TDS. AS and TDS together
prevent the same voter to register more than once:
multiple requests with the same AnonymousID are
denied by TDS.

In the last two messages, 7 and 8 in Fig. 5, first
Alice sends (7) her public key (KPublicBitcoin), which
needs to be “charged” with a voting token. Message
8 confirms that such token has been accredited to the
public key (sent by Alice), meaning that TDS has
transferred one token to the wallet of Alice, and the
related transaction is recorded in the block-chain.

Remark 1 (Multiple Kerberos) An obvious weakness
of the protocol is that if the two entities AS and
TDS collude, anonymity is immediately broken: AS
can match the real identity with the anonymous one,
and then match it with the KPublicBitcoin of Alice,
with the help of TDS. Even if in our implementation
(see Section 4) we opt for this simpler scheme, it is
indeed possible to complicate it in order to have n

entities (1 TDS and n − 1 ASs) and prevent this sce-
nario if n − 1 (or less) entities collaborate to break
anonymity. One solution is to ask Alice to authenti-
cate n − 1 times to n − 1 different ASs: each of them
returns a string of data, which Alice concatenates in
the right order (AS may have a predefined sequence

104 S. Bistarelli et al.

Fig. 5 The sequence
diagram of the
Kerberos-based protocol:
we have the Kerberos Client
(KC), the Authentication
Server (AS), and the Token
Distribution Server (TDS)

order), and then hashes it (e.g., with SHA-1). The final
string of 160 bits represents the AnonymousID that
Alice presents to TDS in order to have its public key
charged with one token. TDS is able to discover the
real identity of Alice only if it somehow obtains all
the sub-strings from each AS, and then, by hashing the
whole string, TDS matches it with the AnonymousID
given by Alice: TDS needs to collude with all the ASs,
not with just one of them as in plain Anonymous Ker-
beros. TDS needs to store the hash of all the possible
strings (however, in sequence) of the n − 1 ASs from
the beginning.

In order to avoid Alice to authenticate n − 1 times,
the n − 1 ASs can be concatenated. In this way, Alice
authenticates only to AS1, which then authenticates
to AS2 and so on, until ASn-1 is reached. Each AS
encrypts its sub-string by using a public key associated
with the real identity of Alice; then it passes the result
to the next AS in the chain. Alice will decrypt the
final message (obtained from AS1) n − 1 times before
applying the same hash function as before and send the
result (i.e., the AnonymousID) to TDS. If only one AS
is not maliciously collaborative, AnonymousID cannot
be matched with the real identity of Alice.

Remark 2 (Other authentication schemes) Indeed
other authentication schemes can be used to anony-
mously prove to be entitled to receive a voting
token. For instance, blind signature [14] is a form
of digital signature in which the content of a mes-
sage is disguised (blinded) before it is signed: the
sender is not aware of the message she signs. The
resulting blind signature can be publicly verified
against the original, unblinded message in the man-
ner of a regular digital signature. Blind signatures are

typically employed in privacy-related protocols where
the signer and message author are different par-
ties. Typical examples include digital-cash schemes
and cryptographic election-systems [29] (the cases in
this paper). The Blind Signature scheme is visually
represented Fig. 6: first Alice encrypts m, i.e, f (m),
thus obtaining a cyphered message c = f (m). Alice
sends c to Bob. Bob (blind-)signs c with a func-
tion c′ = g(c) = g(f (m)): Bob does not know
m. Bob sends back c′ to Alice, who can remove her
encryption (i.e., f −1) and obtain g(m). Blind signa-
ture schemes can be implemented using a number of
common public key signing schemes, for instance RSA
and DSA cryptographic schemes. Such a scheme can
be used among a voter (Alice), AS, and TDS. After
a first (non-anonymous) authentication between Alice
and AS, Alice signs and sends her public key to AS,
which then returns it to Alice after its turn of dig-
ital signing (c′ in Fig. 6, i.e., AS is represented by
Bob). Therefore, AS signsKPublicBitcoin without know-
ing it: AS only knows the identity of Alice, as with the
Kerberos-based protocol. Now Alice can ask TDS to
send her a token for voting. The credential is this time
represented by g(KPublicBitcoin): if g−1(KPublicBitcoin)

corresponds to the public key of Alice, this means that
AS has already authenticated her.

One more anonymous authentication step can be
implemented by using Zero Knowledge proofs [22].
Zero-knowledge proofs are cryptographic protocols
which do not disclose the information or secret itself
during the protocol: knowledge possession is proved
without revealing the information itself, or additional
information. Clearly, this kind of interaction shows
to be be very useful to implement an anonymous
authentication phase [31].

End-to-End Voting with Non-Permissioned and Permissioned Ledgers 105

Fig. 6 A blind signature
between Alice and Bob

Voting Phase After completing the pre-registration,
a voter owns a voting-token in her wallet and she
is ready to cast her preference. She transfers such
token to the Bitcoin address of the candidate she likes.
The sub-phase of authentication (2(a)) is performed
by signing the transaction with the private key corre-
sponding to the KPublicBitcoin charged in the pre-voting
phase. Casting (2(b)) is performed by preparing a
payment towards the public key (i.e., address) of the
chosen candidate. Transmission (2(c)) corresponds to
effectively executing the transaction, while confirma-
tion (still (2(c)) can be done by simply self-checking
if the transition is present in the block-chain (after the
transaction has been mined).

Authentication, casting, and transmission are
achieved by operating on the voter’s wallet. When
Alice wants to send bitcoins (2(b) casting) to Can-
didate, she uses her private key to sign a message
with the input (the source transaction from TDS),
an amount (the token), and an output (Candidate’s
address). The three-transaction chain is represented in
Fig. 7. New transactions (votes) are broadcast to the
Bitcoin network (2(c) transmission). Miners confirm
all the transactions related to votes. All the transac-
tions (i.e., all the votes) in a block are included in the
block-chain (2(c) confirmation).

Post-Voting Phase This phase mainly covers tokens
counting and result reporting. Counting (sub-phase
3(a)) is indeed the most interesting step. The possibil-
ity of recounting needs be considered as well, since it
is one of the required properties (see Section 7): results
need to be confirmed if requested.

So far we have referred to the amount of bitcoins
transferred in the pre-voting and voting phases with
the generic word “token” (i.e., a vote). In the simple
case, a token corresponds to the smallest quantity pos-
sible of bitcoins that can be transferred in a transaction
(one satoshi, i.e., 10−8 bitcoins), plus a transaction

fee.10 An alternative is represented by the use of
coloured coins, that is by using the OAP (see Section
2.1). In this way, it is possible to create assets on top
of Bitcoin, in order to unambiguously mark money, or,
here, to uniquely identify voting-tokens. In this case,
the token amounts to a different quantity (6 × 10−6

bitcoins), while the fee is the same, in order of 10−4

bitcoins. We have implemented both these solutions,
even if the implementation summarised in Section 4
describes the OAP alternative (more information and
motivations behind using OAP can be found in Section
4).

Votes are counted by summing the tokens obtained
by each candidate in the block-chain. As previously
advanced, this can be implemented in two different
ways: i) a token is a satoshi, or ii) a token is a digital
asset coin (in case of using OAP). While the pre-
voting and voting phases are marginally affected by
choosing either i or ii, counting is more involved.

