J Grid Computing (2019) 17:577-589
https://doi.org/10.1007/s10723-018-9443-5

N
@ CrossMark

An Intelligent Data Service Framework for Heterogeneous

Data Sources

Fakhri Alam Khan

- Mujeeb ur Rehman - Afsheen Khalid - Muhammad Ali -

Muhammad Imran - Muhammad Nawaz - Attaur Rahman

Received: 28 February 2018 / Accepted: 22 May 2018 / Published online: 16 June 2018
© Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract Heterogeneous data on distributed comput-
ing sources are growing day by day. To manage the
data from the distributed sources into a distinct type
of application like mobile, cloud, desktop, web etc.
is a challenging issue in the global information sys-
tems, particularly for cooperation and interoperability.
This paper proposes a Data Service Framework, which
integrates the data from distributed sources such as
databases, Simple Object Access Protocol (SOAP)
based web services and flat files, and performs cre-
ate, read, update and delete (CRUD) operations on it
through Representational State Transfer (REST) ser-
vices over the Hyper Text Transfer Protocol (HTTP).
The proposed data service framework also supports
java database connectivity (JDBC). Detailed descrip-
tion of the proposed framework and experimental
results are reported in this paper.

Keywords Database virtualization -

Simple object access protocol (SOAP) -
RESTful service - Components and connecters -
Software architecture

F. A. Khan ((<) - M. ur Rehman - A. Khalid - M. Ali -
M. Nawaz - A. Rahman

Center for Excellence in IT, Institute of Management
Sciences, Hayatabad Peshawar, Peshawar KPK 44000,
Pakistan

e-mail: fakhri.alam @imsciences.edu.pk

M. Imran
IBMS, The University of Agriculture, Peshawar, Pakistan

1 Introduction

In the present day software era, much emphasis is
put on the need of effective communication between
cross-platform applications. Information system can
now no longer operate as independent unit without
putting an adverse impact on effectiveness of an enter-
prize due to a complex operating environment and
constantly changing behavior of information systems
with the passage of time. Continuous software evolu-
tion needs a flexible and scalable integration platform,
which minimizes the efforts of human interaction for
adaptation and maintenance [1]. A large fraction of
users want to keep their data in a well-structured for-
mat, whether it is on a personal computer or network
server. It is always required to use standardized appli-
cation programming interface (APIs) to manage the
data. If data is in relational format, then structural
query language (SQL) provides the set of operations
for querying data, but unfortunately the main issue is
that all data is not relational. Even if the data exposed
to the world is in relational format, it is not often pos-
sible in most of the cases to perform SQL operations
on it over the Internet.

Nowadays, the modern applications are generally
built by using two different technologies namely the
object oriented programming and relational databases.
Object oriented programming is used for business
logic implementation in application and relational
databases are used for data storage purposes. Object-
oriented programming provides reusability, robustness

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-018-9443-5&domain=pdf
http://orcid.org/0000-0002-9130-1874
mailto:fakhri.alam@imsciences.edu.pk

578

F. A. Khan, et al.

and maintainability for implementing complex sys-
tems. Relational databases are repositories which pro-
vide data persistency, consistency and integrity. ORM
(object-relational mapping) is a bridge between the
above mentioned two technologies that allows appli-
cations to access relational data in an object oriented
way [2].

Heterogeneous data on the distributed sources are
growing day by day. To manage the data from dis-
tributed sources in dissimilar types of applications like
mobile, cloud, desktop, web etc. is acting as a stimulus
for cooperation and interoperability within the global
information systems [18, 19]. Also providing inte-
grated access to multiple heterogeneous data sources
including databases, flat files and web services is a
challenging issue in global information systems. In
this context, two fundamental problems arise. Firstly,
how to integrate different sources in a single frame-
work? Secondly, how to perform CRUD (create, read,
update and delete) operations on the heterogeneous
data sources from different types of applications such
as web based, desktop, mobile and cloud? The current
available frameworks such as REST (Representational
state transfer) and SOAP (Simple Object Access Pro-
tocol) over the HTTP (Hyper Text Transfer Protocol)
do not facilitate this task. Users, in most of the cases,
are just unable to perform CRUD functionality using
RESTful services on heterogeneous data sources.

In this paper, we propose a framework called Data
Service Framework (DSF) that provides integration
of heterogeneous data sources such as databases,
SOAP-based web services and flat files through vir-
tualization and REST-based protocol for CRUD-Style
operations (Create, Read, Update and Delete) against
all those resources which are exposed as data ser-
vice. Data service framework provides services for
creating and executing bi-directional data services.
Through abstraction and federation, data is accessed
and integrated in real-time across the distributed data
sources without copying or moving data from its phys-
ical sources. In short, data service framework is the
web-based equivalent of Open Database Connectiv-
ity, Object Linking and Embedding, Database, Active
Data Objects for .NETand JavaDatabaseConnectivity.
Major contributions of our research work are:

e A novel data service framework, which pro-
vides the facilities of heterogeneous data sources
integrations.

@ Springer

® Our proposed framework provides services for
engendering and execution of bi-directional data
services.

e Real-time access and integration of data access;
distributed data sources, without copying or mov-
ing data.

e Our proposed data service framework has support
for Oracle, MySQL database, flat files and SOAP-
based services.

Rest of the research paper is organsied as follows:
In Section 2, state of the art research work is expa-
lined. In Section 3 the problem under discussion is
elaborated. The proposed framework is explained in
Section 4. Data Service Framework and the exper-
imental results are discussed in Sections 5 and 6
respectively. The paper is concluded using Discussion
and Conclusion Sections 7 and 8.

2 Literature Review

Wada [3] proposes a database virtualization technique
that uses ubiquitous databases available on the Inter-
net by reorganizing and merging all the databases
into a single database in order to apply data min-
ing techniques on the wholesome data. This technique
helps reduce the user workload such as data collection
and cleansing. The proposed technique consists of the
following four layers:

a. First layer examines XML schema and proposes
a database virtualization in such a way to repre-
sent ubiquitous databases as a relational databases
and access XML and object oriented databases as
a single database [13-16].

b. Second layer corresponds to virtualization of
ubiquitous databases that describe the ubiquitous
database schema using XM.

c. Next layer describes the common schema genera-
tion and query language techniques for use in the
virtualized environment in ubiquitous databases.

d. The final layer describes troubleshooting and
recovery techniques in ubiquitous virtualized
database environment.

