
J Grid Computing
https://doi.org/10.1007/s10723-019-09476-0

Performability Evaluation and Optimization of Workflow
Applications in Cloud Environments

Danilo Oliveira ·André Brinkmann ·
Nelson Rosa · Paulo Maciel

Received: 13 April 2018 / Accepted: 6 January 2019
© Springer Nature B.V. 2019

Abstract Given the characteristics of dynamic pro-
visioning and illusion of unlimited resources, clouds
are becoming a popular alternative for running sci-
entific workflows. In a cloud system for process-
ing workflow applications, the system’s performance
is heavily influenced by two factors: the schedul-
ing strategy and failure of components. Failures in a
cloud system can simultaneously affect several users
and depreciate the number of available computing
resources. A bad scheduling strategy can increase
the expected makespan and the idle time of physical
machines. In this paper, we propose an optimization
method for the scheduling of scientific workflows on
cloud systems. The method comprises the use of a
meta-heuristic algorithm coupled to a performability
model that provides the fitnesses of explored solu-
tions. For being able to represent the combined effect
of scheduling and component failures, we adopted dis-
crete event simulation for the performability model.

D. Oliveira (�) · N. Rosa · P. Maciel
Federal University of Pernambuco, Informatics Center,
Recife, Brazil
e-mail: dmo4@cin.ufpe.br

Nelson Rosa
e-mail: nsr@cin.ufpe.br

Paulo Maciel
e-mail: prmm@cin.ufpe.br

A. Brinkmann
Data Processing Center (ZDV), Johannes Gutenber
University, Mainz, Germany
e-mail: brinkman@uni-mainz.de

Experimental results show the effectiveness of the
hybrid simulation-optimization approach for optimiz-
ing the number of allocated virtual machines and the
scheduling of tasks regarding performability.

Keywords Scientific workflows · Performability ·
Stochastic petri nets · Optimization

1 Introduction

In the past decades, computers become an invaluable
asset for scientists in many fields of human knowl-
edge. Simulation models are useful when experiments
in the real world are too difficult or costly to execute,
or when the phenomenon of interest is impossible to
reproduce (for instance, in studies about the origin of
the universe). Such models are often computationally
intensive and require an execution environment com-
posed of many processing units. Many computational
scientific applications can be expressed as workflows,
i.e., a set of subtasks with data and control-flow
dependencies between them. In such applications, the
scheduling of tasks in the processing units plays a
vital role in the system’s performance, but finding an
optimal schedule is an NP-Hard problem [8].

Nowadays, cloud computing has been attracting
attention as a platform for running scientific appli-
cations [25, 27, 55]. The pay-per-use model elim-
inates the need for upfront investment on a clus-
ter/supercomputer. Moreover, cloud users do not need

(2019) 17:749–770

/ Published online: 17 January 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-019-09476-0&domain=pdf
http://orcid.org/0000-0001-8059-634X
mailto:dmo4@cin.ufpe.br
mailto:nsr@cin.ufpe.br
mailto:prmm@cin.ufpe.br
mailto:brinkman@uni-mainz.de


D. Oliveira et al.

to worry about managing underlying hardware infras-
tructure. While this model makes things more conve-
nient for the user, this task becomes a severe issue
for cloud providers, who need to guarantee reliability
and performance levels specified by a Service Level
Agreement (SLA).

The complexity of cloud infrastructures (i.e., the
large number of hardware and software components
and their interdependence relationships) raises the
need for performance evaluation methods that con-
sider the failure of components. A failure in a sin-
gle physical server can bring down several virtual
machines of different users. Likewise, the unavailabil-
ity of the cloud manager (the head node of a cloud
infrastructure) can provoke the unavailability of the
whole system. A classic performance study (that disre-
gards reliability aspects) may not give accurate results
since failures of physical and virtual machines can
increase waiting times and decrease throughput [43].
To assess the performance degradation caused by fail-
ures in a cloud environment via measurement-based
evaluation is often prohibitive in practice. Even using
fault injectors to provoke failures on the system’s com-
ponents, the associated costs and time constraints for
such experiments are high, especially when testing
multiple configurations in a sensitivity analysis (i.e.,
a systematic study of the impact of system param-
eters on system’s performance/reliability [24]). For
that reason, state-space based models (e.g., Markov
chains [7], Stochastic Petri Nets (SPN) [38], Stochas-
tic Automata Networks [42]) are the most employed
technique for performability evaluation of cloud and
grid systems [19, 43, 45, 57]. Besides the occurrence
of failures, inefficient scheduling strategies can harm
the overall system performance by increasing the job
makespan and reducing the utilization of processing
units.

Evaluating the effects of both scheduling and hard-
ware/virtual machine failures on performability of
workflow applications in cloud environments is a chal-
lenging task for space-state based models due to the
high number of states to be considered. Moreover,
the exponential distribution may not be a good fit for
computation times in workflows. Given this intrin-
sic limitation of space-based models, many existing
research efforts towards the modeling of cloud appli-
cations employ discrete event simulators. CloudSim
[13] is the most widely adopted simulation frame-
work in the cloud computing literature. Thanks to

its adaptable architecture, many extensions were pro-
posed to address aspects not originally implemented
by CloudSim. Some of the extensions feature auto-
scaling [11], federated clouds [30], fault tolerance
mechanisms [1, 16, 65], and workflow applications
[10, 14, 35]. Nevertheless, covering multiple real-
world characteristics of workflow applications in the
same cohesive model is still a gap in the literature.
Such characteristics include non-determinism, multi-
tenancy, and the combined effect of hardware and
virtual machine failures.

In this work, we propose an optimization method
for the scheduling of scientific workflows running in a
cloud environment. The throughput of workflow jobs
is the problem’s objective function. Each request pro-
cessed by the cloud system is defined by a graph of
subtasks with precedence constraints between them.
A single job demands the provisioning of a certain
number of virtual machines for running the subtasks
in parallel. The model used to compute the objec-
tive function can measure the impact of inefficient
scheduling and failures of components on the system’s
throughput. Given the presence of stochastic com-
ponents on the proposed model, our method applies
discrete-event simulation for evaluating the objective
function. We developed a Stochastic Petri net genera-
tor algorithm for creating performance and reliability
models of cloud workflow applications. Our exper-
imental results demonstrate the effectiveness of the
hybrid Simulation/Optimization approach for optimiz-
ing the considered objective function. We also present
a sensitivity analysis study of the effects of hardware
and virtual machine failures on system throughput.

This work is structured as follows. Section 2 cov-
ers the theoretical background and Section 3 presents
a list of related works. Section 4 describes the pro-
posed optimization method and Section 5 presents the
performability model used for the objective function.
In Section 6, we show the evaluation results for the
proposed method. Finally, Section 7 makes some final
considerations and points further research directions.

2 Background

This section presents basic concepts about combi-
natorial optimization with simulation and workflow
scheduling, aiming to facilitate the understanding of
this work.

750



Performability Evaluation and Optimization of Workflow Applications in Cloud Environments

2.1 Simulation/Optimization Hybrid Heuristics

Combinatorial optimization problems (COP) arise in
many areas of human activity and computer science
as well. A single-objective COP can be described
regarding [6]:

– a set of variables X = {x1, x2, . . . , xn}, where xi

belongs to a domain Di ;
– a set of constraints c1, c2, . . . , cm;
– an objective function f : D1×D2× . . . Dn �→ IR.

The optimization procedure should give a solution
s from the space state S = D1 × D2 × . . . Dn that
either minimizes or maximizes the objective function
f (s), and satisfies all constraints.