To be valid, a transaction needs to both originate
from an authorised voter and end in the address of
a registered candidate. In turn, a voter is authorised
if she has previously received a token in a transac-
tion from the public key of TDS (see the pre-voting
phase). Therefore, for each token in the block-chain,
the counting process needs to check if the sub-chain
of transactions is identical to the last two transactions
in Fig. 7. By remembering all the source addresses
of confirmed votes we enforce that only one vote per
authorised voter is counted. Since the block-chain can
be accessed sequentially, this kind of search requires
n + 1 scans of the block-chain (where n is the number
of voters): one to count all the votes, while the other
n scans to be sure that each vote has been cast by an

10Fees are required also for small transactions, in order for them
to be processed without any delay. For transferring one satoshi,
a fee of 10−4 bitcoins is considered as enough to avoid any
delay, or risk to be discarded.

106 S. Bistarelli et al.

Fig. 7 The block-chain
excerpt of a valid vote (cast
by Alice to Candidate)

authorised voter. If we suppose that even the entity that
is performing the count is aware of the list of autho-
rised voters (which is known by TDS only), than the
block-chain can be accessed only once.

The main reason behind using asset coins, i.e., ii, is
that OAP is designed to attach metadata to a transac-
tion and consequently expand Bitcoin functionalities.
The token obtained in the pre-voting phase can be then
unambiguously marked with the attached metadata
signed by an administrator, that is the electoral com-
mission. In this way, bitcoins really become votes, and
it is possible to count single votes instead of authorised
voters, as in i instead.

Therefore, there is not need to check if a voter is
authorised or not and the count becomes easier: for
instance, there is no need to keep track of voters’
addresses to check they have voted only once. With-
out this check however, it is possible for a voter to
send her asset coin to a different, authorised or unau-
thorised, voter, who can cast such a vote without being
directly detectable. To avoid such misbehaviour, a pos-
sible solution is to use a permissioned block-chain
[2] (see also Section 6), where access permissions are
more tightly controlled, with rights to write (or even
read) the block-chain state restricted to a few users.
This leads to policies to arbitrarily censor transactions
of such asset coins among voters, with the purpose to
allow transactions only between an authorised voter
and a candidate.

To count votes, not all the block-chain needs to be
scanned: each block contains a Unix-time timestamp,
so that it is possible to count as valid all the trans-
actions in the blocks with a timestamp in the interval
Elections opening ≤ timestamp ≤ Election closing.
However, the mining process is not immediate: the
interval between one block and another has an average

of 10 minutes, but not every block interval is exactly
10 minutes, and it follows a Poisson distribution. At
the time of writing, in a 10 minute interval the prob-
ability of a block being mined is about 63%; in 30
minutes the probability raises to 95%.11 For this rea-
son and because Election closing is not synchronised
with the mining process, we are sure to have counted
all the votes arrived before the closing if we consider
up to two blocks with timestamp ≥ Election closing in
the block-chain.

In addition, as explained in Section 2, the last block
of the election needs also to be confirmed (i.e., not
orphaned due to a fork of the block-chain). Once the
block-chain stores 8 blocks with timestamp ≥ Elec-
tion closing, counting can be launched: 2 blocks plus
6 blocks to avoid forks. The risk of losing a trans-
action to a reorganisation is low, and even then it
will probably be re-included after the reorganisation
occurs. However, it is better to wait for stable block-
chain count only really confirmed transactions: note
that counting votes can start as soon as there is a con-
firmed block with timestamp ≥ Election opening. On
the average, 80 minutes (10 minutes per block) after
closing the election is necessary to start the count-
ing. Note that block timestamps cannot be used in the
practice. Due to synchronisation problems among the
peers in the Bitcoin network, timestamps of mined
sequential-blocks can be not ordered in time. How-
ever, it is possible to use their sequence number to
understand how many of them have been mined after
closing the election.

11Data.bitcoinity.org: https://tinyurl.com/yakxkvbb.

https://tinyurl.com/yakxkvbb

End-to-End Voting with Non-Permissioned and Permissioned Ledgers 107

Fig. 8 The workflow of the
pre-voting stage

4 Implementation and Costs in the Bitcoin
Block-Chain

The solution proposed in the previous section is
architecturally distributed (Bitcoin is natively peer-to-
peer), and no central authority is needed (TDS and AS
can be distributed as well). In the following of this
section, we describe how we have implemented voting
with the OAP on top of the Bitcoin block-chain; more-
over, we show how much an election costs by using
either the bare block-chain, or OAP.

We have implemented a Web-interface to let a user
vote without having a wallet. In this way, we let vot-
ers vote without having a wallet on their computer:
only a browser is needed; however, a skilled voter can
also opt for voting from her personal wallet. There-
fore, more voters can vote through the same online
application. First, we implemented the Authentica-
tion Server by using classical Anonymous Kerberos
[45, 49]. In addition, some further technical require-
ments used during the development of our Web-based
implementation are: i) a Web Server Apache, ii) a
Mysql DBMS, iii) Perl CGI, and v) a digital-asset wal-
let compliant with OAP, as Colu12 or CoinPrism.13

However, the same implementation can work with
other OAP-compliant wallets, e.g., CoinSpark,14 or
SparkBit.15

12https://www.colu.com.
13https://en.bitcoin.it/wiki/Coinprism.
14http://coinspark.org.
15https://coinspark.org/sparkbit-wallet/.

Figures 8, 9, and 10 respectively represent the
workflow of the pre-voting, voting, and post-voting
phases in our implementation using any coloured coin
implementation. We authorise voters by checking their
social security number (2 in Fig. 8). If the authori-
sation is successful, a voting token (i.e., an asset) is
delivered to the address of the voter by using coloured
coin API. Such a delivery is remembered by using
an authentication database (6 in Fig. 8), in order to
remember already authorised voters. In Fig. 9, a voter
chooses a candidate from a database and, through the
OAP-compliant Web-based wallet (“invisible to her”)
cast her voting token to the selected candidate. After
this stage, the voter receives a transaction ID, which
represents a receipt to later check in the block-chain
if her vote has been correctly assigned. Finally, in
Fig. 10, a software scans the block-chain only for the
coins coloured according to the considered election,
and, through the same database of candidates (3 in
Fig. 10), it counts the final result.

Costs Afterdescribing the implementation, in this
paragraph we describe the cost of voting with either
the bare block-chain of Bitcoin, or by using OAP.

To compute the cost of the election (in terms of bit-
coins) by using OAP, we provide the following three
calculations, where n represents the number of voters,
and 10−4 is the magnitude order of the fee:

a) α = 10−4 + (6 × 10−6) represents the cost for
transferring and issuing a new asset with Coin-
Prism. The cost of issuing or transferring an
asset is completely independent from the quantity
issued or transferred.

https://www.colu.com
https://en.bitcoin.it/wiki/Coinprism
http://coinspark.org
https://coinspark.org/sparkbit-wallet/

108 S. Bistarelli et al.

Fig. 9 The workflow of the voting stage

b) β = 2α, the cost to transfer the asset coin from
TDS to the voter, and from a voter to a candidate.

c) TOAP = α + (β ×n) = α × (2n+1), the total cost
of the election.

