
J Grid Computing (2018) 16:535–551
https://doi.org/10.1007/s10723-018-9464-0

A Task-Based Greedy Scheduling Algorithm for Minimizing
Energy of MapReduce Jobs

Mostafa Hadadian Nejad Yousefi ·
Maziar Goudarzi

Received: 21 August 2017 / Accepted: 7 August 2018 / Published online: 22 August 2018
© Springer Nature B.V. 2018

Abstract MapReduce and its open source implemen-
tation, Hadoop, have gained widespread adoption for
parallel processing of big data jobs. Since the number
of such big data jobs is also rapidly rising, reduc-
ing their energy consumption is increasingly more
important to reduce environmental impact as well as
operational costs. Prior work by Mashayekhy et al.
(IEEE Trans. Parallel Distributed Syst. 26, 2720–
2733, 2016), has tackled the problem of energy-aware
scheduling of a single MapReduce job but we pro-
vide a far more efficient heuristic in this paper. We
first model the problem as an Integer Linear Pro-
gram to find the optimal solution using ILP solvers.
Then we present a task-based greedy scheduling algo-
rithm, TGSAVE, to select a slot for each task to
minimize the total energy consumption of the MapRe-
duce job for big data applications in heterogeneous
environments without significant performance loss
while satisfying the service level agreement (SLA).
We perform several experiments on a Hadoop cluster
to measure characteristics of tasks for nine differ-
ent applications to evaluate our proposed algorithm.
The results show that the total energy consumption of
MapReduce jobs obtained by TGSAVE is up to 35%

M. H. N. Yousefi · M. Goudarzi (�)
Computer Engineering Department, Sharif University of
Technology, Tehran, Iran
e-mail: hadadian@ce.sharif.edu

M. Goudarzi
e-mail: goudarzi@sharif.edu

less than that achieved by EMRSA proposed in
Mashayekhy et al. (IEEE Trans. Parallel Distributed
Syst. 26, 2720–2733, 2016), its closest rival, for same
workloads. Besides, TGSAVE is capable of finding a
solution in same order of time for up to 74% tighter
deadlines than the tightest deadline that EMRSA can
find a feasible one. On average, TGSAVE solution
is approximately 1.4% far from the optimal solution,
and it can meet deadlines as tight as 12%, on average,
above the energy-oblivious minimum makespan in the
benchmarks we examined.

Keywords Big data · Energy-aware · MapReduce ·
Scheduling · Heterogeneous systems

1 Introduction

We are stepping into the Digital Transformation era.
This is not only about improving the functions but also
making new ones. Digitalization inherently makes
new opportunities in every domain. Every business
must embrace the change to be competitive. Data
which used to be stored on papers is now going to be
stored, processed, and transferred digitally. The rapid
growth of data sources produces an enormous amount
of data. We need new techniques like distributed pro-
cessing to bring gold out of this big amount of raw
data while reducing the energy consumed.

The global data center traffic is forecasted to triple
from 2014 to 2019. It is also forecasted that by 2019,

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-018-9464-0&domain=pdf
http://orcid.org/0000-0003-4675-9111
mailto:hadadian@ce.sharif.edu
mailto:goudarzi@sharif.edu

536 M. Hadadian Nejad Yousefi, M. Goudarzi

the majority of workloads will have been processed by
data centers using popular models such as MapReduce
[12]. Hence, more resources including energy will be
required to process this increasingly soaring amount
of data. Meanwhile, the energy production has not
significantly grown in recent years [1]. Therefore, pro-
cessing of this data will soon meet an upper bound for
power consumption. In consequence, it is important to
reduce the energy of MapReduce jobs in data centers.

Improving energy efficiency of such IT systems can
be done through hardware as well as software. Soft-
ware approaches have a better opportunity for innova-
tion since it is faster to implement, more flexible, and
more adaptable to hardware needs and specifications.
Thus, we focus on such opportunities in this paper.

MapReduce is a platform for parallel processing of
large datasets [13]. It can reduce cost since it has the
capability to be run on clusters of cheap commodity
machines instead of expensive specialized machines.
Moreover, MapReduce is highly scalable. It can pro-
cess petabytes of data on clusters of thousands or
even more machines. These features cause MapRe-
duce Platform to become a popular platform for data
centers and warehouse-scale computers.

Hadoop [7] is an open-source implementation of
MapReduce. Popular schedulers of the current version
of Hadoop are FIFO (First In First Out), Fair Sched-
uler [8], Capacity Scheduler [6] and HOD (Hadoop On
Demand) Scheduler [9]. None of them pays attention
to energy efficiency. Fair Scheduler assigns resources
to jobs such that all jobs get, on average, an equal
share of resources over time. Capacity Scheduler is
designed to run Hadoop Map-Reduce as a multi-
tenant, shared cluster in an while maximizing the
utilization and the throughput of the cluster when
running Map-Reduce applications. HOD Scheduler
is a system for provisioning and managing indepen-
dent Hadoop MapReduce and Hadoop Distributed File
System (HDFS) instances on a shared cluster of nodes.
The HOD approach uses the Torque resource man-
ager [2] for node allocation based on the needs of
the virtual cluster. In this paper, we present a greedy
scheduling algorithm for minimizing total energy of
MapReduce jobs for big data applications in het-
erogeneous environments without significant perfor-
mance loss while satisfying Service Level Agreement
(SLA). Mashayekhy et al. [23] have also provided
two heuristics for the same problem, but we push
state of the art one step further by providing a more

efficient algorithm. Similar to EMRSA, our work is
also designed for scheduling single jobs. However, it
supports multiple jobs by executing them one after the
other.

In almost every data center, there is some sort of
job, which should be not only run at a regular interval
but also done before a deadline. Minimizing this type
of jobs are the main focus (but not limited to) of our
work. For example, a mail service has a spam detec-
tion job that should be run every 10 minutes, with a
deadline of 5 minutes or a health-care company may
need to collect data of its patients from sensors every
5 minutes and process them in 2 minutes. There are
many other examples of such repetitive jobs. Interval
and deadline can vary from minutes to hours or even
days for different applications. Since these sorts of
jobs are typically repetitive, job profiling can be used
to estimate performance characteristics of them, such
as energy consumption and processing time as also
suggested and used in [23]. A scheduler can use this
data and schedule jobs for future runs. As these jobs
run so many times, profiling for the first run does not
cost much on average. Thus, similar to [23], our algo-
rithm also uses pre-computed characteristic data of
jobs to minimize the total energy of future jobs while
satisfying the SLA.

1.1 Our Contribution

To the best of our knowledge, Mashayekhy et al.
[23] and their EMRSA algorithm, represent the prior
state of the art to solve the problem of task assign-
ment and scheduling of a single MapReduce job for
energy-efficient computation on a heterogeneous clus-
ter of computers. We analyze the prior art deeply in
Section 2 to find the opportunities to improve the solu-
tion of this problem. We enhance this state of the
art and compare our solution with EMRSA and the
optimal one. Our major contributions are described as
below:

– We first model the problem as an integer lin-
ear program which is easier to understand and
faster to execute than the LP model presented
in [23].

– We provide our greedy algorithm that uses a
heuristic function to solve the problem. Decision
making in the optimization procedure is based
on minimizing the energy consumption of tasks,

A Task-Based Greedy Scheduling Algorithm for Minimizing... 537

by prioritizing the tasks with a higher variance
of energy consumption over given machines and
then selecting the best slot for each one of them.
We called our proposed algorithm TGSAVE,
where TGSAVE is an acronym for Task-based
Greedy Scheduling Algorithm based on Variance
to minimize Energy consumption of MapReduce.

– We further analyze the complexity of our algo-
rithm and show that the time complexity of our
algorithm is polynomial in the number of map
slots, reduce slots, map tasks and reduce tasks,
and hence, can work efficiently for enormous
problem sizes.

– We performed several experiments on a Hadoop
cluster with different machines to measure the
energy consumption and processing time of sev-
eral MapReduce benchmark applications covering
different characteristics including Word-Count,
Sequence-Count, Self-Join, Ranked-Inverted-Index,
Inverted-Index, Histogram-Movies, Classifica-
tion, Adjacency-List, K-Means, and Page-Rank.
We use this data as well as the same Tera Sort
benchmark data used for evaluating EMRSA in
[23] as input data for our designed algorithm to
analyze the performance.

– TGSAVE saves energy up to 35% more than
EMSRA and is at most only 4% (1.4% on aver-
age) far from the optimal solution.