Zhang [4] proposes a general-purpose conceptual
data model called Structural Engineering Experimen-
tal Data Management Framework (SEEDMF). The
model contains core data concepts involved in the

An Intelligent Data Service Framework for Heterogeneous Data Sources 579

structural engineering experiments. This model pro-
poses integration of heterogeneous data in SEE-Gird
by using grid technology and also provides a solution
of sharing these heterogeneous experimental data in
real time. Structural engineering experiments always
generates huge amount of data which can be divided
into two types: experimental management informa-
tion, and experimental results information. Structural
Engineering Experimental Data Management Frame-
work use GSI authentication and GridFTP is used for
data transportation. Experimental management infor-
mation is stored in relational database and experimen-
tal results are stored in text files; both the relational
database and result files can be accessed by the cor-
responding services. Data access portal is responsible
for interaction with business logic between data man-
agement system and the user and file transfer portal
is used for data transfer and data conversion from
GridFTP to HTTPS.

Three different layers of services are provided by
the cloud: Infrastructure as a Service (IaaS), Plat-
form as a Service (PaaS) and Software as a Service
(SaaS). Considering IaaS clouds, the major commer-
cial cloud providers are supplying on demand virtual
machines to their clients. Cloud computing brings the
flexible use of resource virtually on demand. Cloud
computing virtualization model enables the ability of
migrating resource irrespective of the original physi-
cal infrastructure. Since open source tools are growing
rapidly, so small companies build their own IaaS
cloud with the use of internal organizational com-
puting resources. The purpose of such cloud in not
only to provide and sell computing resources over
the Internet, but to facilitate the clients with a flex-
ible private infrastructure to run service workloads
within their administrative domains. In this context,
REST-based interfaces provide the integration of third
party systems with cloud enabled virtual environment.
Celesti [5] developed a REST-based (Representational
State Transfer) web service administration tool com-
patible with the Open Cloud Computing Interface.
These REST-based interfaces provide the integration
of third party systems with Cloud-Enabled Virtual
Environment (CLEVER). The CLEVER is an open
source cloud Infrastructure as a Service (IaaS) mid-
dleware allowing the allocation and management of
virtual machines. All the entities within the clus-
ter communicate with each other through Extensible
Messaging and Presence Protocol (XMPP).Internal

communication between sub-components of the same
module can be done through inter process commu-
nication (IPC). External communication between two
different hosts can be done through XMPP, and all the
hosts in the CLEVER domain must be connected to
the XMPP for external communication.

Niknam [6] develop a semantic based cost estimat-
ing application for construction projects that access
distributed data sources over the internet and signifi-
cantly reduces human involvement in cost estimating
activities. The application is based on ontologies 1)
a building information model (BIM) knowledge base,
(2) an estimating assembly and work item knowl-
edge base, and (3) suppliers’ Semantic Web Services.
Chaudhari [7] presents a hybrid benchmark based on
Transaction Processing Performance Council (TPC-
H) where heterogeneous data source such as relational
& XML data sources and redesign of query language
LINQ is used to assess the data heterogeneous data
sources.

Szepielak [8] states that web services perform
all types of operations in SOA-based integration
approach. However, these services are often impossi-
ble to utilize without prior adaptation to their inter-
faces. To overcome this problem, resource-centric
approach is used where interoperability problem is
tackled by providing a fixed functional interface,
but this can limit the flexibility of operation def-
inition. REST-based architecture is generally used
for resource-centric approach because of its sim-
plicity and mapped in a natural way. XML doc-
ument is used for uniform resource representation
and HTTP methods are mapped on create (POST),
retrieve (GET), update (PUT) and delete (DELETE)
operations. REST-based service provides the create,
read, update and delete (CRUD) functionality for the
resource and complete set of services are accessed
from the resource service pool, which provide the
uniform access to data stored in the underlying infor-
mation system. Web service registry is the main com-
ponent of a dynamically integrated environment. The
registry uses the conceptual model provided in the
ontology to build a service directory. It also extends
the conceptual model representation of the ontol-
ogy to include information about the providers and
operations.

Atay [9] proposes extensible markup language
(XML) to relation data mapping technique in order
to store and query XML documents using relation

@ Springer

580

F. A. Khan, et al.

database managements system (RDBMS). XML to
relation data mapping is of three types: Schema map-
ping, Data mapping and Query mapping. In schema
mapping, generic database schema is generated from
XML document type definition (DTD) schema to
store XML documents. In data mapping the XML
documents are divided into relational tuples and are
inserted into relation database. In query mapping,
XML query is converted into relational database and
query result are returned to user as XML document.
For the sake of simplification, the DTD is divided in
canonical form to convert it into the database schema.
The occurrence operators in DTD are classified into
two groups on the basis of their relationship between
parent and child. One to one relationship is repre-
sented by operator {‘?’, °,’} and one to many relation
is represented by operator {‘+’, ‘*’} . Through this
approach, the complex DTD can easily be converted
into the relational database schema with the help of
identifying the operators group in DTD.

Pautasso [10] discusses how composition can be
applied on service oriented architectures for building
Restful service in order to make their use more effec-
tive. Composition is one of important principle of ser-
vice oriented computing [11, 12]. It flourishes the exit-
ing services by assembling them into multiple appli-
cations in innovative and amazing ways. This princi-
ple is not defined in the REST architecture. Instead,
the REST architecture focuses on REST architectural
elements (user agents, gateways, proxies and origin
servers)which are meant to be combined together to
build a scalable system and it helps access the pub-
lished resource on a single server by a large number of
clients. It is pertinent to mention that each published
resource is accessed over the HTTP protocol.

Luo [17] propose prototype system for integra-
tion of heterogeneous medical data resources based
on Grid technology. The proposed prototype model
implemented and tested in a simulated information
environment. In this environment they integrate het-
erogeneous collection of machines with installation
of different medical databases. All machines are con-
nected with each other through a 100-m local area
network (LAN). The results shows that they still need
to improve the efficiency, dynamic metadata modeling
and Security.