The characteristics of the objective function and
constraints define the approach used to solve the prob-
lem. If the objective function and constraints have
linear relationships, the underlying problem can be
solved by the efficient Simplex algorithm [39]. How-
ever, since many essential COP problems are NP-
Hard, a conventional approach to solving them is
using approximate algorithms [4]. They can find good
enough - but not optimal - solutions from a potentially
large solution space. Metaheuristics are approximate
algorithms not tied to any particular problem/domain
and can be adapted for solving many different combi-
natorial problems [53].

COP problems with stochastic components in
either the objective function or constraints can adopt
simulation models to represent the random behavior.
Hybrid Simulation-Optimization (Sim-Opt) methods
deal with the issues involved in using simulation
models in conjunction with optimization algorithms.
Swisher et al. [51] define Sim-Opt methods as “a
structured approach to determine optimal settings for
input parameters (i.e., the best system design), where
optimality is measured by a (steady-state or tran-
sient) function of output variables associated with a
simulation model”.

A simulation-optimization problem can be viewed
as the selection of the best design among a (potentially
large) set of possible designs concerning some out-
put response variable is given by a simulator model.
A random distribution will define the response vari-
able for each element of this set. The optimization
procedure selects the design that corresponds to the
highest or lowest expected value of this distribution
by using a sample for each design. Swisher et al. [51]

provide a survey of different Sim-Opt approaches and
present guidelines to help the selection of the most
suited approach given the particular characteristics of
the problem (e.g., all designs have the same variance,
the variance is known/unknown, and so on).

Using simulation instead deterministic models
becomes possible to avoid simplifications needed
when using deterministic models. The expressiveness
of deterministic models, however, has a drawback:
the time to solve a simulation model can be signifi-
cantly prolonged. This fact is even more problematic
in simulations used in conjunction with meta-heuristic
algorithms that need to compute the objective func-
tion of a large number of solutions. One alternative is
to use a surrogate model [44], a simplification of a
more complex simulation model, that can be evaluated
more quickly. A typical approach is to use an Artifi-
cial Neural Network (ANN) as a surrogate model [21]
along with a simulation model to train the network.
The training phase is computationally intensive, but
once completed, it generates results very quickly.

2.2 Scheduling of Scientific Workflows on Cloud
Systems

A scientific workflow consists of a set of comput-
ing and IO intensive tasks with precedence constraints
between them. Scientific workflows can be repre-
sented by a directed acyclic graph (DAG). A DAGG is
defined by a tuple {T , E}, where T = {T1, T2, . . . , Tn}
is the set of tasks and E = {e1, e2, . . . , em} is the set
of precedence constraints. Each ei = (Ta, Tb) tuple
denotes that task Tb starts to execute after Ta finishes
and sent some input data to Tb. The node weights
are the computing times, and the edge weights are
the communication times, i.e., the time for sending
the results needed by a dependent task running on a
different processing node.

A scheduler should map tasks/jobs to a set of pro-
cessors according to some predefined goals such as
utilization of resources, makespan (the total length
of a schedule), throughput, meeting of deadlines, etc.
A particular scheduling of tasks for some DAG can
be defined by a mapping of ordered task lists to the
processing units. A scheduling algorithm can either
require as input the number of processing units or try
to find an optimal/near optimal number of process-
ing units in conjunction with the mapping of tasks.
The latter case is harder since it leads to an increased

751



D. Oliveira et al.

search space. Additionally, increasing the number of
processors can shorten the makespan of an individual
job, but it may increase the idle time of processors due
to the precedence constraints between tasks [48].

Since many practical scheduling problems are
either NP-Hard or NP-Complete, a lot of effort is nec-
essary to apply and adapt meta-heuristic algorithms
to schedule tasks in cloud computing environments.
The following list summarizes the major contributions
made by the literature concerning different aspects of
cloud workflow scheduling:

– Devising heuristics algorithms able to provide
near-optimal solutions under certain constraints
[32];

– Adapting nature inspired and evolutionary algo-
rithms for this problem, such as Genetic algorithm
[22, 60, 64], Honey bee colony [5, 31], ant colony
[15, 52], and Fish Swarm [61];

– Dealing with a heterogeneous system (processors
with different computing power) [41];

– Dealing with conflicting aspects of a multi-cost
objective function (e.g., energy versus makespan)
[37].

3 Related Work

3.1 Performability Modeling of Cloud and Grid
Environments

Performability is the study of systems performance
when subjected to the effect of failures on its sub-
components [36]. The performance of a system is said
to be degradable if failure events may affect it neg-
atively. For instance, a mesh network of routers can
tolerate a certain number of failures, but the over-
all performance will be affected as some routers may
be subject to overheads. Similarly, failures on worker
nodes in cloud and grid environments can diminish
the number of available processing resources, and
therefore increasing queueing times and decreasing
throughput of jobs.

Due to a large number of components of cloud and
grid environments, we can expect a significant fail-
ure rate even if the mean time to failure of individual
components is high. Thus, neglecting the impact of
failures in performance studies of such systems can
lead to misleading results. Space stated based models

(Stochastic Petri Nets and Markov Chains) is the most
adopted method for joint performance/availability
evaluation of clouds and grids systems. Dealing with
space state explosion is a recurrent problem handled
by every work in this category.

Ramakrishnan and Reed [46] propose a qualitative
framework for the performability evaluation of scien-
tific workflows running on grid systems. The frame-
work encompasses a Markov Reward Chain model [7]
and simulations calibrated with data from real grid
applications. Xia et al. [58] describe a queuing net-
work model for evaluating estimated service time and
request rejection probability of an Infrastructure-as-
a-Service cloud. This model represents features such
as request handling, job creation, job execution, job
rejection due to insufficient queue capacity, and failure
and repair events of physical machines configured in
hot/warm standby mode. Ever et al. [18] propose a set
of equations obtained from queuing theory for evaluat-
ing the performability of clouds with large numbers of
servers. Since the underlying space-state model does
not need to be generated, this model can represent a
large number of servers and simultaneous requests.

A strategy to avoid space state explosion is to adopt
small models rather than use a big monolithic one.
For combining the results of the submodels, iteration
methods can be used [34]. Ghosh [19] uses inter-
acting homogeneous time Markov chains to perform
end-to-end performability analysis of cloud services.
The proposed model is used to evaluate two essential
metrics: service availability and response time. Raei
et al. [45] developed Stochastic Reward Net models
for representing a public cloud and a cloudlet pro-
viding virtual machines for mobile applications. For
avoiding space state explosion when modeling both
performance and availability aspects of the consid-
ered system, the authors divided the public cloud and
cloudlet parts into two separated models and used the
fixed point iteration method to obtain a joint result.

The performability models cited in this subsec-
tion are based on Markov Chain [7, 46], Stochastic
Petri nets (with Markov chain generation) [19, 34,
45], and Queuing Theory [18, 58]. By contrast, our
work adopts a discrete simulation approach based on
Stochastic Petri nets components and automatic gener-
ation of models. The advantage of our model over the
works mentioned above is the ability to model DAGs
as job requests and the relationship between VM and
hardware failures. Incorporating these features into

752



Performability Evaluation and Optimization of Workflow Applications in Cloud Environments

space-state based models would lead to a space-state
explosion problem. Also, using the exponential distri-
bution for representing job times can introduce dis-
tortions when modeling the makespan of a stochastic
DAG (as we demonstrate in Section 6.2.2).

3.2 Simulation of Workflow Execution on Cloud
Environments

Simulation is a commonly used approach for evalu-
ating the performance of load-balancing algorithms,
allocation policies, and scheduling strategies in cloud
systems, considering dynamic workload patterns.
CloudSim [13] is the most adopted cloud simulation
software in the literature. The CloudSim simulator
allows the representation of data-center infrastruc-
tures, VM allocation policies, user level workloads,
and coordination between multiple cloud environ-
ments through a cloud broker service. After being
released as open source software, CloudSim was
extended in many different ways by the research com-
munity. Fault tolerance capabilities were introduced
in [65]. FederatedCloudSim [30] extended CloudSim
to represent SLA policies in federated clouds. Fail-
ureSim [16] introduced failure prediction of cloud
nodes based on ANNs. Performance and usage levels
(bandwidth, number of tasks running, the quantity of
available million of instructions per second per node)
are used as predictors for training the network. Alwa-
bel et al. proposed DesktopCloudSim [1], a CloudSim
extension with a layer of failure injection for the phys-
ical nodes. Like our work, DesktopCloudSim allows
the investigation of failure events on system through-
put.

