J Grid Computing (2018) 16:165-194
https://doi.org/10.1007/s10723-018-9434-6

N
@ CrossMark

PERSIST: Policy-Based Data Management Middleware
for Multi-Tenant SaaS Leveraging Federated Cloud Storage

Ansar Rafique
Wouter Joosen

- Dimitri Van Landuyt -

Received: 30 June 2017 / Accepted: 6 February 2018 / Published online: 14 March 2018
© Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract NoSQL data stores are often combined to
address different requirements within the same appli-
cation. The implication of this trend is particularly
important and relevant in the context of multi-tenant
SaaS applications where tenants commonly have dif-
ferent storage- and privacy-related requirements and
thus they desire to customize the storage setup accord-
ing to their specific needs. Consequently, applica-
tion developers are increasingly combining storage
resources: on-premise and public cloud resources in
a hybrid cloud setup, different external public cloud
storage resources and providers in a federated cloud
storage setup, etc. The consequences of these trends
are twofold: (i) application developers and SaaS
providers have to deal with heterogeneous technolo-
gies, different APIs, and implement complex storage
logic (to address different requirements of tenants),
all within the application layer; and (ii) storage archi-
tectures have become less rigid, and techniques are
required to flexibly change the storage configuration
of running applications, up to the level of individ-
ual service requests. To address these challenges,
we present PERSIST, a middleware architecture that
(i) externalizes the complexity of a federated cloud

A. Rafique (B<) - D. Van Landuyt - W. Joosen

Department Computer Science, imec-DistriNet Research
Group, Celestijnenlaan 200A, 3001 Heverlee, Belgium
e-mail: Ansar.Rafique @cs.kuleuven.be

storage architecture and the complex storage logic
from the SaaS application to storage policies, allows
tenants to enforce different storage- and privacy-
related requirements at a fine-grained level; and
(i) supports the dynamic (re)configurability of
the underlying federated cloud storage architecture.
Application-specific policies can be customized by
individual tenants at run time, and PERSIST offers
support for run-time cross-provider polyglot persis-
tence and the confidentiality of sensitive data through
encryption. We have validated PERSIST in a working
prototype implementation. Our extensive evaluation
efforts show (i) the accomplished reduction in the
required development effort to support complex stor-
age policies, (ii) the reduction in cost/effort to change
the data storage architecture itself, and finally (iii)
the acceptability of the performance overhead (around
6% for insert, and 2% for read, update and delete
transactions).

Keywords Policy-based middleware - NoSQL data
stores - Polyglot persistence - Multi-tenant SaaS -
Federated cloud storage - Data encryption

1 Introduction
Cloud computing in the recent years has shown great
success as a service-oriented computing paradigm that

enables convenient and on-demand network access
to a shared pool of computing resources [29, 30]. It

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-018-9434-6&domain=pdf
http://orcid.org/0000-0002-5881-7588
mailto:Ansar.Rafique@cs.kuleuven.be

166

A. Rafique et al.

scales on demand to support fluctuating workloads
and eliminates the cost of maintaining an expensive
on-premise infrastructure [17, 20, 48], as such allow-
ing for significant cost savings. For these reasons, an
increasing number of applications are built upon cloud
platforms.

The well-known limitations —in terms of perfor-
mance, scalability, and availability— of traditional
databases in a cloud environment has lead to the emer-
gence of a family of cloud-friendly databases, which
are commonly referred to as NoSQL [6, 19, 28, 33, 45].
The term NoSQL, as an abbreviation of not only SQOL,
as such relaxes a number of traditional constraints
(such as the ACID transaction properties) in the favor
of high availability, elastic scalability, better perfor-
mance, etc. — concerns that are particularly relevant
in the context of Big Data and Cloud computing [11,
13, 16].

There is a wide variety of NoSQL database systems
that can be used in cloud applications [12]. How-
ever, NoSQL systems are not general-purpose: they
are tailored to specific use cases, address specific
storage requirements, and the selection of a certain
NoSQL technology impacts different functional and
non-functional requirements [4, 34, 35]. As a conse-
quence, NoSQL systems are in practice increasingly
combined and used in the context of a single appli-
cation, a scheme commonly referred to as polyglot
persistence [9, 43].

In the specific context of multi-tenant Software-
as-a-Service (SaaS) applications —in which a single
instance of an application is shared among many
tenants— different tenants often have different func-
tional and non-functional requirements, e.g., a ten-
ant may demand for specific SLA stipulations with
regards to data confidentiality, availability, perfor-
mance, etc. However, considering contrasting storage
requirements of different tenants and the constant
growth of computation and storage power required by
multi-tenant SaaS applications, committing to a single
cloud storage provider (e.g., a Database-as-a-Service
provider) is often too restrictive and introduces new
concerns related to cloud availability, security, data
privacy, and adequate performance (e.g., response
time), etc.

This creates strong opportunities and incentives for
application providers to combine resources from
different cloud storage providers. One of the main

@ Springer

drivers for seeking support from multiple cloud storage
providers is to avoid technology, vendor or service
lock-in, which is a key hurdle against cloud storage
adoption. In addition, working with more than one
cloud storage provider can make a multi-tenant SaaS
application more robust in the presence of failures and
maximizes the anticipated needs of tenants. Applica-
tion providers are in practice increasingly combining
different storage resources, combining cloud stor-
age with on-premise resources in so-called hybrid
setups [14], and mixing different external cloud stor-
age resources in so-called multi-cloud or federated
cloud storage setups [7].

As a consequence of these trends, designing, imple-
menting, operating, and customizing a multi-tenant
SaaS application on top of a federated cloud stor-
age setup has become significantly more difficult.
Firstly, the reality of complex federated storage archi-
tectures leads to a complex federated cloud storage
logic that is commonly implemented in the applica-
tion layer, which makes it hard to change over time,
for example, when data storage requirements or when
the storage requirements of different tenants are con-
sidered. Secondly, SaaS providers and tenants of the
SaaS application may want to impose certain data
storage requirements that act at a fine-grained level,
e.g., on the basis of concrete data elements of cer-
tain data types for specific tenants. For example, the
data elements of certain data types may be considered
sensitive and therefore, appropriate confidentiality-
preserving measures must be taken before storing.
Thus, supporting different storage requirements of a
multi-tenant SaaS application at this level of granu-
larity is highly challenging and increasingly demand-
ing. Thirdly and finally, tenants may want to change
the underlying storage architecture according to their
specific requirements and therefore techniques are
required to deal with such challenging situations.

In this paper, we present PERSIST, a policy-based
middleware that confronts these challenges by (i)
externalizing the complexity of a federated cloud stor-
age architecture and a federated cloud complex stor-
age logic —which is commonly implemented in the
application and ultimately serves to address different
storage- and privacy-related requirements of multiple
tenants— from the SaaS application layer; (ii) facili-
tating tenants to enforce these requirements at a more
fine-grained level, i.e. up to the level of individual data

PERSIST: Policy-Based Data Management Middleware for Multi-Tenant SaaS 167

elements of certain data types for different data service
requests as such also allows them to attain the benefits
of dynamic federated cloud storage setups; and (iii)
allowing different tenants of the SaaS application to
flexibly and consistently (re)configure the underly-
ing federated cloud storage architecture, according
to their own specific needs, concerns, and priorities.
In addition to addressing these challenges, PERSIST
also provides an abstraction API to enable partition-
ing of application data across multiple data stores in
a federated cloud storage setup. Furthermore, it offers
support for run-time polyglot persistence and confi-
dentiality of sensitive data at various degrees of gran-
ularity through data encryption. Moreover, PERSIST
supports tenant customization by allowing tenants to
refine storage policies at run time (in accordance to
the principle of self-service [30]).

Our extensive prototype implementation —based
on existing platforms and technologies such as Impe-
tus Kundera [27], JBoss Drools [40], and Ehcache
[15]— validates PERSIST in the context of a real-
istic multi-tenant SaaS application. In addition, our
evaluation efforts focus on three different dimen-
sions: (i) the cost/effort to implement complex storage
policies, (ii) the cost/effort to change the back-end
storage architecture, and finally (iii) the performance
overhead introduced by the PERSIST middleware.
These evaluations confirm that PERSIST reduces the
development effort and increases the customizability,
compared to existing systems, and that these bene-
fits are attained with acceptable performance overhead
(ranges between [1.7 - 6.5%], [0.5 - 2.4%], [0.4 -
2.4%], and [0.4 - 2.2%] for insert, read, update, and
delete transactions respectively).

The remainder of the paper is organized as follows:
Section 2 illustrates the above-mentioned challenges
from the context of a realistic multi-tenant SaaS appli-
cation case and further elaborates and exemplifies the
key challenges of interest in this paper. Section 3
provides an in-depth discussion of the overall architec-
tural design of the PERSIST middleware. In Section 4,
we discuss the PERSIST prototype implementation,
while the Section 5 presents our evaluation. Section 6
connects and contrasts PERSIST to related work.
Section 7 continues with a brief discussion about the
applicability of PERSIST for different categories of
applications. Finally, Section 8 concludes the paper
and outlines directions for the future work.

2 Motivation

The motivation for this paper is based on our expe-
riences with a number of industrial SaaS application
cases, which are obtained in the context of sev-
eral applied research projects in collaboration with
industry-level SaaS application providers [24-26, 41].

Table 1 illustrates a number of concrete use-case
scenarios from various real-world applications. The
last column of the Table 1 provides information about
scenarios that require a combination of different cloud
storage providers and technologies as well as illustrates
the complexity of the respective data storage policies.

For illustration purposes, we focus on one such
application case from the log management applica-
tion domain, a multi-tenant Log Management-as-a-
Service (LMaaS) offering, which we introduce in
Section 2.1. More specifically, we highlight the nature
of its dynamic storage- and privacy-related require-
ments for which support is lacking in current data
access middleware platforms [23, 27, 44] and aca-
demic systems [1, 8, 10, 32]. Then, in Section 2.2, we
briefly describe the motivation for a federated cloud
storage architecture, especially in the context of multi-
tenant SaaS applications. Based on that, in Section 2.3,
we describe how the multi-tenant LMaaS application
leverages various cloud storage resources and tech-
nologies in a federated cloud storage architecture.
Section 2.4 subsequently outlines the key challenges
for this paper.

2.1 Multi-Tenant Log Management-as-a-Service

The multi-tenant Log Management-as-a-Service
(LMaaS) offering provides log management facilities
—the collection, aggregation, reporting, processing,
and archiving of log data— to its customer organi-
zations (tenants). As such, it allows organizations to
gain insight into their IT infrastructure without having
to support or implement such functionality in-house.
The tenants of this SaaS application are customer
organizations of all sizes from very different appli-
cation domains (e.g., banks, supermarkets, hospitals,
etc.).

The application relies extensively on storing large
volumes of heterogeneous data (4 TB/day), such as
raw log entries, archived logs, log meta-data, histor-
ical logs, and incident reports from multiple tenants.

@ Springer

168

A. Rafique et al.

Table 1 Overview of different federated cloud scenarios from various real-world application domains

Application domain

Description

Example tenants

Federated cloud scenarios

Log management

Log analysis

Document processing

and generation

Patient image storage
and analysis

Patient monitoring

Model-driven
engineering workflows

and simulations

Collecting and analyzing
logs of the IT infrastructure
Analysis and detection of
anomalies and security
breaches

Generation of large sets

of documents (PDFs) from
raw data and delivery

of these PDFs

Storage and semi-automated
analysis of patient image
AAL system, collection and
analysis of extramural

patient sensor data

On-line, on-demand model-
based simulation as part

of an engineering process

From SME:s to large

corporations

Service providers (invoices),
employers (payslips),

banks (transaction overviews
and bank statements)
Hospitals, health service
providers

Patient networks, hospitals,
GPs

Engineering companies,
car manufacturers,

avionics, etc

Confidential raw log entries are stored in
Cassandra, deployed in a private cloud,
whereas non-confidential historical logs are
stored in MongoDB, deployed in a public
cloud (e.g., Amazon AWS).

PDFs < 20MB are stored in MongoDB
(deployed in a private cloud), while the
PDFs > 20MB are stored in MongoDB
(deployed in a public cloud).

Patient images, which are smaller in size
are stored in a private cloud, while the
large images are stored in a public cloud.
The meta-data of images must always be
indexed in an Elasticsearch (deployed in
a private cloud), while the images are stored
in an encrypted form.

Proprietary data (e.g., physical features of
an aircraft) must not leave the tenant pre-
mise, while other data can be stored in public

clouds.

For each log type, tenants may have varying stor-
age requirements, usually related to functional and
non-functional aspects. For example, the raw log
entries arriving at the LMaaS application from a finan-
cial agency (i.e. a bank) require high write through-
put. Moreover, the raw log entries also require high
read throughput as well as high availability for post-
processing. In contrast, the archived logs and histor-
ical logs do not require high write throughput and
availability as they can be processed at a slower pace,
but high read throughput is a key requirement. Fur-
thermore, storing log meta-data for all tenants requires
only high write throughput, but at the same time high
availability is a prerequisite.

Additionally, for different tenants, the applica-
tion has to deal with data of varying degrees of
confidentiality. For example, raw log entries gener-
ated by tenants in the banking industry will involve
more stringent confidentiality requirements and con-
straints than the raw log entries generated by a medical
institution (i.e. a hospital) and a supermarket (i.e. an

@ Springer

SME). Moreover, some tenants prefer to use their
own on-premise storage infrastructure for storing
data which has strict confidentiality requirements than
relying on the storage infrastructure of the SaaS
provider or the external cloud storage providers,
while other tenants have no objections against having
their data stored by external third-party cloud storage
providers.

2.2 Federated Cloud Storage Architecture

In practice, the selection of a single cloud storage
provider is often too restrictive and eventually leads
to a costly decision-making process due to the fol-
lowing reasons (i) application providers confront with
a lack of trust in the cloud storage provider and are
thus reluctant to share confidential application data;
(ii) application providers and their tenants may require
(a) different SLA guarantees (with respect to perfor-
mance, availability, and responsiveness) and (b) vari-
ous storage technologies for addressing requirements

PERSIST: Policy-Based Data Management Middleware for Multi-Tenant SaaS 169

of different types of application data, which might not
be supported by the selected cloud storage provider
and finally (iii) as market conditions evolve, applica-
tion providers may inevitably want to switch cloud
storage providers, but are in practice confronted with
a situation of provider lock-in [37]. Therefore, it
is extremely difficult to select the most appropriate
cloud storage or the Database-as-a-Service provider
for addressing the diverse storage- and privacy-related
requirements of tenants.