Otherwise, without OAP, by voting with plain Bit-
coin the cost becomes TnoOAP = (2×10−4 +10−8)×
n, which is equal to the cost of a satoshi (i.e., 10−8

bitcoins, the token), two times the cost of the fee (i.e.,
10−4 bitcoins, the cost to transfer the vote from TDS
to a voter and the cost to vote for the voter), multiplied
by n.

To exemplify the cost of an election, we consider as
the current price 1 bitcoin = 10, 000$, and n = 1000
voters. In this case, by using the presented platform
the total cost (for voting only) would have been around
TOAP = 2, 121$, and TnoOAP = 2, 000$ circa. To be
even more precise, we can consider that all the used
transactions in the voting platform have one input and
one output, and thus their size is the following amount
of bytes:16

#inputs × 180 + #outputs × 34 + 10 ± #inputs

If we consider 224 bytes, the amount of satoshis
needed to be paid as fee for not having any delay in
the block mining process is around 50,000 (i.e., 5 ×
10−4).17 Hence, the two costs for n = 1000 voters
respectively become TOAP = 10,125$ and TnoOAP =
10,000$.

16Public keys can be also compressed, for a total of 148 bytes
instead of 180.
17Bitcoin fees: https://bitcoinfees.earn.com.

Therefore, the election cost with asset coins (using
OAP and CoinPrism) is only marginally more expen-
sive than simply voting with satoshis, and the benefits
of having a clearly-marked token to represent a vote
can improve the post-voting phase (see Section 3).
Note a user has a very low incentive to spend the token
otherwise instead of using it to vote: its cost is 10−4

bitcoins.
Note also that, given the price of a bitcoin fixed,

overall the price is determined by the fees more than
by the token (either a satoshi or an asset coin). Hence,
while the same token can be reused for successive
elections (the tokens are transferred to known candi-
dates), the fee to transfer them has to be paid again
at each election. To cut costs, fees can be reduced if
waiting for even a few days from the time of the elec-
tion end is negligible: however, going below a given
threshold can result in waiting for more than 20 blocks
to be mined before a vote appears in the block-chain,
or also being completely dropped by some miners,
thus not resulting in the final count.

In Table 1 we report the progression of one single
election costs from a small (10 electors) to a large one
(100,000 electors); of course not considering hardware
and other expenses (i.e., fixed costs).

Finally, by studying the cost function we derive that
the cost of an election is almost directly proportional
to

– i) the amount of satoshis needed as fee;
– ii) the current price of a bitcoin (e.g., in dollars);
– iii) the number of electors;

https://bitcoinfees.earn.com

End-to-End Voting with Non-Permissioned and Permissioned Ledgers 109

Fig. 10 The workflow of
the post-voting stage

with a very light preponderance in favour of ii. For
instance, if both i and ii doubles, then the election
globally cost quadruples.

Note that the fee to be paid usually follows the price
of a bitcoin: when more transactions are requested,
the price goes up, and during transaction peaks the
fee increases, as explained in the following. Each
node on the peer-to-peer network sets its own policies
on fees. However, the most common implementa-
tion sorts pending transactions in reverse order of fee
density d, where d is defined as

d = fee paid for this transaction

byte size of this transaction
.

Enough transactions are pulled from the memory pool
to create a full block. When the memory pool grows
too large, transactions are evicted starting from the
bottom of the list. For this reason it is possible to
reduce the fee costs by choosing off-peak periods, that
is with a lower number of requested transactions; how-
ever, this is clearly not possible in case the date of
an election has been already determined a long time
earlier.

We now compare the obtained costs to general 2018
elections in Italy, in order to highlight the differences
with real-world paper-based elections. With more than
30 million votes cast for the Parliament (i.e., the lower
house),18 the total cost using Bitcoin would have been
300 million dollars, without considering any fixed cost
due to the voting infrastructure. However, Italian elec-
tions in 2018 had a total cost of around 450 million
dollars. Note that, in this example, we consider the
price of a bitcoin to be 10,000 dollars. Due to the

18Less citizens have the right to vote for the higher house, and
we can think of using just a single token for both the houses.

volatility of its price during the last years, clearly this
comparison is deeply situational.19

5 Known Threats and Voting

We conclude these first sections using Bitcoin (or pro-
tocols on top of its block-chain) by describing possible
threats to this technology and how they can impact
on the security of voting through it. The aim of this
section is to report some known attacks against the
Bitcoin network, and understand if they can be applied
also to the E2E voting-system proposed in this work.

As stated in [18] Bitcoin’s network needs to be
further investigated. Bitcoin purportedly offers three
potential benefits to users: lower transaction costs,
increased privacy, and no erosion of purchasing power
due to inflation [18]. On the other hand, there
are a number of factors that could discourage the
widespread use of Bitcoin: first, not being a legal ten-
der and being tied to a computer program could limit
its widespread among less digitalised users. In addi-
tion, other impediments are its price volatility , and
long-term deflationary bias: since the supply is lim-
ited in the long run, a widespread use would lead to a
demand of Bitcoins that would likely outstrip supply,
causing its price to steadily increase.

Clearly such negative issues do not interfere with an
application to e-voting systems, since they are related
to financial aspects. However, the last points raised
in [18] is of our interest: Bitcoin’s network security

19At the time of writing (January 2019), one bitcoin costs 3,600
dollars, and voting with Bitcoin would cost 107 million dollars
instead.

110 S. Bistarelli et al.

Table 1 The costs in dollars of an election from n = 10 to n = 100, 000 voters (not considering addtional expenses, e.g., hardware)

n = 10 n = 100 n = 1, 000 n = 10, 000 n = 100, 000

TnoOAP 100$ 1,000$ 10,000$ 100,001$ 1,000,010$

TOAP 101$ 1,012$ 10,125$ 101,250$ 1,012,506$

is uncertain.20 Although counterfeiting purportedly is
not possible, Bitcoin i) exchange services [17, 35] and
ii) wallet services [16, 25, 48] have experienced some
security breaches: so far, such two points of failure
represent the main security issues we are going to
better detail in the following of this section.

Exchange services allow customers to convert
fiat money into bitcoins and vice versa. They have
already suffered in the past from Distributed Denial-
of-Service (DDoS) attacks on the servers dispensing
the service [17]. The aim of attackers is to wait until
the price of bitcoins reaches a certain value, then sell,
destabilise the exchange, wait for everybody to panic-
sell their bitcoins, wait for the price to drop to a
certain amount, and finally stop the attack and start
buying as much as they can. However, attacks to such
services do not directly impact on the proposed e-
voting application if implemented with Bitcoin; even
less if implemented through a separate block-chain as
proposed in Section 6.

Attacks on wallets (known attack ii) have been
directed mostly to popular Internet wallet-providers so
far, due to the chance of stealing larger amounts of
money, instead of private wallets. These attacks (e.g.,
launched through compromising email accounts [25])
first access to the remote database, and then allegedly
transfer money to fraudster Bitcoin-addresses. In an
e-voting scenario this corresponds to penetrating the
wallet of some candidate and fraudulently move votes
to other candidates (or just users). Besides securing
the machines where candidate wallets reside, this kind
of misbehaviour can be detected by mining the block-
chain, and related transactions can be invalidated in
the counting process. In addition, also private wal-
lets can experience software bugs (e.g., Android-based
wallets [16]) that can be exploited in phishing or trojan
attacks that force the beneficiary of a transaction be
a different address. Indeed this kind of attacks could
also affect our e-voting platform, even if implemented

20Of course, cash and traditional e-payment systems also have
periodic security problems.

on a separate block-chain. To reduce their impact,
single nodes security needs to be improved.