Alghamdi [18] optimize the structural and con-
stant part of XML queries by introducing the method
of indexing and processing XML data based on the

@ Springer

concept of objects that is formed from the semantic
connectivity between XML data nodes. This method
performs object-based data partitioning, which goal
is leveraging notion of frequently-accessed data sub-
sets and putting these subsets together into adjacent
partitions. Structural and Content indexing, which
use an object-based connection to construct indices
and query processing to produce the final results in
optimal time.

Most of work mentioned above mainly initiative in
a distributed environment with is looking at homoge-
nous data sources integration and access of data man-
agement only [20, 21]. The main objective of our
work is to make a framework which will integrate the
heterogeneous data source and access of those data
source from a single framework without copying data
locally and data manipulation operations from dis-
tinct types of applications such as mobile, desktop and
web-based applications, so that enterprize solution can
benefit in terms of saving time and cost from the effort
being put in.

3 Problem Statement

Integrating heterogeneous data on distributed data
sources such as databases, SOAP-based services and
flat files, and accessing this distributed data sources
in an information system pose two key challenges.
Firstly, how to integrate these different data sources
into a single framework; and secondly, how to perform
the data manipulation operations from distinct types of
applications such as mobile, desktop and web-based
applications. In this paper, we address the above-
mentioned two main problems. We propose a Data
Service Framework which integrates distributed data
sources such as MySQL or Oracle databases, SOAP
based services and flat files (text files either comma or
tab delimited) into a single framework, and provides a
unified data manipulation access from different types
of applications such as mobile, cloud, desktop and
web-based applications. This framework can help the
enterprize solutions in terms of saving development
cost and time. The following advantages are likely to
be obtained from the data service framework.

e Enterprize services for heterogeneous data access.
e Data integration or virtualization of data from
heterogeneous models and sources.

An Intelligent Data Service Framework for Heterogeneous Data Sources 581

e Data interoperability.
e Data access on the web.
e User identity, authentication and authorization.

4 Proposed Framework

In view of the problem statement mentioned in the pre-
vious section, we propose a Data Service Framework
(Fig. 1) which supports integration of heterogeneous
data sources such as databases (Oracle and MySQL,
SQL Server), Simple Object Access Protocol (SOAP)-
based web services and flat files. The proposed data
service framework consists of three layers. The first
layer caters for the heterogeneous data source inte-
gration and chalks out the scheme for extracting and
manipulate the data without data copying or mov-
ing it physically. The second layer explains the object
relation model creation on virtual database layer. In
the third layer, we define methodologies to expose
object relation model to the world through RESTful
services.

Client Client
access access

(Data service framework \

VDB

VDB

| J

A\

Translator & Connectors

Translator & Connectors

Physical
data source

Physical
data source

Physical
data source

Fig. 1 The proposed data services framework

The first layer of the framework explains the data
integration mechanism. The data integration is done
through a virtual database in such a way that data can-
not be copied or moved from the physical location.
Virtual databases (VDBs) are virtualized data sources
that expose a composite schema for one or more data
sources. VDBs can be hierarchical in the sense that
their underlying data sources could themselves be
VDBs. VDBs are purely “virtual” data sources and do
not store any data; they simply expose the compos-
ite view of the data from the underlying data sources.
When a query is issued against a virtual database,
then data service framework uses the query engine
which receives the query, resolves it into sub-queries
for the underlying physical data sources and splits it
into multiple fine grained queries. There are differ-
ent types of query engines such as Quest, Teiid, and
SQL Query Engine for Big Data and Presto. In our
proposed data service framework, Teiid query engine
is used to account for the required transformations
and merges (for federated VDBs) to build the final
result set. When a logical schema is deployed in Teiid
run time query engine, then it behaves like a relation
database. Teiid is a transitionally responsive system
and data is extracted and manipulated in a secure way.
Its connecters provide the data access mechanism to
physical data source such as relation database, flat
files and SOAP services. Another important feature
of connecter is to map the underlying physical data
source model in relational entries such as tables, views
and procedures.

Teiid query engine uses two separate connecters
and translator to execute query on a physical data
source. When SQL query is submitted, query engine
uses the logical schema information to parse, opti-
mize, validate and split the query into multiple phys-
ical source specific queries. The second connecter
executes queries on the physical data sources and
extracts the data and processes it into a final result
set. But the issue is that the physical data sources can
have different command syntax, so for this purpose the
command execution connecter needs to have a trans-
lator. Translator provides an abstraction layer between
physical data sources and query engine. Translator
executes the command using specific physical data
source adaptor. It also converts the result set data
which is extracted from the physical data sources into
the query engine format. Translator and resource adap-
tor are configured in the source model layer. Physical

@ Springer

582

F. A. Khan, et al.

data source connectivity is done through resource
adopter. Resource adaptor can be of different kinds
like relation database, SOAP based service, text files
and custom resource adaptors. The result set fetched
by the resource adaptor is fed to the translator. In
case the transaction is performed on distributed data
sources, then distributed XA (eXtended Architecture)
transaction is used through JCA connector.

Every VDB has one or more logical schemas and
these schemas are exposed as “data models”. There
are two types of data models in a VDB: view models
and source models. View models represent the schema
defined by the VDB, while source models represent
the schema of the underlying data sources that con-
stitute the VDB. The Data Manager determines the
view model (schema) based on business needs and
the knowledge of the underlying source models, and
publicizes the name of the view model for clients to
consume. Source models are typically not advertised
and are therefore not visible to client applications.
VDBs can be hierarchical; view model of a VDB will
become a source model for subsequent higher VDBs.
If the Data Manager makes changes to a published
view model, then a new version of the model is cre-
ated. Hence, it is important to know not only the data
model but the version of the data model that the VDB
is composed of. There are different types of VBDs.

Fig. 2 a Single Source
View Model, b Multiple
Source View model VDB

Any VDB created outside of the Teiid design tool is
called “Dynamic VDB”. The ones created by the Teiid
designer tool are called “Standard VDB” or “Designer
VDB”.