To address these concerns, SaaS providers are
increasingly leveraging different cloud storage resources,
technologies, and providers in a so-called feder-
ated cloud storage architecture. More specifically,
the storage tier of multi-tenant SaaS applications is
increasingly being structured as a federated cloud
storage architecture. This enables data storage
requirements of a single application to be realized
by combining different cloud storage resources,
technologies, and providers — a concept known as
cross-provider polyglot persistence.

2.3 LMaaS on Federated Cloud Storage Architecture

In case of the multi-tenant LMaaS application, the
SaaS provider wants to minimize the up-front costs
and reduce the maintenance costs by maximiz-
ing the utilization of external infrastructure services
(e.g., third-party cloud storage services or providers).
As each cloud storage provider has different fea-
ture strengths, a federated cloud storage architecture
enables to mix and match these different features and
services based on different requirements of the appli-
cation or tenants. As an example, the multi-tenant
LMaaS offering can take advantage of third-party
external public cloud storage providers to reduce
CapEx and achieve better scalability and continuous
availability, while still keeping the sensitive data at the
provider’s or tenant’s location.

Consequently, the multi-tenant LMaaS application
as shown in Fig. 1 combines various cloud storage
technologies, services, and providers to satisfy the
respective storage- and privacy-related requirements
of its tenants. The best-of-many-worlds approach
of a federated cloud not only lets the multi-tenant
LMaaS offering to take advantage of different fea-
ture strengths of multiple storage resources or cloud
providers, but also helps to use the right technology

B

Tenant C

(ISP)=|
2

<on "»

280 28,
enant A Tenant B

(Hospital)[a

Multi-Tenant Log

Management
. 17 Neo4j
e redlscassandra o° ;
S > Federated e nc e amazon
\x ticse | o, y/ Cloud \\HEHSE ebsel ces(f/

‘Storage Provider # 1 Storage Provider ¥2

cassandra

FHak Omongo

/
~On-Premise

Fig. 1 The multi-tenant log management application uses
a federated cloud storage architecture to satisfy contrasting
requirements of tenants

for the right task. That is, the use of an appropriate
data store for specific data elements —having differ-
ent requirements— taking into account the nature of
data elements and the data store (e.g., unstructured
documents must be stored in document stores such as
MongoDB or high throughput write storage requests
must be propagated to the Cassandra data store). How-
ever, cloud storage providers may not be equally trust-
worthy. For example, European laws may consider
data storage providers from the US to be untrustwor-
thy. Therefore, additional precautions (e.g., encrypt
confidential data before storing it) must be taken by
the multi-tenant LMaaS application to comply with
such demands and regulations.

2.4 Key Challenges

Combining an on-premise storage infrastructure with
external cloud storage resources in a so-called fed-
erated cloud storage architecture has emerged as a
promising yet a challenging solution to a number of
these storage- and privacy-related requirements.
However, developing and maintaining a multi-
tenant SaaS application that leverages the benefits
of a federated cloud storage architecture essentially
involves dealing with the following key challenges:

C1- Decouple complexity from SaaS applications

C1.A- Abstraction of federated cloud storage. A
multi-tenant SaaS application that leverages the ben-
efits of a federated cloud storage has to deal with

@ Springer

170

A. Rafique et al.

the complexity of various heterogeneous database sys-
tems (both SQL and NoSQL) and technologies in
the big data landscape (e.g., batch processing, stream
processing, search engine, etc.) usually operating at
different cloud storage providers or Database-as-a-
Service providers, while also considering their respec-
tive data models, APIs, and query languages. The
application needs to provide sufficient abstractions to
hide the complexity involved in managing (i.e. par-
titioning, integrating, updating, deleting, searching,
replicating, indexing, etc.) application data across fed-
erated cloud storage architectures. In addition, the
application must be able to interact uniformly with
a wide variety of different vendor-specific database
systems and technologies in the big data landscape.
C1.B- Externalization of federated cloud storage
logic. When building a multi-tenant SaaS applica-
tion on top of a federated cloud storage setup,
hard-coding specifics, which lead to the devel-
opment of a complex storage logic for address-
ing different types of the application data and the
dynamic requirements of tenants is clearly not a
good idea. It drastically impedes the ability of the
multi-tenant SaaS application to satisfy contrasting
requirements of various tenants, work with differ-
ent cloud storage providers and their respective stor-
age systems, as well as evolve over time. Hence,
managing and operating the federated cloud stor-
age logic is ideally an operational concern (deploy-
ment and/or configuration) and not a development
concern. Therefore, hard-coding specifics of the fed-
erated cloud storage logic must be externalized from
the SaaS application layer.

C2- Address dynamic requirements of tenants

C2.A- Data storage requirements. In the case
of multi-tenant SaaS applications, different tenants
have slightly different data storage requirements with
respect to performance, scalability, availability, etc.,
for different types of application data. For example,
data elements of certain data types that require bet-
ter performance must be stored in a data store that
sufficiently complies with such storage requirements.
Similarly, data elements of certain data types require
higher availability and they must be treated accord-
ingly. This form of diversity that needs to be supported
for each tenant of the SaaS application at the level of
individual data elements makes the SaaS application
less manageable and scalable as well as inadequately

@ Springer

adaptable for future changes. The multi-tenant SaaS
application needs to accommodate these diverse and
dynamic data storage requirements of tenants in an
efficient, scalable, and continuous manner.

C2.B- Data confidentiality requirements. Similar to
the data storage requirements, tenants also have dif-
ferent confidentiality requirements, which may differ
considerably among them. For example, a banking
industry encounters stricter regulations and constraints
on data confidentiality than a supermarket. In addition,
different tenants of the multi-tenant SaaS application
may impose confidentiality requirements at varying
levels of granularity (e.g., from data types to data ele-
ments and up to the finest level, i.e., at the level of
individual data properties of an object), which can be
applied at run time. The application has to fulfill these
contrasting confidentiality requirements of tenants to
be inline with these regulations and constraints.

C3- Tenant self-service/customization

C3.A- Data storage configuration. The application
must allow customer organizations (tenants) to con-
figure the service to use their own on-premise storage
infrastructure. For example, a medical institution (i.e.
a hospital) may not want to disclose sensitive patient
data to the service provider or may not even want the
physical storage to leave the hospital premises.

C3.B- Data storage logic. There is a growing need to
customize the multi-tenant SaaS application and more
specifically, its storage decisions to accommodate the
requirements of different tenants. Therefore, the mid-
dleware needs to be customizable and configurable for
and by individual tenants of the SaaS application to
enable self-service offering [30] and meet the varying
requirements of individual tenants. More concretely,
the middleware should allow tenants to express their
data storage- and privacy-related requirements and
enforce these requirements at run time (i.e. allowing
tenants to customize these storage decisions) up to the
level of individual requests.

C4- Back-end portability of multi-tenant SaaS
applications. Portability is the ability to easily use
applications on different environments (e.g., storage
systems operating at different cloud storage providers
in a federated cloud storage setup) as such, it enables
SaaS providers to port an existing SaaS applica-
tion to different back-end environments with minimal
changes. The application needs to be sufficiently flex-
ible and adaptable to allow dynamic (re)configuration

PERSIST: Policy-Based Data Management Middleware for Multi-Tenant SaaS 171

of the underlying back-end storage architecture (i.e.
cloud storage providers and thus also the storage
systems), without requiring modifications to the appli-
cation source code.

C5- Practical feasibility. The solution that addresses
the above-mentioned challenges must ensure that
these challenges are addressed in a feasible and
acceptable manner, i.e., the performance overhead
should be minimal.

The next section presents the middleware architec-
ture and its key components and further, it discusses
how these challenges are addressed by different com-
ponents of the PERSIST middleware.

3 PERSIST: a federated cloud middleware

PERSIST provides a uniform API to enable the inte-
gration of services and resources in an on-premise
infrastructure with resources from external cloud stor-
age providers (e.g., Database-as-a-Service providers).
Thus, it makes it easy for tenants to achieve the com-
posite benefits of both worlds: strong data security in
the private cloud, while the unlimited resources and
different feature strengths in the public cloud without
having to be concerned about the underlying technical
details.

This section provides an in-depth overview of the
design decisions and the architecture of our PERSIST
middleware. At its foundation, PERSIST relies upon
the following design principles:

— It makes abstraction of the underlying federated
cloud storage architecture, allowing the definition
of separate storage configuration files (C1.A).

— Federated cloud storage complexity is external-
ized from the application source code in separate
external data storage policies (C1.B).

— It addresses dynamic data storage requirements
of tenants at a fine-grained level, i.e. tenants can
enforce different and often conflicting storage-
and privacy-related requirements for different
data types at the level of individual data elements
(C2.A).

— It supports run-time cross-database and cross-
provider polyglot persistence on a per-object
level, i.e. tenants can use multiple and any
combination of data storage technologies,

resources, and cloud storage providers for differ-
ent data elements in a federated cloud setup and
the decision to use such a combination can be
specified at run time (C2.A).

— It offers dynamic support for encryption of sensi-
tive data at differing levels of granularity and thus
allows the definition of metadata and policies that
involve such measures (C2.B).

— It enables tenants to configure and use their own
storage resources (i.e. an own on-premise storage
infrastructure) for performance (e.g., latency and
throughput) and security reasons (C3.A).

— It supports multi-tenancy, more specifically tenant
customization, i.e. allowing tenants to customize
both data storage policies and storage configura-
tions —at the level of individual data elements—
to their specific requirements (C3).

— Policy decisions and tenant configurations are
enabled at run time, at the finest level of detail
(C3).

— It ensures back-end portability of SaaS applica-
tions to different cloud storage providers without
any changes in the application code (C4).

Figure 2 depicts the architecture of the PERSIST
middleware. The remainder of this section presents
in further detail the different layers, subsystems, and
components as well as discusses how the five key
requirements (C1 - C5) listed above are addressed.

3.1 Tenant Configuration

Presented at the top of Fig. 2, this collection of
tenant-specific artifacts logically groups the tenant
customizations that are supported by the middle-
ware. Tenants can customize the data storage policies
and data storage configurations to their own spe-
cific needs. As an example, tenants can configure
the middleware to use their own on-premise storage
infrastructure by providing an external storage con-
figuration file in the form of deployment descriptor
that contains the deployment description of the back-
end storage setup. In addition, tenants can provide
their own cryptographic keys that can be used by
one of the main components of the PERSIST mid-
dleware called the secure data management compo-
nent (cf. Section 3.4.2), which provides a support for
encryption of sensitive data at different levels of

@ Springer

172

A. Rafique et al.

granularity. These customizations can be provided to
the middleware at run time.

Multi-Tenant LMaaS Illustration In order to address
varying and individual requirements of different ten-
ants of the SaaS application, tenants of the LMaaS
application can refine SaaS provider policies (see
Listing 2 for a simple example of the application-
wide policy) by specifying tenant-specific data storage
policies, as exemplified in Listing 1. PERSIST takes
these tenant-specific policies into consideration for
addressing different requirements of tenants by over-
riding the policies of the SaaS application (e.g., the
application-wide policies).

As shown in Listing 1, tenants can effectively refine
policies by specifying some additional constraints tai-
lored to their own specific requirements. For example,
to enable high availability, better disaster recovery
(where a single cloud provider might anytime fail
or become unavailable), and the cross-provider poly-
glot persistence (i.e. where a specific data element
is stored across multiple cloud storage providers, the
tenant specifies cross-provider replication constraint
as the tenant wants to replicate the specific data
element across 2 cloud storage providers as shown
in line 11 (partially addresses C2.A). Similarly, to
ensure confidentiality of sensitive data before stor-
ing to external untrusted cloud storage providers, the
tenant can enable data encryption support by setting
the corresponding property value to true (as shown
in line 7). In addition, as shown in line 10, the ten-
ant prefers to use public cloud storage providers (e.g.,
Database-as-a-Service providers) over maintaining an
expensive own on-premise storage infrastructure and
also prioritizes search strategies that first act on pri-
vate storage infrastructure for performance reasons
(line 12).

3.2 SaaS Application

The SaaS Application, as shown in Fig. 2, the second
layer from the top, logically groups the SaaS appli-
cation as well as its global data storage policies and
configurations. SaaS providers are given the ability
to specify the application-wide persistence configura-
tion in the form of deployment descriptor, which is
a declarative model of the back-end federated cloud
storage architecture. This includes meta-data infor-
mation about data stores such as their deployment

@ Springer

environment (e.g., data stores are deployed in a pri-
vate cloud or external public cloud storage providers)
and technical capabilities (e.g., data stores optimized
for write vs. read throughput, data stores best suited
for storing specific types of application data, etc).

In addition, SaaS providers can specify application-
wide data storage policies, which are defined as sets
of rules, each containing a set of conditions and the
requirements about the technical capabilities of data
stores deployed in different cloud storage providers
(both private and public clouds) to satisfy these condi-
tions. These data storage policies and the persistence
configuration details are application-wide and there-
fore are global and apply to all tenants of the SaaS
application.