Note that there is the possibility of attacks involv-
ing the misbehaviour of a pool of miners. There is
the potential for a 51% attack, where a group of
miners controlling over half of the network’s compu-
tational power collude to rewrite a significant period
of the block-chain’s recent history. Some researchers
claim that this is possible even with 33% of the net-
work capacity [19]. The key idea behind this strategy,
called Selfish Mining, is for a pool to keep its dis-
covered blocks private, thereby intentionally forking
the chain. The honest nodes continue to mine on the
public chain, while the pool mines on its own private
branch. If the pool discovers more blocks, it devel-
ops a longer lead on the public chain, and continues
to keep these new blocks private. When the public
branch approaches the pool’s private branch in length,
the selfish miners reveal blocks from their private
chain to the public. This kind of -unlikely- attacks
concern Bitcoin, while in a private block-chain as in
Section 6 it is possible to limit this issue by setting a
constraint on the number of blocks which may be cre-
ated by the same miner within a given window. This
enforces mining diversity directly in the configuration
parameters of the block-chain. In general, the gen-
eral premise behind the block-chain technology is that
only a limited number of nodes in the network can be
malicious.

Anonymity of Bitcoin transactions is questioned in
several works, for example in [8, 28, 42]. Since the
block-chain is public, this study investigates the pos-
sibility to associate Bitcoin addresses with external
identifying-information (through a passive analysis).
Different addresses can also be clustered together
in a single wallet or user [3]: for instance, change
addresses with input addresses. However, these threats
are strongly mitigated in an e-voting application, since
there is only one transaction per voter (one vote), and
new keys can be generated before a new election.
This holds for both the Bitcoin block-chain and private
ones.

End-to-End Voting with Non-Permissioned and Permissioned Ledgers 111

6 MultiChain

The advantage represented by voting with Bitcoin is
that the infrastructure is already quite mature and
tested in the large: currently there are more than 22
million wallet-users world-wide.

However, due to the considerable and well-known
price fluctuations of bitcoin, the current and future
cost of this crypto-currency (it is considered a “defla-
tionary currency”), and the fees requested by miners
to quickly validate transactions, using the Bitcoin
block-chain can be expensive. In addition, the imple-
mentation presented in [9] was not able to satisfy two
important properties, as uncoercibility and receipt-
freeness and data confidentiality and neutrality. For
these reasons, we propose a second implementation
in order to overcome such limitations, and natively
present a solution by using a different block-chain
platform.

MultiChain21 [23] is a platform for the creation and
deployment of private block-chains. Its original and
main goal is to simplify the deployment of block-chain
technology in the institutional financial sector, by pro-
viding more privacy and control. Like Bitcoin Core,22

from which it derives, MultiChain supports different
operating systems as Windows, Linux and Mac. In
addition, it provides a simple API and command-line
interface.

MultiChain addresses the issues related to mining,
privacy and openness via an integrated management of
user permissions. The motivations are due to the fol-
lowing three aspects: first, i) to ensure that the block-
chain activity is only visible to chosen participants,
then ii) to introduce controls over which transactions
are permitted, and finally iii) to avoid proof of work in
the mining phase, still providing security and lowering
associated costs.

Beyond controlling access to tokens, MultiChain
enables any message to be signed by a user to prove
that they own the private key corresponding to a partic-
ular address. MultiChain uses this property to restrict
block-chain access to a list of permitted users. The
“handshaking” process that occurs when two block-
chain nodes connect is described by four steps:

– Each node presents its identity as a public address
on the permitted list.

21MultiChain: https://www.multichain.com.
22Bitcoin Core: https://bitcoin.org/en/bitcoin-core/.

– Each node verifies that the other’s address is on
its own version of the permitted list.

– Each node sends a challenge message to the other
party.

– Each node sends back a signature of the chal-
lenge message, proving their ownership of the
private key corresponding to the public address
they presented.

If a MultiChain node is not satisfied with the results
obtained during the previous steps, it aborts the peer-
to-peer connection.

The connection of permissions to public addresses
can be extended to many other operations on the net-
work. An application, for example, consists in the
right to send and/or receive transactions that can be
restricted to a given list of addresses. Since trans-
actions can have multiple senders and receivers, a
transaction is only allowed if all of its senders and
recipients are permitted on that list. Moreover, by
adding a signature field to the coin-base transac-
tion included by miners, also the MultiChain mining
process can be similarly restricted.

Privileges can be granted and revoked by using net-
work transactions containing special metadata. The
miner of the first (i.e., “genesis”) block automati-
cally receives all the possible privileges, including the
administrator rights to manage the privileges of other
users of the block-chain: in practice, it becomes the
Admin of the current block-chain. This Admin grants
privileges by using transactions whose outputs contain
users’ addresses that receives such privileges, together
with metadata denoting the granted privileges. The
administrator can also grant the privilege of becom-
ing Admin to other nodes: this avoids centralisation
in the management of privileges. When changing the
administration and mining privileges of other users, a
minimum proportion of the existing Adminsmust vote
to approve a change: an election needs to supports
changes. These votes are registered by each Admin
in a separate transaction, and the requested change is
applied only once sufficient consensus is achieved.

In MultiChain, there are eight types of global per-
missions that can be granted on a per-address basis
(addresses can either be public key hashes, or script
hashes):

– connect: to connect to other nodes and see the
block-chain contents.

– send: to send funds, i.e., inputs of transactions.

https://www.multichain.com
https://bitcoin.org/en/bitcoin-core/

112 S. Bistarelli et al.

– receive: to receive funds, i.e., outputs of transac-
tions.

– issue: to issue assets, i.e., inputs of transactions
which create new native assets.

– create: to create streams, i.e., inputs of transac-
tions which create new streams.

– mine: to mine blocks, i.e., to sign the metadata of
coinbase transactions.

– activate: to change connect, send and receive per-
missions for other users, i.e., sign transactions
which change those permissions.

– admin: to change all permissions for other users,
including issue, mine, activate and admin.

In general, permissions can be made temporary by
limiting them in terms of a specific range of block
numbers: in this way, they become available only to
transactions which appear in this interval of blocks.
The Admin can grant permissions to other addresses,
including admin and activate permissions.

By restricting mining to a set of specific enti-
ties, MultiChain resolves the issue derived by pri-
vate block-chains, in which only one participant can
monopolise the process of mining. The proposed solu-
tion consists in constraining the number of blocks that
can be created by the same miner, within a given
interval in the block-chain. MultiChain implements
this method by using a parameter called mining diver-
sity, which takes value in the interval [0..1]. Thus, the
validity of a block can be checked as described by the
following steps:

– Apply all the permissions changes defined by
transactions, following the order in a block.

– Count the number of permitted miners who are
defined after applying those changes.

– Multiply miners by mining diversity, rounding the
result up in order to get a spacing value.