Though a VDB is defined in a structured XML file,
but can be packaged in multiple ways. If the VDB def-
inition is straightforward, then the XML file can be
directly deployed. If the VDB definition involves the
Teiid designer tool, the VDB is packaged as a “.vdb”
archive file that contains the VDB definition in an
embedded XML file. It is not important to differenti-
ate as how the VDBs were created, but it is important
to identify whether the VDBs expose data from a sin-
gle source model or multiple source models. A brief
account of both the options (Fig. 2) are defined as
follows:

a. VDBs that expose data from a single source model:
These VDBs expose view models that represent
data from a single source. In fact, data may be
exposed from multiple data sources, but they all
share the same source model. If more than one
underlying data sources are exposed, the Data
Server automatically adds a virtual column named
“MULTI_DATA_SOURCE_COLUMN” to all the
entities to uniquely identify the source of data for
each row.

VDB

View model

Federated view model

Source model

Source model Source model

@ Springer

Physical
data source

Physical
data source

(b)

An Intelligent Data Service Framework for Heterogeneous Data Sources 583

b. VDBs that expose data from multiple source models:
These VDBs expose view models that represent
data from multiple source. Data is federated from
multiple underlying data sources that do not share
the same source model. There is typically no direct
mapping from source model to the view model,
and a “join” is involved when creating the view
model from multiple source models. Within each
VDB, the underlying data sources are identified
via a unique name, and this unique name is used to
extract data from specific data sources.

Another type of VDB called “Admin VDB” is used
to fetch information about all the models and physi-
cal data sources that are hooked with the data service
framework. This VDB is useful for client applica-
tions for discovering the VBs deployed in data service
framework before actually connecting to a particular
VDBs.

In the second layer of data service framework,
we use Object Relational Mapping (ORM) in vir-
tual databases because the classical databases access
approach falls short of the merits of object oriented
modal. Nevertheless, the key issue of data represen-
tation in object oriented paradigm still remains. Such
an issue is well addressed by ORM frameworks such
as Hibernate. Therefore, a modal class is needed for
all of the virtual database views where each VDBs is
represented in a class, so that there is one-to-one map-
ping for each individual column and data types of the
virtual database. Keeping data in this representation
carries several advantages like session maintenance,
and sometimes the data retrieval becomes easier. This
data representation layer adds an additional level of

buffering to avoid overloading databases with write
access load. Once a session commits, the write oper-
ation is sent to the query engine. This not only opti-
mizes the database write operation but also make it
possible for each individual application program call
to interact with databases in a non-blocking way. Sim-
ilarly, rollback operation does not cost too much as it is
generally conceived in a way that it just discards local
object memory instead of invoking disk operations.

The last layer of data service framework explains
the methodology of data access. VDBs are accessed
as a typical relational SQL data sources even if the
underlying physical data source may not be relational
or structured. Programmatically, they can be accessed
either using the REST-based Data Server Web Ser-
vice or using a compliant JDBC or ODBC driver.
The detailed architectural design of the data services
framework is illustrated in Fig. 3.

Client machines can access data in the data service
framework in one of two possible ways:- REST-based
web service access or JDBC/ODBC Driver interface
access. INREST-based web service access, the Data
Server web service exposes VDBs as “resources” and
allows web clients to query these resources and their
entities using the OData(Open Data) protocol. OData
is a standardized HTTP-based protocol to expose,
query and interact with the data sources. It provides
full metadata of the data source (with a $metadata
query). HTTP payload conforms to the ATOM and
JSON formats. It is worth mentioning that application
programs consume data exposed using the OData pro-
tocol [10]. The Data Server web service exposes the
following resources:

Data Model Version:<entryPoint>/<modelName>
vDBs:<entryPoint>/<modelName>/<modelVersion>/

Data Models: <entryPoint> (e.g.http://<<HOST>:<PORT> /DSFServer/dsl.svc)

OData Service Document (List of Entities for a VDB):
<entryPoint>/<modelName>/<modelVersion>/<CompositeNameOfVirtualDataSource>/
Entity Details:<entryPoint>/<model>/<modelVersion>/<CompositeNameOfVirtualDataSource>/<EntityName>

The <CompositeNameOfVirtualDataSource> is an
important concept to understand because it varies based
on the view model of the VDB, and a VDB exposes
data composed from one or more data sources.
Depending what type of data in exposed by the
VDB, the <CompositeNameOfVirtualDataSource>

is either just the VDB name, or a composite string
made up of two parts separated by a hyphen
(’-’); the VDB name and the underlying data
source name. While the VDB name is obvious,
the underlying data source name varies based on
how the VDB is constructed. In this regard, single

@ Springer

584

F. A. Khan, et al.

source-model VDB and multiple source-model VDB
are considered.

While for JDBC/ODBC Driver interface access, the
Data Server exposes the VDBs as SQL based rela-
tional databases that can be accessed via a dedicated
ODBC or JDBC driver.

4.1 Deployment

Data service framework needs to be deployed/hosted
on web server. For this purpose we use JBoss Appli-
cation Server which is an open source Java EE-based
application server.

4.2 Accessing Data Using a Browser

Data in our framework is accessed using OData.
Although this kind of access is read-only, it is very
useful to verify data model. The responses from Data
service framework are Atom Feeds. The set of proce-
dure to access the data include:

i. Open a browser and navigate the following
address to get a list of the models:
http://(HOST):(PORT)/DSFServer/dsl.svc.

ii. DSF will be asked for the login and password
information.

Data Service FrameWork

User Name :

Password :

Login

iii. Once the user is validated, a list of data models is
displayed in the form of data service URL.

iv. We can access the data models by appending the
model name to the base URL.

For example, http://<HOST>:<PORT>/
DSFServer/dsl.svc/ExampleModel/

v. We can access the data sources deployed under
the model and version combination by append-
ing either the model version or user version to
the URL.

Forexample, http://<HOST>:<PORT>/
DSFServer/dsl.sve/ExampleModel/

The entity model is linked to model and version
combination, whereas the data sources list different
physical/virtual sources that hold the actual data for
that model. We can get the metadata for the entity
model by using the $metadata resource on the URL.
The metadata provides the following information:

i. All entities, relationships, complex types and
functions defined in the entity model. This
basically provides the snapshot of the entity

@ Springer

model that we can use toretrieve/update data for
the individual entities.

ii. Annotation defined by the OData specifications
and custom annotations defined by data service
framework.

iii. The OData version supported by the entity model

Some characters have special meanings when they
are used in a URL. In queries executed at the URL,
special characters are specified as %xx, where xx is
the hexadecimal value of the character. If user wants
to use the special characters in the URLs as query
parameters, then they need to be encoded with their
respective hexadecimal value.