CloudSim does not offer, by default, classes for
representing workflows modeled as DAGs. Given the
importance of this application category, some exten-
sions to CloudSim were proposed for representing
workflows. WorkflowSim [14] is a CloudSim exten-
sion that includes support for workflow representation
and management. It also provides task aggregation
capabilities and a fault generator at job/task level. It
can generate recoverable transient failures that can be
handled by task re-execution and permanent job fail-
ures that cannot be recovered. DynamicCloudSim [10]
is a CloudSim based simulator that includes work-
flow execution considering VM inhomogeneity and
failure of tasks at runtime. Malawskia et al. [35] devel-
oped a cloud workflow simulator for evaluating task

scheduling and resource provisioning algorithms for
optimizing the execution of workflow ensembles
under deadline constraints in IaaS clouds. Elastic-
CloudSim [11] is a CloudSim extension for evaluating
workflow applications which supports auto-scaling
capabilities and considers non-deterministic (stochas-
tic) workflows.

Our work differs fromWorkflowSim and Dynamic-
CloudSim by modeling hardware and virtual machine
failures instead of representing transient/permanent
failure on tasks. FailureSim is able to model hard-
ware failures, and DesktopCloudSim can represent
both hardware and VM failures. However, Desktop-
CloudSim and FailureSim do not target workflow
applications. We opted not to create another CloudSim
extension as the employed SPN based simulator
presents some advantages. The proposed SPN mod-
els can be used separately for obtaining other metrics
than performability (e.g., availability, reliability, and
expected makespan). Using this simulation environ-
ment also allows us to use existing SPN models in the
literature for representing reliability and performance
aspects of our system.

3.3 Cloud Workflow Optimization

The execution of workflow applications on clouds
brings the need of new modeling strategies, schedul-
ing algorithms, and optimization metrics. The reason
for this need is the particular aspects of cloud systems
when contrasted to traditional grid/cloud environ-
ments. Kliazovich et al. [29] demonstrated how exis-
tent workflow models fail to address the communica-
tion patterns typically found in cloud workflow appli-
cations. They proposed CA-DAG (Communication-
Aware DAG), a workflow model which represents
communication processes as vertices instead of edges.
Arabnejad and Barbosa [3] developed a Heteroge-
neous Budget Constrained Scheduling (HBCS) for
minimizing makespan and rental cost of cloud work-
flow applications. The HBCS algorithm is able to
reduce up to 30% of the execution time while main-
taining the same budget level.

Many works in the scheduling literature con-
sider deterministic computation and communication
times. However, using a deterministic objective func-
tion does not match the non-deterministic nature of
real-world applications [2]. In this sense, Zheng et
al. [62] proposed a Monte Carlo based scheduling

753



D. Oliveira et al.

method for cloud/grid workflows which consider non-
deterministic computing and communication time.
The method is not dependent on a particular heuristic
algorithm, and the HEFT is adopted in the evalu-
ation. In [63], a randomized version of HEFT was
proposed. The algorithm consists in running a deter-
ministic HEFT for random predictions of the stochas-
tic DAG, generating a list of potential candidates for
best scheduling. The scheduling from the list with
the smaller expected makespan is selected. Cai et al.
[12] presents a dynamic algorithm for minimizing
the rental cost (of VMs in a cloud) of bag-of-tasks
workflows with non-deterministic times. The Cloud
Workflow Scheduling Algorithm (CWSA) [47] aims
to optimize the scheduling of workflows in a multi-
tenant cloud environment. This algorithm considers
non-deterministic times for task computation times.

The presence of failures in data centers can pose a
threat to workflow applications with strict deadlines.
In [56], an original fault-tolerant scheduling algorithm
name FESTAL was proposed. It employs a primary/
backup redundancy model and VM migration to
achieve high-availability and load balancing into a
cloud workflow application. Vinay et al. [54] present
a new heuristic for cloud scheduling named CHEFT
(Cluster-based Heterogeneous Earliest Finish Time).
It uses the idle time of the processors for resubmitting
the failed tasks as a mean to achieve fault toler-
ance. FASTER [66] is another algorithm that employs
the primary/backup redundancy model for provid-
ing a fault tolerant scheduling mechanism for cloud
applications. Performability was first considered an
objective function in [17]. The authors developed a

performability model of a grid resource based on a
stochastic reward net model and the universal gen-
erating function. The proposed model is connected
to a genetic algorithm which aims to optimize the
scheduling of a DAG into a set of grid resources.

Our work aims to contribute to the research line
opened by Entezari et al. [17] - workflow schedul-
ing optimization from a performability viewpoint.
To the best of our knowledge, no existing method
covers simultaneously performability as the objec-
tive function, multi-tenancy, non-deterministic com-
puting/communication times, and failures of hosts and
VMs. Table 1 shows a comparison of our work to the
state of the art.

4 Problem Definition and Proposed Optimization
Method

This work aims to solve the multiprocessor schedul-
ing problem of scientific workflows running in a
cloud environment, using a performability metric as
the objective function. Given a workflow described
by a DAG G = {T , E}, our objective is to find a
scheduling S of tasks in T on m virtual machines that
maximizes the throughput of jobs. The number m is
not fixed and must be determined by the optimization
method.

The flow diagram of Fig. 1 presents a high-level
overview of the proposed optimization method. The
workflow DAG has a list of tasks and their depen-
dencies, processing time of each task and commu-
nication time between dependent tasks running on

Table 1 Comparison of the state of art for cloud workflow scheduling

Work Metric Multi-tenancy Non-deterministic times Failure model

Kliazovich et al. [29] Makespan No No Not considered

Arabnejad and Barbosa [3] Makespan and rental cost No No Not considered

Zheng and Sakellariou [62] Makespan No Yes Not considered

Cai et al. [12] Rental cost Yes Yes Not considered

Rimal and Maier [47] Makespan and resource usage Yes Yes Not considered

Zhou et al. [56] Job reliability and resource usage Yes No Host failures

Zhu et al. [66] Job reliability and resource usage Yes No Host failures

Vinay and Kumar [54] Makespan and cost No No Task failures

Entezari-Maleki et al. [17] Performability Yes Yes (exponential times) Processor failures

Our work Performability Yes Yes Host, VM, and cloud
manager failures

754



Performability Evaluation and Optimization of Workflow Applications in Cloud Environments

Fig. 1 Overview of the
proposed method

different processors. The computing and communica-
tion times of a DAG can either be deterministic or
follow a specific random distribution (normal, expo-
nential, Erlang, and so on). The cloud infrastructure
parameters define the number of physical servers,
the maximum number of virtual machines that each
host can provide, and the failure/repair/switchover
rates of the physical/virtual machines. The simula-
tion/optimization parameters configure the simulation
engine (e.g., number of replications for an individual
simulation) and the optimization algorithm (e.g., pop-
ulation size, number of elite chromosomes, number of
generations and so on).

The optimization algorithm explores the solution
space for the input DAG until the stopping condition
is reached, which is defined by the control param-
eters. Then, a near-optimal scheduling solution is
provided by the algorithm. The user can perform fur-
ther analysis of the obtained solution and evaluate

additional performance/reliability metrics, such as
average waiting/response time, discard rate of
tasks/jobs, the probability of completing a job. The
method can be used interactively, i.e., the user can
modify the cloud/control parameters and repeat the
process, obtaining new scheduling and performability
metrics.