Multi-Tenant LMaaS Illustration Listing 3 shows an
example of an application-wide persistence config-
uration, which contains the configuration details of
the back-end data stores (MongoDB and Cassandra),
deployed in a federated cloud storage setup (both in
a private cloud storage infrastructure as well as pub-
lic cloud storage providers). As shown, the persistence
configuration details are specified for the Apache
Cassandra data store from lines 1 — 16 (deployed
and managed in a private cloud) and lines 17 — 32
(deployed in a public cloud storage provider). The per-
sistence configuration details for the MongoDB data
store deployed in a private cloud storage environment
and the public cloud provider are specified from lines
33 — 48 and lines 49 — 64 respectively. In addition to
configuration details, each storage configuration also
includes additional properties, which specify meta-
data information about the data store (deployment
environment and technical capabilities). For example,
the meta-data information about the Cassandra data
store deployed in an on-premise infrastructure is spec-
ified from lines 8 — 15 and the MongoDB data store
deployed in the public cloud is specified from lines 56
— 63. These additional properties play a key role, as
they describe characteristics and the deployment envi-
ronment of each storage system and enable PERSIST
to make appropriate data placement decisions.
Similarly, a simplified example of an application-
wide data storage policy, which is global to all tenants
is shown in Listing 2. The policy contains a set of rules
for storing both confidential and non-confidential data
of types raw log entries, historical logs, and log meta-
data. BEach rule defines a number of conditions and

Provider Policy
Engine

Tenant Policy
Engine

perform CRUD Selector

<<component>> g
Data Access

l

<<component>>
Index Manager

Configuration Management

C? set configurations

gl

’ set/get data index
select configurations

<<component>>
Storage
Configuration

PERSIST: Policy-Based Data Management Middleware for Multi-Tenant SaaS 173
|
Tenant Configuration
[) & <<artifact>> D <<artifact>> D <<artifact>> D
.’ Tenant Key Tenant Storage Configuration Tenant Policy
' | refinement | refinement
] ' ' '
i SaasS Application Y Y
I
<<component>> gl ! <<artifact>> o <<artifact>> o
Multi-Tenant SaaS | <<Configuration>> <<Policy>>
I
Application ! Provider Storage Configuration Provider Policy
i
1 1 T T T
F & | | i
e ,
OCRUD Osearch . ' set policies
I i
1 : !
| . PERSIST ________________:
] Data Management c [0 |
' \ policy Data Storage Policies
Core ' !
g alll [T <<component>> &J
<<component>> set/get metadata | <<COomponent>> o[getpolicies | b licy Manager
o |
Data 4© Metadata s 4©—_
Management Manager Al <<component>>
i K Policy Engin . .
Service Ay Folicy Enaine @ Provider Policy
v A set/get
filter annotations C ! Lo ! <<component>> g]
. o Policy Decisions
I ! Manager .
N ! 9 Tenant Policy
[.
<<component>> &l || it ——
Storage i ||| <<component>> gl <<component>> gl
|
|
Nk
- L
| =
I
I
I
I
I
I
i
T
i

—0

<<component>> gl
Configuration
Selector

Secure Data Management '

a) y setkeys
<Eper!orm secure CRUD é

<<component>>] <<component>>]
Secure Data Key Manager
Manager

=T

Provider Configuration

get configurations

request key Tenant Configuration

|-

<<component>> gl - Multi-Tenancy
Crypto Data)| <<component>> Cll setCurrentTenant g oetTenant <<component>> &
Access Encrypt/Decrypt ()— <=component>> I Tenant
jencryptdecrypt Q— TenantContext @ Management
Uniform API
&
<<component>> gl
Client API Drivers
— Distributed Data St —
e Istribute: ata Storage .[i

g//s\\\o @ E _ ' EEEn
&)] E
s S

Storage Provider #1 Storage Provider #2 Storage Provider #3 Storage Provider #4

Fig. 2 Architecture of the PERSIST middleware, which combines an on-premise infrastructure with external cloud providers and
offers a single uniform API for data management across a federated cloud storage architecture

@ Springer

174

A. Rafique et al.

rule "Dealing with the confidential data of
type raw log"

3 when

1 dsSelector : Entity (data = " Confidential",
type = "Rawlog")

5 then

7 dsSelector .supportsCondidentiality (true);
dsSelector . writeThroughput (high);
dsSelector.readThroughput (high) ;

10 dsSelector .storagePreference (" public");

11 dsSelector . crossProviderReplication (2);

12 dsSelector .searchPreference (" private");

00

14 end

Listing 1 A tenant-specific data storage policy overrides the
SaaS provider policy which specifies additional preferences tai-
lored to its own requirements for dealing with confidential raw
log entries

different requirements that have to be met for storing
data of such data type. These data storage policy rules
partition different types of the application across dif-
ferent cloud storage providers based on different data
storage requirements without the need to (re)write the
storage logic in the application source code (partially
addresses C1.B). Furthermore, changing the back-end
storage architecture to address specific requirements
of new customer organizations (tenants) only induces
updating the technical capabilities in storage configu-
rations (partially addresses C1.B). Finally, supporting
dynamic requirements within the application only
involves defining additional policy rules.

3.3 Multi-Tenancy

The Multi-Tenancy subsystem depicted in the bottom
right supports tenant-aware execution and tenant cus-
tomization of the SaaS application, similarly to [49].

The TenantContext component enables the
Data Management Service component to set
information about tenant linked to or piggybacked on
data requests (via the unique tenant ID). The compo-
nent communicates with the Tenant Management
component to authenticate the tenant.

3.4 Data Management
The Data Management subsystem represents the core

part of the PERSIST middleware. As shown in Fig. 2,
this subsystem primarily consists of two subsystems:

@ Springer

rule "Dealing with the confidential data of
type raw log"

> when
s dsSelector: Entity (data = "Confidential",
type =— "Rawlog")
then

dsSelector.supportsCondidentiality (true);
¢ dsSelector.writeThroughput (high);

7 dsSelector .readThroughput (high);

s dsSelector.datastoreReplication (1);

s end

11 rule "Dealing with the non—confidential data
of type raw log"

12 when

15 dsSelector : Entity (data =— "Nonconfidential",
type =— "Rawlog")

14 then

15 dsSelector.supportsCondidentiality (false);
16 dsSelector . writeThroughput (high);

17 dsSelector .readThroughput (high) ;

15 dsSelector.datastoreReplication (1) ;

10 end

21 rule "Dealing with the confidential data of
type historical log"

22 when
25 dsSelector : Entity (data = " Confidential",
type = "Historicallog")

24 then

25 dsSelector.supportsCondidentiality (true);
26 dsSelector .readThroughput (high);

27 end

rule "Dealing with the non—confidential data
of type historical log"

;0 when

;1 dsSelector: Entity (data = "Nonconfidential",
type =— "Historicallog")

32 then

5 dsSelector . supportsCondidentiality (false);
22 dsSelector .readThroughput (high) ;
35 end

;7 rule "Dealing with the confidential data of
type log meta—data"

35 when

o dsSelector: Entity (data = " Confidential",
type = "Meta—data")

10 then

i1 dsSelector.supportsCondidentiality (true);
12 dsSelector . writeThroughput (high) ;

i3 dsSelector . datastoreReplication (1);

14 end

i rule "Dealing with the non—confidential data
of type log meta—data"

17 when

s dsSelector: Entity (data = "Nonconfidential",
type =— "Meta—data")

10 then

50 dsSelector.supportsCondidentiality (false);
51 dsSelector . writeThroughput (high);

52 dsSelector . datastoreReplication (1) ;

53 end

Listing 2 Application-wide data storage policy to deal with
multi-tenant LMaaS application data

PERSIST: Policy-Based Data Management Middleware for Multi-Tenant SaaS 175

1 <storage name="Cassandra—Private">
<datastore>Cassandra</datastore>
<nodes>private —ip—address </nodes>
<port>port—no</port>
<keyspace>LMaaS</keyspace>

6 <username>username </username>

7 <password>password </password>

s <properties>

9 <location >private </location>

0 <trusted >true </trusted>

| <writethroughput >high</writethroughput>

2 <readthroughput>high </readthroughput>

3 <data>Rawlog & Meta—data</data>

4

</properties >

16 </storage>

17 <storage name="Cassandra—Public">

15 <datastore>Cassandra</datastore>

19 <nodes>public—ip—address </nodes>

20 <port>port—no</port>

21 <keyspace>LMaaS</keyspace>

2 <username>username</username>

23 <password>password </password>

24 <properties>

25 <location >public </location >

26 <trusted >false </trusted>

27 <writethroughput>high</writethroughput>
28 <readthroughput>high </readthroughput>
20 <data>Rawlog & Meta—data</data>

>

21 </properties>

32 </storage>

i3 <storage name="MongoDB—Private">

34 <datastore >MongoDB</datastore >

55 <nodes>private —ip—address </nodes>
56 <port>port—no</port>

37 <keyspace>LMaaS</keyspace>

38 <username>username</username>

;9 <password>password </password>

4«0 <properties>

4 <location >private </location>

2 <trusted >true</trusted>

43 <writethroughput>low</writethroughput >
44 <readthroughput>high</readthroughput>

45 <data>Archievedlog&Historicallog </data>

46 “ e

«7 </properties>

45 </storage>

10 <storage name="MongoDB—Public">

50 <datastore >MongoDB</datastore>

51 <nodes>public—ip—address </nodes>
<port>port—no</port>
<keyspace>LMaaS</keyspace>
<username>username</username>

55 <password >password </password >

56 <properties >

57 <location >public </location>

58 <trusted >false </trusted>

59 <writethroughput>low</writethroughput >
0 <readthroughput>high</readthroughput>

1 <data>Archievedlog&Historicallog </data>

2 e
3 </properties>
é1 </storage>

Listing 3 Configuration details of back-end data storage sys-
tems distributed in a federated cloud setup

(1) The Core subsystem, which is the heart of
the PERSIST middleware and deals with data storage
requests, matches these requests to application-wide
and tenant-specific data storage policies, and finally
performs a lookup of the appropriate storage node(s)
to which the request is then propagated.

(ii) The Secure Data Management subsys-
tem transparently extends the behavior of the Core
subsystem with a support for encryption-enabled
CRUD transactions (i.e. encrypting confidential data
before storing), when this is called for as a result of
policy evaluation.

The detailed behavior of both these subsystems is
further discussed in the following section.

3.4.1 Core

The Data Management Service component
provides an API for SaaS applications to interact
with the PERSIST middleware, enabling the execu-
tion of insert, read, update, delete (CRUD) transac-
tions, encryption-enabled CRUD transactions, and the
search operation.

A high-level overview of how different components
of the PERSIST middleware interact for making data
placement (i.e. data storage) decisions across a feder-
ated cloud storage setup are illustrated in Fig. 3. Upon
arrival of data placement requests, this component
first reads the tenant information, i.e., the tenant ID
associated with each data storage request and calls the
TenantContext component, the component of the
Multi-Tenancy subsystem to set the current state of the
tenant, i.e. the tenant ID (step 1. in Fig. 3). Then, the
component interacts with the Metadata Manager
component to check if the metadata of the incoming
data element (i.e. an entity object) for a particular ten-
ant already exists (step 2.1. in Fig. 3). PERSIST stores
metadata separately from the application data. Meta-
data is stored within one of the core components of the
middleware called the Metadata Manager com-
ponent. This component supports both the memory-
only storage and the persistent storage, and also offers
metadata replication support and in our architecture,
remains on private premises (i.e. on-premise).

The Data Management Service component
only communicates with the Metadata Manager
component to filter the annotations and read the meta-
data of the incoming data element (i.e. an entity
object) for a particular tenant if it does not already

@ Springer

176

A. Rafique et al.

exist in the Metadata Manager component or
when cached values have been invalidated or have
become stale (step 2.2. in Fig. 3). The latter com-
ponent allows the Data Management Service
component to avoid inspecting the same entity
object multiple times for performance reasons, which
involves filtering the annotations as well as reading the
meta-data (addresses C5).

The Data Management Service component
then calls the Policy Engine component of the
Data Storage Policies subsystem to evaluate the data
storage policies by passing the tenant information,
i.e., the tenant ID and the metadata of the incom-
ing data element (i.e. an entity object), returned
by the Metadata Manager component (step 3.
in Fig. 3). Afterwards, the Data Management
Service component calls the Configuration
Selector component of the Configuration Man-
agement subsystem by passing the tenant ID to
get the configuration details of different back-end
storage systems supported by different cloud stor-
age providers, set by a particular tenant (step 4.

in Fig. 3). After receiving the required information
from both components (the Policy Engine com-
ponent and the Configuration Selector com-
ponent), the Data Management Service com-
ponent calls the Storage Selector component
to perform a lookup of the specific back-end nodes
and make an appropriate data placement decision
(step 5. in Fig. 3). The information is used by the
Storage Selector component of the PERSIST
middleware to determine the storage locations for
the data placement decisions. Based on the returned
information from the Policy Engine component
and the Configuration Selector component,
the Storage Selector component then decides
where the data needs to be stored in a federated cloud
storage architecture. The data placement decision
across a federated cloud storage architecture is made
by taking into account a number of different consider-
ations, such as, the performance objective (e.g., write
vs. read throughput), cross-provider data replication,
whether the data has to be encrypted before storage,
etc.

Persist(Object, tenantID)

Data
Management

1. Set tenant context(tenantID

Tenant

Context

3. datastoreproperties = Evaluate policy(metadata,tenantID)

Data Storage

Policies

Policy

3.2. datastoreproperties = Evaluate(metadata, tenatnID] Engine

3.1. false = Policy decisions exists(metadata, tenantID)

Policy

3.4. Cache decisions Decisions

Manager

3.3. Cache policy decisions (datastoreproperties, tenantiD)

Data Access

Service

2. metadata = Filter metadata(Object, tenantID)

2.3. Cache metadata(metadata, tenatniD)

Metadata
Manager

2.2. lata = Filter annotations(Object)

2.1. false = Metadata exists(Object, tenantID)

4. datastoresconfigurationlist = Get storage configuration(tenantiD)

Persistence
Storage
Configuration

Configuration

Selector

4.1. datastoresconfigurationlist = Read configuration(tenantiD)

4.2, Get tenant Configuration

Storage
Configuration

Cache Manager

5. datastoreslist = Select datastores(datastoreproperties, datastoresconfigurationlist)

6. Persist(Object, datastoreslist, tenantID)

Storage

Selector

7. Index data (Object, datastoreslist, tenantID)

8. Persist(Object, datastoreslist, tenantID)

Client API

Drivers

9. Persist(Object)

Index
Manager

Fig. 3 High-level overview of the requests flow in the PERSIST middleware to performance an insert transaction

@ Springer

7.1. Index data location

PERSIST: Policy-Based Data Management Middleware for Multi-Tenant SaaS 177

The latter component realizes policy decisions,
which matches the desired data store selection prop-
erties with the meta-data information (including both
the deployment environment and the technical capa-
bilities) of each data store for making data placement
decisions. The component, based on the policy deci-
sions, is responsible for selecting the data store(s) or
cloud storage providers best suited for storing a part
of the application or the tenant-specific data in a fed-
erated cloud storage setup and locating the data back
when data from a single tenant can be distributed over
cloud storage providers. This component returns the
list of data store nodes, distributed across multiple
cloud storage providers, each responsible for storing a
part of the application data for a particular tenant.

The Data Management Service component
passes the data element (i.e. an entity object) that
needs to be stored; along with tenant information,
i.e., the tenant ID; and the list of persistence config-
urations to the Data Access component (step 6.
in Fig. 3). Before communicating with the Client
API Drivers component to store the data across
different data stores in a federated cloud setup,
the Data Access component calls the Index
Manager component and passes the information
such as data element (i.e. an entity object), the tenant
ID, and the list of persistence configurations (step 7. in
Fig. 3). The Index Manager component uses the
information to index the data storage locations for
each tenant (step 7.1. in Fig. 3). The component helps
tenants to read/search the data back from the federated
cloud storage setup in an efficient manner such as,
without the need to communicate with all the data stores
distributed across various cloud storage providers
or Database-as-a-Service providers. In addition, the
component also helps tenants to update and delete
data in an efficient way (i.e. by directly commu-
nicating with the storage node(s), which hold the
data).

The Data Access component then iterates over
the resulting list of data stores to get the connec-
tion details (e.g., private or public IP address, port,
username, password, etc.), which are required to
remotely connect these back-end data stores. More-
over, the component also checks whether the encryp-
tion is required before storing data. If encryption is
not required, it interacts directly with the Client
API Drivers component, which offers a uniform
API and passes the persistence storage configuration

details, tenant information (i.e. the tenant ID), and
the data element (i.e. an entity object) which is to be
persisted (step 8. in Fig. 3).