4.3 Deleting Data

Regardless of how can we access data, data service
framework does not support cascade delete of entities.
We must delete all child records in the hierarchy first
before deleting the parent record. If we try to delete
parent without deleting its children first, then delete

http://<HOST>:{<}PORT{>}/DSFServer/dsl.svc.
http://<HOST>:<PORT>/DSFServer/dsl.svc/ExampleModel/
http://<HOST>:<PORT>/DSFServer/dsl.svc/ExampleModel/
http://<HOST>:<PORT>/DSFServer/dsl.svc/ExampleModel/
http://<HOST>:<PORT>/DSFServer/dsl.svc/ExampleModel/

An Intelligent Data Service Framework for Heterogeneous Data Sources 585
Fig. 3 Architectural design ~
of the data services o o o
framework Client Applications
Java/ Web Mobility JDBC/Odbe
,(‘Iﬁif Client Client Client
7 — — x J
JBoss
D ramework v

Web Services (OData)

Translator & Connectors

Translator & Connectors

=1

r.

Database

will fail and the corresponding error message can be
seen in the server logs.

4.4 Versioning RESTful Services

The Data Server RESTful resources consist of URISs,
web resources, web content representation, web con-
tent format and the HTTP methods for each web
resource. Versioning becomes handy when isolating
changes to Data Server RESTful resources from exist-
ing Data Server clients. Versioning a RESTful web
service involves versioning resources with new URISs.
The idea is to treat each version of the resource as a
different representation so that clients can negotiate
for a given version by submitting the model version
number. If the server supports that version it will
return a representation of that version. This gives the
Data Server clients the option to work with and switch
among multiple versions of the resource.

—d

b
Flat file

5 Data Service Framework Usage

Real applications often access more than one data
source. Many of the enterprize built their own frame-
works to handle integrating multiple sources, and
have realized the difficulty of doing that in a generic
manner that performs and scales well under real use
conditions. The Data Service Framework (DSF) pro-
vides applications with a common data access to
distant heterogeneous data sources. It enables access
to data via services instead of individual development
kits for different databases, flat files and SOAP ser-
vices access. The Data Service Framework (DSF) also
provides tools for developers and consultants to cre-
ate connections to additional data sources and expose
the data as services. Custom and hand-coded logic
frameworks will not be required while using DSF, and
use a dedicated query component for all data access
needs of enterprize application. Due to the use of DSF

@ Springer

586

F. A. Khan, et al.

enterprize will focus on the logic on top of the data
access layer rather than the nuts and bolts of access-
ing heterogeneous data uniformly.DSF advantage over
custom and hand-coded logic frameworks

e Cheaper —-DSF is cheaper than hand-coding
and maintaining hand-coded integration, and re-
inventing integration logic on every project.

e Better - DSF is better than non-optimized integra-
tion logic that does not make use of a real query
engine.

e Faster —DSF is faster to implement your projects,
leveraging the integration logic already built into
DSF, and reusing that logic on other projects.

With DSF, enterprize application can join and union
data that resides in very dissimilar data sources. Multi-
ple sources suddenly look like a single source to your
application.

e Joins across data sources
e Unions across data sources

6 Experimental Results

This section describes the experimental result of inte-
gration of heterogeneous data source in data service
framework and accessing them using a browser and
JDBC application. This testing is done on a simulated

environment on cloud computing. We integrated the
dataset of Desktop as a Service (DaaS) application of
an enterprize cloud base company, MySQL database
and flat files for testing purpose.

To test effectiveness of the DSF, we designed a
query instance to retrieve all the virtual machines
users’ records (Fig. 4).

Query: http://dsf.com:5433/cloud/dsl.svc/cloud2/
1/cloud-users/vmuser/record

To access the distributed log file of RabbitMq
server using DSF (Fig. 5).

Query: http://dsf.com:5433/cloud/dsl.svc/cloud2/
1/file-vdb/vmlog/rabbitmq

To check performance of the DSF, we ran the same
query on MySQL using DSF from client machine
and also created a direct connection with MySQL to
access the virtual machines record. Figure 6 shows the
comparison of the results. Using direct connection of
MySQL fetch two hundred thousand rows in 18000ms
(18 seconds) while using DSF the same number of
rows are accessed in 24000ms (24 seconds).

ms = milliseconds

7 Discussion

Data service framework is a conceptual model meant
for integration of heterogeneous data sources. We