– TGSAVE finds solutions under deadlines up to
74% tighter than the tightest one feasible by
EMRSA and it can meet deadlines as tight as only
12%, on average, bigger than the energy-oblivious
minimum makespan.

– With all above improvements, TGSAVE still works
in the same order of time as EMRSA.

1.2 Organization

The rest of the paper is organized as follows. In
Section 2, the motivational example is presented. In
Section 3, we review the related work in this field.
In Section 4, we describe the problem of schedul-
ing a MapReduce job in heterogeneous environments
for big data application and model the problem as
an integer linear program. In Section 5, we present
our proposed algorithm. In Section 6, we present the
experimental results. Finally, we conclude the paper
and present possible directions for future work in
Section 7.

2 Motivational Example

Mashayekhy et al. [23] proposed, EMRSA, an energy-
aware scheduler of a MapReduce job for big data
applications in heterogeneous environments. EMRSA
uses prior knowledge about workload to estimate
future response time and energy consumption of tasks.

We analyzed the performance of EMRSA and Opti-
mal algorithms through a number of experiments run
on our own setup. The details of the workloads and the
experimental setup are described in Sections 6.1 and
6.2 respectively. The results show that EMRSA per-
formance is up to 36% far from the Optimal choice.
More importantly, for each task assignment, the dis-
tance between EMRSA and Optimal increases when
the variance of energy consumption of the task on
different machines increases.

We analyzed task assignment of EMRSA and Opti-
mal solutions. The results are shown in Fig. 1. The
horizontal axis represents tasks in ascending order
(from left to right) of above variance. The primary
vertical axis (left) shows the EMRSA/Optimal energy
consumption for each task. The secondary vertical
axis illustrates the variance of energy consumption
on different machines for each task. The results of
our evaluation show that in EMRSA solution a task
with a higher variance is often farther from the Opti-
mal choice. Which means the gap between EMRSA
and the Optimal solutions grows with the increase
in the level of heterogeneity of the cluster. This is a
core observation of ours and represents the bottom
line underlying our proposed algorithm. Based on the
aforementioned observation, we decided to give a task
with a higher variance in energy consumption over
machines a higher priority during assignment so that
it is assigned to the machine that can execute it more
efficiently.

Thus, the core idea behind our algorithm is to first
carefully select tasks for assignment (i.e., start from
those with higher variance) and then choose the best
available machine for them. This is in contrast to
EMRSA which starts from more efficient machines
based on their average energy for all tasks, and then
chooses tasks to run on them. Experimental results
show that our solution is much more effective and is at
most 4.6% far from Optimal. The details are presented
in Sections 5 and 6.

The work by Mashayekhy et al. in [23] is the closest
one to ours and the basis for comparison for us. Both

538 M. Hadadian Nejad Yousefi, M. Goudarzi

0
10000
20000
30000
40000
50000

1
1.2
1.4
1.6
1.8

2

0 20 40 60 80 100 120
Task Number

(c)

Word-Count

0

2000

4000

6000

8000

1

2

3

4

5

0 40 80 120 160 200 240
Task Number

(d)

Self-Join

0

2000

4000

6000

8000

1

2

3

4

5

0 50 100 150 200
Task Number

(e)

Ranked-Inverted-Index

0
1000
2000
3000
4000
5000

1
2
3
4
5
6

0 50 100 150 200 250
Task Number

(g)

Histogram-Movies

0

40000

80000

120000

1

1.5

2

2.5

0 25 50 75 100 125 150
Task Number

(h)

Adjacency List

0

20000

40000

60000

1

1.5

2

2.5

0 20 40 60 80 100 120
Task Number

(f)

Inverted-Index

0
20000
40000
60000
80000
100000

1
1.25

1.5
1.75

2
2.25

0 10 20 30 40 50 60

Va
ria

nc
e

Map Task Number
(a)

Sequence-Count

EMRSA/Op�mal Variance

0
2000
4000
6000
8000
10000

1
1.55

2.1
2.65

3.2
3.75

0 10 20 30 40 50 60 70 80

Va
ria

nc
e

EM
RS

A/
O

p�
m

al
 E

ne
rg

y

Reduce Task Number
(b)

Sequence-Count

EMRSA/Op�mal Variance

EM
RS

A/
O

p�
m

al
 E

ne
rg

y

Fig. 1 EMRSA to the Optimal ratio of energy consumption
of each task for PUMA benchmarks. Tasks are sorted by the
variance of their energy consumption on available machines.
Sequence count map tasks (a), and reduce tasks (b) are shown

separately to view more details, while for the (c-h) bench-
marks, both map as well as reduce tasks are shown together. The
EMRSA/Optimal values are drawn as Dots on primary axis, and
the Variances are shown as a line on the secondary axis

works tackle the same problem, but the solutions are
different. EMRSA schedules tasks with a slot-based
perspective. In the first step, EMRSA determines the
most energy-efficient map slot and reduce slot, then
assigns map and reduce tasks with longest process-
ing time to these two slots until no other task can be
assigned; afterward, it sets the deadline for execut-
ing all map tasks based on the processing time of the
selected tasks on these two slots. In the second step,
EMRSA continues to select the next most energy-
efficient slots among the remaining slots and fills them
with tasks that have the longest processing time on the
selected slots until all tasks are assigned. On the con-
trary, our proposed algorithm schedules tasks with a
task-based perspective. In the first step, our proposed
algorithm determines a feasible deadline for map tasks
based on the average processing time of each task
on every slot. In the second step, TGSAVE priori-
tizes the tasks with the highest variance of energy
consumption on available slots since this means such

tasks have the greatest effect on total energy consump-
tion. Thus, starting from the top of the above sorted
list of tasks, the first available slot with minimum
energy consumption is chosen for it while consider-
ing the map as well as final deadlines (or equivalently,
while satisfying a given SLA), until all tasks are
assigned.

3 Related Work

There are many prior works on hardware-based energy
reduction techniques such as turning off a subset of
machines [14, 17, 20, 21] or putting them into low
power mode [24], memory management [10, 18, 22,
27, 31], dynamic voltage frequency scaling [29, 30]
and using proper processor for each workload [39].
Meanwhile, software-based approaches efficiently use
IT equipment components to reduce energy consump-
tion. Many prior studies focus on performance.

A Task-Based Greedy Scheduling Algorithm for Minimizing... 539

Cho et al. [11] designed Natjam, a system that
supports arbitrary job priorities and hard real-time
scheduling. Natjam improves completion time and
Natjam-R, an extension of Natjam, satisfies more
job deadlines. Wolf et al. [35] described FLEX as a
flexible scheduling scheme with the goal of optimiz-
ing a variety of standard scheduling theory metrics
including response time and makespan. The FLEX
allocation scheduler can achieve performance close to
optimal.

The whole point of Heterogeneous Computing is
to use the right processor, in the right place, at the
right time. Heterogeneity provides a good opportu-
nity for researchers to push their studies forward in
order to gain better performance, lower cost, and
energy efficiency in data centers. Many studies are
working on improving the performance of MapRe-
duce in heterogeneous environments. Ahmad et al.
[3] addressed two key reasons for poor performance
of MapReduce on heterogeneous clusters. They also
proposed Tarazu, a communication-aware suite of
optimizations to improve MapReduce performance on
heterogeneous clusters. Krish et al. [19] proposed a
hardware-aware scheduler to improve the resource-
application match. Zaharia et al. [40] designed a
scheduling algorithm, LATE, that is robust to het-
erogeneity while improving response time. Yang and
Chen [38] designed an adaptive task allocation sched-
uler, ATAS, to improve LATE scheduler. There are
also some other studies with the goal of improving the
performance of MapReduce in heterogeneous envi-
ronments with paying little or no attention to energy
efficiency [5, 16, 28, 32, 33, 36].

After reaching a power limit because of vari-
ous reasons such as insufficient electricity supply
and cost budget limitation, recent research started to
pay attention to energy-efficient computing. Yan et
al. [37] present a MapReduce job scheduler for the
heterogeneous multi-core processor, called DyScale.
The goal of DyScale is to improve the perfor-
mance of MapReduce in heterogeneous environments
while satisfying a given power budget. The differ-
ence between DyScale and our proposed work is
that our goal is minimizing the energy consump-
tion of MapReduce while meeting a given deadline
to finish all tasks. Zhang et al. [41] presented a
heterogeneity-aware framework, called HARMONY,
that dynamically adjusts the number of machines
to make a compromise between energy saving and

scheduling delay. It also considers the reconfiguration
cost.