In case the encryption is required, the component
communicates with the Secure Data Manager
component of the Secure Data Management subsys-
tem and passes the persistence storage configuration
details, tenant information (i.e. the tenant ID), and
the data element (i.e. an entity object) that needs to
be encrypted before persisting in the back-end data
store(s).

3.4.2 Secure Data Management

PERSIST facilitates tenants to have fine-grained con-
trol over data encryption by allowing them to spec-
ify confidentiality requirements at different levels of
granularity (addresses C2.B) for different data ele-
ments. The responsible component to provide such a
support in the PERSIST middleware is the Secure
Data Manager component, which to accomplish
this, uses the data mapping strategy motivated in [33]
and [37].

After getting the request from the Data Access
component, the Secure Data Manager compo-
nent first determines the levels of granularity the
data should be dealt with confidentially; for exam-
ple, whether the entire data element (i.e. all properties
of an entity object) is specified as confidential by
the tenant or some properties of an entity object con-
tain confidential information. The Secure Data
Manager component determines the underlying data
mapping strategy based on the levels of granularity
at which the encryption is required. For example, if
the entire data element is specified as confidential,
the underlying data mapping strategy is different and
thus confidential and non-confidential data is stored
separately. Similarly, if some properties of an entity
object are specified as confidential, the underlying
data mapping strategy is again different and thus a
part of the confidential data is stored together with
the non-confidential data, while the other part of the
confidential data is stored separately.

In both cases (whether the entire data element or
some properties of the data element), data encryp-
tion is required. However, performing encryption at a
fine-grained level (e.g. encrypt only some properties
of an entity element) still enables inexpensive search
operations on an unencrypted data.

@ Springer

178

A. Rafique et al.

In case the entire data element (e.g. an entity object)
is considered to be confidential, search functional-
ity can still be provided, however, has become highly
expensive in terms of performance, as the middleware
has to first scan all the data elements and then decrypt
the entire data sets from the federated cloud storage
setup (combination of both private and public cloud
providers).

To enable encryption, the Secure Data
Manager component requests the corresponding
Tenant Key from the Key Manager compo-
nent and passes the entity object, which requires
encryption and the tenant-specific secure key to the
Encrypt/Decrypt component. As explained in
Section 3.1, the Key Manager provides an inter-
face for tenants to set tenant-specific encryption keys.
These are used by the components of the middleware
to encrypt and decrypt tenant-specific confidential
data. In the current implementation of the PERSIST
architecture, advanced key management use cases
(e.g. versioning or revoking tenant keys, or using
combinations of keys for data encryption for a specific
tenant) are not yet supported.

After getting the request from the Secure Data
Manager component, the Encrypt/Decrypt
component performs the encryption process to encrypt
the entity object. Once its encrypted, the component
returns the encrypted entity object to the Secure
Data Manager component. The latter component
interacts with the Crypto Data Access com-
ponent to perform encryption-enabled CRUD trans-
actions. The Crypto Data Access component,
in turn, communicates with the Client API
Drivers component and passes the persistence stor-
age configuration details, the tenant ID, and the
encrypted data element (i.e. encrypted entity).

3.5 Data Storage Policies

The Data Storage Policies subsystem in the middle-
ware enables tenants and the SaaS provider to specify
data storage policies for managing different types of
data generated by the SaaS application. The system
is responsible for decoupling storage logic from the
application layer and therefore, allowing the appli-
cation to be modified without (re)implementing and
(re)compiling the application source code (addresses
C1.B and C3.B). In addition, the system hides the
complexity of managing tenant’s data and addresses

@ Springer

different data storage requirements of tenants. The
system offers several interfaces to the SaaS provider,
tenants, and other components of the middleware.

The Policy Engine is a key component of the
Data Storage Policies system. It is respon-
sible for the policy evaluation upon request of the
Data Management Service component. After
receiving the request from the Data Management
Service component, the Policy Engine first
extracts the tenant information, i.e., the tenant ID and
the metadata of an entity object associated with each
data management request. The Policy Engine
then communicates with the Policy Manager
component by passing the tenant ID to get data storage
policies for a particular tenant.

The Policy Manager component is respon-
sible for managing policies for the SaaS provider
and its tenants. The component provides an inter-
face for the SaaS provider to set the application-
wide storage policy, which is global and applies to
all tenants of the SaaS application. After receiv-
ing the request from the Policy Engine compo-
nent, the Policy Manager component first checks
if the policy for a particular tenant is available,
which means the tenant has effectively defined a
policy refinement. If so, the component returns
both policies (i.e. the application-wide and the
tenant-specific) to the Policy Engine component.
These policies are then executed by two different
sub-components of the Policy Engine compo-
nent, the Provider Policy Engine component
and the Tenant Policy Engine component.
These sub-components execute the policies based on
the metadata of an entity object. The object’s meta-
data is then compared with all the rules, defined in
the policy files and their corresponding action is exe-
cuted. The action part of the policy rules contains
data store selection properties (i.e. conditions and the
requirements about the technical capabilities of data
stores deployed in different cloud storage providers).
After the policy execution, the Policy Engine
component caches policy decisions by calling the
Policy Decisions Manager component (step
3.4. in Fig. 3). However, before executing the pol-
icy, the Policy Engine component first requests
the Policy Decisions Manager component to
check if the SaaS provider’s or a particular ten-
ant’s policy decisions are already cached (step 3.3.
in Fig. 3). The latter is a performance measure to

PERSIST: Policy-Based Data Management Middleware for Multi-Tenant SaaS 179

avoid frequent re-execution of these policies for the
same tenant, by caching the actual policy decisions
(addresses C5).

3.6 Configuration Management

The Configuration Management subsystem is respon-
sible for managing the deployment configuration of
the back-end storage architecture of the federated
cloud setup (including both private and public cloud
storage providers). In addition, it provides an access to
different data stores, deployed across multiple cloud
providers.

The Configuration Selector component
allows the Data Management Service compo-
nent to look up the configuration details of a specific
back-end data storage node. After receiving the
request from the Data Management Service
component, the Configuration Selector
component extracts the tenant information, i.e., the
tenant ID and communicates with the Storage
Configuration component to get the config-
uration details for a particular tenant. The latter
component is responsible for storing these persis-
tence configuration details (both application-wide
and tenant-specific). The component also provides
an interface to the SaaS provider to set application-
wide persistence configurations (cf. Section 3.2)
and enables tenants to refine these configurations by
providing tenant-specific persistence configuration
details (cf. Section 3.1). Thus, it enables the SaaS
provider and tenants to flexibly change the storage
configurations and easily port an existing application
to different back-end storage setup (addresses C4).
The SaaS provider and its tenants define these con-
figuration details in the form of a configuration file
(partially addresses C3.A). Along with the persistence
configuration details about the back-end database
technologies, this configuration file also defines
meta-data information (i.e. additional properties)
about the deployment environment and the technical
capabilities of the database technology or its specific
instances (cf. Section 3.2).

3.7 Client API Drivers
The Client API Drivers component (depicted

at the bottom of Fig. 2) groups different storage
drivers, at least one for each supported data store.

In addition, it makes abstraction by providing a uni-
form API to the Data Access component and
the Crypto Data Access component (addresses
C1.A). This is highly similar to the existing design
of object NoSQL database mappers (ONDMSs) such
as Impetus Kundera [27] or Hibernate OGM [23].
Each driver in the Client API Drivers (not
depicted) acts as a client communicating with the spe-
cific storage system to issue native CRUD transactions
and search operations. As such, the Client API
Drivers component support portability across diffe-
rent back-end systems and technologies (addresses C4).

4 Prototype Implementation

We have validated the PERSIST middleware pre-
sented in the previous section in an extensive pro-
totype, which is built upon existing open source
tools and technologies!. More specifically, the pro-
totype is an extension of Impetus Kundera [27],
which is an open source data access middleware for
NoSQL data stores (as such an implementation of the
Client API Drivers component of our middle-
ware architecture presented in Fig. 2). Our motivation
for selecting Impetus Kundera as the foundation of our
PERSIST implementation is that an earlier study [35]
has shown that (i) of the existing data access mid-
dleware platforms, it introduces the least performance
overhead, and (ii) the cost of porting an application in
terms of lines of code (re)written to different back-end
data stores is minimal.

As a consequence of this decision, the prototype
supports the same range and variety of data store tech-
nologies as Kundera: in-memory data stores such as
Redis, full-text search systems such as Elasticsearch,
data processing systems such as Apache Spark, SQL-
based databases such as MySQL, and NoSQL data
stores: Oracle NoSQL, Apache Cassandra, MongoDB,
Apache HBase, Neo4j, Apache CouchDB.

The prototype uses the JBoss Drools” policy engine
for the evaluation of data storage policies. Drools is
an open source, object-oriented rule engine written
in Java that uses rule-based approach to implement

I'The prototype implementation is available at: http:/people.cs.
kuleuven.be/~ansar.rafique/PERSIST.zip.

2http://www.drools.org/

@ Springer

http://people.cs.kuleuven.be/~ansar.rafique/PERSIST.zip.
http://people.cs.kuleuven.be/~ansar.rafique/PERSIST.zip.
http://www.drools.org/

180

A. Rafique et al.

an expert system. The prototype provides a Java Per-
sistence API (JPA) and a Java Persistence Query
Language (JPQL) interface as an abstraction API to
interact with various back-end storage systems. These
are the de-facto standard APIs for Java [46], offer a
number of standardized annotations to developers. As
a consequence, different components of the PERSIST
middleware implement the interfaces provided by the
JPA and the JPQL. For example, the Secure Data
Manager component (cf. Section 3.4.2) implements
the Entity Manager [31] interface of the JPA.
Thus, the component overrides all methods of the
Entity Manager interface with a support to exe-
cute secure (i.e. encryption-enabled) CRUD transac-
tions. In addition to annotations offered by the JPA and
the JPQL standards, the additional meta-data is imple-
mented by means of additional application-specific,
technology-specific, and middleware-specific annota-
tions.

In the multi-tenant LMaaS offering (cf.
Section 2.1), the application defines annota-
tions such as @RawLog, @HistoricalLog,
@IncidentReport, @Size, etc.,, which are
application-specific. ~Examples of technology-
specific annotations are @Writeconsistency,
@Readconsistency, @Searchconsistency,
etc., which are supported for multiple data stores such
as Apache Cassandra and MongoDB. Finally, the
middleware-specific annotations are reusable anno-
tations such as @PersistEntity, @MetaInfo,
@PersistConfidential (members={}),
@FullTextSearch etc. These annota-
tions are supported at both the class-level
and the field-level. As shown in Listing 4,
the @PersistEntity, @MetaInfo, and
@PersistConfidential (members={})
annotations are used on a class-level, while the
@FullTextSearch annotation is used on a field-
level to specify additional information about the class
and its properties. This additional information needs
to be specified for the PERSIST middleware to take
certain requirements into account for making data
management decisions (e.g., CRUD transactions).

The prototype is deployed as a service on Tom-
cat 73 with an exposed configuration dashboard for
both the SaaS provider/operator and its tenants. When

3http://tomcat.apache.org/

@ Springer

1 /k*k
2 % Confidential entity of type raw log.
Ny
package com. distrinet .lmaas.entities;
5 import com. distrinet.persit.PersistEntity;
¢ import com.distrinet.persit.FullTextSearch;

9 @QPersistEntity ({

@Metalnfo (key="type",value="Rawlog") ,
1 @Metalnfo (key="data",value="Confidential ")
2 })
; @QPersistConfidential (members={"deviceName"})
public class Log implements Serializable {

7 @QFullTextSearch
8 private String customerName;
9 private String deviceName;

2 }

Listing 4 Annotations provided by the PERSIST middleware
are supported on both the class-level and the field-level

the service starts up, it first reads the application-
wide configuration files and the data storage policy
files. The service allows tenants to customize these
application-wide configuration files and the data stor-
age policy files by uploading tenant-specific configu-
ration files and/or the data storage policy files.

The meta-data, configuration files, and the pol-
icy execution decisions are cached and stored in
Ehcache*. Ehcache is a pure Java cache, which
provides in-memory support, but can also offload
data into the permanent persistence storage (i.e.
disk/database). Ehcache was adopted because of its
features such as scalability and a support for perma-
nent persistence storage. In PERSIST, Ehcache helps
the Policy Engine component (cf. Section 3.5)
to avoid executing the data storage policies multiple
times for performance reasons by caching the pol-
icy decisions and store in the permanent disk/database
storage. Similarly, Ehcache also supports the Data
Management Service component (cf. Section
3.4.1) to avoid calling the Metadata Filter com-
ponent for inspecting the same entity multiple times
by caching the metadata, which requires memory-only
storage (data is only stored in the memory). After
placing the annotations provided by the PERSIST
middleware platform, setting the data storage policy

“http://www.ehcache.org/

http://tomcat.apache.org/
http://www.ehcache.org/

PERSIST: Policy-Based Data Management Middleware for Multi-Tenant SaaS 181

files and the configuration files, the middleware is
ready to serve tenant requests.

5 Evaluation

We have performed complementary evaluations of
the PERSIST middleware in three different dimen-
sions. Firstly, Section 5.1 compares the cost/effort
required to implement a complex data storage policy
(evaluation #1). Secondly, in a similar scenario-driven
comparison, Section 5.2 assesses the cost/effort of
changing the back-end storage architecture of a feder-
ated cloud setup (evaluation #2). Finally, Section 5.3
evaluates the performance impact, more specifically
the performance overhead introduced by the PERSIST
middleware (evaluation #3). Then, in Section 5.4, we
discuss implications of our findings and the overall
choices made for the evaluations.

These evaluations are conducted in the con-
text of our implementation of the multi-tenant Log
Management-as-a-Service (LMaaS) application, dis-
cussed in Section 2.1. We employ Impetus Kundera
as the baseline for comparison since extensions of
the PERSIST middleware were formed on top of the
Kundera platform.

5.1 Cost/Effort to Implement Complex Storage Policy

This part of the evaluation compares the required
cost/effort to implement a data storage policy, both
with and without PERSIST (C1.B discussed in
Section 2.4). In Section 5.1.1, we provide the details
of the experimental application setup, while the results
of this evaluation are presented and discussed in
Section 5.1.2.

5.1.1 Application Setup

We developed two prototype implementations: one
implementation is based on the Impetus Kundera
middleware platform (prototype Baseline) and the
other implementation leverages our proposed middle-
ware platform (prototype PERSIST). More specif-
ically, the same storage logic for the multi-tenant
Log Management-as-a-Service (LMaaS) application
is implemented in both prototype implementations.
First, the storage logic is implemented for the pro-
totype Baseline implementation in the application

source code and then the same storage logic is defined
for the prototype PERSIST by specifying the external
data storage policy file.