– If the miner of the current block mined one of the
previous spacing − 1 blocks, the block results as
invalid.

This algorithm enforces a round-robin schedule, in
which permitted miners create blocks in rotation. The
mining diversity parameter also defines the propor-
tion of permitted miners who would need to collude in
order to undermine the network. A value of 1 ensures
that every permitted miner is included in the rota-
tion; a value of 0 represents no restriction at all. In
general, higher values are safer, but a value too close

to 1 can cause the block-chain to freeze up if some
miners become inactive for some reason: therefore, a
reasonable compromise suggests this parameter to be
assigned to 0.75.23

Concerning security, the literature on MultiChain
is clearly not as well developed as the one on Bit-
coin (see Section 5). However, a major threat may
consist in the presence of a (possibly) limited number
of super-entities, i.e., the Admins, which also assign
mining rights to other nodes: in the extreme case of a
single Admin, by compromising its security the reli-
ability of the overall network is disabled. Bitcoin can
rely on a large number of miners with a global com-
putational power of 40 million TH/s: achieving a 51%
attack is very unlikely. Moreover, all these miners
invested money in computational resources, and they
are not interested in undermining the trust in Bitcoin.
On the other hand, Admins in MultiChain are just
“chosen” entities, hence the selection process needs
to be carefully surveyed and it has to involve as more
parties as possible, in order to increase the resilience
of the network also with respect to DDoS attacks (see
Section 5).

6.1 Implementation Details

In this section we describe the implementation of
the voting process by using our implementation of a
MultiChain block-chain.

In Fig. 11 we show the general architecture of the
application,24 which we simplify by only having one
Admin. Clearly more Admins can be “created” by the
first one, in order not to have a single administration
point with full rights, and grant a fair and decentralised
election process. To access MultiChain API in Fig. 11,
the multichain-cli command-line tool or any other
JSON-RPC25 client needs to be used; MultiChain is
compatible with any API library developed for Bitcoin
Core. The proposed Evote application takes advantage
of such an API.

The Admin node is in charge of setting the roles
of the other participating nodes with respect of the
e-voting block-chain. On this node, the following
commands are executed:

23https://www.multichain.com/download/MultiChain–White-Pa
per.eps.
24http://evote.dmi.unipg.it.
25JSON-RPC: http://www.jsonrpc.org.

https://www.multichain.com/download/MultiChain-White-Paper.eps
https://www.multichain.com/download/MultiChain-White-Paper.eps
http://evote.dmi.unipg.it
http://www.jsonrpc.org

End-to-End Voting with Non-Permissioned and Permissioned Ledgers 113

Fig. 11 The architecture of the MultiChain-based voting application

– # multichain-util create evote;
– # multichaind evote -daemon;
– # multichain-util create aids;
– # multichaind aids -daemon.

These commands are used to create and initialise
(by creating their respective genesis block) two dif-
ferent block-chains: one to manage the voting process
(i.e., evote), and the other to manage the Anony-
mousID of the users entitled to vote (i.e., aids).

Differently, in Section 3, we exploit the features
of MultiChain to implement the authentication phase
with a secondary block-chain, instead of Anonymous
Kerberos or Blind Signature. Such a choice leads to a
more compact implementation, avoiding to call addi-
tional external functionalities. To accomplish it, from
Admin node we create a new stream. Streams provide
a natural abstraction for block-chain use cases which
focus on general data retrieval, time-stamping and
archiving, rather than the transfer of assets between
participants. Streams can be used to implement three
different types of databases on a chain: i) a key-value
database or document store, in the style of NoSQL, ii)
a time series database, which focuses on the ordering
of entries, and iii) an identity-driven database where
entries are classified according to their author.

This new stream stores the AnonymousID related to
users entitled to vote and a bit (true or false) of infor-
mation showing whether the voting token has been
already delivered to her or not: command # create
stream aidList false is used for this, where “false”
means that the stream can be managed only by its
creator (i.e., Admin) or one of its delegates. A user
presents its (real) id to an Authorisation Service (an
AS, as it happens with Anonymous Kerberos), which
checks if the user is entitled to vote or not; in case
she is, with # publish aidList aid 0, the AS adds the
AnonymousID aid to aidList, that is a voter with that
AnonymousID is entitled to vote, but her token still
needs to be delivered. In practice, this second block-
chain is used to store the voting tokens added by an
AS.

Once the corresponding aid is present in aidList (to
check, command # liststreamkeyitems stream aid can
be used), then a voter can receive the token to vote.
For example, N1 in Fig. 11 (i.e., a TDS entity) is cho-
sen by Admin to release tokens to voters; this can be
accomplished by Admin by using commands:

– # issue votes number of voters (which creates all
the tokens and terminated the pre-voting phase),
and

114 S. Bistarelli et al.

– # grant N1 send (which grants N1 the right to
transfer tokens to voters).

In the pre-voting phase, N1 uses the command
sendwithdata ’{“votes”:1}’ voter asset wallet-
address with the purpose to distribute a token
to the wallet address of a voter. Similarly, dur-
ing the voting-phase, each voter can use the
command # sendwithdata ’{“votes”:1}’ can-
didate asset wallet address to vote the chosen
candidate.

In the post-voting phase, in order to grant read
access to a given node, from Admin it is necessary to
use the command # grant node receive. Then, node can
read the votes by using command # listassets votes. Of
course this right can be granted and revoked by Admin
at anytime.

It is worth to notice that the use of MultiChain does
not lead to variable costs in supporting an election, as
Bitcoin does instead. By developing an ad-hoc solu-
tion, only fixed-costs to set up machines need to be
sustained (see Section 4), since tokens are inexpen-
sive and fees are not considered. This choice could be
preferred in case of general elections, where Multi-
Chain Admins/miners may be represented by a mix of
political parties, governmental and non-governmental
organisations. However, less sensitive elections with a
few hundred voters may take advantage of the already
established infrastructure offered by Bitcoin.

7 Properties of E-Voting Systems

In the following we report some classical properties
of e-voting systems [20, 36, 44], and we comment
about to what extent they can be satisfied or not by the
introduced E2E voting-systems.

Verifiability and Auditability: It is possible to ver-
ify that all the votes have been correctly accounted
for in the final tally, and there are reliable and
demonstrably authentic election records. Transac-
tions in the block-chain implement such a public
election record, which is public (Bitcoin implemen-
tation), or a transaction id can be received as receipt
proving its inclusion (MultiChain implementation).

Uniqueness: No voter is able to vote more than
once. Double-voting is prevented by the fact that
double-spending is not possible with the block-
chain technology [37, 38].

Integrity: Votes should not be able to be modi-
fied, forged, or deleted without detection. When a
transaction is in a confirmed block, to modify that
block is computationally hard by design [37, 38],
since it is required to also modify all the successive
blocks.

Vote Anonymity: Neither election authorities nor
anyone should be able to determine how any indi-
vidual voted. Public-keys of voters cannot be asso-
ciated with their identity because the Token Distri-
bution Service (TDS) is separate from the Authori-
sation Service (AS), both in Sections 3 and 6, for
instance by using a Multiple Kerberos service (see
Section 3) or a different channel of the block-chain
(see Section 6).