The remainder of this section will explain further
each part that composes the proposed method.

4.1 Genetic Algorithm with Stochastic Fitness
Function

The activity diagram of Fig. 2 describes the optimiza-
tion algorithm adopted in this paper. It is a genetic
optimization procedure that uses a simulation model
for computing the fitness value of explored chromo-
somes. The chromosome representation consists of a
pair of vectors representing the ordering of tasks and

755



D. Oliveira et al.

Fig. 2 Genetic algorithm
with a stochastic fitness
function

the mapping of tasks to the processors, as illustrated in
Fig. 3. The partially-mapped crossover (PMX) oper-
ator [20] was adopted to generate the offspring of a
population. Two random chromosomes are randomly
selected for creating a pair of children (parents with
higher fitness value are more likely to be selected).
The process to generate the children is defined as fol-
low. First, it creates a copy of the parents. A paired
subinterval is randomly selected and switched among
the children. Then, a mapping function is applied to
convert the repeated alleles (i.e.: the units of infor-
mation that compose the chromosome) outside the

Fig. 3 Chromosome representation

random subinterval. Figure 4 shows an example of
crossover operator. The mutation operator modifies a
chromosome with a random operation by swapping

Fig. 4 PMX crossover operator

756



Performability Evaluation and Optimization of Workflow Applications in Cloud Environments

the order of two tasks or changing a task to a differ-
ent processor. The mutation operator is illustrated in
Fig. 5.

Figure 6 shows the activity diagram of the method
to obtain a fitness value of a solution s. The method
takes as input a solution s from the search space of
available schedulings, a set of fixed parameters, a
template model, and a set of auxiliary models. The
solution s is parsed to obtain a set of solution parame-
ters. The fixed and solution parameters are combined
into a single set. The joint solution-fixed parameters
set is divided into two categories: structural and non-
structural. The structural parameters define the fixed
structures of the model and the arcs/edges that connect
them. Nonstructural parameters define the delay/rate
parameters and information such as probabilities, and
buffer capacity.

The combined set of structural/non structural
parameters and the base models are used as input for
generating the final simulation model for a solution.
The next section explains the performability model
and the conversion algorithm.

5 Performability Model for the Fitness Function

In this section, we describe the simulation model used
to compute the objective function of the scheduling
engine available in the Mercury modeling tool [33,
40]. This simulation engine is based on the Stochastic
Petri nets formalism and allows working with mod-
els created on other formalisms such as Continuous
Time Markov Chains and Reliability Block Diagrams.

Fig. 5 Mutation operator

Fig. 6 Method to obtain the fitness value for a solution s

It enables us to use existing reliability models for
private clouds [49] due to its hierarchical modeling
capabilities.

Figure 7 provides an overview of the modeled sys-
tem. The cloud infrastructure consists of a collection
of hosts that acts either as workers or part of a cloud
manager. A work node is a server that runs the users’
virtual machines. The cloud manager is a subsystem
composed of the software components for handling
users’ requests and orchestrating the cloud infrastruc-
ture. Employing more than one physical machine to
run the necessary services is recommended to avoid a
single point of failure.

Job requests arrive according to a Poisson pro-
cess, and the rate is a controlled parameter. Each job
is composed of a series of subtasks with precedence
constraints defined as a DAG. A predefined strategy

757



D. Oliveira et al.

Fig. 7 Modeled system

establishes the scheduling of the subtasks. This strat-
egy determines the number of virtual machines allo-
cated from the cloud provider and the tasks executed
on each of them. The scheduling can be generated
by some heuristic (First Come-First Served, Shortest
Job First, Heterogeneous Earliest Finish Time, etc.) or
meta-heuristic algorithm (taboo search, genetic algo-
rithm, ant colony, etc.).

Figure 8 depicts the discrete event simulation
model as an open queue accepting a job submission
influx with rate equals to λ. Each job will be promptly
executed in case there are available resources in the
cloud. Otherwise, it will be enqueued or discarded (if
the queue is full). A job will also be discarded if the
cloud manager is unavailable since in this case, it is
not possible to allocate the cloud resources for the job
execution. Another possibility for the failure of a job

submission is when some virtual machine failure pre-
vents the execution of one or more subtasks. A virtual
machine can fail due software (operating system or
hypervisor) or hardware faults.

The number of completed and failed jobs are
recorded by the simulation model. The annual
throughput is obtained by dividing the simulation time
in years by the total number of completed jobs. The
job failure ratio is defined by (1). The annual through-
put and the job failure ratio are the metrics adopted in
the analysis of Section 6.

Job failure ratio = Discarded jobs

Completed jobs + Discarded jobs
(1)

Fig. 8 Discrete event
simulation model

fi

758



Performability Evaluation and Optimization of Workflow Applications in Cloud Environments

In the simulation model, the service time of each job
execution is computed by converting it to a Stochastic
Petri net and measuring the time to reach a deadlock
marking. The transitions from the generated SPN rep-
resent the following events: i) the processing of a task;
ii) communication between tasks scheduled to differ-
ent VMs; iii) and failure of VMs. The SPN will reach
a deadlock marking after all tasks are executed or if a
VM failure impedes any task to finish properly. In the
next subsection, we explain the conversion algorithm.

5.1 Performance Modeling via DAG to SPN
Conversion

Stochastic Petri nets are well suited for modeling par-
allel/concurrent activities and the logical ordering of
events, such as resource contention, forking, joining,
etc. In this work, we propose a conversion algorithm
that takes a DAG workflow specification and schedul-
ing as input and produces an SPN model as output.
The resulting SPN model is used in the simulation
model for representing the executions of the tasks
that compose a job request. Besides being a funda-
mental part of our simulation-based performability
model, the SPN representation enables us to evaluate
the reliability, the estimated makespan, and the mean
time to interruption of the scheduling of a DAG with
non-deterministic times, via numerical analysis. For
obtaining those metrics without employing simulation
it is necessary that the processing and communication
times can be depicted as exponential or phase-type
random variables.

The Algorithm 1 is a pseudo-code representation
of the proposed method. This algorithm takes a DAG
and scheduling as input, and produces an SPN perfor-
mance model as output. It means that a different SPN
model will be generated for each particular schedul-
ing. In the resulting model, each task is represented
by a place-transition pair. The place represents the
inputs for the task and the transition represents the task
processing event. A processing transition for a task t

must forward a token for each dependent task’s inputs
place. For a pair of tasks related by a precedence
relationship, there are two possibilities:

– The tasks are scheduled to the same VM. In
this case, the processing transition from the source
task has an output arc connected to the inputs
place from the destination task.

Fig. 9 Example of Directed Acyclic Graph (adapted from [59])

– The tasks are scheduled to different VMs. In
this case it is necessary to include an additional
place-transition pair for representing the commu-
nication. This transition is connected to the inputs
place from the destination task via an output arc.

Besides the representation of data relationships from
the DAG structure, the SPN model should express the
temporal constraints imposed by the scheduling. If a
set of tasks t1, t2, . . ., tn are scheduled to the same VM
(in this order), the processing of a task ti should be
enabled only after the execution of the previous task
ti−1, in addition to the DAG’s data constraints. In our
algorithm, this is ensured by connecting control places
to the processing transitions via input arcs.

To illustrate our method, we used the DAG from
Fig. 9 (adapted from [59]) and the scheduling dis-
played in Fig. 10 as the input for our algorithm. The
resulting SPN model is displayed in Fig. 11. The
control places and connected arcs are depicted in gray.