4 Problem Description and Model

MapReduce is an abstraction to organize massively
parallel tasks. Hadoop is an open-source implemen-
tation of it. Hadoop is a software framework for
distributed processing of large data sets over several
machines. The main idea of MapReduce could be
summarized as mapping data set into a collection of
key and value pairs and then reducing all pairs with
the same key. A MapReduce job includes a set of
map and reduce tasks, distributed over slave nodes to
be executed. The first-order execution of a MapRe-
duce job can be divided into two phases: Map phase
and Reduce phase, executing map tasks and reduce
tasks respectively. Reduce phase typically starts after
execution of all map tasks are over. The master node
in distributed Hadoop clusters hosts various storage
and processing management services. One of master
node services, JobTracker, performs scheduling of the
jobs and deploying them to the TaskTracker nodes. An
instance of the TaskTracker daemon operates on every
slave node in the Hadoop cluster. Every TaskTracker is
configured with a set of slots. These indicate the num-
ber of tasks that can be simultaneously accepted from
JobTracker. Slots are also divided into two type of map
slots and reduce slots, such that each map task must be
assigned to a map slot, and each reduce task must be
assigned to a reduce slot. To run a MapReduce work-
flow, one needs to create two scripts: the map script,
and the reduce script. The framework will handle the
rest automatically. First, the framework splits the input
data into smaller segments and passes each segment
to a distinct machine. Afterward, each machine runs
the map script on the portion of data assigned to it.
The map script takes some input data and maps it to a
number of < key, value > pairs. Then, emits them as
intermediate data. The reduce script takes these inter-
mediate data as a collection of < key, value > pairs
and reduces the pairs with the same key into a single
pair.

The problem is to schedule map and reduce tasks
and assign each of them to a slot for minimizing the
overall energy consumption of all tasks for a given
deadline in heterogeneous environments. Scheduling
is based on prior knowledge about the workload,

540 M. Hadadian Nejad Yousefi, M. Goudarzi

including estimated energy consumption and esti-
mated processing time of each task while executing on
each machine. In fact, assigning a task to a slot means
placing data on the machine to which the slot belongs,
and running the corresponding script.

It is noteworthy that actual MapReduce execution is
more complicated than the above mentioned abstrac-
tion and indeed involves a number of other steps and
optimization opportunities as well. We will discuss a
number of them in Section 6.4. For a fair compari-
son to the prior art, however, in this work we suffice
to this abstraction as proposed in [23] which serves as
the state of the art to the best of our knowledge, and
hence, the basis for comparison. Further extensions
are discussed in Section 7.

We consider a MapReduce job comprised of a set
of map tasks and reduce tasks. Let i be the ID num-
ber of a map task and j be the ID number of a reduce
task. In Hadoop, the number of map tasks is deter-
mined by the total size of inputs; i.e., the total number
of blocks of the input files while the block size is con-
figurable per file. The number of reduce tasks for the
job is set by the user. We also have a number of map
slots and a number of reduce slots available on hetero-
geneous machines for executing the respective tasks.
Let k be the ID number of a map slot and l be the
ID number of a reduce slot. The system administra-
tor configures the number of slots on each machine
when the Hadoop cluster is setup. Let I and J be the
set of map and reduce tasks, and K and L be the set
of map and reduce slots, respectively. Let D be the
given deadline for completing all tasks before missing
it. Each slot executes tasks in sequential order but dif-
ferent slots can work simultaneously. Similar to [23],
we also assume that the reduce slots can work only
when all map slots have done their tasks. We denote
Dm and Dr as deadlines (relative to the correspond-
ing start times) for completing all of map tasks and all
of reduce tasks, respectively. We consider the problem
in heterogeneous environments. Therefore, processing
time and energy consumption of each task, either map
task or reduce task, can vary per machine. As inputs of
our problem, let Em

ik and T m
ik be the estimated energy

consumption and the estimated processing time of
map task i while executing on map slot k, respectively.
Similarly, let Er

jl and T r
jl be the estimated energy con-

sumption and the estimated processing time of reduce
task j while executing on reduce slot l, respectively.
Note that Em

ik , T m
ik , Er

jl and T r
jl are elements of tables

Em, T m, Er and T r respectively. Further, note that our
problem is to schedule jobs that repetitively run on the
machines; jobs can even be run periodically every day.
Thus, it is feasible to gather the needed information
about the workload by one-time profiling and make
estimations even better in every run of the job.

We model the problem as an integer linear program.
In order to do so, we define two sets of variables for
deciding which slot should run which subset of tasks.
We denote Mik and Rjl as follows:

Mik =
{

1 if map task i is assigned to map slot k

0 otherwise,

(1)

Rjl =
{

1 if reduce task j is assigned to reduce slot l

0 otherwise,

(2)

The objective function is as follow:

Min
∑
i∈I

∑
k∈K

Em
ikMik

∑
j∈J

∑
l∈L

Er
jlMjl (3)

The constraints are described as follow:
∑
k∈K

Mik = 1, ∀i ∈ I (4)

∑
l∈L

Rjl = 1, ∀j ∈ J (5)

Dm + Dr = D (6)

∑
i∈I

T m
ik Mik ≤ Dm, ∀k ∈ K (7)

∑
j∈J

T r
jlMjl ≤ Dr, ∀l ∈ L (8)

The objective function (3) is to minimize total
energy consumption of all tasks. Constraint (4)
ensures that each map task is assigned to one and
only one map slot, and all task must be assigned.
Similar to constraint (4), constraint (5) ensures the
same for reduce tasks. Constraint (6) guarantees that
non-overlapping execution of map and reduce phase
will not miss the deadline. Constraint (7) ensures that

A Task-Based Greedy Scheduling Algorithm for Minimizing... 541

map slots complete execution of all map tasks before
missing Dm. Constraint (8) ensure that reduce slots
complete execution of all reduce task before missing
Dr .

Note that, as the objective of the problem is to mini-
mize the sum of energy consumption of map tasks and
reduce tasks, and since scheduling is strongly related
to the deadline, choosing Dm and Dr is very impor-
tant. Relaxing Dm corresponds to more opportunity
to reduce the energy consumption of map tasks while
at the same time reducing that opportunity for reduce
tasks. Clearly, there is a trade-off between energy con-
sumption of map tasks and reduce tasks, and making
the right balance is the key for approaching the opti-
mal solution of the problem. It is noteworthy that both
our model and the ILP model presented in [23], model
the same problem, but our above formulation is sim-
pler to solve, due to reducing the number of required
variables, and easier to understand.

5 Greedy Scheduling Algorithm

We analyze EMRSA deeply as desribed in section 2
and found its weaknesses as below:

– EMRSA sets the map phase deadline only based
on the knowledge about the most energy efficient
machine. In heterogeneous environments, the best
machine can be an outlier. Thus, such choice of
map phase deadline may not be a good one for
every other machine in the cluster.

– EMRSA’s underlying assumption is that if a task
has a smaller processing time on a machine, the
machine consumes more energy to execute the
task faster. As also described in [26], this assump-
tion is not always true as witnessed in newer
computers that consume less while processing
more.

– EMRSA selects a machine, fills it with tasks, and
then selects next machine to fill. Therefore, it may
lose some opportunities to minimize the energy
consumption.

– EMRSA assigns tasks to machines only based
on the processing time. It does not consider the
energy consumption of tasks.

Consider two types of operation, A and B, and two
machines, X and Y. Machine X (Y) executes type A

(B) operations faster and with less energy. EMRSA
selects one of them and fills it with type A and B
operations while the other machine is idle and can exe-
cute one type of operation better. As a result, if we
give EMRSA a larger deadline, it may lose more and
more opportunities to minimize the total energy con-
sumption, which is obviously undesirable. Based on
this analysis, we designed our proposed algorithm that
takes knowledge about every machine and every task
into account for scheduling a single MapReduce job
in every heterogeneous environment.

Our algorithm has three main phases. The first
phase is to estimate the map and reduce phases dead-
line, the second phase is to set up queues, and the final
phase is to assign each task to a machine while sat-
isfying the SLA. Function 1 shows this top-level pro-
cedure, where ESTIMATE, SETUPQ, and ASSIGN
are functions for doing first, second and third phase
respectively.