hvd id |user_company email vm_id vE_name |+ vm_hmac |vm_public_rey
41788 James. Byrne@fronde. I{ 77 Warr-hdl ABKL 4 MIIBI
37881 WET4876zebra.con 64722492-21 hmac: MIIBI TBCGKCAQEA 1 STt
37201 QPTM37@zebra. com 9£30458-5c8b-2a39-5682-2234ba667675 Zebr-hd279 h AnCamGE= MIISI TBCQKCAQE: 1
38299 MTC324@zebra.con £8508562a-c58a-1a17-54ac-96dcadeds1b2 Zebr-hd503 1 MIIBI T1BCgKCAQE] T
38196 BNFT48@zebra.con 1130RKT UOiMfGk= MIIBI AJg26357c14L
37562 mbhg38@zebra.con 53eb537£-70dc-438a-3499-2cae792500ad Zebr-hd1d I TRMZ14M irwilhee= MIIBL TBCKCAQEANECT78A0BRS/UCOUI ERAKHT
34093 mmi11ar@dincloud. com 24612642-ca94-3807-6d56-9c1e699b6a76 dinc-hd3 WIAGKpCT1b23S- JETk= |MIISI TBCQKCAQE! 73 £
37856 QNPe34@zebra.com daze1z4 3c1d33 hmac:ZnlradShepiC 1£yQnSHen3xXz1nyA= MIIBI 18C gexL
37260 TWKR42@zebra. com 2203b4d2-43a9-" hmac:Zn: 1iNXF0Z0Q/3ySXyQnPy7deRXzT+sFcm MITBI TBCGKCAQE! 4/08+F5973)x/NIQKUR
38430/s_gul1@yahoo.com 63057d1£-ab12-db36-3500-6351a7929588 Vaca-hdll 3bCiDsT7Cy MITBT TBCQKCAQE: XTI AKRB K
41725 |avenugopal @zebra. com 13261682 36addc3204 30b311CP1cBIQ= MIIBI TBCGKCAQE!
40734 AShaik@zebra.com 11-a2cd-74 6 hmac: zILFX693koRJESImNT1d/ VBWMVIZ ‘c= MIIBI TBCQKCAQE: QICH+KX
37861 TWXD47@zebra. com 997bc474-ddce-7 92eabs hmac: zH: Ind1haZSVESTTxkb1gI1QAR= MIIBI TBCKCAQEANNBAQTRPL /UwihT7¥8+1Dz2
38142 APacrick@zebra.com £43c570b-862d-20£0-£618-312b146633c7 _ 2ebr-hd347 hmac:zGBjA TSKnDOIToSdmNY= MIIBIL T15COHCAQEA]TZ1sSHE
37921 RXPGE7@zebra. con 74 CR MIIBI TBCQCAQEALdKS1
41977 Kzarba@zebra.com 2D402131-e07e-0825-5£4£-734cd0157365 Zebr-hd6ld hmac:29TLNr21953r12n7DV+FIVXm1OPDELENTEXCC) 3g08U= MITBI: TBCHCAQEATNL FT1WinZu
38305 2hanas@zebra.com 37019841-£61. 79 hmac:Z8dTSa0Q 11Se= MIIBI TBCQHCAQE! 7t£087¥n
38306 MPurohit@zebra.com 9cc49076-e2e2-1c87-£4£6-43656£da823 Zebr-hdS10 hmac:271Q)r49mSwUNgREKUK4BYUmed1BXNyXn2h) ypPLLTk= MITBI TBCQUCAQEASNKTBMI JuNg£IECE0n1M 2T
38156 BHCK34@zebra.com 5a51££73-07ef-2dda~ 734177 gY= MIIBI 1BCQKCAQE: KOCqoR
38143 NKV374@zebra.con 5781b5e5-bcle-78 764320519 hmac:Z/Q3IHSXgIyTF+rOwJ22/ 30vmrOmeajwSTL MIIBI 1 M9grezT
37781 MFAX63@zebra. con 1 7552 : 7CCYSTCRT1YL Tok= MIIBI: TBCGKCAQEALIWTYOSp)
37797 MON438@zebra.con €3652£27-0032-7c8d-416£-29c12767269b Zebr-hdl76 @ £1 3qK13Fo= MIIBI 1BCQKCAQERO:
38397 s.platofcomcast. net 76c2b92d-2152-5e00-3e81-e244c2ec1430 DIgi-hsl hmac:y: d0w/%96TycoCCcca= MIIBI 1BCKCAQEAVWKT £WQMDS 7 9gXmIPUEL T6£
37727 END326Bzebra. com 93d10e3e-61b3-3475-5886-F10ed688ad4d3 Zebr-hdll2 hmac:ySdn’ CbdMLY= MITBI TBCQKCAQEAXhTEIKGA ykiHQREEN3STEKT
37864 KVIDE3@zebra.com 35010699-443c-adaf-28bb-6c4a04782393 Zebr-nd243 hmac:y = Jizci1 MITBT TBCQRCAQE! i TpStyruch
37584 XJFR37@zebra.con £C78£522-8c32-7766-6408-2e9198ch0999 Zebr-hdd2 hmac:yrD7Ae03QHM642+V£aR00L+ZCABC10SLAS w201 ydU= MITBI 8AMI TBCOKCAQEAXSELZX0ToBywkphd 1DGLAUW
37657 FPT463@2ebra.con c7a3cc6-3ce2-88aa-266c-3152ad032585 Zebr-hdal hmac: yQ+S2EYGORAMOShFZwKKkqHqHyIX7rLuJZvM+ IrsvZBe= MIIBIL. TBCQKCAQEATEp2ZNEC
42025 ABajpaifzebra.com d66981ae-b185-7376-415d-dea782822924 hmac: WPEpMCWQIKacE3shs= MIIBIL TBCKCAQERIXTLSY+L 13213CASED
37274 Wendy. 99514 1320743019 Zebr-hd9 JohBi0= MIIBI TBCQCAQEAPXST!
38179 WHP326@zebra.com d32£5225-1769-4c1c-17bb-4608CT451e30 Zebr-nd3e3 hmac: YLCEVATS00gX]70BXROVYT A= MIIBI 11BCQKCAQEATS9q+SLUIEKMeTC2/wEaRRY
38245 GPF7430zebra. com 303 1 3 MIIBI 1hbG
41776 Kilermarnahalli@zebra.com €2426321-771£-8770-2493-1a9894666d£6 Zebr-hd603 hmac: 1 1X3VFUQeC4ISEI= |MIIBI: TBCGHCAQE!
38231 JENK746zebra.con 1 UTbG+4= MIIBI. TBCQCAQEAWY1eT£(TgoRv
38282 QCFGE7@zebra.com de5d7£c7-2701-3b55-e hmac: Fs= MIIBI 1BCQKCAQE! R
38552 georgia@stpatrickmerna.org 2864edas-34ce-d661-8da-6c5dSeb22fb0 DIgi-hdl3 c: /JR44ES01L cTi MIIBI I
38554 doug@stpatrickmerna.org 64adbecs-bace-de35-5711-£00b8d161a00 |DIgi-hd1S hmac: yAn+dSukkiaT4nyCFUYJg10GLr: 3Laah MIIBI 18C KYQN) +)VDQULEEARE
37362 kbae@enpointe.com a7ce6420-££98-4324-a£8£-298e77253cfb ENPT-hdd6 B EFAgEK J14+0FI= MIIBI 1BCGKCAQE!
37744 JNMQ36@zebra. com c0773cce-£9ac-1333-930a-4a3c86fccash 2ebr-hd123 sy MIIBI TBCQKCAQE:
38071 RCWT43@zebra. con 4274a1! 7267934 hmac:Y’ 13F£eqDq MIIBT 1BCQKCAQEAT0OGaF £2MKBX:
35794 brad.neyer@loras.edu 07592a36-C62d-2256-9561-59e5b7784375 _ Lora-hdl c:y4KP /EMVA/2XrXUTV0OS: MIIBI TBCGKCAQE: 3nSm
42094 welementaclementsatlaw. con 9bc61£83-e34d-d740-97ad-b9575a64£2c9 Winn-hd2 hmac: 3eTIE= |MIIBIL TBCQKCAQE! 1vD2upd39)+3+T
38034 QRNX26@zebra. com 5de7c937-4322-b173-cdbl-241539328563 i 318Jx091F283R0ustIzQ= MIIBI TBCQKCAQE:
37836 W4G6£T@zebra. com ba339271-1440-fcad-5e£2-2765471£1890 Zebr-hd215 hmac:Xx+iL J202mbw= MIIBI 1BCQKCAQEADREX8Q) 1