The policy fragment of interest (storage logic) for
this evaluation —as shown in Listing 2— focuses
on the requirements of raw log entries, historical
logs, and log meta-data: raw log entries require high
write and read throughput as well as high availabil-
ity, for historical logs good read throughput suffices,
and finally log meta-data stand in needs for high
write throughput as well as high availability. For all
these data types, confidentiality requirements apply
and sensitive data elements (i.e. confidential objects)
must be encrypted before storage and decrypted after
retrieval. In the context of the (simplified) federated
storage architecture presented earlier in Listing 3,
these requirements imply that (i) confidential and
non-confidential raw log entries must be stored in
Cassandra-Private and Cassandra-Public data stores
respectively, but according to the data storage policy
raw log entries will also be replicated within the data
store (see lines 8 and 18 in Listing 2), (ii) confidential
historical logs shall be stored in the MongoDB-Private
data store, whereas non-confidential historical logs
shall be stored in the MongoDB-Public data store,
and finally (iii) confidential and non-confidential log
meta-data must be stored in a replicated fashion (see
lines 43 and 52 in Listing 2) in Cassandra-Private and
Cassandra-Public data stores respectively.

We have calculated two metrics that are indica-
tive of the required cost/effort: the number of lines of
code (# LoC) that were implemented in the applica-
tion and the number of lines of policy files (# LoP)
that were introduced. In addition, as a consequence
of these changes, the effect in terms of application
(re)deployment is also considered.

5.1.2 Results

The results of this part of the evaluation are pre-
sented in Table 2. As shown, implementing the policy

Table 2 Overview of the # lines of code and # lines of pol-
icy added to implement the storage logic in both the prototype
Baseline and the prototype PERSIST

Prototype # LoC % LoC # LoP (re)Deploy
Baseline 900 78% - v
PERSIST - - 53 X

@ Springer

182

A. Rafique et al.

fragment in the prototype Baseline involves 900
lines of application source code (which corresponds to
78% of the multi-tenant LMaaS implementation), and
no policy files. The number of lines of code written
in the application to implement the policy fragment
are higher in the prototype Baseline implementa-
tion. This is mainly because to address the require-
ments in the prototype Baseline implementation,
two different instances of the EntityManager from the
EntityManagerFactory are instantiated to interact with
different data stores (e.g., store raw log entries and
log meta-data in the Cassandra data store, whereas
historical logs in the MongoDB data store). In addi-
tion, the storage logic, which distributes a part of the
application data across a federated storage architec-
ture is implemented in the application code. Moreover,
the confidentiality requirements for raw log entries,
historical logs, and log meta-data are also taken into
consideration, hence requires writing the encryption
logic in the source code.

On the other hand, supporting the above policy
fragment in the prototype PERSIST is done by defin-
ing an external storage policy file, which decouples
the storage logic from the application source code. In
the PERSIST middleware, we have externalized stor-
age logic, and therefore, the implementation of the
policy fragment was done without changing the appli-
cation source code, but by only introducing 53 lines of
policy (LoP), specifically in the application-wide data
storage policy file (see introduced LoP in Listing 2).
Furthermore, PERSIST has a built-in support for data
encryption, which can be enacted at various levels of
granularity. Therefore, the confidentiality of the sen-
sitive data is ensured without writing an encryption
logic in the application source code.

Additionally, changing the source code at the appli-
cation layer also requires the prototype Baseline to
be (re)compiled and (re)deployed to influence these
changes, whereas in the prototype PERSIST, such
policies can be introduced and changed at run time with-
out requiring modifications in the application code.

5.2 Cost/Effort to Change the Back-end Cloud
Storage Architecture

The back-end federated storage architecture may change
over time for many reasons, for example, because of
changes in data storage requirements, variations in per-
formance of different data stores, specific requirements

@ Springer

of new customer organizations (tenants) emerge, or even
when external factors influence such as cloud stor-
age providers (e.g., Database-as-a-Service providers)
change their pricing policies. In general, addressing
these evolutions involves changing the underlying data
store configurations of the back-end federated stor-
age architecture. In this part of the evaluation, we
consider the scenario of effectuating change in the
back-end storage architecture of the multi-tenant Log
Management-as-a-Service (LMaaS) application (C4
discussed in Section 2.4). Section 5.2.1 contains the
description of the application setup, while results are
then shown and discussed in Section 5.2.2.

5.2.1 Application Setup

Similar to the previous evaluation, we implemented
the change scenario in the context of the multi-
tenant LMaaS application for both prototype imple-
mentations: prototype Baseline and the prototype
PERSIST. More specifically, the change scenario we
implemented involves switching the back-end data
stores for (i) raw log entries from the Cassandra data
store to the MongoDB data store, (ii) historical logs
from the MongoDB data store to Cassandra, and (iii)
log meta-data from Cassandra to MongoDB. Again,
we evaluate the required cost/effort by measuring and
comparing the affected lines of code (# LoC) and lines
of configuration (# LoCf) as well as their effect on the
application.

In the prototype Baseline implementation,
switching the back-end data stores can be done either
by modifying the source code at the application layer
or updating the configuration file. However, updat-
ing the configuration file in the prototype Baseline
also requires modifying the source code at the appli-
cation layer. This is mainly because there is a tight
coupling between the application source code and the
configuration model (i.e. configuration file). Hence,
changes in the configuration model easily cause rip-
ple effects to the application source code. However,
for both scenarios either modifying the source code
at the application layer or updating the configuration
file require the application to be (re)compiled and
(re)deployed. Therefore, for this part of the evaluation,
we have considered both scenarios: applying changes
in the application source code (scenario #1) as well as
in the configuration file (scenario #2) for the prototype
Baseline implementation.

PERSIST: Policy-Based Data Management Middleware for Multi-Tenant SaaS 183

5.2.2 Results

The results of this evaluation are presented in Tables 3
and 4 respectively.

As shown in Table 3, implementing the change sce-
nario in the application source code (scenario #1) for
the prototype Baseline involves modifying 24 lines
of source code (which corresponds to 2% of the multi-
tenant LMaaS implementation) and no configuration
files. Similarly, applying changes in the configuration
file (scenario #2) for the prototype Baseline
involves modifying 20 lines of configuration files as
well as 24 lines of source code in the application
(which corresponds to 2% of the multi-tenant LMaaS
implementation). In both scenarios for the prototype
Baseline implementation, changes are made in the
application source code and, therefore, the application
needs to be (re)compiled and (re)deployed.

On the other hand, the PERSIST version of
the multi-tenant LMaaS implementation requires no
changes in the application source code and involves
changing only the application-wide storage configura-
tion file: 4 lines of configuration file. For example, as
shown in Listing 5 (in bold and underlined), switching
the back-end cloud storage provider for raw log entries
from Cassandra-Private to MongoDB-Private, histor-
ical logs from the MongoDB-Private to Cassandra-
Private, and log meta-data from Cassandra-Private to
MongoDB-Private in PERSIST only requires modify-
ing the data property for each data store configura-
tion in the configuration model. This scenario requires
only 2 lines (15 and 32) of the Listing 5 to be changed.
In addition, this scenario can be executed in prototype
PERSIST at run time, without changing the source
code, (re)compiling, or (re)deploying the application.

5.3 Performance Impact

In the decision to use the PERSIST middleware to
alleviate the complexity and maximize the benefits of

Table 3 Overview of the modified # lines of code and # lines
of configuration to change the back-end storage architecture for
both prototype implementations (scenario #1: changes are made
in the source code for the prototype Baseline)

Prototype # LoC % LoC # LoCf (re)Deploy
Baseline 24 2% - v
PERSIST - - 4 X

Table 4 Overview of the modified # lines of code and # lines
of configuration to change the back-end storage architecture for
both prototype implementations (scenario #2: changes are made
in the configuration file for the prototype Baseline)

Prototype # LoC % LoC # LoCf (re)Deploy
Baseline 24 2% 20 v
PERSIST - - 4 X

a federated cloud setup for multi-tenant SaaS appli-
cations, the impact on the application performance is
a vital criterion. As shown in the previous two sec-
tions, the decision to externalize data storage logic
from the application to external data storage poli-
cies and configurations has its advantages in terms of
flexibility and run-time customizability. This however,
comes at the cost of additional performance overhead.
More specifically, we expect, especially the inclusion

» <storage name="Cassandra—Private">

; <datastore>Cassandra</datastore>

A <nodes>private—ip—address </nodes>
; <port>port—no</port>

s <keyspace>LMaaS</keyspace>

7 <username>username</username>

s <password>password</password>

o <properties>

1 <location >private </location >

<trusted >true</trusted>

3 <writethroughput >high</writethroughput>
1 <readthroughput>high</readthroughput>
<data>Archievedlog&Historicallog </data>

7 </properties>

s </storage>

o <storage name="MongoDB—Private'">

0 <datastore >MongoDB</datastore>

21 <nodes>private—ip—address </nodes>
<port>port—no</port>

s <keyspace>LMaaS</keyspace>

1 <username>username</username>

<password>password </password>

7 <properties>

08 <location >private </location>

29 <trusted >true </trusted>
<writethroughput >low</writethroughput>
<readthroughput>high</readthroughput>
<data>Rawlog & Metadata</data>

;4 </properties>
35 </storage>

Listing 5 Illustration of specific changes made (in bold &
underlined) to switch the back-end for raw log entries, historical
logs, and log meta-data in the prototype PERSIST

@ Springer

184

A. Rafique et al.

T cassandra
N\ @‘ opens\a(k’

(i) Cassandra-Private contains a 3 node
Cassandra cluster deployed in private
laaS cloud using OpenStack.

Federated

‘ mongo n <:> <:> “““““ g) feassan i
" 5 openstack ,,ﬂ/ Cloud \4@?‘ @‘ eg'us?&%?-‘\
(i) MongoDB-Private ﬁ
contains a single MongoDB
service deployed in private
laaS cloud using
OpenStack.

(i) Cassandra-Public
contains a 3 node Cassandra
cluster deployed in Amazon
EC2 cloud.

amazon,

) mongo
\ webservices?

(iv) MonngB-Puinc contains a single
node MongoDB service deployed in
Amazon EC2 cloud.

Fig. 4 An overview of various cloud providers (e.g., Database-
as-a-Service providers) used to evaluate the performance over-
head of the PERSIST middleware

of meta-data and the additional policy evaluation step
to introduce a substantial increase in the performance
overhead. Therefore, as mentioned in Section 4, we
have implemented and integrated caching techniques
in different components of the PERSIST middleware
to address this issue (C5 discussed in Section 2.4).

In this section, we present the results of a com-
parative performance benchmark of the multi-tenant
LMaaS application, for create, read, update and delete
(CRUD) transactions. We specifically focus on quan-
tifying the extra overhead introduced by the PERSIST
middleware over the Kundera platform (which is the
baseline for comparison). We refer to our earlier study
[35] for an indication of the performance overhead
introduced by the Kundera platform itself.

In Section 5.3.1, we describe the overall application
and experimental setup and also discuss the different
deployment setups along with their hardware details in
which we have executed the performance benchmarks.
Then, Section 5.3.2 describes the workload character-
ization and outlines the design of conducted experi-
ments, while the Section 5.3.3 subsequently presents
the measurement methodology to characterize the per-
formance overhead. Finally, Section 5.3.4 reports and
discusses the performance overhead results.

5.3.1 Experimental Setup

We implemented two application setups doing the
same CRUD transactions: one is based on the Kundera

@ Springer

platform, which is the baseline for the performance
comparison, while the other is based on the PERSIST
middleware platform. The application-wide data stor-
age policy (described in Listing 2) is considered to
perform CRUD transactions for the application setup
that uses the PERSIST middleware platform, whereas
the same CRUD transactions logic is implemented in
the source code for the application setup, which is
based on the Kundera platform.

These application setups use a federated storage
architecture as shown in Fig. 4 that combines the follow-
ing cloud storage resources (i) the Cassandra-Private
deployment setup contains a 3 node Apache Cassan-
dra (version 2.1.18) cluster deployed and managed
in a private [aaS cloud using OpenStack’; (ii) the
MongoDB-Private deployment setup includes a sin-
gle node MongoDB (version 3.4.9) service with all
standard settings deployed and managed in a pri-
vate TaaS cloud using OpenStack; (iii) the Cassandra-
Public deployment setup comprises of a 3 node
Apache Cassandra (version 2.1.18) cluster deployed
in Amazon EC2° owned and managed by Instaclustr’
(a Database-as-a-Service provider), and (iv) the
MongoDB-Public deployment setup contains a single
node MongoDB (version 3.4.9) service deployed in
Amazon EC2 with all standard settings, which is
owned and managed by mLab® (a Database-as-a-
Service provider).

For the deployment setups of Apache Cassandra (i)
and (iii) above, we defined a key space, with repli-
cation class set to SimpleStrategy. In addition,
the key space replication_factorissetto 1 in
order to address the high availability requirements of
raw log entries and log meta-data, which are desired
to be stored in a replicated manner (see lines 8, 18, 43
and 52 of Listing 2).

In our experiments, both the client (running an
implementation of the multi-tenant LMaaS applica-
tion) and the server (running data store instances)
processes were running on separate machines. The
client machine is equipped with Intel(R) Core(TM) i5
@ 2.60GHz (Dual) processor with 8 GB RAM and
Windows 8 installed. In case of the private deploy-
ments ((i) and (ii) above, which are deployed in a

Shttps://www.openstack.org/
Shttps://aws.amazon.com/ec2/
Thttps://www.instaclustr.com/
8hittps://mlab.com/

https://www.openstack.org/
https://aws.amazon.com/ec2/
https://www.instaclustr.com/
https://mlab.com/

PERSIST: Policy-Based Data Management Middleware for Multi-Tenant SaaS 185

private IaaS cloud using OpenStack), each node has
Intel(R) 4 Core @ 2.60GHz processor, 8 GB RAM
and is hosted on a compute node. The compute node
consists of 40 Intel(R) Xeon(R) CPU E5-2660 v3
@ 2.60GHz processor with 120 GB RAM and runs
the Linux/Ubuntu operating system. For the public
cloud deployment setups ((iii) and (iv) above, which
are deployed on Amazon EC2 and managed by dif-
ferent Database-as-a-Service providers), we utilized
different instance types, so we specify their flavor for
each deployment setup. In case of the public cloud
deployment setup ((iii) above, which contains a 3 node
Apache Cassandra cluster), each node was hosted on
AWS EC2 t2.medium instance operating at eu-central-
1 data center of the Amazon, equipped with 4 GB
RAM and a dual-core vepu @ 2.50GHz processor.
Similarly, for the public deployment setup ((iv) above,
which contains a single node MongoDB service), the
service was hosted on multi-tenanted database server
processes operating at eu-west-1 data center of the
Amazon.