Fig. 10 A scheduling for the DAG shown in Fig. 9

759



D. Oliveira et al.

5.2 Reliability Modeling

Failure of virtual machines and physical servers have
a substantial influence on system’s performance. Job
requests are enqueued if the cloud cannot provide the
specified number of virtual machines. The decrease of
the number of virtual machines due the effect of fail-
ures causes an increase in the average waiting time
and a reduction on the system’s throughput. When a
job request completes, the allocated virtual machines
are released and become available for processing fur-
ther requests. If a failure occurs during the processing
of a job, the failed virtual machines/worker nodes are
subject to repair, and the processing is canceled. In
case of a failure on the cloud manager, arriving job
requests are discarded, since this is the component that
acts as an interface between the users and the cloud
infrastructure.

The reliability submodel describes the operational
state (up/active or down/failed) of the cloud manager
and the worker nodes and running virtual machines.
It is represented as an SPN model integrated to the
performability model. The cloud manager is defined
as a fixed structure and the worker nodes and vir-
tual machines are dynamically generated according
to two parameters: the number of worker nodes and
the maximum number of running virtual machines
per server. Figure 12 illustrates the model generated
for two worker nodes with two virtual machines per
node. Each component is defined as a pair of places
for defining the component’s operational state, and a
pair of transitions for causing failure/repair events. An
immediate transition controlled by an inhibitor arc is
used for updating the operational state of every virtual
machine associated to a physical server.

We adopted the SPN availability model from [50]
for representing the operational state of the cloud man-
ager (shown in Fig. 13). This model represents two
servers configured to work in a warm-standby redun-
dancy scheme. The system availability is obtained by
the following expression:

P {#primary up = 1 or #spare active up = 1},

which represents the steady state probability of hav-
ing a token in the #primary up or #spare active up

places. In the warm-standby scheme, the spare server
remains turned on but it does not accept workload
if the main server is active. The failure rate of a

760



Performability Evaluation and Optimization of Workflow Applications in Cloud Environments

Fig. 11 DAG and scheduling converted to an SPN model

Fig. 12 Model generated with structural parameters set to number of servers = 2, vms per server = 2

761



D. Oliveira et al.

Fig. 13 Availability model
for the cloud manager

idle component is assumed to be lower than the fail-
ure rate of a component serving requests [23]. The
activate spare transition represents the switchover
event, i.e., the process of configuring the standby
server to handle the incoming workload. This tran-
sition is enabled only when a failure occurs on the
primary server due to the inhibitor arc. After the pri-
mary server is repaired, the standby server is sent back
to the idle state.

5.3 Simulation Environment

In this subsection, we go into details about the top
level simulation model and the simulation engine.

Figure 14 displays an overview of top-level simula-
tion model. As a discrete event simulator, it has a
global clock for the simulation time and an ordered
list of events which is processed and updated as the
simulator runs. The simulation engine also maintains
a list of running Petri nets. Petri nets can be config-
ured at the beginning of the simulation, and new Petri
nets can be created or destroyed during simulation run
time. The simulation routines are software modules
(implemented in the Java programming language) that
are invoked according to specific simulation events.
These routines can modify the simulation state, sched-
ule/cancel simulation events, and start/destroy Petri
nets. The Petri nets generate firing events and timed

Fig. 14 Simulation model - high level view

762



Performability Evaluation and Optimization of Workflow Applications in Cloud Environments

transitions can be configured to fire according to a
specific probability distribution.

The performability submodel keeps track of the
workload (the workflows processed by the cloud
resources). The transition arrivals create tokens cor-
responding to individual job requests. A job request
being executed is associated to a running workflow
Petri net (created by the Algorithm 1). An incom-
ing workflow job starts its execution when resources
are provisioned. Virtual machines are provisioned
to workflow jobs via the VM scheduling algorithm
(in this work, we used a round-robin algorithm). In
Fig. 14, we display the association of the running job
to the scheduled virtual machines with a dashed line
arrow.

In this work, we employ transient simulations, i.e.,
we set a finish time and let the simulator run until
this time is reached. For being able to capture failure
events, a large simulation time should be employed.
We adopted a runtime of three years, since using
a higher simulation runtime was too computation-
ally demanding. Metrics are obtained by reading the
simulation state after a transient run. For obtaining
point estimators and confidence intervals, we perform
several transient runs with different random seeds.

6 Experimental Results

In this section, we present two case studies to evaluate
the proposed method. The first case study shows the
analysis of a small-sized workflow application/cloud
infrastructure. In the second case study, we examine a
real workflow application and a greater cloud infras-
tructure. In both case studies, the metric used for the
fitness function was the average number of completed
jobs in one year. We use a Fujitsu Primergy RX200 S7
server to conduct the experiments. The server has the
configuration shown in Table 2.

Table 2 Server used for experiments - specifications

CPU 1, CPU 2 Intel Xeon E5-2650

(8 cores and 16 threads)

Memory (10 banks of) DIMM DDR3

1600 MHz, 4GB

Operating system Debian 7,

Linux kernel version 4.9

JVM Oracle JDK version 1.7

Table 3 Model parameters

Parameter Value

Mean time to failure - physical machine 8760 h

Mean time to failure - idle physical machine 13140 h

Mean time to failure - virtual machine 2880 h

Mean time to repair - physical machine 1 h

Mean time to repair - virtual machine 1 h

Arrival rate of jobs 1/2.5 (1/h)

Number of workers 20

VMs per worker 3

Activation time of standby server 0.004 (h)

Number of replications for the simulation 30

6.1 Optimization and Performability Analysis
of a Small Sized DAG Application

In this case study, we choose a small-sized DAG appli-
cation for being able to apply a brute force analysis
and compare the results found by the meta-heuristic
algorithm with the global maximum. Table 3 shows
the input parameters for the performability model. We
adopted the mean time to failure, repair, and activa-
tion times for physical and virtual servers as defined
in [28]. The DAG from Fig. 9 was adopted in this case
study. We consider the computing and communication
times to follow a normal distribution [12]. The mean
values are obtained from the graph’s nodes and edges
and the standard deviation is assumed to be 10% of the
mean value.

The scatter plot from Fig. 15 shows the fitnesses
values (the number of completed jobs per year) for
all possible schedulings of Fig. 9’s DAG, evaluated
by brute force. The solution space has 7840 differ-
ent schedulings. Each solution is assigned to a unique
integer identifier which is displayed on the plot’s x-
axis. It can be observed that the scheduling and the
number of provisioned virtual machines play a crit-
ical role in the system’s throughput. The difference
between the worst and the best solutions is approxi-
mately 2430 jobs per year.

Due to the solution space not being too big, we
adopted a small population of ten chromosomes for
testing the genetic algorithm in this case study. We
configured the algorithm to keep two elite chromo-
somes from the previous population in each itera-
tion and employed a mutation probability of 0.05.
Figure 16 shows the population’s average and highest

763



D. Oliveira et al.

0 2000 4000 6000 8000

0
50

0
15

00
25

00
35

00

Solution number

N
um

be
r o

f p
ro

ce
ss

ed
 jo

bs
 p

er
 y

ea
r

Fig. 15 Scatter plot of all solutions evaluated by brute force

fitness values for each generation. A horizontal line
represents the fitness value for the global optimum at
the top of the plot. It is possible to observe that the
increase in the average fitness value after each genera-
tion leads to the discovery of a new elite chromosome
after the fifth generation. In the tenth generation, the
average fitness gets closer to the best fitness.