Fig. 4 Snapshot exhibiting data access form MySQL using DSF

@ Springer

http://dsf.com:5433/cloud/dsl.svc/cloud2/1/cloud-users/vmuser/record
http://dsf.com:5433/cloud/dsl.svc/cloud2/1/cloud-users/vmuser/record
http://dsf.com:5433/cloud/dsl.svc/cloud2/1/file-vdb/vmlog/rabbitmq
http://dsf.com:5433/cloud/dsl.svc/cloud2/1/file-vdb/vmlog/rabbitmq

An Intelligent Data Service Framework for Heterogeneous Data Sources 587

< C D http://dsf.com:5433/cloud/dsl.svc/cloud2

2018-02-16 11:22:14.689 [info] <0.33.0> Application lager started on node 'rabbit@PK-LTP-MujeebRehman'
2018-02-16 11:22:14.696 [info] <0.5.0> Log file opened with Lager

2018-02-16 11:22:28.556 [info] <0.33.0> Application jsx started on node 'rabbit@PK-LTP-MujeebRehman'’
2018-02-16 11:22:28.588 [info] <0.33.0> Application os_mon started on node 'rabbit@PK-LTP-MujeebRehman'
2018-02-16 11:22:28.588 [info] <0.33.0> Application recon started on node 'rabbit@PK-LTP-MujeebRehman'
2018-02-16 11:22:28.589 [info] <0.33.0> Application inets started on node 'rabbit@PK-LTP-MujeebRehman'
2018-02-16 11:22:28.639 [info] <0.33.0> Application mnesia started on node 'rabbit@PK-LTP-MujeebRehman'
2018-02-16 11:22:28.639 [info] <0.33.0> Application xmerl started on node 'rabbit@PK-LTP-MujeebRehman'
2018-02-16 11:22:28.640 [info] <0.33.0> Application asnl started on node 'rabbit@PK-LTP-MujeebRehman'
2018-02-16 11:22:28.640 [info] <0.33.0> Application crypto started on node 'rabbit@PK-LTP-MujeebRehman'
2018-02-16 11:22:28.640 [info] <0.33.0> Application public_key started on node 'rabbit@PK-LTP-MujeebRehman’
2018-02-16 11:22:28.640 [info] <0.33.0> Application cowlib started on node 'rabbit@PK-LTP-MujeebRehman'
2018-02-16 11:22:28.640 [info] <0.33.0> Application ssl started on node 'rabbit@PK-LTP-MujeebRehman'
2018-02-16 11:22:28.640 [info] <0.33.0> Application ranch started on node 'rabbit@PK-LTP-MujeebRehman'
2018-02-16 11:22:28.640 [info] <0.33.0> Application ranch_proxy_protocol started on node 'rabbit@PK-LTP-MujeebRehman'’
2018-02-16 11:22:28.640 [info] <@.33.0> Application rabbit_common started on node 'rabbit@PK-LTP-MujeebRehman'

2018-02-16 11:22:28.650 [info] <0.213.0>

Starting RabbitMQ 3.7.2 on Erlang 20.2

Copyright (C) 2007-2017 Pivotal Software, Inc.
Licensed under the MPL. See http://www.rabbitmq.com/
2018-02-16 11:22:28.655 [info] <0.213.0>

node : rabbit@PK-LTP-MujeebRehman

home dir

: C:\WINDOWS\system32\config\systemprofile

config file(s) : c:/Users/PK/AppData/Roaming/RabbitMQ/advanced.config
: c:/Users/PK/AppData/Roaming/RabbitMQ/rabbitmq.conf

cookie hash ¢ +15rrWTtzVdwXspTwYoVbQ==

log(s) : C:/Users/PK/AppData/Roaming/RabbitMQ/log/RABBIT~1.L0G
: C:/Users/PK/AppData/Roaming/RabbitMQ/log/rabbit@PK-LTP-MujeebRehman_upgrade.log

database dir

Fig. 5 Snapshot of the flat file access

implemented DSF in a simulated environment and
tested it. Consequently, following issues need to be
addressed for using DSF in enterprize applications:

High Availability For large scale enterprize applica-
tions, we need a high availability. Currently, there is
no mechanism in data service framework if primary
physical source goes down and it cannot be up from
secondary/slave node. For this purpose, we need to

: c:/Users/PK/AppData/Roaming/RabbitMQ/db/RABBIT~1

change the address of physical source in data service
framework.

Security Data security is a crucial requirement which
mainly depends upon user authentication and autho-
rization, and data transport layer mechanisms. Data
service framework saves user credentials and access
rights in an encrypted configuration file. Moreover,
current authentication and authorization mechanisms

Data Access from DSF and MySql Direct connection

30000

24000

mili 18000
seconds

12000

6000

=

—_—

0 1 1050 500 1000 5000 200000 500000 2000000 4000000 15000000 18000000

Fig. 6 Snapshot exhibiting the comparison graph

No. of Rows

@ Springer

588

F. A. Khan, et al.

cannot address all the issues that arise in enter-
prize applications. Resultantly, new authentication and
authorization as well as data transport layer mech-
anisms need to be developed to achieve the special
security requirements of integration of heterogeneous
data source in DSF.