5.3.2 Workload Characterization

The benchmarks —to measure the performance in
terms of execution time— were conducted on both
application setups by executing the CRUD transactions
under different workload conditions. We start our
measurements with 100K log entries and gradually
increase the workload upto 1000K (a million) log
entries to determine how both setups scale when the
data size increases. For example, we expect PERSIST
introduces constant overhead regardless of the data
scale. Therefore, the relative performance overhead
of the PERSIST middleware should decrease progres-
sively as a result of the increase in the workload (i.e.
data scale).

We then conducted four experiments at differ-
ent data scale which consider the storage require-
ments of raw log entries and historical logs of the
multi-tenant LMaaS application. In the first experi-
ment, both application setups use Cassandra-Private
deployment setup for addressing the requirements of
confidential raw log entries. In the second experi-
ment, MongoDB-Private deployment setup is used
to address the requirements of confidential historical
logs. Then, in the third experiment, both applica-
tion setups are configured to use Cassandra-Public for
addressing the requirements of non-confidential raw

Application ‘ ‘ Application

CRUD transactions

Metadata Manager
lFr'/ter annotation:
Policy Engine b

‘ Evaluate policy

PERSIST Overhead
CRUD transactions

a

Storage Selector

i Select data store’
Baseline

Baseline } d

CRUD transactions L

[S—
o
Baseline Cost
|

(a) Execution time of the PERSIST midd| (b)
(a+b+c+d).

time of the
Baseline (d).

Fig. 5 Execution time of a the PERSIST middleware and b the
baseline

log entries. Finally, in the fourth and the last experi-
ment, MongoDB-Public deployment setup is used to
address the requirements of non-confidential histori-
cal logs. As in all four experiments, confidential data
is always stored in private deployment setups, data
encryption was not required. Hence, the execution
time doesn’t take into account the time required to
encrypt confidential data for both application setups.

5.3.3 Measurement Methodology

In order to evaluate the performance overhead of the
PERSIST middleware, we first measure fpgRrsisT,
the total execution time PERSIST takes to perform
CRUD transactions, which is the sum of time spent
by different components of the PERSIST middleware
(a+b+c+d) depicted on the left hand side (a) of the
Fig. 5. Then, we measure fp,seine, the total execu-
tion time baseline takes to perform CRUD transactions
(d) as shown on the right hand side (b) of the Fig. 5.
Finally, by subtracting both measurements, the exe-
cution time of the baseline from the execution time
of the PERSIST middleware, we can characterize the
performance overhead introduced by the PERSIST
middleware as foperhead = tPERSIST - thaseline-

In order to avoid skewing the effect of any noisy
measurements, we have repeated each experiment 3
times and present the averaged results. After complet-
ing all CRUD transactions for each run, we emptied
the entire data store. Beyond these experiments, we
also run some additional performance benchmarks
where we have considered a combination of different

@ Springer

186

A. Rafique et al.

deployment setups and other data types of the multi-
tenant LMaaS application (e.g., log meta-data). How-
ever, these additional benchmarks do not demonstrate
any significant impact on the performance overhead of
the PERSIST middleware and thus we only focus on
the above measurements.

5.3.4 Performance Results

In this section, we report the results of our perfor-
mance benchmarks. More specifically, the results of
all four performance experiments for both application
setups conducted at different deployment setup under
various data scale are presented in Fig. 6.

1.2% 1.2%
"
=] 0 g = %
£ 8,000 s % &2
8 © © © ©
@ 4.9% 1.1% | 2.4% 2%
5 6,000
£ . = 3 oo | =2 n o
g 6.4% S35 |24% F& | =9 3=
£ 4,000 © 7 I RO e
g ER= g
4 B X z
| =
A 2,000 H
0 H HH ¥ {
INSERT READ UPDATE DELETE
500K 1000K 500K 1000K 500K 1000K 500K 1000K

Number of log entries

‘ o Baseline JOPERSIST

(a) Execution time in seconds to perform CRUD transac-
tions for confidential raw log entries, which are stored in
the Cassandra-Private cloud storage. The setup consists
of a 3 node Cassandra cluster deployed and managed in
a private IaaS cloud using OpenStack.

0y .
0.4% 0.4%
o FE
€ 8 [
5] < < =
$ 60,000 23 g2
U 0, 0, . < =
= 2.8% 0.5% 0.8% 1%
g 45,000 2 % - B! - -
[3.9% <5 1% s=|2¢ ==
g <+ 2 . _ I 5 & A %5
£ 30,000 53 i 8 o a e
g <= S o
@A 15,000 HH
0 ¥ HH ¥ ¥ {
INSERT READ UPDATE DELETE
500K 1000K 500K 1000K 500K 1000K 500K 1000K

Number of log entries

‘ 00 Baseline JOPERSIST

(C) Execution time in seconds to perform CRUD transac-
tions for non-confidential raw log entries, which are stored
in the Cassandra-Public cloud storage. The setup consists
of a 3 node Cassandra cluster deployed in Amazon EC2
public cloud.

Execution Time in Seconds

Execution Time in Seconds

Figure 6a depicts the results of the first experi-
ment, which measures the execution time in seconds
to perform CRUD transactions for the Cassandra data
store deployed in a private IaaS cloud. As shown
for the 500K data scale, the PERSIST middleware
platform (tpgrsrsT) takes 1,801 seconds for the insert
transaction, 1,655 seconds for the read transaction,
3,425 seconds for the update transaction, and 3,410
seconds for the delete transaction compared to the
baseline (fpaseline)» Which takes 1,692 seconds, 1,616
seconds, 3,344 seconds, and 3,343 seconds for insert,
read, update, and delete transactions respectively. Sub-
sequently, the average relative performance overhead
introduced by the PERSIST middleware (fyyerheqq) for

1.3% o
o 1.3%
4.5% = e
o [2 3
— = a0 . L‘j
6,000 i - - ” e
= 1.1% | 2.3% 2.2%
6.5% "
- 33 g9
4,000 {2 3 @ 2 =%
::' ; [a o
2,000 H H
0 4 L |
INSERT READ UPDATE DELETE
500K 1000K 500K 1000K 500K 1000K 500K 1000K

Number of log entries

‘ o Baseline OO PERSIST

(b)Execution time in seconds to perform CRUD transac-
tions for confidential historical logs, which are stored in
the MongoDB-Private cloud storage. The setup consists
of 1 node MongoDB service deployed and managed in a
private TaaS cloud using OpenStack.

0.6%
Q
1.7% % %
60,000
, > - 10.9% 1.4%
0 0 v J
2.9% 0.6% | =72 -
45,000 oo 25 =
30,000 & o g3
a3 S 2
==
- HH HH H H
0 u ’_H_‘ u y u |
INSERT READ UPDATE DELETE

500K 1000K 500K 1000K 500K 1000K

Number of log entries

500K 1000K

‘ 00 Baseline JOPERSIST

(d)Execution time in seconds to perform CRUD transac-
tions for non-confidential historical logs, which are stored
in the MongoDB-Public cloud storage. The setup consists
of a 1 node MongoDB service deployed in Amazon EC2
public cloud.

Fig. 6 The relative performance overhead (presented above the bars) of the PERSIST middleware for 500K and 1000K data scale on

four different deployment setups

@ Springer

PERSIST: Policy-Based Data Management Middleware for Multi-Tenant SaaS 187

500K data scale is 6.4% for the insert transaction,
2.4% for read and update transactions, and 2% for
the delete transaction. Similarly, for the 1000K data
scale, the execution time of the PERSIST middleware
(tpersisT) 1S 3,569 seconds for the insert transaction,
3,299 seconds for the read transaction, 6,830 sec-
onds for the update transaction, and 6,809 seconds for
the delete transaction, whereas the baseline (¢pgseline)
takes 3,401 seconds, 3,262 seconds, 6,745 seconds,
and 6,727 seconds for insert, read, update, and delete
transactions respectively. The relative performance
overhead of the PERSIST middleware (¢,yerhead) for
1000K data scale is 4.9% for the insert transaction,
1.1% for the read transaction, and 1.2% for update
and delete transactions. In the rest of this section, we
will omit the execution time in seconds (i.e. fpERSIST
and paseline) and only present and discuss the relative
performance overhead of the PERSIST middleware
([overhead)-

The results of the second experiment where the
MongoDB data store is deployed in a private laaS
cloud and CRUD transactions were performed on dif-
ferent data scales are presented in Fig. 6b. As we can
see in Fig. 6b (on top of bars), the relative perfor-
mance overhead introduced by the PERSIST middle-
ware (fpyerheaqd) for S00K data scale is 6.5% for the
insert transaction, 2.2% for the read transaction, 2.3%
for the update transaction, and 2.2% for the delete
transaction. The relative performance overhead of the
PERSIST middleware (Z,yerhead) When the data size
increases (e.g., for 1000K data scale) is 4.5% for the
insert transaction, 1.1% for the read transaction, and
1.3% for update and delete transactions.

Figure 6¢ and present the execution time and
the relative performance overhead for the third and
the fourth experiment where Cassandra and Mon-
goDB data stores are deployed in Amazon EC2 pub-
lic cloud. For the third experiment where the data
scale is 500K, the relative performance overhead of
PERSIST (tyverhead) 18 3.9% for the insert transaction,
1% for read and delete transactions, and 0.8% for the
update transaction. For the 1000K data scale, the rel-
ative performance overhead of PERSIST (Z)vernead)
decreases to 2.8% for the insert transaction, 0.5% for
the read transactions, and 0.4% for update and delete
transactions.

Similarly, in the case of the fourth experiment, for
the 500K data scale, PERSIST introduces the rela-
tive performance overhead (¢yyerheaq) Of 2.9% for the

insert transaction, 1% for the read transaction, 0.9%
for the update transaction, and 1.4% for the delete
transaction. In case where the data size increases to
1000K data scale, the relative performance overhead
of PERSIST (t,perhead) decreases to 1.7% for the
insert transaction, 0.6% for the read and update trans-
actions, and finally 0.4% for the delete transaction.

As we can see for all four experiments in Fig. 6a,
b, ¢, and d as well respectively, the relative per-
formance overhead of the PERSIST middleware
(toverhead) decreases substantially when the data size
increases. For example, for the 500K data scale in
the first experiment, PERSIST introduces 6.4% rel-
ative overhead for the insert transaction, whereas in
the same experiment for the 1000K data scale, the
relative overhead for the same operation decreases
to 4.9%. Likewise, the relative performance overhead
of PERSIST decreases to 4.5% from 6.5% for the
insert transaction when the data size increases from
500K data scale to 1000K data scale.

This reduction is mainly caused by the baseline. For
example, when the data size increases, the baseline (d)
in Fig. 5 takes more time to perform CRUD transac-
tions. Consequently, as we expected due to the con-
stant overhead of the PERSIST middleware (a+b+c)
depicted on the left hand side (a) of the Fig. 5, the
relative performance overhead decreases substantially
with the increase in data size. This correlation is very
obvious in the third and the fourth experiment as
shown in Fig. 6¢c and d respectively, where the Ama-
zon EC2 public cloud deployment setup is used. In
the case of public cloud, there is high latency between
the client process (running an implementation of the
multi-tenant LMaaS application deployed in a private
TaaS cloud) and the server process (running data store
instances deployed on Amazon EC2 public cloud).
Hence, the baseline requires a substantially longer
time to perform CRUD transactions (see Fig. 6¢ and d)
as compared to the private IaaS cloud (see Fig. 6a
and b).

We have also noticed that the relative performance
overhead introduced by the PERSIST middleware
(tovernheaa) for the insert transaction is higher than
read, update, and delete transactions. This is mainly
caused by extra steps involved before executing the
insert transaction that introduces an additional per-
formance overhead (cf. Fig. 3 to see the flow of
requests to perform the insert transaction). For exam-
ple, PERSIST requires reading annotations to read the

@ Springer

188

A. Rafique et al.

object’s metadata; executing data storage policies for
efficient data placement decisions; selecting the stor-
age systems that satisfy all the desired requirements;
and indexing data storage locations to further opti-
mize the performance for read, update, and delete
transactions. In addition, a cache hit’ occurs almost
all the time for the read, update, and delete trans-
actions, whereas, there is atleast one cache miss for
the write transaction, which requires validating the
cache. Therefore, the performance overhead is higher
for the insert transaction, which is maximum 6.4%, but
minimal, which is 2.4% for read, update, and delete
transactions.

5.4 Discussion on Evaluation

This section discusses the overall choices we have
made in the middleware for the evaluation.

Firstly, we have examined the requirements of raw
log entries, historical logs, and log meta-data where
simple data storage and confidentiality requirements
(e.g., encrypt the whole entity object) are consid-
ered. In addition, we have not taken the contrasting
requirements of different tenants into consideration.
We expect that addressing more complex data stor-
age requirements (e.g., consider other data types of
the multi-tenant LMaaS application) and the confi-
dentiality requirements (e.g., support data encryption
at various levels of granularity) as well as consider-
ing the contrasting requirements of multiple tenants
—where each tenant has slightly different storage-
and privacy-related requirements— will not impact
the PERSIST middleware and no changes will be
required in the application source code. In PERSIST,
hard-coding specifics (i.e. storage logic) are external-
ized from the application layer to external data storage
policies. These policies can be specified at run time
by each tenant of the SaaS application to customize
the PERSIST middleware according to its own spe-
cific requirements. On the other hand, the amount of
implemented lines of code in the baseline implemen-
tation highly depends on the application requirements.
As an example, addressing more requirements of the
multi-tenant SaaS application or considering contrast-
ing requirements of different tenants, we expect a
significant implementation effort in terms of lines of

9 A cache hit occurs when the requested data can be found in the
cache.

@ Springer

code in the application will be required. More specif-
ically, addressing different requirements for multiple
tenants will require the storage logic to be imple-
mented for each tenant of the SaaS application, which
significantly influences the implementation effort and
increases the overall lines of code to be added.

Secondly, to determine the cost/effort to change
the back-end storage architecture of a federated
cloud setup (evaluation #2), we have considered two
data stores (Apache Cassandra and MongoDB), both
deployed in a private IaaS cloud using OpenStack
as well as Amazon EC2 public cloud. These data
stores were used to manage the requirements of raw
log entries, historical logs, and log meta-data. At
the time we assess the cost/effort to change the stor-
age architecture, these data stores were not used by
other data types of the multi-tenant LMaaS applica-
tion. Therefore, similar to the evaluation #1, again in
the evaluation #2, we have only considered data types
with simple data storage requirements where each data
type is exactly stored in one back-end storage system.
For instance, confidential raw log entries are stored
in the Cassandra data store operating at a private laaS
cloud (i.e. Cassandra-Private), while non-confidential
raw log entries are stored in Cassandra, missing in,
operating at Amazon EC2 public cloud and managed
by Instaclustr (a Database-as-a-Service provider for
Cassandra). In addition, we have not considered the
requirements of multiple tenants, where each tenant
may impose slightly different requirements for a par-
ticular data type. For example, raw log entries might
be confidential for only some tenants, but not for other
tenants. Consequently, this may lead to a single data
type being partitioned across multiple cloud storage
providers in a federated cloud setup. In a more real-
istic scenario, application data is partitioned across
multiple data stores and a single data store is usually
responsible to manage different types of application
data. To address such a scenario, additional changes
will be required in the application source code for the
baseline implementation.