1 ESTIMATE();
2 SETUPQ();
3 ASSIGN();

In the first phase as shown in Function 2, TGSAVE
reads inputs of the problem as described in Section 4.
Then based on the knowledge about the workload,
it determines Dm and Dr . Determining deadline for
map phase and reduce phase requires two vectors
T

m
and T

r
. Let T

m

i be the average processing time
of map task i on every map slot (line 2). Simi-
larly, let T

r

j be the average processing time of reduce
task j on every reduce slot (line 2). Line 4 deter-
mines the deadline for map tasks, Dm, proportional
to the sum of these average execution times of tasks.
Line 5 sets the remaining time of Deadline to Dr .
Also, for our heuristic function to later select tasks
based on their priority, we need two vectors E

m
and

E
r
, which are defined similar to above T vectors

(line 3).
In the second phase, TGSAVE setups required

queues for scheduling as shown in Function 3. We
need two priority queues, one to sort map tasks and
one for reduce tasks. In addition, we need a metric
for deciding which task should be assigned earlier.
We use the variance of energy consumptions of each
task over all machines as this metric. The higher the

Function 1 TGSAVE main function

542 M. Hadadian Nejad Yousefi, M. Goudarzi

Br
l are the busy time of map slot k and reduce slot l,

respectively (line 1). We separate our problem into two
independent subproblems by determining the deadline
for completing map and reduce tasks. The objective
of this phase is to minimize each subproblem sepa-
rately. Therefore, in this phase, we first assign map
tasks to map slots (lines 3-15). After all map tasks are
assigned, TGSAVE computes how much of the time
for completing map tasks is still unused and adds this
amount of time to the deadline of completing reduce
tasks (line 16) which may bring better opportunity
for reducing the energy consumption of reduce tasks.
Then, we assign reduce tasks while satisfying deter-
mined deadline (line 17 to 29). We could have first
assigned reduce tasks to reduce slots while satisfying
deadline for executing reduce tasks, and then assign
map tasks while satisfying map phase deadline plus
the surplus amount of time remained from assigning
reduce tasks. Our experiments over a number of work-
loads show that on average, the performances of both
strategies are almost the same. However, we can run
both strategies and mark the best result as the out-
come of the algorithm. Note that in such case, the
processing time of the algorithm less than doubles
since some computations are shared between the two
runs. The output of the ASSIGN() function, as well as
the top level algorithm, is tables of M and R that con-
tains the information about how tasks are assigned to
slots.

For assigning tasks, TGSAVE selects tasks one
after another by removing them from the respec-
tive queue (lines 3-5, and also 17-19). The pollMax
function (lines 4 and 18) selects the task that has
the highest variance among unassigned tasks. After
a task is selected, we remove slots one by one from
the respective queue (lines 6-7, and also 20-21). The
pollMin function removes the slot with the lowest
energy consumption among all slots (lines 7 and 21).
We check slots for finding the slot such that if the
selected task executes on the slot, it has the small-
est energy consumption while satisfying the deadline
(lines 8 and 22). When such slot is found, we stop the
search, assign the task to the slot, update busy time
of selected slot (lines 9-12, and also 23-26) and select
next task until no task is left unassigned, or cannot find
a solution (lines 13-14, and also 27-28). If we find a
feasible schedule, then return M and R as the output of
the algorithm that shows which slot should run which
subset of tasks (line 30).

Function 2 ESTIMATE

1 read input (D, T m, T r , Em, Er)

2 T
m

i =
∑

k∈KT m
ik|K| , T

r

j =
∑

l∈LT r
jl

|L|
3 E

m

i =
∑

k∈KEm
ik|K| , E

r

j =
∑

l∈LEr
jl

|L|
4 Dm = D ×

∑
i∈I T

m
i∑

i∈I T
m
i +∑

j∈J T
r
j

5 Dr = D − Dm

variance, the higher the priority. Tasks with greater
variance are more important for scheduling because
energy consumption of running the task can vary a lot
from a machine to another machine. For example, for
a task with zero variance, it does not matter to which
machine it is assigned because energy consumptions
of the task on every machine are the same. On the
other extreme, a large variance means there is a large
difference between the choices. We add tasks and their
priorities in respective priority queues to sort them.

Let Qm and Qr be the priority queues based on the
above variances in energy consumption for map tasks
and reduce tasks, respectively (lines 1-5). Also, every
task needs a priority queue to select a proper slot. Let
Sm

i and Sr
j be the priority queue of slots for map task i

and reduce task j , where slots are prioritized based on
the energy consumption (lines 6-12).

Function 3 SETUPQ

1 create priority queues of tasks Qm and Qr

2 for every map task i do

3 Qm.put(i,

∑
k∈K(Em

ik−E
m
i)2

|K|)

4 for every reduce task j do

5 Qr.put (j,

∑
l∈L(Em

jl−E
m
j)2

|L|)

6 create priority queues of slots for each map task Sm
i

and each reduce task Sr
j

7 for every map task i do
8 for every map slot k do
9 Sm

i .put (k, Em
ik)

10 for every reduce task j do
11 for every reduce slot l do
12 Sr

j .put (l, Er
jl)

The final phase is to assign tasks to respective slots,
as shown in Algorithm 4. We need to know the run-
ning time of each slot to ensure satisfying the deadline.
We define two vectors Bm and Br , where Bm

k and

A Task-Based Greedy Scheduling Algorithm for Minimizing... 543

1 Bm = {0} , Br = {0} //Busy-time of map and reduce
slots

2 M = {0} , R = {0} // Task-to-slot binary variables
for map and reduce tasks

3 while Qm is not empty do
4 i = Qm.pollMax()

5 isComplete = false
6 while Sm

i is not empty do
7 k = Sm

i .pollMin()

8 if Bm
k + T m

ik ≤ Dm then
9 Bm

k = Bm
k + T m

ik

10 Mik = 1
11 isComplete = true
12 break
13 if isComplete = false then
14 Output: algorithm fails to find a feasible

schedule
15 return
16 Dr = Dr + (Dm − maxk∈K(Bm

k))

17 while Qr is not empty do
18 j = Qr.pollMax()

19 isComplete = false
20 while Sr

j is not empty do
21 l = Sr

j .pollMin()

22 if Br
l + T r

jl ≤ Dr then
23 Br

l = Br
l + T r

jl

24 Rjl = 1
25 isComplete = true
26 break
27 if isComplete = false then
28 Output: algorithm fails to find a feasible

schedule
29 return
30 Output: M and R

5.1 Complexity Analysis

In Function 2, time complexity of reading inputs is
O(| I || K | + | J || L |) where | I |, | K |,
| J |, and | L | are numbers of map tasks, number
of map slots, number of reduce tasks and number of
reduce slots, respectively (Function 2, lines 1). Simi-
larly, Time Complexity of computation in lines 2-3 is
O(| I || K | + | J || L |). That of determining dead-
line in line 4 is O(| I | + | J |). Thus, total time
complexity of Function 2 is O(| I || K | + | J || L |).

We use Fibonacci heap [15] for implementation of
priority queues. Time complexities of insertion and
deletion are O(1) and O(log n), respectively. In Func-
tion 3, time complexities of putting map tasks and
reduce tasks in respective queues are O(| I | (| K |
+1)) and O(| J | (| L | +1)), respectively (Func-
tion 3, lines 2-5). Similarly, that of lines 7-12 is O(|
I || K | + | J || L |). The total time complexity of
Function 3 is hence O(| I || K | + | J || L |).

In Algorithm 4, the time complexity of line 16 is
O(| K |). That of removing map tasks and reduce
tasks from queues and assigning them to respective
slots is O(| I | (log | I | + | K | log | K |)+ |
J | (log | J | + | L | log | L |) (Algorithm 4, lines
3-15 and also lines 17-29). Therefore, the total time
complexity for Algorithm 4 is the latter since it is the
dominant one.

Function 4 is the main body of our algorithm, which
calls ESTIMATE, SETUPQ and ASSIGN functions.
Thus, the time complexity for TGSAVE is the sum
of each one of them that is equal to the time com-
plexity of Algorithm 4 since it has the dominant time
complexity. The space complexity of the algorithm is
O(| I || K | + | J || L |) for the arrays and heaps.

6 Experiments

This section evaluates the performance of our pro-
posed algorithm, TGSAVE. We perform many exper-
iments to analyze our proposed algorithm to show
the effect of numbers of map and reduce tasks, size
of input data and function of applications and het-
erogeneity level of environments. First, we describe
benchmarks and workloads used for analyzing the per-
formance of algorithms, and then we compare the
performance of TGSAVE with that of EMRSA [23]
and optimal solution.