Counting and Recounting: Voting system must
provide easy functions for counting and recounting,
in case there of any question about the final voting
result. Each valid transaction is permanently stored
in the block-chain, where it is possible to repeat the
counting phase when needed. Any node (Bitcoin),
or authorised ones (MultiChain) can repeat this
phase as needed. If we consider MultiChain, in
order to secure counting and possible recounting,
the rights on mining operations can be revoked by
Admins at the end of elections, with the purpose
to prevent block rewritings. In case of Bitcoin,
the hash of the last block after terminating the
elections represents an anti-tampering evidence of
votes.

Eligibility and Authentication: Only authorised
voters are able to vote; this is accomplished by the
pre-voting phase (see Sections 3 and 6).

The last four properties are more influenced by the
specific implementation, either Bitcoin or MultiChain.

Uncoercibility and Receipt-Freeness Voters should
not be able to prove how they voted. With Bitcoin a
voter can prove that she is the source of a transac-
tion registered in the block-chain. Therefore, we can
think of using this e-voting system in case the risk of
coercibility is low. To prevent this, it is possible to
adopt permissioned block-chains [2], where the right
to read the block-chain can be granted only to some
users. To mitigate this problem, we decided to use
MultiChain. In such an implementation, each voter
receives a receipt when her vote/transaction is cor-
rectly registered in the block-chain, in order to still

End-to-End Voting with Non-Permissioned and Permissioned Ledgers 115

maintain the verifiability property. Only some offi-
cial entities can be instead allowed to read the whole
block-chain with the purpose to count votes. Such
entities, for instance nodes managed by each political
party, can access only at the end of the election, while
before the access is denied (by Admins). Note that
smart contracts can help to enforce receipt-freeness
in non-permissioned block-chains (e.g., in Ethereum):
a voter can use a voting contract acknowledging that
it acquired the vote (still satisfying the verifiability
property); then this vote will be later written on the
block-chain by the contract itself.

Data Confidentiality and Neutrality Votes must be
protected from external reading during the voting
process. Once a vote has been confirmed in a non-
permissioned block-chain, it is not confidential any-
more, and can influence successive voters, who can
freely read the block-chain. Therefore, this property
is not enforced in the Bitcoin block-chain implemen-
tation (Section 4), but it is enforced by using a per-
missioned block-chain as in the MultiChain platform
(Section 6), when the access to read the block-chain is
granted to some given nodes at the end of the election,
for counting purposes.

Accuracy Election systems should record the votes
correctly, with an extremely small error-tolerance.
The protocol reliability resistance resides in the
presence of a (large) peer-to-peer network, in dis-
tributed consensus, and in cryptographic functions.
If a transactions is altered by errors, it will not be
mined in the block-chain or counted for the fina
l results.

The last property we discuss is Reliability: Elec-
tions systems should work robustly, without loss of any
votes, even in the face of numerous failures, including
voting machines and total loss of network communi-
cation. Clearly, reliability depends on many factors
and it is not easy to be measured (e.g., with a simula-
tion). However, Bitcoin already proves to be a reliable
and largely used infrastructure. Indeed, it is required
to use transactions with a high fee in order to not
loose votes; nevertheless, a voter can check if her votes
has been included in the block-chain. Clearly, the size
of the peer-to-peer network and the number of min-
ers mitigate such problems. On the other end, using
MultiChain requires to set up a new as large as possi-
ble peer-to-peer network from scratch, in order to be

resistant to DDoS attacks to miners, or manipulate the
consensus (see Section 5).

8 Related Work

Nowadays, the most spread voting schemes consists in
paper-based elections. However, paper-based systems
are not completely secure and they may suffer from
frauds, even in today’s democratic countries,26 where
controversies are very frequent.27 Estonia became the
first nation to hold general elections over the Inter-
net with a pilot project for the municipal elections in
2005. The e-voting system withstood the test of real-
ity and was declared a success by Estonian election
officials [1]. Despite this, e-voting systems have not
experienced a breakthrough in Europe, since most of
the diffidence resides in the general level of trust in
government, but also the level of trust in the corpo-
rations that supply the machines use in the electoral
process [30].

Some proposals have been already opened in the
direction outlined by this paper. The most notice-
able reference is the Bitcongress.org project,28 which
already offers a voting platform based on Bitcoin.
However, the software is offered as a broker between
the voter and Bitcoin. An evidence is the presence of
a “Smart Contract Block-chain”: quoting the project
white-paper, “A vote token is sent by a legislation
creation tool with combined cryptocurrency wallet.
The vote is sent to a smart contract based election
holding yay, nay and candidate addresses”. On the
contrary, in our implementation a vote is directly sent
to the address of a candidate, without any interme-
diary. Moreover, still quoting the white-paper, “The
election logs then changes, the vote count is recorded
and displayed within Axiomity (a decentralised appli-
cation) using Bitcongress onto the Smart Contract
Block-chain”. In our solution the counting is directly
performed in the block-chain. Other commercial sys-
tems are Follow my vote29 and TIVI.30

Envisioning the use of block-chains for voting pur-
poses has been already proposed in [39, 40, 46] for

26http://news.bbc.co.uk/2/hi/uk news/4410743.stm.
27http://news.bbc.co.uk/2/hi/europe/4904294.stm.
28http://www.bitcongress.org.
29FollowMyVote.com: https://followmyvote.com.
30TIVI: https://tivi.io.

http://news.bbc.co.uk/2/hi/uk_news/4410743.stm
http://news.bbc.co.uk/2/hi/europe/4904294.stm
http://www.bitcongress.org
https://followmyvote.com
https://tivi.io

116 S. Bistarelli et al.

example. In the following we present related scientific
works. All of them propose solutions without the help
of coloured coins or permissioned ledgers, which have
been use to respectively simplify the counting process
and satisfy further properties, as shown in Section 7:
properties as data confidentiality and uncoercibility
seem not be be addressed in all such proposals; with
MultiChain, or in general permissioned ledgers, it is
possible instead. The proposal in [6] simply consists
in an electronic voting system based on the Bitcoin
block-chain technology.

In [26] the author propose an e-voting scheme,
which is then implemented in the Ethereum block-
chain. The implementation and related performance
measurements are given in the paper along with the
challenges presented by the block-chain platform to
develop a complex application like e-voting. In gen-
eral, special attention must be paid to the debugging
and verification steps on (Ethereum) smart-contracts.

Even the execution of the protocol in [32] is
enforced using the consensus mechanism that also
secures the Ethereum block-chain. However, by using
a permissionless block-chain, public verifiability does
not provide any coercion resistance.

9 Conclusion

We have presented two E2E verifiable e-voting sys-
tems based on i) Bitcoin and ii) MultiChain. The
underlying idea is the same for both of them: a transac-
tion between a voter and a candidate represents a vote,
which is broadcast to the peer-to-peer network and
verified by miners. We describe a solution that is fully
compliant with the current Bitcoin network. More-
over, we also suggest some possible modifications that
can improve the performance in counting votes, by
using OAP and a permissioned block-chain. We have
an implementation of a voting system using OAP and
a public Web-interface to it. The second implemen-
tation is based on MultiChain, and has the advantage
of being lighter in terms of the consensus process,
being independent from Bitcoin fees and costs, being
permissioned and thus satisfying more properties in
Section 7. However, an implementation in Bitcoin can
immediately exploit the already existing network, and
its largely tested reliability and security.