To analyze the impact of failures on the number
of completed jobs per year, we made a sensitivity
analysis on the mean time to failure for physical and
virtual machines. Each parameter ranges from 20% to
200% of the base value shown in Table 3. Figure 17

2
0
0
0

Generation

N
u
m
b
e
r
 o
f 
p
r
o
c
e
s
s
e
d
 j
o
b
s
 p
e
r
 y
e
a
r

Global maximum

Best chromossome

Population average

1 2 3 4 5 6 7 8 9 10

2
5
0
0

3
0
0
0

Fig. 16 Average and max fitness value (number of processed
jobs per year) of each generation

Fig. 17 Sensitivity analysis - one factor at time (95% confi-
dence interval)

764



Performability Evaluation and Optimization of Workflow Applications in Cloud Environments

presents the results of the sensitivity analysis, consid-
ering the best scheduling found by brute force. For
the collected metrics, we indicate the 95% confidence
intervals alongside the average values. For each point
on the plots, we obtained 500 samples from the simu-
lation model. Figure 17a and b show the impact of the
hardware and virtual machine MTTFs on the number
of processed jobs per year and Fig. 17c and d show
the sensitivity analysis of the failure ratio of jobs. The
analysis reveals that the system throughput and job
failure ratio are sensitive to VM failures. It also can be
noticed that as the hardware/virtual machine MTTFs
increase, the differences between adjacent points in
the plots become less pronounced and the confidence
intervals overlap.

6.2 Optimization of a LIGO Workflow Application

In the second case study, we used two scientific
workflows: the LIGO Inspiral Analysis workflow [9]
(Fig. 18a) and a randomly generated DAG (Fig. 18b).
The LIGO workflow was created with the Pegasus
Workflow Generator available in [26]. This workflow
generator creates synthetic workflows based on traces
collected from real-world scientific workflows. The
random DAG was created by an ad-hoc algorithm.
Computing and communication times for the random
DAG were generated using a Uniform distribution
with the interval from [1 min, 20 min] and [1min, 10
min], respectively.

Table 4 shows the updated parameters for the sec-
ond case study. Unfortunately, increasing too much
the cloud scale leads to a huge computational effort to
solve the simulation model. The reason for this limita-
tion is the presence of stiffness on performability mod-
els. For capturing failure events in the performance
model, it is necessary to employ a long simulation
run (larger than a year). The high number of events
to be processed in a single simulation run leads to a
great simulation runtime. SRIP (Single Replication in
Parallel) techniques can be used to simulate a larger
cloud infrastructure, i.e., a cloud having hundreds or
thousands of physical servers.

Figure 19a and b summarize the results of the
genetic algorithm. They are displayed as boxplots for
each generation produced by the optimization algo-
rithm. Since we are using elitism, the best solution
(represented by the top horizontal bar in each box plot)
is kept until better solutions are obtained. In contrast

Table 4 Model/configuration parameters - second case study

Parameter Value

Number of workers 50

VMs per worker 4

Number of replications for the simulation 10

Generations 25

Population size 40

Number of elite chromosomes 3

to the previous case study, we noticed a more accen-
tuated non-monotonic growth in the average fitness
value (i.e., the average fitness value for the ith gen-
eration being smaller than the value for the (i − 1)th
generation). However, the algorithm can increase both
the average and maximum fitness value in the long
term.

The presented case studies confirm the ability of
the proposed simulation-based optimization method
in solving the workflow scheduling problem from
a performability viewpoint. Our method enables the
optimization process to treat aspects that would be
impossible to capture with a deterministic function,
namely:

– Modeling non-deterministic and non-exponential
computation/communication times;

– Capturing the failure relationships between
servers and virtual machines;

– Modeling the provisioning of cloud resources to
multiple users concurrently;

– Representing the influence of the cloud controller
on the overall system’s performance.

Using such complex non-deterministic objective
function (a discrete simulation model) did not cause
the optimization algorithm to misbehave. The results
for the LIGO and random workflows show the
effectiveness of the generic operators (mutation and
crossover) in avoiding getting stuck at a local
maximum. New elite chromosomes were found multi-
ple times in both scenarios.

6.2.1 Performance and Reliability Analysis

For evaluating the impact of failures on the second
case study, we performed a sensitivity analysis on the
effect of hardware and VM failures in the adopted

765



D. Oliveira et al.

Fig. 18 DAGs for second
case study

workflows. In this study, we consider the best schedul-
ing obtained with the optimization method. The results
are shown in Fig. 20. We confirm the same pattern
visualized in the previous section for the small DAG:
the impact of hardware and VM failures diminishes
as the reliability of these components reach a certain
level.

Figure 21 shows the impact of failures on the cloud
manager in the system throughput. It also allows us to
evaluate the effectiveness of the warm-standby redun-
dancy mechanism when contrasted with a single node
cloud manager (without redundancy). Figure 21 indi-
cates that for a small MTTF for a server node, there is
a substantial increase in the number of processed jobs
per year when using a redundant cloud manager. For

a large MTTF, however, the difference between the
mean number of processed jobs is minimal, and the
confidence intervals overlap. These results indicate
a negligible impact of the cloud-manager on system
throughput when this subsystem is highly-available.

6.2.2 Random Makespan Kernel Density Estimation
(LIGO workflow)

Considering non-deterministic communication and
computation times for a workflow scheduling algo-
rithm means that the makespan will be defined by a
random variable instead of being a fixed value. We
performed a kernel density estimation for the random
makespan of the best scheduling found for the LIGO

766



Performability Evaluation and Optimization of Workflow Applications in Cloud Environments

Fig. 19 Fitness values for each generation

workflow. Figure 22 shows kernel density plot for the
following scenarios: i) normally distributed times with
standard deviation being equals to 10, 20, and 50%
of the mean, respectively; ii) exponentially distributed
times; and iii) deterministic times. The expected value
for all distributions is equal to the value considered in
the deterministic scenario.

It can be observed that increasing the variance
of individual communication/computation times in
the DAG increases the expected makespan. The
exponential distribution presents a high dispersion

Fig. 20 Sensitivity analysis - one factor at time (95% confi-
dence interval)

767



D. Oliveira et al.

Fig. 21 Influence of cloud manager failures on system through-
put (95% confidence interval)

Fig. 22 Kernel density plot for Makespan of LIGO workflow
(hours)

and an expected value distant from the determin-
istic makespan. We, therefore, conclude that using
Markov-chain based methods for analyzing work-
flow applications may not be a good choice since
they assume exponentially distributed times. Phase-
type distributions can be used to approximate non-
exponential times, but using them can substantially
increase the number of modeled states and causing the
space-station explosion problem.

7 Conclusions

This paper presented a simulation-based optimiza-
tion method for scheduling of scientific workflows in
cloud systems that considers system performability as
the objective function. Our method employs the auto-
matic generation of performability models for a cloud
application that takes as input the workflow descrip-
tion (as a DAG) and the infrastructure configuration.
Our evaluation shows that the genetic algorithm is
efficient in optimizing both the number of virtual
machines and the scheduling of the tasks concerning
the system’s throughput.

In future works, we intend to deal with hetero-
geneity by considering virtual machines with differ-
ent computational capabilities. Furthermore, we are
interested in implementing fault tolerance schemes
such as checkpointing and replication in our sim-
ulation model. For evaluating more massive infras-
tructures/applications, we plan to implement SRIP
parallelism in our simulation engine.

Publisher’s Note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and institu-
tional affiliations.