6.1 Benchmarks and Workloads

For analyzing the performance of algorithms, we
use eleven benchmarks. Since we want to compare
TGSAVE with EMRSA, we select Tera Sort, K-
Means, and Page-Rank because they were used for
evaluating EMRSA. Mashayekhy et al. in [23] classi-
fied configurations of Tera Sort into two class of large
and small scale. Since small-scale experiments are
not sufficient to accurately evaluate the effectiveness

Algorithm 4 ASSIGN

544 M. Hadadian Nejad Yousefi, M. Goudarzi

of scheduling algorithm for Big Data applications,
we only use large scale configurations. We name the
workload related to the number of map tasks and
the number of reduce tasks. For instance, workload
128M-256R has 128 map tasks and 256 reduce tasks.
These experiments show the effect of numbers of
map and reduce tasks on the performance of algo-
rithms. The other ten benchmarks that we use for
evaluating algorithms are nine PUMA benchmarks
presented by Ahmad et al. [4] plus Page-Rank. We
call the set of selected benchmarks PUMA+. We
select PUMA+ benchmark suite because it represents
a broad range of MapReduce applications demon-
strating application characteristics with high and low
computation as well as high and low shuffle volumes.
Histogram-Movies and Classification are two bench-
marks with no reduce tasks. Reduce-less benchmarks
are used for evaluating the third phase of our algo-
rithm (Algorithm 4). For these two benchmarks, there
is only one choice for the deadline of map phase as
there are no reduce tasks and we can assign entire
given deadline to the map phase deadline. Name of
each workload is the name of the benchmarks since
we profile only one configuration for each of them
related to input data for the benchmarks. Name and
the configuration of each selected PUMA+ workload
are shown in Table 1 The benchmarks are described
below:

– Word-Count counts the occurrences of each word
in the input data. Input data is a large document
or a collection of documents. The user defines the
term word.

– Sequence-Count is similar to Word-Count. Instead
of counting a word, Sequence-Count counts all
unique sets of three consecutive words in the input
documents.

– Self-join generates association among k+1 fields
given the set of k-field associations.

– Inverted-Index generates word to document index-
ing while the input is a list of documents. Ranked-
Inverted-Index takes a list of words and their
frequencies per document as input and generates
lists of documents that contain the given words.
Documents in the output lists are ranked based on
the frequency.

– Histogram-Movies is a generic tool used in many
data analyses. It generates a histogram of the input
data.

– Classification classifies movies into numbers of
pre-determined clusters. The input data for both
Histogram-Movies and Classification is the same,
and it includes key-value pairs where the key is
movie ID and value is a list of raters ID and their
rating.

– Adjacency-List generates adjacency list and
reverses adjacency list of nodes for a given graph.

– Tera Sort samples the input data and uses MapRe-
duce to sort the data into a total order.

– K-means clusters data into k clusters.
– Page-Rank ranks website for use in search engines.

We use these benchmarks to evaluate the perfor-
mance of algorithms for different applications and
different datasets.

6.2 Experimental Setup

For profiling selected PUMA+ workloads [4] and
therefore measuring energy consumption and pro-
cessing time of each task while executing on differ-
ent machines, we deploy a cluster of nine machines
with the total of 40 cores. Configurations of all nine
machines are shown in Table 2. The CPU used in all
machines is Intel Xeon E5. The deployed cluster is
a cluster of Hadoop version 1.2.1. We set one map,
and one reduce slot to each core. We set Slowstart
parameter of Hadoop to 1, to avoid overlapping of
execution of map and reduce tasks to accurately mea-
sure the energy consumption of map tasks and reduce
tasks separately. Then, we ran PUMA+ workloads on

Table 1 PUMA+ Workloads

Workloads Number of Tasks

Map Reduce

Word-Count 100 16

Sequence-Count 60 80

Self-Join 135 90

Ranked-Inverted-Index 130 90

Inverted-Index 100 16

Histogram-Movies 240 0

Classification 120 0

Adjacency-List 70 80

K-Means 120 70

Page-Rank 110 70

A Task-Based Greedy Scheduling Algorithm for Minimizing... 545

Table 2 Machines configurations

Machines Number Of Cores RAM (GB)

Configurations

1 1 3.7

2 2 7.5

3 4 15

4 2 13

5 2 1.8

6 4 3.6

7 8 7.2

8 16 14.4

9 1 1.7

each node of deployed Hadoop cluster for measur-
ing processing time and energy consumption of each
task on each node. We use Hadoop logs for mea-
suring processing time of each map and reduce task.
Moreover, we use built-in power meter of servers to
measure the energy consumption of each map and
reduce task. We subtract energy consumption of idle
state of machines from measured values to get the
exact energy consumption for each map and reduce
tasks while executing on different machines.

For Tera Sort workloads, we did not run and pro-
file them. Instead, we used the same profiled data that
Mashayekhy et al. [23] used for evaluating EMRSA.
They used a cluster of four machines with the total
of 80 GB memory and 64 processors. Every node has
16 2.4 GHz Intel processor. Two of them have 24 GB
memory, and the other two have 16GB memory.

In our experiments, we first measured the time
and energy consumption of tasks on real machines
as described above. Then, we analyzed the perfor-
mance of TGSAVE, EMRSA and optimal solution
for minimizing the total energy consumption for all
of the prepared workloads through simulations based
on these measurements. We implemented EMRSA as
Mashayekhy et al. described it in [23]. For getting the
optimal result, we solve the ILP model described in
Section 4. As solving ILP models may take hours and
even days, we ran the ILP solver until the results of
ILP reached to below 0.5% of the LP relaxation of the
same ILP model. Note that such LP relaxation model
gives a lower bound of the solution of the ILP model.
The gap between our ILP solution and LP lower bound
is only a fraction of a percent, which provides a very
close approximation of the optimal results.

We perform two classes of experiments for each
workload: relaxed deadline and tight deadline exper-
iments. We define the deadlines smaller than three
times the minimum makespan as tight, and on the
other hand, deadlines bigger than five times the mini-
mum makespan are considered relaxed deadlines. For
relaxed deadline experiments, we select 1500 (2500
for k-means) seconds as given deadline, and for tight
deadline experiments, we choose the maximum of the
smallest satisfiable deadline of EMRSA and that of
TGSAVE as shown in Tables 3 and 4 for Tera Sort
large-scale and PUMA+ workloads, respectively. The
second column of the tables reports the corresponding
value relative to the minimum makespan.

We perform relaxed and tight deadline experiments
to compare the performance of TGSAVE and EMRSA
in different situations. We also perform experiments
to evaluate the tightest satisfiable deadline for each
algorithm. We ran both TGSAVE and EMRSA several
times in a binary search manner for each workload to
find the tightest deadline that each algorithm can meet.
We also measure the run time of TGSAVE, EMRSA,
and the Optimal on an Intel Core i7 2740QM proces-
sor with 8 GB memory. Since run time of Optimal
can reach to hours while at a large part of this time
the objective function does not noticeably improve, we
mark the ILP finished as soon as its objective func-
tion reaches to 0.5% proximity of its LP relaxation;
note that since the solution to the LP relaxation of the
ILP problem represents a lower bound of the original
ILP problem, this ensures 0.5% proximity to the ILP
optimal solution even in the worst case.

Table 3 Tight deadline for tera sort large-scale workloads

Workloads Tight Deadline % of makespan

(s)

64M-128R 181 146

128M-64R 164 122

128M-128R 161 130

128M-256R 196 114

128M-512R 257 112

256M-128R 180 136

256M-256R 205 145

256M-512R 291 128

512M-128R 243 175

512M-256R 221 173

512M-512R 329 170

546 M. Hadadian Nejad Yousefi, M. Goudarzi

Table 4 Tight deadline for puma+ workloads

Workloads Tight Deadline % of makespan

(s)

Word-Count 564 236

Sequence-Count 693 274

Self-Join 634 244

Ranked-Inverted-Index 634 238

Inverted-Index 760 311

Histogram-Movies 160 186

Classification 368 396

Adjacency-List 545 142

K-Means 1806 184

Page-Rank 1039 169

6.3 Analysis of Results

We analyzed different aspects of our work, includ-
ing comparing the performance of TGSAVE with
EMRSA and the Optimal on Tera Sort and PUMA+
workloads, analysis of the characteristics of the work-
loads themselves to determine the root cause of their
different performances under above algorithms, and
analysis of our proposed algorithm performance when
the job size increases.