Depending on the requested features on the elec-
tion to be performed, one solution can be preferred

instead of the other. For instance, for a quick election
with a few tens of voters and no concern about neu-
trality and uncoercibility, voting with Bitcoin can be
the best choice. On the contrary, for large (political?)
elections, it would better to set up a large peer-to-peer
network in MultiChain; in such a way, voting costs are
reduced (only due to the hardware) and more required
properties are satisfied.

In [11] and [12] we study the Bitcoin block-chain
from a different perspective, that is by visualising
flows of money with the help of a forensics appli-
cation, whose architecture is described in [10]. The
works in [12] and [10] describe the tool we developed,
while the work in [11] presents a specific case-study
to show and to study all the ransoms paid to decrypt
data due to WannaCry ransomware. Finally, in [33]
we present an analysis of Bitcoin standard and non-
standard transactions (mined by only some miners in
the network).

In the future we would like to formally prove
how the presented systems satisfy the properties in
Section 7. To prove them we need a formal language
and a verifier built on top of it. At the moment, no
available and general framework to prove properties
of distributed ledgers exists. Some first proposals have
been introduced for the Bitcoin platform [5], thus we
plan to extend such a framework to check also Multi-
Chain behaviour. However, some of the properties are
more quantitative than qualitative (e.g., reliability, and
accuracy), and a formal verifier cannot easily help. In
this case, a simulation with a scaling number of nodes
will be used to measure this property.

References

1. Alvarez, R.M., Hall, T.E., Trechsel, A.H.: Internet voting in
comparative perspective: The case of estonia. PS: Polit. Sci.
Polit. 42(3), 497–505 (2009)

2. Androulaki, E., Cachin, C., De Caro, A., Sorniotti, A.,
Vukolic, M.: Permissioned blockchains and hyperledger
fabric. ERCIM News, 2017(110) (2017)

3. Androulaki, E., Karame, G., Roeschlin, M., Scherer, T.,
Capkun, S.: Evaluating user privacy in bitcoin. In: Financial
Cryptography and Data Security - 17th International Con-
ference, FC, Volume 7859 of Lecture Notes in Computer
Science, pp. 34–51. Springer (2013)

4. Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital
Crypto-Currencies. O’Reilly Media, Inc. (2014)

5. Atzei, N., Bartoletti, M., Zunino, R.: A formal model of
bitcoin transactions. In: To Appear in Financial Cryptogra-
phy and Data Security - 22nd International Conference, FC,
LNCS. Springer (2018)

End-to-End Voting with Non-Permissioned and Permissioned Ledgers 117

6. Ayed, A.B.: A conceptual secure blockchain-based elec-
tronic voting system. International Journal of Network
Security & Its Applications, 93 (2017)

7. Back, A.: Hashcash - a denial of service counter-measure.
http://www.hashcash.org/papers/hashcash.pdf. [Online;
Accessed 28 Jan 2018] (2002)

8. Biryukov, A., Khovratovich, D., Pustogarov, I.:
Deanonymisation of clients in bitcoin P2P network. In:
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pp. 15–29. ACM
(2014)

9. Bistarelli, S., Mantilacci, M., Santancini, P., Santini, F.: An
end-to-end voting-system based on bitcoin. In: Proceedings
of the Symposium on Applied Computing, SAC, pp. 1836–
1841. ACM (2017)

10. Bistarelli, S., Mercanti, I., Santini, F.: A suite of tools for
the forensic analysis of bitcoin transactions: Preliminary
report. In: Euro-Par 2018: Parallel Processing Workshops -
Euro-Par 2018, Revised Selected Papers, Volume 11339 of
Lecture Notes in Computer Science, pp. 329–341. Springer
(2018)

11. Bistarelli, S., Parroccini, M., Santini, F.: Visualizing bit-
coin flows of ransomware Wannacry one week later. In:
Proceedings of the Second Italian Conference on Cyber
Security, Volume 2058 of CEUR Workshop Proceedings.
CEUR-WS.org (2018)

12. Bistarelli, S., Santini, F.: Go with the -bitcoin- flow, with
visual analytics. In: Proceedings of the 12th International
Conference on Availability, Reliability and Security ARES,
pp. 38:1–38:6. ACM (2017)

13. Borras, J., Webber, D.: Election Markup Language
(EML) Specification Version 7.0. http://docs.oasis-open.
org/election/eml/v7.0/cs01/eml-v7.0-cs01.pdf. [OASIS,
online; Accessed 28 Jan 2016] (2011)

14. Chaum, D.: Blind signatures for untraceable payments.
In: Advances in Cryptology: Proceedings of CRYPTO
’82, Santa Barbara, California, USA, August 23-25, 1982,
pp. 199–203. Plenum Press, New York (1982)

15. Chaum, D.: Secret-ballot receipts: True voter-verifiable
elections. IEEE Secur. Privacy 2(1), 38–47 (2004)

16. Chirgwen, R.: Android Bug Batters Bitcoin Wallets.
http://www.theregister.co.uk/2013/08/12/android bug batt
ers bitcoin wallets/. [The Register, online; Accessed 28 Jan
2018] (2013)

17. Clinch, M.: Bitcoin Hacked: Price Stumbles After Buy-
ing Frenzy. http://www.cnbc.com/id/100615508. [CNBC,
online; Accessed 28 Jan 2018] (2014)

18. Elwell, C.K., Murphy, M.M., Seitzinger, M.V.: Bitcoin:
Questions, Answers, and Analysis of Legal Issues. https://
fas.org/sgp/crs/misc/R43339.pdf. Congressional Research
Service: prepared for members and committees of
Congress. [Online; Accessed 28 Jan 2018] (2015)

19. Eyal, I., Sirer, E.: Majority is not Enough Bitcoin Mining is
Vulnerable. CoRR, arXiv:1311.0243 (2013)

20. Fouard, L., Duclos, M., Lafourcade, P.: Survey on electro-
nic voting schemes. http://citeseerx.ist.psu.edu/viewdoc/down
load?doi=10.1.1.295.7959&rep=rep1&type=pdf. [Verimag
technical report, online; Accessed 28 Jan 2018] (2007)

21. Gilbert, H., Handschuh, H.: Security analysis of sha-256
and sisters. In: International Workshop on Selected Areas
in Cryptography, pp. 175–193. Springer (2003)

22. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge
complexity of interactive proof systems. SIAM J. Comput.
18(1), 186–208 (1989)

23. Greenspan, G.: Multichain private blockchain—white
paper. http://www. multichain. com/download/MultiChain-
White-Paper.pdf (2015)

24. Gritzalis, D.A.: Secure Electronic Voting, vol. 7. Springer
Science & Business Media (2012)

25. Grubb, B.: Australian Bitcoin Bank Hacked: $ 1 Million +
Stolen. http://www.brisbanetimes.com.au/it-pro/security-it
/australian-bitcoin-bank-hacked-1m-stolen-20131108-hv2i
v.html. [Brisbane Times, online; Accessed 28 Jan 2018]
(2013)