References

1. Alwabel, A., Walters, R., Wills, G.: Desktopcloudsim: Sim-
ulation of node failures in the cloud. In: International Con-
ference on Cloud Computing, GRIDs, and Virtualization, p.
29 (2015)

2. Ando, E., Nakata, T., Yamashita, M.: Approximating the
longest path length of a stochastic dag by a normal distri-
bution in linear time. J. Discrete Algoritms 7(4), 420–438
(2009)

3. Arabnejad, H., Barbosa, J.G.: A budget constrained
scheduling algorithm for workflow applications. J. Grid
Comput. 12(4), 665–679 (2014)

768



Performability Evaluation and Optimization of Workflow Applications in Cloud Environments

4. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.:
A survey on metaheuristics for stochastic combinatorial
optimization. Nat. Comput. 8(2), 239–287 (2009)

5. Bitam, S.: Bees life algorithm for job scheduling in cloud
computing. In: Proceedings of the Third International Con-
ference on Communications and Information Technology,
pp. 186–191 (2012)

6. Blum, C., Roli, A.: Metaheuristics in combinatorial opti-
mization: overview and conceptual comparison. ACM
Comput. Surv. (CSUR) 35(3), 268–308 (2003)

7. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing
Networks and Markov Chains: Modeling and Performance
Evaluation with Computer Science Applications. Wiley,
Hoboken (2006)

8. Book, R.V. et al.: Michael r. garey and david s. john-
son, computers and intractability: a guide to the theory of
np-completeness. Bulletin (New Series) of the American
Mathematical Society 3(2), 898–904 (1980)

9. Brown, D.A., Brady, P.R., Dietz, A., Cao, J., Johnson, B.,
McNabb, J.: A case study on the use of workflow tech-
nologies for scientific analysis: gravitational wave data
analysis. In: Workflows for E-Science, pp. 39–59. Springer
(2007)

10. Bux, M., Leser, U.: Dynamiccloudsim: Simulating hetero-
geneity in computational clouds. Futur. Gener. Comput.
Syst. 46, 85–99 (2015)

11. Cai, Z., Li, Q., Li, X.: Elasticsim: a toolkit for simulat-
ing workflows with cloud resource runtime auto-scaling
and stochastic task execution times. J. Grid Comput. 15(2),
257–272 (2017)

12. Cai, Z., Li, X., Ruiz, R., Li, Q.: A delay-based dynamic
scheduling algorithm for bag-of-task workflows with
stochastic task execution times in clouds. Futur. Gener.
Comput. Syst. 71, 57–72 (2017)

13. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.,
Buyya, R.: Cloudsim: a toolkit for modeling and simula-
tion of cloud computing environments and evaluation of
resource provisioning algorithms. Softw. Pract. Exp. 41(1),
23–50 (2011)

14. Chen, W., Deelman, E.: Workflowsim: a toolkit for sim-
ulating scientific workflows in distributed environments.
In: 2012 IEEE 8th International Conference on E-Science
(E-Science), pp. 1–8. IEEE (2012)

15. Chen, W.N., Zhang, J.: Ant colony optimization for soft-
ware project scheduling and staffing with an event-based
scheduler. IEEE Trans. Softw. Eng. 39(1), 1–17 (2013)

16. Davis, N.A., Rezgui, A., Soliman, H., Manzanares, S.,
Coates, M.: Failuresim: a system for predicting hardware
failures in cloud data centers using neural networks. In:
2017 IEEE 10th International Conference on Cloud Com-
puting (CLOUD), pp. 544–551. IEEE (2017)

17. Entezari-Maleki, R., Trivedi, K.S., Sousa, L., Movaghar,
A.: Performability-based workflow scheduling in grids. The
Computer Journal (2018)

18. Ever, E.: Performability analysis of cloud computing cen-
ters with large numbers of servers. J. Supercomput. 73(5),
2130–2156 (2017)

19. Ghosh, R., Trivedi, K.S., Naik, V.K., Kim, D.S.: End-To-
End performability analysis for infrastructure-as-a-service
cloud: an interacting stochastic models approach. In:
2010 IEEE 16th Pacific Rim International Symposium

on Dependable Computing (PRDC), pp. 125–132. IEEE
(2010)

20. Goldberg, D.E., Lingle, R., et al.: Alleles, loci, and the trav-
eling salesman problem. In: Proceedings of an International
Conference on Genetic Algorithms and their Applications,
vol. 154, pp. 154–159. Lawrence Erlbaum, Hillsdale (1985)

21. Gorissen, D., Couckuyt, I., Demeester, P., Dhaene, T.,
Crombecq, K.: A surrogate modeling and adaptive sam-
pling toolbox for computer based design. J. Mach. Learn.
Res. 11, 2051–2055 (2010)

22. Gu, J., Hu, J., Zhao, T., Sun, G.: A new resource schedul-
ing strategy based on genetic algorithm in cloud computing
environment. J. Comput. 7(1), 42–52 (2012)

23. Guimarães, A.P., Maciel, P.R., Matias, R.: An analyti-
cal modeling framework to evaluate converged networks
through business-oriented metrics. Reliab. Eng. Syst. Saf.
118, 81–92 (2013)

24. Hamby, D.: A review of techniques for parameter sensi-
tivity analysis of environmental models. Environ. Monit.
Assess. 32(2), 135–154 (1994)

25. Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey,
K., Berriman, B., Good, J.: On the use of cloud comput-
ing for scientific workflows. In: 2008. Escience’08. IEEE
Fourth International Conference on Escience, pp. 640–645.
IEEE (2008)

26. Juve, G., Bharathi, S.: Pegasus synthetic workflow gen-
erator. https://confluence.pegasus.isi.edu/display/pegasus/
WorkflowGenerator (2014)

27. Juve, G., Deelman, E., Vahi, K., Mehta, G., Berriman, B.,
Berman, B.P., Maechling, P.: Scientific workflow appli-
cationsonamazon Ec2. In: 20095th IEEEInternationalCon-
ference on E-Science Workshops, pp. 59–66. IEEE (2009)

28. Kim, D.S., Machida, F., Trivedi, K.S.: Availability mod-
eling and analysis of a virtualized system. In: 2009.
PRDC’09. 15th IEEE Pacific Rim International Sym-
posium on Dependable Computing, pp. 365–371. IEEE
(2009)

29. Kliazovich, D., Pecero, J.E., Tchernykh, A., Bou-
vry, P., Khan, S.U., Zomaya, A.Y.: Ca-dag: Modeling
communication-aware applications for scheduling in cloud
computing. J. Grid Comput. 14(1), 23–39 (2016)

30. Kohne, A., Spohr, M., Nagel, L., Spinczyk, O.: Federat-
edcloudsim: a sla-aware federated cloud simulation frame-
work. In: Proceedings of the 2nd International Workshop
on CrossCloud Systems, pp. 3. ACM (2014)

31. LD, D.B., Krishna, P.V.: Honey bee behavior inspired load
balancing of tasks in cloud computing environments. Appl.
Soft Comput. 13(5), 2292–2303 (2013)

32. Lin, W., Wu, W., Wang, J.Z.: A heuristic task scheduling
algorithm for heterogeneous virtual clusters. Sci. Program.
2016, Article ID 7040276 (2016)

33. Maciel, P., Matos, R., Silva, B., Figueiredo, J., Oliveira,
D., Fé, I., Maciel, R., Dantas, J.: Mercury: performance
and dependability evaluation of systems with exponential,
expolynomial, and general distributions. In: 2017 IEEE
22Nd Pacific Rim International Symposium on Dependable
Computing (PRDC), pp. 50–57. IEEE (2017)

34. Mainkar, V., Trivedi, K.S.: Sufficient conditions for exis-
tence of a fixed point in stochastic reward net-based
iterative models. IEEE Trans. Softw. Eng. 22(9), 640–653
(1996)

769

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator


D. Oliveira et al.

35. Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Algo-
rithms for cost-and deadline-constrained provisioning for
scientific workflow ensembles in iaas clouds. Futur. Gener.
Comput. Syst. 48, 1–18 (2015)

36. Meyer, J.F.: On evaluating the performability of degradable
computing systems. IEEE Trans. Comput. C-29(8), 720–
731 (1980)

37. Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y.C., Talbi,
E.G., Zomaya, A.Y., Tuyttens, D.: A parallel bi-objective
hybrid metaheuristic for energy-aware scheduling for cloud
computing systems. J. Parallel Distrib. Comput. 71(11),
1497–1508 (2011)