On the other hand, the storage logic in the PER-
SIST middleware is externalized from the application
source code to external data storage policies. In addi-
tion, there is an extra step of indirection between the
data storage policies and the configuration model (i.e.
configuration file). This extra step of indirection helps
changing the configuration model without making any
changes in the data storage policy file. Hence, consid-
ering more data types into account for the prototype

PERSIST: Policy-Based Data Management Middleware for Multi-Tenant SaaS 189

PERSIST implementation only requires to modify a
single line in the configuration model for each data
type to change the back-end storage architecture. Fur-
thermore, no additional changes are anticipated in the
application when the requirements of multiple tenants
are considered as these requirements can be addressed by
specifying tenant-specific configuration and policy files.

Thirdly and finally, we have taken performance
into consideration while designing the PERSIST mid-
dleware and therefore, implemented cache techniques
in different components to improve the overall per-
formance. For illustration purposes, we choose a
simple example to demonstrate the improvement in
performance when the cache techniques are imple-
mented in different components (in bold and italic) of
PERSIST (see Table 5). To accomplish this, we have
used the static properties of an entity class (i.e. meta-
data), which remains unchanged at run time. There-
fore, a cache miss occurs only for the first request,
which causes the PERSIST middleware to filter the
annotations and validate the cache. Afterwards, the
cache hits occur for all the remaining requests. Simi-
larly, the policy decisions are cached after evaluating
and executing the policy for the first time only. For the
latter requests, the policy decisions are fetched from
the cache only. We expect both these techniques have a
great impact on the overall performance improvement
of the PERSIST middleware.

5.4.1 Threats to Validity

This section presents the threats to validity that can
compromise the results of these evaluations.

Internal Validity The most serious threat to the valid-
ity of our findings is related to our conclusion on
the performance overhead (evaluation #3) of the

Table 5 Execution time of the PERSIST middleware compo-
nents with and without cache

Component Disabled Enabled
PERSIST

L. Metadata Manager 72.48 2.31
L, Storage Selector 2 3.16
L Policy Engine 397.39 1.84
L, Baseline (Client API Drivers) 199.3 199.3
Total time in seconds 671.17 206.61

PERSIST middleware. To evaluate the performance
overhead, we selected the best case: the meta-data
properties of an entity object are not changed by
tenants at run time and are static. However, in sit-
uations where the dynamic meta-data properties are
enforced by tenants (i.e. the meta-data properties of an
entity object are changed), the performance overhead
of the PERSIST for the insert transaction may become
slightly higher.

External Validity The major threat to the external
validity is the fact that we have evaluated the PER-
SIST middleware for only one application case, the
multi-tenant Log Management-as-a-Service (LMaaS)
offering. Although indicative of the complexity of a
typical SaaS application, we have only focused on
the requirements of raw log entries, historical logs,
and log meta-data. In addition, our evaluation efforts
focus on a limited set of requirements (with respect
to storage and privacy) and in our prototype imple-
mentation, we have not considered the full complexity
of the multi-tenant SaaS application (simple require-
ments of only a single tenant were examined). We
expect that the evaluation results —more specifically,
for the evaluation #1 and the evaluation #2— might
differ when taking into account the full complexity of
the multi-tenant SaaS application.

6 Related Work

There has been growing interest in addressing the
problem of heterogeneity and the lack of standardiza-
tion that exists in different cloud providers. Conse-
quently, a growing body of research, both from the
industry [23, 27, 44] and the research community [2,
5, 18, 22, 38, 42] focuses on application portability
and addresses the problem of heterogeneity by provid-
ing a uniform API across multiple NoSQL data stores.
Similarly, some research works [3, 7, 14, 50] have pro-
posed multi-cloud storage systems that use multiple
cloud providers to either obtain better application per-
formance, optimize data storage cost, enhance avail-
ability, and/or ensure data security. However, none
of these multi-cloud storage systems supports data
storage policies to facilitate data management across
multiple clouds and offer multi-tenant customization
support.

@ Springer

190

A. Rafique et al.

The current state of practice in data access mid-
dleware platforms or object NoSQL database mappers
—systems like Kundera [27], Hibernate OGM [23],
etc— only provide abstraction mechanisms to hide
the complexity of different data models and APIs.
They do not sufficiently: (i) support run-time cross-
database and cross-provider polyglot persistence on
a per-object level as it consistently requires creating
multiple entities and writing storage logic in the appli-
cation source code for new data storage requirements,
(ii) support the development and run-time customiza-
tion of multi-tenant SaaS applications, and (iii) pro-
vide a built-in support for security and privacy-related
requirements of individual tenants. Existing academic
systems, such as RACS [1], DepSky [8], HAIL [10],
Scalia [32] combine multiple cloud providers to achieve
high availability and address vendor lock-in problem.

Our work is similar to Tiera [39] in the sense that
the authors proposed a middleware that also uses a
policy-driven approach for making data storage deci-
sions. Tiera utilizes multiple storage tiers (e.g., SSDs,
local storage, etc.) for getting composite benefits.
However, the implementation of Tiera only focuses
on a single data center and as acknowledged by the
authors, does not offer disaster recovery and thus also
high availability. The authors considered spanning
multiple data centers as an open issue and acknowl-
edge that in many cases applications require multiple
data centers to achieve better disaster recovery. In con-
trast, PERSIST achieves better disaster recovery and
high availability in the sense that it facilitates cross-
provider data replication and allows tenants to repli-
cate data across multiple data centers in a federated
cloud setup.

In another related work, the authors proposed
Scalia [32], a cloud brokerage solution that makes
data placement decisions based on data access patterns
subject to storage cost optimization. Our research is
similar to Scalia in aspects such as data placement
strategy and the use of multiple cloud storage pro-
viders to achieve better availability. However, Scalia
is a single-purpose solution, only focusing on the cost
optimization. In contrast, PERSIST is a multi-purpose
solution as it facilitates multi-tenant SaaS applications
and thus also takes into account different requirements
of tenants —in terms of performance, availability,
scalability, etc— for different data elements.

The research conducted by Bermbach et al. [7]
focuses on using a combination of cloud storage

@ Springer

providers to manage consistency-latency trade-offs.
The authors proposed MetaStorage, a federated archi-
tecture, which extends the Appscale platform with a
unified access to diverse cloud storage services. Sim-
ilar to the PERSIST middleware, MetaStorage also
achieves high availability by replicating data across
multiple cloud storage services, which further avoids
vendor lock-in. However, in our research: (i) we
use a policy-based approach for data storage deci-
sions, (ii) we alleviate the complexity (i.e. hard-coding
specifics) of a federated cloud storage architecture
from the application layer to external storage policies
and configurations, and (iii) we provide a support for
fine-grained tenant customization, while they do not
overcome these factors in their research.

In previous work [34], we have presented an ini-
tial architecture of the middleware that uses policies
for data storage decisions. The architecture —which
contains the detailed description and the implemen-
tation as well as the underlying concepts— of the
PERSIST middleware presented in this paper as such
extends that initial architecture by adding support for
CRUD transactions, encryption-enabled CRUD trans-
actions, and search operations across federated clouds.
Furthermore, the data placement configurability over a
federated cloud storage architecture is also supported.
In addition, we implemented (i) run-time cross-
database and cross-provider polyglot persistence sup-
port on a per-object level that facilitates specific
data elements to be replicated across multiple cloud
storage technologies or providers (e.g., Database-as-
a-Service providers), and (ii) data encryption support
to ensure confidentiality of sensitive data stored in
external untrusted cloud providers using the data map-
ping strategy motivated in [37] that can be enacted
at different levels of granularity (i.e. from entire data
objects up to the level of individual properties of an
entity). Finally, we significantly extended our evalua-
tion, focusing on three different dimensions.

7 Discussion

We have validated and demonstrated the PERSIST
middleware in the context of the Log Management
system which is a high-throughput application. As
explained in Sections 3.1 and 3.6; the supported
meta-data, the annotations, and data storage policies
are not hard-coded nor rigid, and PERSIST is not

PERSIST: Policy-Based Data Management Middleware for Multi-Tenant SaaS 191

limited to only high-throughput computing applica-
tions. The platform can easily be extended to address
the requirements of different applications and to other
types of applications (e.g., high-performance applica-
tions). However, in a realistic deployment enviroment,
the performance of these data stores will fluctuate in
line with the workload. Therefore, the specification
of meta-data statically may not be the most opti-
mal solution and in some cases might even lead to
inefficient data storage decisions. Integration of tech-
niques related to dynamic data storage decision sup-
port and self-adaptiveness is part of our ongoing work
[36].

Although we have primarily demonstrated and
evaluated the PERSIST framework in terms of the
CRUD operations, the presented middleware is also
highly suited to address more challenging federated
cloud data management issues. We discuss these
below:

- Data consistency As discussed in Section 3.1, PER-
SIST provides support for tenants and SaaS providers
to replicate data across multiple cloud providers. To
accomplish this, different replication strategies and
policies can be employed that are specific to the
context of the federated cloud. For example, a cross-
provider replication strategy involves replicating data
across multiple cloud providers, whereas a cross-
technology replication strategy focuses on replicating
data across multiple database technologies to benefit
from complementarity.

The selection of a multi-cloud data replication
policy in general involves a key trade-off between
data consistency (strong consistency vs. weak con-
sistency) and performance. For example, in order to
achieve strong data consistency, cross-provider data
replication (to support high availability and disaster
recovery) comes at the cost of increased performance
overhead. This is mainly because write, update, and
delete operations are considered as executed success-
fully only when the operations are performed across
all and the successful response is received from all
cloud providers. This, however, comes at an addi-
tional performance cost, but at the same time ensures
that reading data from any cloud provider is always
consistent as write, update, and delete operations
always leave data consistent across cloud providers.
Similarly, to provide cross-provider data replication
support with optimal performance, write, update, and

delete operations can be executed with weak consis-
tency (e.g., an operation is considered to be successful
when a response is received from at least one cloud
provider), which may leave data inconsistent across
cloud providers. This inconsistency, then can be
resolved when the data is being read with the latching
of timestamp.

In the context of the multi-tenant Log Management-
as-a-Service case, strong data consistency is preferred
for cross-provider data replication at the cost of addi-
tional performance. A simplified example of cross-
provider data replication support in policies has been
illustrated in Listing 1 (line 11). In essence, the core
principles of PERSIST are to declaratively describe
the data object properties (as annotations) and data
store properties (e.g., location, provider, technology,
etc.) and leverage these to create self-sufficient poli-
cies that rely exclusively on these properties (e.g.,
selecting multiple data stores that are hosted by differ-
ent providers for data replication). The same princi-
ples easily hold for implementing different replication
policies and tailoring these to the specific application
requirements.

- Data migration As described in Section 3.6, PER-
SIST supports dynamic (re)configurability and thus
allows tenants to change or (re)configure the under-
lying federated cloud storage architecture over time
to accommodate for changing requirements. Deal-
ing with this complexity again involves making an
appropriate trade-off between performance, complex-
ity, consistency, availability, etc. For example, the
data can automatically be migrated when the tenant
changes the storage configuration. This strategy has a
negative impact on (i) performance (due to the migra-
tion of large data volumes), (ii) availability (due to the
database downtime) and (iii) consistency (during the
online data migration). In PERSIST, data migration
is not explicitly supported, but we envision the inte-
gration of a lambda-style architecture comprising of a
batch layer and a speed layer to accomplish this [47].
Another feasible strategy is to keep using the previous
configuration for older data and using the updated ver-
sion for new data objects. In such a scenario, requests
for new data can be handled according to the updated
storage configuration, while requests for old data can
be handled according to the previous version of the
configuration. However, such a solution comes at the
cost of increased complexity of versioning as more
than one cloud providers need to be managed.

@ Springer

192

A. Rafique et al.

In the multi-tenant Log Management-as-a-Service
application case, we have implemented the latter strat-
egy due to the availability and consistency require-
ments of this application and the introduced complex-
ity of combining multiple cloud providers is managed
by the PERSIST middleware.

— Federated data search As explained in Section 3.4.1,
PERSIST distributes data of a single tenant across
multiple cloud storage providers. In order to search
tenant-specific data back efficiently without incurring
additional communication costs, PERSIST maintains
a cross-provider data index (the Index Manager
component as depicted in Fig. 2). PERSIST imple-
ments a federated search protocol [21], i.e. search
requests are transmitted to only those storage nodes
that hold the relevant data, results are then aggregated
and presented to the application. Again, to accomplish
federated cloud data search, different search strategies
are feasible and supported by the PERSIST middleware.
A simplified example of activating search in policies
with a preference on forwarding search requests to
private storage resources was illustrated in Listing 1
(line 12). The other feasible search policies are (i)
searching with a preference on external cloud stor-
age provider’s infrastructure (e.g., to limit the load
on on-premise storage infrastructure or to search spe-
cific types of application data, i.e. non-confidential
data) and (ii) broadcasting search queries over all
involved nodes (e.g., to search different types of
application data). In case of replication, the data
(de)duplication is handled by the PERSIST middle-
ware.

8 Conclusion and Future Directions

Cross-provider, hybrid/multi-cloud, and federated
cloud storage architectures are increasingly com-
pelling for service providers. However, in practice,
managing such an architecture in the application is
non-trivial and introduces substantial additional com-
plexity. More specifically, in the context of multi-
tenant SaaS applications —in which customer organi-
zations (tenants) expect to make their customizations
to the SaaS application and the federated storage
architecture at run time up to the level of individual
service request— this is rather desirable, but highly
complex and challenging.

@ Springer

This paper has presented a policy-based middle-
ware called PERSIST that (i) provides an abstraction
to hide the complexity of the underneath storage
architecture and exposes a uniform API to manage
the application data across a federated cloud storage
setup; (ii) offers a fine-grained tenant customiza-
tion support to accommodate continuously chang-
ing requirements of tenants for specific data ele-
ments, as such (a) facilitates run-time cross-database
and cross-provider polyglot persistence on a per-
object level, and (b) ensures confidentiality of sen-
sitive data at differing levels of granularity through
data encryption; and (iii) externalizes the hard-coding
specifics (i.e. complex storage logic) of a federated
cloud storage architecture from the SaaS applica-
tion layer, which helps to make the multi-tenant
SaaS application more flexible, manageable, and agile
toward the initial design and the future enhance-
ments.