26. Hardwick, F., Akram, R.N., Markantonakis, K.: E-Voting
with Blockchain: An E-Voting Protocol with Decentralisa-
tion and Voter Privacy. CoRR, arXiv:1805.10258 (2018)

27. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve
digital signature algorithm (ecdsa). Int. J. Inf. Secur. 1(1),
36–63 (2001)

28. Juhász, P., Stéger, J., Kondor, D., Vattay, G.: A Bayesian
approach to identify bitcoin users. PloS One 13(12),
e0207000 (2018)

29. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in
electronic voting protocols. In: European Symposium on
Research in Computer Security ESORICS, Volume 6345 of
LNCS, pp. 389–404. Springer (2010)

30. Loeber, L., Dutch Electoral Council: E-voting in the
Netherlands; from general acceptance to general doubt in
two years. Electron Voting 131, 21–30 (2008)

31. Lu, L., Han, J., Liu, Y., Hu, L., Huai, J., Ni, L.M., Ma, J.:
Pseudo trust: Zero-knowledge authentication in anonymous
p2ps. IEEE Trans. Parallel Distrib. Syst. 19(10), 1325–1337
(2008)

32. McCorry, P., Shahandashti, S.F., Hao, F.: A smart con-
tract for boardroom voting with maximum voter privacy.
In: Financial Cryptography and Data Security, Volume
10322 of Lecture Notes in Computer Science, pp. 357–375.
Springer (2017)

33. Mercanti, I., Bistarelli, S., Santini, F.: An analysis of non-
standard bitcoin transactions. In: Crypto Valley Conference
on Blockchain Technology, CVCBT, pp. 93–96. IEEE
(2018)

34. Merkle, R.C.: A digital signature based on a conventional
encryption function. In: Advances in Cryptology - CRYPTO,
Volume 293 of LNCS, pp. 369–378. Springer (1987)

35. Moon, M.: Bitcoin Exchange Loses $5 Million in
Security Breach. http://www.engadget.com/2015/01/06/
bitstamp-bitcoin-exchange-hack/. [Engadget, online;
Accessed 28 Jan 2018] (2015)

36. Mote, C.D.: Report of the national workshop on internet
voting: Issues and research agenda. In: Proceedings of the
2000 Annual National Conference on Digital Government
Research, pp. 1–59. Digital Government Society of North
America (2000)

37. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash
System. http://www.hashcash.org/papers/hashcash.pdf.
[Online; Accessed 28 Jan 2018] (2008)

38. Okupski, K.: Bitcoin protocol specification. http://www.
enetium.com/resources/Bitcoin.pdf. [Accessed 28 Jan
2018] (2014)

http://www.hashcash.org/papers/hashcash.pdf
http://docs.oasis-open.org/election/eml/v7.0/cs01/eml-v7.0-cs01.pdf
http://docs.oasis-open.org/election/eml/v7.0/cs01/eml-v7.0-cs01.pdf
http://www.theregister.co.uk/2013/08/12/android_bug_batters_bitcoin_wallets/
http://www.theregister.co.uk/2013/08/12/android_bug_batters_bitcoin_wallets/
http://www.cnbc.com/id/100615508
https://fas.org/sgp/crs/misc/R43339.pdf
https://fas.org/sgp/crs/misc/R43339.pdf
http://arXiv.org/abs/1311.0243
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.7959&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.7959&rep=rep1&type=pdf
http://www. multichain. com/download/MultiChain-White-Paper.pdf
http://www. multichain. com/download/MultiChain-White-Paper.pdf
http://www.brisbanetimes.com.au/it-pro/security-it/australian-bitcoin-bank-hacked-1m-stolen-20131108-hv2iv.html
http://www.brisbanetimes.com.au/it-pro/security-it/australian-bitcoin-bank-hacked-1m-stolen-20131108-hv2iv.html
http://www.brisbanetimes.com.au/it-pro/security-it/australian-bitcoin-bank-hacked-1m-stolen-20131108-hv2iv.html
http://arXiv.org/abs/1805.10258
http://www.engadget.com/2015/01/06/bitstamp-bitcoin-exchange-hack/
http://www.engadget.com/2015/01/06/bitstamp-bitcoin-exchange-hack/
http://www.hashcash.org/papers/hashcash.pdf
http://www.enetium.com/resources/Bitcoin.pdf
http://www.enetium.com/resources/Bitcoin.pdf

118 S. Bistarelli et al.

39. Omohundro, S.: Cryptocurrencies, smart contracts, and
artificial intelligence. AI Matters 1(2), 19–21 (2014)

40. Pilkington, M.: 11 Blockchain Technology: Principles and
Applications. Research Handbook on Digital Transforma-
tions, 225 (2016)

41. Rather, E., Colburn, D.R., Moore, C.H.: The evolution of
forth. In: ACMSigplan Notices, vol. 28, pp. 177–199. ACM
(1993)

42. Reid, F., Harrigan, M.: An analysis of anonymity in the bit-
coin system. In: PASSAT/SocialCom 2011, Privacy, Secu-
rity, Risk and Trust, pp. 1318–1326. IEEE (2011)

43. Sampigethaya, K., Poovendran, R.: A framework and tax-
onomy for comparison of electronic voting schemes. Com-
put. Secur. 25(2), 137–153 (2006)

44. Schneider, A., Meter, C., Hagemeister, P.: Survey on
Remote Electronic Voting. arXiv:1702.02798 (2017)

45. Steiner, J.G., Neuman, B., Schiller, J.I.: Kerberos: An
authentication service for open network systems. In:

Proceedings of the USENIX Winter Conference, pp. 191–
202. USENIX Association (1988)

46. Swan, M.: Blockchain: Blueprint for a New Economy.
O’Reilly Media, Inc. (2015)

47. Tapscott, D., Tapscott, A.: Blockchain Revolution: How the
Technology Behind Bitcoin is Changing Money, Business,
and the World. Penguin (2016)

48. Weisenthal, J.: Bitcoin Service Instawallet: We’ve Been
Hacked and are Suspending Service Indefinitely. http://www.
businessinsider.com/instawallet-suspended-2013-4. [Bushi-
ness Insider, online; Accessed 18 Jan 2018] (2013)

49. Zhu, L., Leach, P., Hartman, S.: Anonymity Support for
Kerberos. RFC 6112 (Proposed Standard) (2011)

Publisher’s Note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and institu-
tional affiliations.

http://arXiv.org/abs/1702.02798
http://www.businessinsider.com/instawallet-suspended-2013-4
http://www.businessinsider.com/instawallet-suspended-2013-4

	End-to-End Voting with Non-Permissioned and Permissioned Ledgers
	Abstract
	Introduction and Motivations
	Bitcoin
	Transactions
	Block-Chain

	Open Assets Protocol

	Voting with the Bitcoin Block-Chain
	Pre-Voting Phase
	Anonymous Kerberos
	Voting Phase
	Post-Voting Phase

	Implementation and Costs in the Bitcoin Block-Chain
	Costs

	Known Threats and Voting
	MultiChain
	Implementation Details

	Properties of E-Voting Systems
	Uncoercibility and Receipt-Freeness
	Data Confidentiality and Neutrality
	Accuracy

	Related Work
	Conclusion
	References
	Publisher's Note