8 Conclusion and Future Work

Heterogeneous data extraction and manipulation form
distributed sources including databases, files and web
services in distinct type of application like mobile,
cloud, desktop, web etc. is a challenging issue in
global information systems for cooperation and inter-
operability. In this paper we proposed a framework
called data service framework, which provides the
integration of heterogeneous data sources and ser-
vices for engendering and executing bi-directional
data services. Through abstraction and federation, data
is accessed and integrated in real-time across dis-
tributed data sources without copying or moving data
from its system of record. This framework helps the
enterprize solutions in terms of saving development
time and cost. It also helps different types of applica-
tion such as mobile, cloud, desktop and web-based to
access the heterogeneous data from distributed source
without developing the business logic layer again and
again. Thus, the perceived simplicity of DSF now
can be understood from a quantitative perspective
— choosing DSF removes the need to creating dif-
ferent application for different data sources as well
as data management. The DSF as shown in exper-
imental result will access data from heterogeneous
datasources, in terms of performance we have veri-
fied the performance on MYSQL data source to ran
the same query on MySQL using DSF from client
machine and also created a direct connection with
MySQL to access the virtual machines record and
we found the difference of 6 seconds while access-
ing 200 hundred thousand rows. But while accessing
the lower numbers of rows the difference goes to
milliseconds.

The proposed framework is currently supported for
Oracle, MySQL databases, flat file (text) and SOAP-
based services. As a future work, it can be extended
for other databases such as SQL server, SQLite and
DB2. Also Extensible Messaging and Presence Proto-
col (XMPP) is required to be integrated at translator

@ Springer

level in query engine to handle the situation where
physical resource goes down and we want to power it
up from the slave system automatically.

References

1. Russell, C.: Bridging the object-relational divide. ACM
(2008)

2. Vinoski, S.: Verivue: RESTful web services development.
IEEE Internet Computing 5(3) (2008)

3. Wada, Y., Watanabe, Y., Syoubu, K., Miida, H., Sawamoto,
J.: Virtual database technology for distributed database
in ubiquitous computing environment. Amer. J. Database
Theory Appl. 1(2), 13-25 (2012). https://doi.org/10.5923/j.
database.20120102.02

4. Zhang, X., Di, R.H., Weng, Z.J.: Data management in struc-
tural engineering experiment grid. In: The 5th annual China
grid conference (2010)

5. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: Integra-
tion of CLEVER clouds with third party software systems
through a REST web service interface. In: 2012 IEEE
symposium on computers and communications (ISCC)
(2012)

6. Niknamand, M., Karshenas, S.: Integrating distributed
sources of information for construction cost estimating
using semantic web and semantic web service technologies.
In: Automation in Construction (2015)

7. Chaudhari, M.B., Dietrich, S.W., Ortiz, J., Pearson, S.:
Towards a hybrid relational and XML benchmark for
loosely-coupled distributed data sources. Journal of Sys-
tems and Software (2015)

8. Szepielak, D.: Rest-based service oriented architec-
ture for dynamically integrated information systems. J.
Digit Imaging. 22(6), 559 (2009). https://doi.org/10.1007/
$10278-009-9244-2

9. Atay, M., Chebotko, A., Liu, D., Lu, S., Fotouhi, F.: Effi-
cient schema-based XML-to-relational data mapping. Inf.
Syst. 32, 458-476 (2009)

10. Pautasso, C.: On composing restful services. Cascon (2012)

11. Gounaris, A., Comito, C., Sakellariou, R., Talia D.: A
service-oriented system to support data integration on data
grids

12. Strimbei, C.: Smart data web services. Informatica Eco-
nomica 16(4) (2012)

13. Wada, Y., Watanabe, Y., Sawamoto, J., Katoh, T.: Database
virtualization technology in ubiquitous computing. In: Pro-
ceedings of the 6th innovations in information technology
(Innovations’09), pp. 170-174 (2009)

14. Wada, Y., Watanabe, Y., Syoubu, K., Sawamoto, J., Katoh,
T.: Virtualization technology for ubiquitous databases.
In: Proceedings of the 4th workshop on engineering
complex distributed systems (ECDS 2010), pp. 555-560
(2010)

15. Wada, Y., Watanabe, Y., Syoubu, K., Sawamoto, J., Katoh,
T.: Virtual database technology for distributed database.
In: Proceedings of the IEEE 24th international confer-
ence on advanced information networking and applications
workshops (FINA2010), pp. 214-219 (2010)

https://doi.org/10.5923/j.database.20120102.02
https://doi.org/10.5923/j.database.20120102.02
https://doi.org/10.1007/s10278-009-9244-2
https://doi.org/10.1007/s10278-009-9244-2

An Intelligent Data Service Framework for Heterogeneous Data Sources

589

16.

17.

18.

Wada, Y., Watanabe, Y., Syoubu, K., Miida, H., Sawamoto,
J., Katoh, T.: Technology for multi-database virtualization
in a ubiquitous computing environment. In: Interna-
tional workshop on informatics (IWIN2010), pp. 89-96
(2010)

Luo, Y., Jiang, L., Zhuang, T.-G..: A grid-based model for
integration of distributed medical databases. J. Digit Imag-
ing. 22(6), 579-588 (2009). https://doi.org/10.1007/s10278-
007-9077-9

Alghamdi, N.S., Rahayu, W., Pardede, E.: Semantic-based
structural and content indexing for the efficient retrieval
of queries over large XML data repositories. Future Gen
Comput. Syst. 37, 212-231 (2014)

19.

20.

21.

Imran, M., Hlavacs, H., Khan, F.A., Jabeen, S., Khan, F.G.,
Shah, S., Alharbi, M.: Aggregated provenance and its impli-
cations in clouds. Future Gen. Comput. Syst. 81, 348-358
(2018)

Imran, M., Hlavacs, H., Haq, .U., Jan, B., Khan, FA,,
Ahmad, A.: Provenance based data integrity checking
and verification in cloud environments. PloS ONE 12(5),
e0177576 (2017)

Khan, FA., Ahmad, A., Imran, M., Alharbi, M., ur
Rehman, M., Jan, B.: Efficient dataaccess and performance
improvement model for virtual data warehouse. Sustain
Cities Soc. 35, 232-240 (2017)

@ Springer

https://doi.org/10.1007/s10278-007-9077-9
https://doi.org/10.1007/s10278-007-9077-9

	An Intelligent Data Service Framework for Heterogeneous Data Sources
	Abstract
	Introduction
	Literature Review
	Problem Statement
	Proposed Framework
	Deployment
	Accessing Data Using a Browser
	Deleting Data
	Versioning RESTful Services

	Data Service Framework Usage
	Experimental Results
	Discussion
	High Availability
	Security

	Conclusion and Future Work
	References