38. Molloy, M.K.: Performance analysis using stochastic petri
nets. IEEE Trans. Comput. 31(9), 913–917 (1982)

39. Nelder, J.A., Mead, R.: A simplex method for function
minimization. Comput. J. 7(4), 308–313 (1965)

40. Oliveira, D., Matos, R., Dantas, J., Ferreira, J., Silva, B.,
Callou, G., Maciel, P., Brinkmann, A.: Advanced stochas-
tic petri net modeling with the mercury scripting language.
In: ValueTools 2017, 11th EAI International Conference on
Performance Evaluation Methodologies and Tools. Venice,
Italy. Elsevier (2017)

41. Panda, S.K., Jana, P.K.: Efficient task scheduling algo-
rithms for heterogeneous multi-cloud environment. J.
Supercomput. 71(4), 1505–1533 (2015)

42. Plateau, B., Atif, K.: Stochastic automata network of mod-
eling parallel systems. IEEE Trans. Softw. Eng. 17(10),
1093–1108 (1991)

43. Qiu, X., Sun, P., Guo, X., Xiang, Y.: Performability anal-
ysis of a cloud system. In: 2015 IEEE 34th International
Performance Computing and Communications Conference
(IPCCC), pp. 1–6. IEEE (2015)

44. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T.,
Vaidyanathan, R., Tucker, P.K.: Surrogate-based analysis
and optimization. Prog. Aerosp. Sci. 41(1), 1–28 (2005)

45. Raei, H., Yazdani, N.: Performability analysis of cloudlet
in mobile cloud computing. Inform. Sci. 388, 99–117
(2017)

46. Ramakrishnan, L., Reed, D.A.: Performability modeling for
scheduling and fault tolerance strategies for scientific work-
flows. In: Proceedings of the 17th International Symposium
on High Performance Distributed Computing, pp. 23–34.
ACM (2008)

47. Rimal, B.P., Maier, M.: Workflow scheduling in multi-
tenant cloud computing environments. IEEE Trans. Parallel
Distrib. Syst. 28(1), 290–304 (2017)

48. Rodriguez, M.A., Buyya, R.: A taxonomy and survey on
scheduling algorithms for scientific workflows in iaas cloud
computing environments. Concurr. Comput. Pract. Exp.
29(8), e4041 (2017)

49. Sousa, E., Lins, F., Tavares, E., Cunha, P., Maciel, P.: A
modeling approach for cloud infrastructure planning con-
sidering dependability and cost requirements. IEEE Trans.
Syst. Man Cybern. Syst. Hum. 45(4), 549–558 (2015)

50. Sousa, E., Lins, F., Tavares, E., Maciel, P.: Cloud infras-
tructure planning considering different redundancy mecha-
nisms. Computing 99(9), 841–864 (2017)

51. Swisher, J.R., Hyden, P.D., Jacobson, S.H., Schruben,
L.W.: A Survey of simulation optimization techniques and
procedures. In: Simulation Conference, 2000. Proceedings.
Winter, vol. 1, pp. 119–128. IEEE (2000)

52. Tawfeek, M.A., El-Sisi, A., Keshk, A.E., Torkey, F.A.:
Cloud task scheduling based on ant colony optimization. In:
2013 8th International Conference on Computer Engineer-
ing & Systems (ICCES), pp. 64–69. IEEE (2013)

53. Tsai, C.W., Rodrigues, J.J.: Metaheuristic scheduling for
cloud: a survey. IEEE Syst. J. 8(1), 279–291 (2014)

54. Vinay, K., Kumar, S.D.: Fault-tolerant scheduling for sci-
entific workflows in cloud environments. In: 2017 IEEE 7th
International Advance Computing Conference (IACC), pp.
150–155. IEEE (2017)

55. Vöckler, J.S., Juve, G., Deelman, E., Rynge, M., Berri-
man, B.: Experiences using cloud computing for a scientific
workflow application, In: Proceedings of the 2nd Inter-
national Workshop on Scientific Cloud Computing, pp.
15–24. ACM (2011)

56. Wang, J., Bao, W., Zhu, X., Yang, L.T., Xiang, Y.: Fes-
tal: fault-tolerant elastic scheduling algorithm for real-time
tasks in virtualized clouds. IEEE Trans. Comput. 64(9),
2545–2558 (2015)

57. Wang, T., Chang, X., Liu, B.: Performability analysis for
iaas cloud data center. In: 2016 17th International Confer-
ence on Parallel and Distributed Computing, Applications
and Technologies (PDCAT), pp. 91–94. IEEE (2016)

58. Xia, Y., Zhou, M., Luo, X., Zhu, Q., Li, J., Huang,
Y.: Stochastic modeling and quality evaluation of
infrastructure-as-a-service clouds. IEEE Trans. Autom.
Sci. Eng. 12(1), 162–170 (2015)

59. Xu, Y., Li, K., He, L., Zhang, L., Li, K.: A hybrid chemical
reaction optimization scheme for task scheduling on hetero-
geneous computing systems. IEEE Trans. Parallel Distrib.
Syst. 26(12), 3208–3222 (2015)

60. Zhao, C., Zhang, S., Liu, Q., Xie, J., Hu, J.: Indepen-
dent tasks scheduling based on genetic algorithm in cloud
computing. In: 2009. Wicom’09. 5th International Confer-
ence onWireless Communications, Networking andMobile
Computing, pp. 1–4. IEEE (2009)

61. Zhao, H.W., Tian, L.W.: Resource schedule algorithm
based on artificial fish swarm in cloud computing environ-
ment. In: Applied Mechanics and Materials, vol. 635, pp.
1614–1617. Trans Tech Publ (2014)

62. Zheng, W., Sakellariou, R.: Stochastic dag scheduling using
a monte carlo approach. J. Parallel Distrib. Comput. 73(12),
1673–1689 (2013)

63. Zheng,W.,Wang, C., Zhang, D.: A randomization approach
for stochastic workflow scheduling in clouds. Sci. Program.
2016, Article ID 9136107 (2016)

64. Zheng, Z., Wang, R., Zhong, H., Zhang, X.: An approach
for cloud resource scheduling based on parallel genetic
algorithm. In: 2011 3rd International Conference on Com-
puter Research and Development (ICCRD), vol. 2, pp.
444–447. IEEE (2011)

65. Zhou, A., Wang, S., Sun, Q., Zou, H., Yang, F.: Ftcloudsim:
a simulation tool for cloud service reliability enhancement
mechanisms. In: Proceedings Demo & Poster Track of
ACM/IFIP/USENIX International Middleware Conference,
p. 2. ACM (2013)

66. Zhu, X., Wang, J., Guo, H., Zhu, D., Yang, L.T., Liu, L.:
Fault-tolerant scheduling for real-time scientific workflows
with elastic resource provisioning in virtualized clouds.
IEEE Trans. Parallel Distrib. Syst. 27(12), 3501–3517
(2016)

770


	Performability Evaluation and Optimization of Workflow Applications in Cloud Environments
	Abstract
	Introduction
	Background
	Simulation/Optimization Hybrid Heuristics
	Scheduling of Scientific Workflows on Cloud Systems

	Related Work
	Performability Modeling of Cloud and Grid Environments
	Simulation of Workflow Execution on Cloud Environments
	Cloud Workflow Optimization

	Problem Definition and Proposed Optimization Method
	Genetic Algorithm with Stochastic Fitness Function

	Performability Model for the Fitness Function
	Performance Modeling via DAG to SPN Conversion
	Reliability Modeling
	Simulation Environment

	Experimental Results
	Optimization and Performability Analysis of a Small Sized DAG Application
	Optimization of a LIGO Workflow Application
	Performance and Reliability Analysis
	Random Makespan Kernel Density Estimation (LIGO workflow)


	Conclusions
	Publisher's Note
	References