Tera Sort We perform several experiments on profiled
datasets to compare the performance of TGSAVE,
EMRSA, and Optimal. Figure 2 presents the total
energy consumption of relaxed (a) and tight (b) dead-
line experiments on Tera Sort workloads obtained by
EMRSA, TGSAVE and Optimal. The results show
that regarding energy reduction, TGSAVE performs
only marginally better than EMRSA for every Tera
Sort workload. For these two class of experiments
on Tera Sort Benchmarks, TGSAVE achieves energy
consumption for jobs up to 4.78% less than EMRSA
solutions with an average of 2.66%. Note that in terms
of energy reduction, even Optimal is not much bet-
ter either for this set of benchmarks—see Analysis of
Workloads below to find out the reason. Concerning
the tightest satisfiable deadline, however, TGSAVE
performs significantly better than EMRSA as dis-
cussed below.

The time complexity of finding the optimal solution
is exponential. This fact makes Optimal impracti-
cal because scheduling may take even longer than

the job itself. Nevertheless, TGSAVE with polyno-
mial time complexity finds a schedule close to Opti-
mal. For evaluating the difference between TGSAVE
and optimal solution, we define Distance to Opti-
mal, which determines the potential of improving
TGSAVE energy consumption to reach energy con-
sumption of the optimal solution. Comparing results
for TGSAVE and Optimal shows that TGSAVE per-
formance can be enhanced only 2.96% and 2.51% on
average for relaxed and tight deadline experiments,
respectively. The worst-case Tera Sort workload for
the relaxed deadline is the one with 256 map tasks and
128 reduce tasks, in which the result of TGSAVE is
4.30% far away from the result of Optimal. Likewise,
Tera Sort large-scale workload with 128 map tasks
and 64 reduce tasks is worst-case for tight deadline
experiments, where the Distance to Optimal is 4.35%.

Both TGSAVE and EMRSA have a lower bound
for given deadline that they can meet. We called it
Tightest Satisfiable Deadline (TSD). Obviously, it is
better to have a smaller lower bound, which means the
algorithm can schedule jobs under harder conditions.
Figure 3a presents the TSD of TGSAVE and EMRSA
alongside the energy-oblivious minimum makespan
for each Tera Sort workload. The results show that
for almost every workload TGSAVE can satisfy dead-
lines tighter than EMRSA. For these experiments,
TGSAVE can satisfy deadlines up to 19.89%, and
8.03% on average, smaller than smallest given dead-
line for which EMRSA can find a feasible schedule
while satisfying SLA. In addition, TGSAVE can meet
deadlines 19.31% bigger than the minimum makespan
on average. Note that, the primary goal of TGSAVE is
to minimize energy consumption.

The results presented in Fig. 3b show that TGSAVE
performs scheduling only marginally faster than
EMRSA as expected by considering the time com-
plexities. Both TGSAVE and EMRSA, are much faster
than Optimal. Since time complexity of Optimal is
exponential, it quickly becomes impractical when the
number of map and reduce tasks increases. Therefore,
it makes sense to use a scheduler with better time
complexity.

PUMA+ Benchmarks Figure 4a presents total energy
consumption obtained by the scheduling of TGSAVE,
EMRSA, and Optimal for relaxed deadline exper-
iments on PUMA+ workloads. The results show
that TGSAVE improvement over EMRSA is at least

A Task-Based Greedy Scheduling Algorithm for Minimizing... 547

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

To
ta

l E
ne

rg
y

Co
ns

um
p�

on
 (J

)

Number of Map task and Number of Reduce task
(a)

Relaxed Deadline ExperimentsEMRSA
TGSAVE
Op�mal

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

To
ta

l E
ne

rg
y

Co
ns

um
p�

on
 (J

)

Number of Map task and Number of Reduce task
(b)

Tight Deadline ExperimentsEMRSA
TGSAVE
Op�mal

Fig. 2 Total energy consumption of Tera Sort workloads obtained by EMRSA, TGSAVE and Optimal: a Results of relaxed deadline
experiments; b Results of tight deadline experiments

16.68% and at most 35.37% with an average of
25.25%. The improvement for Histogram-Movies and
Classification are 21.04% and 16.68% respectively.
Figure 4b shows TGSAVE also perform schedul-
ing better than EMRSA for PUMA+ workloads in
tight deadline experiments. The improvement for the
relaxed deadline experiments is at least 11.59% and
at most 30.24% with an average of 19.92%. The
Improvement for Histogram-Movies and Classifica-
tion is 18.94% and 11.59%, which means regardless of
choosing map phase deadline, TGSAVE task assign-
ment strategy is better. The results show that in both
tight and relaxed deadline experiments classification
as a reduce-less benchmark has the least improve-
ment, which means TGSAVE split deadline better into
the deadline for map and reduce phase. Note that we
count Histogram-Movies and Classification in overall
results too.

The Distance to Optimal is at most 1.91% and
4.61% with an average of 0.52% and 1.97% for

relaxed and tight deadline experiments, respectively.
The results show that scheduling of TGSAVE for
five benchmarks perfectly matches the optimal solu-
tion in relaxed deadline experiments and the Distance
to Optimal is zero percent, while there is only one
perfectly match in the tight deadline experiments.
Therefore, we can deduce that as much as the dead-
line is more relaxed, TGSAVE can find an optimal
or near optimal solution. The Distance to Optimal
for Reduce-less benchmarks is 0.00% and 0.57% on
average, respectively for relaxed and tight deadline
experiments. Thus, the performance of the third phase
of TGSAVE is very close to the optimal assignment.

The TSD of TGSAVE is up to 73.94% smaller
than that of EMRSA with an average of 48.68% for
PUMA+ workloads, as shown in Fig. 5a. On average,
the tightest satisfiable deadline of TGSAVE is only
10.84% far away from the makespan. For Histogram-
Movies and Classification workloads, the TSD of
EMRSA is 160 and 368 seconds respectively, whereas

0

50

100

150

200

250

300

350

Ti
gh

te
st

 S
a�

sfi
ab

le
 D

ea
dl

in
e

(S
)

Number of Map task and Number of Reduce task
(a)

EMRSA TGSAVE Makespan

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

Ru
n

Ti
m

e
(S

)

Number of Map task and Number of Reduce task
(b)

EMRSA TGSAVE Op�mal

Fig. 3 The performance of TGSAVE and EMRSA for Tera Sort workloads: a TSD of TGSAVE and EMRSA alongside the energy-
oblivious minimum makespan b Run time of TGSAVE, EMRSA, and Optimal

548 M. Hadadian Nejad Yousefi, M. Goudarzi

0
20000
40000
60000
80000

100000
120000
140000
160000

To
ta

l E
ne

rg
y

Co
ns

um
p�

on
 (J

)

Benchmark
(a)

Relaxed Deadline ExperimentsEMRSA
TGSAVE
Op�mal

0
20000
40000
60000
80000

100000
120000
140000
160000

To
ta

l E
ne

rg
y

Co
ns

um
p�

on
 (J

)

Benchmark
(b)

Tight Deadline ExperimentsEMRSA
TGSAVE
EMRSA

Fig. 4 Total energy consumption of PUMA+ workloads obtained by EMRSA, TGSAVE, and Optimal: a Results of relaxed deadline
experiments; b Results of tight deadline experiments

that numbers for TGSAVE are 88 and 96 seconds
while makespan of these workloads are 86 and 93
seconds, respectively. The results show that TGSAVE
assigns tasks more efficiently than EMRSA. Hence,
TGSAVE is capable of finding solutions in harder
conditions. Figure 5b presents run time of EMRSA,
TGSAVE, and Optimal. TGSAVE and EMRSA per-
form in almost the same order of time, and much
faster than Optimal. Since the run-time of both algo-
rithms (below 0.01s) is order of magnitude smaller
than the run-time of the MapReduce job itself (in order
of minutes), the run-time of algorithms is negligible.