This work fits into our ongoing research on feder-
ated data storage architectures and multi-cloud porta-
bility of SaaS applications. Future enhancements of
the middleware include a broader exploration and
implementation of reusable data storage tactics that
have become possible in such federated cloud stor-
age setups, such as cross-provider replication, or
data pseudonymization/de-identification. We also plan
to further investigate to what extent our support of
dynamic properties (i.e. metadata that changes at
run time) can be enhanced and at what performance
cost. Another important part of the future work is to
extend such a static policy-driven setup —which is
based on the static properties and meta-data of the
operational environment (i.e. properties of different
cloud providers) and may lead to sub-optimal data
placement decisions across a federated cloud storage
setup— with support for policies that are based on
the dynamic conditions of a federated cloud architec-
ture (i.e. continuously changing conditions of different
cloud providers such as performance, availability).
Finally, the scalability test of the PERSIST middle-
ware for dynamic cloud storage resources is also
considered for the future work.

Acknowledgements We would like to thank Bert Lagaisse and
Vincent Reniers for their helpful comments and constructive
feedback. This research is partially funded by the Research
Fund KU Leuven (project GOA/14/003 - ADDIS), the SBO
DeCoMAGS project, and the imec SeClosed project.

PERSIST: Policy-Based Data Management Middleware for Multi-Tenant SaaS 193

References

10.

11.

12.

13.

14.

15.

16.

. Abu-Libdeh, H., Princehouse, L., Weatherspoon, H.: RACS:

a case for cloud storage diversity. In: SoCC *10 Proceedings
of the 1st ACM symposium on Cloud computing. ACM (2010)

. Alomari, E., Barnawi, A., Sakr, S.: CDPort: A frame-

work of data portability in cloud platforms. In: iiWAS ’14
Proceedings of the 16th International Conference on Infor-
mation Integration and Web-based Applications &Services,
pp. 126-133. ACM (2014)

. Alzain, M.A., Soh, B., Pardede, E.: MCDB: Using multi-

clouds to ensure security in cloud computing. In: Ninth
International Conference on Dependable, Autonomic and
Secure Computing, pp. 784-791 (2011)

. Atzeni, P.,, Bugiotti, F., Rossi, L.: Sos (save our systems): A

uniform programming interface for non-relational systems.
In: Proceedings of the 15th International Conference on
Extending Database Technology, EDBT ’12, pp. 582-585.
ACM (2012)

. Atzeni, P, Bugiotti, F., Rossi, L.: Uniform access to non-

relational database systems: the sos platform. In: CAiSE
’12 Proceedings of the 24th international conference on
Advanced Information Systems Engineering, pp. 160-174.
ACM (2012)

. Bazar, C. et al.: The transition from RDBMS to NoSQL. a

comparative analysis of three popular non-relational solu-
tions: Cassandra, mongodb and couchbase. Database Syst.
J. 5(2), 49-59 (2014)

. Bermbach, D., Klems, M., Tai, S., Michael, M.: Metas-

torage: A federated cloud storage system to manage
consistency-latency tradeoffs. In: IEEE International Con-
ference on Cloud Computing (CLOUD), 2011, pp. 452—
459. IEEE (2011)

. Bessani, A., Correia, M., Quaresma, B., André, E., Sousa,

P.: DepSky: Dependable and secure storage in a cloud-of-
clouds. Trans. Storage 9(4), 12:1-12:33 (2013)

. Blanke, T. et al.: Back to our data — experiments with

NoSQL technologies in the humanities. In: IEEE Interna-
tional Conference on Big Data, pp. 17-20 (2013)

Bowers, K.D., Juels, A., Oprea, A.: HAIL: a high-availability
and integrity layer for cloud storage. In: Proceedings of the
16th ACM conference on Computer and communications
security. ACM (2009)

Brewer, E.: Cap twelve years later: How the “rules” have
changed. Computer 45(2), 23-29 (2012)

Chohan, N., Bunch, C., Krintz, C., Canumalla, N.: Cloud
platform datastore support. J. Grid Comput. 11(1), 63-81
(2013)

Cooper, B.F, Silberstein, A., Tam, E., Ramakrishnan, R.,
Sears, R.: Benchmarking cloud serving systems with ycsb.
In: Proceedings of the Ist ACM Symposium on Cloud
Computing, pp. 143-154 (2010)

Dobre, D., Viotti, P., Vukolic, M.: Hybris: Robust hybrid
cloud storage. In: SOCC ’14 Proceedings of the ACM
Symposium on Cloud Computing, pp. 1-14. ACM (2014)
Ehcache. JAVA’S MOST WIDELY-USED CACHE. http://
www.ehcache.org/. [Last visited on June 20, 2017]
Ferdman, M. et al.: Clearing the clouds: A study of emerg-
ing scale-out workloads on modern hardware. SIGPLAN
Not. 47(4), 37-48 (2012)

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Foster, 1., Zhao, Y., Raicu, ., Lu, S.: Cloud computing and
grid computing 360-degree compared. In: Grid Computing
Environments Workshop, pp. 1-10 (2008)

Gessert, F., Biicklers, F.,, Orestes, N.R.: A scalable
database-as-a-service architecture for low latency. In: IEEE
30th International Conference on Data Engineering Work-
shops (ICDEW), pp. 215-222 (2014)

Grolinger, K., Higashino, W.A., Tiwari, A., Capretz,
M.A.M.: Data management in cloud environments NoSQL
and newsql data stores. J. Cloud Comput. Adv. Syst. Appl.
2(1), 1-24 (2013)

Grozev, N., Buyya, R.: Multi-cloud provisioning and load
distribution for three-tier applications. ACM Trans. Auton.
Adapt. Syst. 9(3), 13:1-13:21 (2014)

Gupta, A.M., Gadepally, V., Stonebraker, M.: Cross-engine
query execution in federated database systems. In: High
Performance Extreme Computing Conference (HPEC), pp.
1-6. IEEE (2016)

Haselmann, T., Thies, G., Vossen, G.: Looking into a
rest-based universal api for database-as-a-service systems.
In: IEEE 12th Conference on Commerce and Enterprise
Computing (CEC), pp. 17-24 (2010)

Hibernate. Hibernate OGM - The power and simplicity of
JPA for NoSQL datastores. http://hibernate.org/ogm/. [Last
visited on June 20, 2017]

imec. D-BASE: Optimization of Business Process Out-
sourcing Services. https://distrinet.cs.kuleuven.be/research/
projects/D-BASE. [Last visited on October 02, 2017]
imec. DMS2: Decentralized Data Management and Migra-
tion of SaaS. https://distrinet.cs.kuleuven.be/research/
projects/(DMS)2 [Last visited on October 02, 2017]

imec. Sequoia: Middleware for scalable, attribute-based
querying of multitenant, cloud-based databases. https://
www.imec-int.com/nl/imec-icon/research-portfolio/sequoia
[Last visited on October 02, 2017]

Impetus. A JPA 2.1 compliant Polyglot Object-Datastore
Mapping Library for NoSQL Datastores. https://github.
com/impetus-opensource/Kundera/. [Last visited on June
20, 2017]

Konstantinou, I., Angelou, E., Boumpouka, C., Tsoumakos,
D., Koziris, N.: On the elasticity of NoSQL databases over
cloud management platforms. In: Proceedings of the 20th
ACM International Conference on Information and Knowl-
edge Management, CIKM 11, pp. 2385-2388. ACM, New
York (2011)

Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A
review of auto-scaling techniques for elastic applications
in cloud environments. J. Grid Comput. 12(4), 559-592
(2014)

Mell, P., Grance, T.: The NIST Definition of Cloud Com-
puting. [Last visited on Febuary 18, 2016]

Oracle. EntityManager (Java(TM) EE 7 Specification APIs.
javax/persistence/EntityManager.htmljavax/persistence/Enti
tyManager.html. [Last visited on June 22, 2017]
Papaioannou, T.G., Bonvin, N., Aberer, K.: Scalia: an adap-
tive scheme for efficient multi-cloud storage. In: SC 12
Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis.
ACM (2012)

Rafique, A., Van Landuyt, D., Reniers, V., Joosen,
W.: Leveraging NoSQL for scalable and dynamic data

@ Springer

http://www.ehcache.org/
http://www.ehcache.org/
http://hibernate.org/ogm/
https://distrinet.cs.kuleuven.be/research/projects/D-BASE
https://distrinet.cs.kuleuven.be/research/projects/D-BASE
https://distrinet.cs.kuleuven.be/research/projects/(DMS)2
https://distrinet.cs.kuleuven.be/research/projects/(DMS)2
https://www.imec-int.com/nl/imec-icon/research-portfolio/sequoia
https://www.imec-int.com/nl/imec-icon/research-portfolio/sequoia
https://github.com/impetus-opensource/Kundera/
https://github.com/impetus-opensource/Kundera/
http://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html
http://docs.oracle.com/javaee/7/api/javax/persistence/EntityManager.html

194

A. Rafique et al.

34.

35.

36.

37.

38.

39.

40.

41.

42.

encryption in multi-tenant saas. In: 2017 IEEE Trust-
com/BigDataSE/ICESS, pp. 885-892 (2017)

Rafique, A., Van Landuyt, D., Lagaisse, B., Joosen, W.:
Policy-driven data management middleware for multi-
cloud storage in multi-tenant saas. In: IEEE/ACM 2nd
International Symposium on Big Data Computing (BDC),
pp .78-84 (2015)

Rafique, A., Van Landuyt, D., Lagaisse, B., Joosen, W.:
On the performance impact of data access middleware for
NoSQL data stores. IEEE Trans. Cloud Comput. (TCC)
PP(99), 1-1 (2016)

Rafique, A., Van Landuyt, D., Reniers, V., Joosen, W.:
Towards an adaptive middleware for efficient multi-cloud
data storage. In: Proceedings of the 4th Workshop on
CrossCloud Infrastructures & Platforms, Crosscloud’17,
pp. 4:1-4:6 (2017)

Rafique, A., Van Landuyt, D., Reniers, V., Joosen, W.:
Towards scalable and dynamic data encryption for multi-
tenant saas. In: Proceedings of the Symposium on Applied
Computing, SAC ’17, pp. 411-416. ACM, New York (2017)
Rafique, A., Walraven, S., et al.: Towards portability and
interoperability support in middleware for hybrid clouds.
In: CrossCloud 2014: IEEE INFOCOM CrossCloud Work-
shop. IEEE (2014)

Raghavan, A., Chandra, A., Weissman, J.: Tiera: towards
flexible multi-tiered cloud storage instances. In: Middle-
ware ’ 14 15th International Middleware Conference, pp. 1-
12. ACM (2014)

Redhat. Drools. https://www.drools.org/. [Last visited on
June 20, 2017]

IWT SBO. DeCoMaDs: Deployment and Configuration
Middleware for Adaptive Software-as-a-Service. https://
distrinet.cs.kuleuven.be/research/projects/DeCoMAdS [Last
visited on October 02, 2017]

Sellami, R., Bhiri, S., Defude, B.: Odbapi: A unified rest
api for relational and NoSQL data stores. In: 2014 IEEE

@ Springer

43.

44,

45.

46.

47.

48.

49.

50.

International Congress on Big Data (BigData Congress),
pp. 653-660 (2014)

Sharp, J., McMurtry, D., Oakley, A., Subramanian, M.,
Zhang, H.: Data Access for Highly-Scalable Solutions
Using SQL, NoSQL, and Polyglot Persistence, Ist edn.
Microsoft Patterns & Practices (2013)

Spring. Spring Data. http://projects.spring.io/spring-data/,
2015. [Last visited on June 20, 2017]

Stonebraker, M., Madden, S., Abadi, D.J., Harizopoulos,
S., Hachem, N., Helland, P.: The end of an architectural
era:(it’s time for a complete rewrite). In: Proceedings of the
33rd International Conference on Very Large Data Bases,
pp- 1150-1160 (2007)

Storl, U., Hauf, T., Klettke, M., Scherzinger, S.: Schema-
less NoSQL data stores 4AS object-NoSQL mappers to
the rescue? In: 16th Conference on “Database Systems
for Business, Technology, and Web” (BTW), pp. 579-600
(2015)

Vanhove, T., Van Seghbroeck, G., Wauters, T., De Turck, F.:
Live datastore transformation for optimizing big data appli-
cations in cloud environments. In: 2015 IFIP/IEEE Inter-
national Symposium on Integrated Network Management
(M), pp. 1-8 (2015)

Verginadis, Y., Michalas, A., Gouvas, P., Schiefer, G.,
Hiibsch, G., Paraskakis, I.: Paasword: A holistic data pri-
vacy and security by design framework for cloud services.
J. Grid Comput. 15(2), 219-234 (2017)

Walraven, S., Truyen, E., Joosen, W.: A middleware
layer for flexible and cost-efficient multi-tenant appli-
cations. In: Middleware ’11: Proceedings of the 12th
ACM/IFIP/USENIX International Conference on Middle-
ware, pp. 370-389 (2011)

Yang, K., Jia, X.: An efficient and secure dynamic auditing
protocol for data storage in cloud computing. IEEE Trans.
Parallel Distrib. Syst. 24(9), 1717-1726 (2013)

https://www.drools.org/
https://distrinet.cs.kuleuven.be/research/projects/DeCoMAdS
https://distrinet.cs.kuleuven.be/research/projects/DeCoMAdS
http://projects.spring.io/spring-data/

	PERSIST: Policy-Based Data Management Middleware for Multi-Tenant SaaS
	Abstract
	Introduction
	Motivation
	Multi-Tenant Log Management-as-a-Service
	Federated Cloud Storage Architecture
	LMaaS on Federated Cloud Storage Architecture
	Key Challenges

	PERSIST: a federated cloud middleware
	Tenant Configuration
	Multi-Tenant LMaaS Illustration

	SaaS Application
	Multi-Tenant LMaaS Illustration

	Multi-Tenancy
	Data Management
	Core
	Secure Data Management

	Data Storage Policies
	Configuration Management
	Client API Drivers

	Prototype Implementation
	Evaluation
	Cost/Effort to Implement Complex Storage Policy
	Application Setup
	Results

	Cost/Effort to Change the Back-end Cloud Storage Architecture
	Application Setup
	Results

	Performance Impact
	Experimental Setup
	Workload Characterization
	Measurement Methodology
	Performance Results

	Discussion on Evaluation
	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Discussion
	- Data consistency
	- Data migration
	– Federated data search

	Conclusion and Future Directions
	Acknowledgements
	References