Analysis of Workloads Our analysis shows that for
every workload TGSAVE minimizes energy more
than EMRSA and is closer to the optimal solution
while the time complexity of both algorithms is poly-
nomial in the number of map slots, reduce slots,
map tasks and reduce tasks. To understand why there
is not much difference between the performance of

TGSAVE and EMRSA for Tera Sort benchmarks, we
designed some more experiments to analyze charac-
teristics of workloads. Tables 5 and 6 depict the energy
consumption variance and processing time variance
for each workload. The variance of each task is the
variance of energy consumption (time) of each task
on every slot. The reported number of columns is the
average of the variances of every task for each work-
load. Higher variation in energy and time of workloads
means a higher level of heterogeneity in the exper-
iments environments. The difference between solu-
tions of TGSAVE and EMRSA becomes more signif-
icant when heterogeneity level of workloads is higher.
Since only two different configurations are used for
profiling Tera Sort benchmark while nine are used for
profiling PUMA+ benchmark, the level of heterogene-
ity for Tera Sort workloads is much smaller than that
of PUMA+ workloads. Therefore, TGSAVE signifi-
cant improvements over EMRSA are more obvious
in our PUMA+ workloads. This not only justifies

0
250
500
750

1000
1250
1500
1750
2000

Ti
gh

te
st

 S
a�

sfi
ab

le
 D

ea
dl

in
e

(S
)

Benchmark
(a)

EMRSA TGSAVE Makespan

0.001

0.01

0.1

1

10

100

1000

10000

Ru
n

Ti
m

e
(S

)

Benchmark
(b)

EMRSA TGSAVE Op�mal

Fig. 5 The performance of TGSAVE and EMRSA for PUMA+ benchmarks workloads: a TSD of TGSAVE and EMRSA alongside
the energy-oblivious minimum makespan b Run time of TGSAVE, EMRSA, and Optimal

A Task-Based Greedy Scheduling Algorithm for Minimizing... 549

Table 5 Variance of energy and time for tera sort workloads

Workloads Variance

Energy Time

64M-128R 129 73

128M-64R 115 73

128M-128R 184 64

128M-256R 270 73

128M-512R 99 73

256M-128R 125 73

256M-256R 179 73

256M-512R 144 73

512M-128R 135 73

512M-256R 102 72

512M-512R 144 73

the above difference in TGSAVE performance across
benchmarks but also demonstrates its significance and
superiority in heterogeneous environments which is its
main target area of usage.

Analysis of Map Phase Deadline Estimation Choos-
ing a deadline for map phase is the most important
part of the first phase of our proposed algorithm. We
performed several experiments on every workload.
Instead of assigning map phase deadline automati-
cally, we assigned a value manually to it and then ran
the rest of the algorithm. We tried a range of values
between zero and the given deadline for every work-
load. The results showed that the choice of TGSAVE
for map phase deadline is very close to the best choice:
by choosing the absolute best choice for map phase
deadline and running the rest of our proposed algo-
rithm as before, only 0.30% improvement is achieved
on average for all 36 workloads. The worst case is
observed for Ranked-Inverted-Index from PUMA+
tight deadline workloads in which the objective func-
tion improvement between the best choice for map
phase deadline and TGSAVE choice is only 1.43%: in
this case, the given deadline is 634 seconds, and the
range of map phase deadlines that TGSAVE can sat-
isfy is from 170 to 498 seconds; TGSAVE chooses 373
seconds for map phase deadline while the best choice
is 280 seconds, resulting in 32957 and 32485 joules
of energy for original TGSAVE vs. best-map-deadline
cases respectively. Since the difference is too small,

adding more effort to better estimate the map phase
deadline is not worth it.

6.4 Discussion

We used the same Hadoop MapReduce model used
in [23], which ignores some challenging issues in
MapReduce execution, for a fair comparison of the
algorithms.

A MapReduce job is divided to splitting the input
data over the cluster of machines, executing the map
script on the input data, (optionally) combining and
sorting the intermediate data on each machine, shuf-
fling the intermediate data, and reducing the inter-
mediate data [34]. The above model takes only the
map, and the reduce phases into account to schedule
a MapReduce job and does this scheduling statically
as opposed to more recent dynamic scheduling for
Hadoop clusters. Moreover, speculative execution of
map and reduce tasks comes into play when process-
ing of a task on a machine takes unexpectedly more
time than expected [34]. Finally, there are some real-
time transient system noises such as data skew and
network congestion. These are all known limitations
of the above model that needs to be addressed by fur-
ther research. The purpose and thrust of this paper
are to enhance the state of the art in the energy-aware
static scheduling of MapReduce jobs in heterogeneous
environments as in [23]. Other statically-addressable
issues can be readily added to the above model,
but dynamic aspects due to runtime anomalies, such
as speculative execution, as well as data-dependent

Table 6 Variance of energy and time for PUMA+ workloads

Workloads Variance

Energy Time

Word-Count 6681 6393

Sequence-Count 9632 7805

Self-Join 1609 7743

Ranked-Inverted-Index 1562 7912

Inverted-Index 13513 9159

Histogram-Movies 250 1115

Classification 953 6500

Adjacency-List 14207 5409

K-Means 5187 15952

Page-Rank 4843 9954

550 M. Hadadian Nejad Yousefi, M. Goudarzi

variations, such as shuffling time, need other attacks.
In either case, our algorithm and its major points can
be the basis for future extensions, and our experimen-
tal results can help the research community in under-
standing the nature of workloads and their behaviors
in the energy-aware scheduling of MapReduce jobs.
These extensions are indeed part of our future research
directions.

7 Conclusion

In this paper, we tackled the problem of schedul-
ing of a single MapReduce job in order to minimize
the energy consumption while satisfying service level
agreement in a heterogeneous cluster. Minimizing
energy consumption of each job is important to reduce
energy-related operational expenses as well as the car-
bon footprint of data centers hosting them. Moreover,
one cannot usually sacrifice processing time to save
energy. In comparison to EMRSA, our solution not
only saves much more energy but also works under
heavily tighter deadlines. In this work, we first pre-
sented an ILP model for this problem. Then, We
proposed a task-based greedy scheduling algorithm,
TGSAVE. Since TGSAVE is a greedy algorithm, it
schedules jobs very fast. We performed several exper-
iments for eleven different benchmarks exhibiting
application characteristics with high and low com-
putation as well as high and low shuffle volumes.
The results show that total energy consumption of
TGSAVE is below 5% far from the optimal solution
and is much better than EMRSA by up to 35% with an
average of approximately 20%. In addition, TGSAVE
can meet deadlines near the energy-oblivious mini-
mum makespan and find a solution for up to 74%
(45% on average) tighter deadlines than the tightest
deadline that EMRSA can find a feasible schedule for.

Our plan for future work has three directions. One
is to relax the problem and let reduce tasks start before
completion of all of the map tasks. Another one is
to design and implement a time adaptive multi-job
scheduling algorithm in heterogeneous environments
with the objective to minimize the energy consump-
tion while meeting individual deadlines of jobs. A
final important point to mention is that we did not con-
sider the issues of initial data placement, as well as
intermediate data, shuffle phase in this paper, as [23]
did not do either. It is definitely important to consider

these stages as well, and we are already doing this
[25], but since our contribution here is a more effec-
tive algorithm for the same problem presented in [23],
we used the same problem definition intact. Provid-
ing efficient algorithms for the above extended case is
thus part of our current and future work.

Acknowledgements The authors would like to thank Seyed
Morteza Nabavinejad for his helpful advice and helping us in
profiling workloads. We would also like to cordially thank Lena
Mashayekhy for kindly providing us with the profiled data of
Tera Sort benchmark workloads they used in their experiments.

References

1. Annual Energy Review: Tech. rep. (2012). http://www.eia.
gov/totalenergy/data/annual/pdf/aer.pdf (2011)

2. Adaptive Computing, I.: TORQUE Resource Manager.
http://www.adaptivecomputing.com/products/open-source/
torque/

3. Ahmad, F., Chakradhar, S., Raghunathan, A., Vijaykumar,
T.N.: Tarazu : Optimizing MapReduce On Heterogeneous
Clusters. In: Proceedings of the 17th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems APLOS 40, pp. 61–74 (2012)

4. Ahmad, F., Lee, S., Thottethodi, M., Vijaykumar, T.N.:
PUMA: Purdue MapReduce Benchmarks Suite (2012)

5. Anjos, J.C.S., Carrera, I., Kolberg, W., Tibola, A.L.,
Arantes, L.B., Geyer, C.R.: MRA++: scheduling and data
placement on MapReduce for heterogeneous environments.
Futur Gener Comput Syst 42, 22–35 (2015)

6. Apache: Capacity Schedular for Hadoop. https://hadoop.
apache.org/docs/r1.2.1/capacity scheduler.html

7. Apache: Hadoop. Hadoop.Apache.org (2016)
8. Apache: Hadoop Fair Scheduler. hadoop.apache.org/docs/

r1.2.1/fair scheduler.html (2016)
9. Apache: HOD Schedular. https://hadoop.apache.org/docs/

r1.2.1/capacity scheduler.html (2016)
10. Bryk, P., Malawski, M., Juve, G., Deelman, E.: Storage-

aware algorithms for scheduling of workflow ensembles in
clouds. Journal of Grid Computing 14(2), 359–378 (2016)

11. Cho, B., Rahman, M., Chajed, T., Gupta, I.: Natjam: evic-
tion policies for supporting priorities and deadlines in
mapreduce clusters (2013)

12. Cisco: Cisco Global Cloud Index : Forecast and Methodol-
ogy , pp. 2014–2019. Tech. rep. (2014)

13. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Pro-
cessing on Large Clusters. Commun. ACM 51, 107–113
(2008)

14. Ebrahimirad, V., Goudarzi, M., Rajabi, A.: Energy-
aware scheduling for precedence-constrained parallel vir-
tual machines in virtualized data centers. Journal of Grid
Computing 13(2), 233–253 (2015)

15. Fredman, M., Tarjan, R.: Fibonacci heaps and their uses
in improved network optimization algorithms. J. Assoc.
Comput. Mach. 34, 596–615 (1987)

http://www.eia.gov/totalenergy/data/annual/pdf/aer.pdf
http://www.eia.gov/totalenergy/data/annual/pdf/aer.pdf
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
https://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html
https://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html
Hadoop.Apache.org
hadoop.apache.org/docs/r1.2.1/fair_scheduler.html
hadoop.apache.org/docs/r1.2.1/fair_scheduler.html
https://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html
https://hadoop.apache.org/docs/r1.2.1/capacity_scheduler.html

A Task-Based Greedy Scheduling Algorithm for Minimizing... 551

16. Guo, Z., Fox, G.: Improving MapReduce performance in
heterogeneous network environments and resource utiliza-
tion. In: Proceedings - 12th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing, CCGrid
2012, pp. 714–716 (2012)

17. Kansal, N.J., Chana, I.: Energy-aware virtual machine
migration for cloud computing-a firefly optimization
approach. Journal of Grid Computing 14(2), 327–345
(2016)

18. Kim, H., Ahn, J.H., Kim, J.: Exploiting replicated cache
blocks to reduce L2 cache leakage in CMPs. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems (10),
1863–1877 (2013)

19. Krish, K., Anwar, A., Butt, A.R.: [phi]Sched: A
Heterogeneity-Aware Hadoop Workflow Scheduler. In:
2014 IEEE 22nd International Symposium on Modelling,
Analysis &, Simulation of Computer and Telecommunica-
tion Systems, pp. 255–264 (2014)

20. Lang, W., Patel, J.M.: Energy management for MapReduce
clusters. Proceedings of the VLDB Endowment 3, 129–139
(2010)

21. Leverich, J., Kozyrakis, C.: On the energy (in)efficiency
of Hadoop clusters. ACM SIGOPS Operating Systems
Review 44, 61–65 (2010)

22. Marszałkowski, J.M., Drozdowski, M., Marszałkowski, J.:
Time and energy performance of parallel systems with
hierarchical memory. Journal of Grid Computing 14(1),
153–170 (2016)

23. Mashayekhy, L., Movahed Nejad, M., Grosu, D., Zhang,
Q., Shi, W.: Energy-aware Scheduling of MapReduce Jobs
for Big Data Applications. IEEE Transactions on Parallel
and Distributed Systems 26, 2720–2733 (2015)

24. Meisner, D., Gold, B.T., Wenisch, T.F.: PowerNap. ACM
SIGARCH Computer Architecture News 37, 205 (2009)

25. Nabavinejad, S.M., Goudarzi, M., Abedi, S.: MapReduce
Service Provisioning for Frequent Jobs on Green Clouds
Considering Data Transfers. Technical Report, Computer
Engineering Department Sharif University of Technology
(2016)

26. Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J.,
Fernandes, J.P., Saraiva, J.: Energy efficiency across pro-
gramming languages: how do energy, time, and memory
relate? In: Proceedings of the 10th ACM SIGPLAN Inter-
national Conference on Software Language Engineering,
pp. 256–267. ACM (2017)

27. Powell, M.D., Yang, S.H., Falsafi, B., Roy, K., Vijayku-
mar, T.N.: An Energy-Efficient High-Performance Deep-
Submicron instruction cache. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, pp. 1–13 (2001)

28. Rasooli, A., Down, D.G.: Guidelines for selecting hadoop
schedulers based on system heterogeneity. Journal of grid
computing 12(3), 499–519 (2014)

29. Sueur, E.L., Heiser, G.: Dynamic voltage and frequency
scaling: The laws of diminishing returns. In: Proceedings of
the 2010 international conference on Power aware comput-
ing and systems, pp. 1–8 (2010)

30. Tang, Z., Qi, L., Cheng, Z., Li, K., Khan, S.U., Li, K.: An
energy-efficient task scheduling algorithm in dvfs-enabled
cloud environment. Journal of Grid Computing 14(1), 55–
74 (2016)

31. Tavarageri, S., Sadayappan, P.: A compiler analysis to deter-
mine useful cache size for energy efficiency. In: 2013 IEEE
International Symposium on Parallel & Distributed Pro-
cessing, Workshops and Phd Forum, pp. 923–930 (2013)

32. Tian, C., Zhou, H., He, Y., Zha, L.: A dynamic mapreduce
scheduler for heterogeneous workloads 2009 Eighth Inter-
national Conference on Grid and Cooperative Computing,
pp. 218–224 (2009)

33. Wang, Y., Lu, W., Lou, R., Wei, B.: Improving mapreduce
performance with partial speculative execution. Journal of
Grid Computing 13(4), 587–604 (2015)

34. White, T.: Hadoop: The Definitive Guide, O’Reilly Media,
Inc (2012)

35. Wolf, J., Rajan, D., Hildrum, K., Khandekar, R., Kumar,
V., Parekh, S., Wu, K.L., Balmin, A.: FLEX: a slot allo-
cation scheduling optimizer for MapReduce workloads.
In: ACM/IFIP/USENIX International Conference on Dis-
tributed Systems Platforms and Open Distributed Process-
ing, pp. 1–20 (2010)

36. Xie, J., Yin, S., Ruan, X., Ding, Z., Tian, Y., Majors, J.,
Manzanares, A., Qin, X.: Improving MapReduce perfor-
mance through data placement in heterogeneous Hadoop
clusters. Parallel & Distributed Processing. In: 2010 IEEE
International Symposium on Workshops and Phd Forum
(IPDPSW) 9, pp. 29–42 (2010)

37. Yan, F., Cherkasova, L., Zhang, Z., Smirni, E.: DyScale:
a mapreduce job scheduler for heterogeneous multicore
processors (2015)

38. Yang, S.J., Chen, Y.R.: Design adaptive task allocation
scheduler to improve MapReduce performance in heteroge-
neous clouds. J. Netw. Comput. Appl. 57, 61–70 (2015)

39. Yigitbasi, N., Datta, K., Jain, N., Willke, T.: Energy efficient
scheduling of MapReduce workloads on heterogeneous
clusters. In: Proceedings of the 2nd International Workshop -
GCM ’11 on Green Computing Middleware, pp. 1–6 (2011)

40. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Sto-
ica, I.: Improving mapreduce performance in heterogeneous
environments. Proceedings of the USENIX OSDI, pp. 8
(2008)

41. Zhang, Q., Zhani, M.F., Boutaba, R., Hellerstein, J.L.:
Dynamic heterogeneity-aware resource provisioning in the
cloud. In: Distributed Computing Systems (ICDCS), 2013
IEEE 33Rd International Conference on, pp. 510–519
(2013)

	A Task-Based Greedy Scheduling Algorithm for Minimizing...
	Abstract
	Introduction
	Our Contribution
	Organization

	Motivational Example
	Related Work
	Problem Description and Model
	Greedy Scheduling Algorithm
	Complexity Analysis

	Experiments
	Benchmarks and Workloads
	Experimental Setup
	Analysis of Results
	Tera Sort
	PUMA+ Benchmarks
	Analysis of Workloads
	Analysis of Map Phase Deadline Estimation

	Discussion

	Conclusion
	Acknowledgements
	References

