
J Grid Computing (2018) 16:3–18
https://doi.org/10.1007/s10723-017-9418-y

Orchestrating Complex Application Architectures
in Heterogeneous Clouds

Miguel Caballer · Sahdev Zala · Álvaro López Garcı́a ·
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Abstract Private cloud infrastructures are now
widely deployed and adopted across technology
industries and research institutions. Although cloud
computing has emerged as a reality, it is now known
that a single cloud provider cannot fully satisfy com-
plex user requirements. This has resulted in a growing
interest in developing hybrid cloud solutions that
bind together distinct and heterogeneous cloud infras-
tructures. In this paper we describe the orchestration
approach for heterogeneous clouds that has been
implemented and used within the INDIGO-DataCloud
project. This orchestration model uses existing open-
source software like OpenStack and leverages the
OASIS Topology and Specification for Cloud Appli-
cations (TOSCA) open standard as the modeling
language. Our approach uses virtual machines and
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1 Introduction

The scientific exploitation of cloud resources is nowa-
days a reality. Large collaborations, small groups and
individual scientists have incorporated the usage of
cloud infrastructures as an additional way of obtain-
ing computing resources for their research. However,
in spite of this large adoption, cloud computing still
presents several functionality gaps that make diffi-
cult to deliver its full potential, specially for scientific
usage [74, 75]. One of the most prominent challenges
is the lack of elasticity and transparent interoperabil-
ity and portability across different cloud technologies
and infrastructures [21, 47, 70]. It is absolutely needed
to provide users with seamless dynamic elasticity over
a large pool of computing resources across multiple
cloud providers.

Commercial providers can create this illusion of
infinite resources (limited by the amount of money
that users can afford to pay), but this is not true in
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scientific datacenters, where resources tend to be more
limited or are used in a more saturated regime [75,
79]. In this context, it is a clear requirement that a
user application must be capable of spanning over
several different and heterogeneous infrastructures as
a way to obtain the claimed flexibility and elastic-
ity. Orchestrating multiple IaaS (Infrastructure as a
Service) resources requires deep knowledge on the
infrastructures being used, something perceived as too
low level by normal scientific users. However, it is
possible to hide this complexity moving the user inter-
action up in the cloud model stack. This way users
do not deal anymore with infrastructure resources, but
rather interact with PaaS (Platform as a Service) or
SaaS (Software as a Service) resources. In these cases,
the orchestration complexity is carried out by the mid-
dleware layer that provides the platform or software as
a service, thus the low level details can be hidden to
the users.

In this work we will describe how the INDIGO-
DataCloud project [29] is overcoming this limitation
by providing a mechanism to orchestrate comput-
ing resources across heterogeneous cloud infrastruc-
tures. We will also thoroughly describe how this
solution is being exploited to deliver the execution
of complex scientific applications to the final users.
INDIGO-DataCloud is an European Union’s Horizon
2020 funded project that aims at developing a data
and computing platform targeting scientific communi-
ties, deployable on multiple hardware and provisioned
over hybrid (private or public) e-infrastructures.
INDIGO-DataCloud is helping application develop-
ers, e-infrastructures, resource providers and scientific
communities to overcome current challenges in the
cloud computing, storage and network areas, being the
orchestration across heterogeneous providers one of
the project’s main objectives.

The remainder of this paper is structured as follows.
In Section 2 we describe related work in the area. In
Section 3 we describe the INDIGO-DataCloud over-
all approach including the technology choices that the
project has made. In Section 4 we include a high-
level architectural description of the orchestration
technique that INDIGO-DataCloud is implementing.
Section 5 contains some selected use cases, in order
to illustrate the architecture previously described.
Finally, we present our conclusions and the future
work in Section 6.

2 Background and Related Work

The usage and promotion of open standards (being
TOSCA [42] one of them) in the cloud as a way to
obtain more interoperable, distributed and open infras-
tructures is a topic that has been already discussed
[45, 80]. Major actors [39] agree that these princi-
ples should drive the evolution of cloud infrastructures
(specially scientific clouds [44]) as the key to success
over closed infrastructures.

As a matter of fact, the European Commission
recommended, back in 2004, the usage of Open Stan-
dards in its “European Interoperability Framework
for pan-European eGovernment Services” [24]. In the
same line, the United States (US) National Institute
of Standards and Technology (NIST) has encour-
aged US national agencies to specify cloud computing
standards in their public procurement processes [7].
Similarly, the United Kingdom Government provided
a set of equivalent principles in 2014 [82].

However, providers and users perceive that lower
level (i.e. infrastructure provision and management)
standards hinder the adoption of cloud infrastructures
[9]. Cloud technologies and frameworks tend to have
a fast development pace, adding new functionalities
as they evolve, whereas standards’ evolution is some-
times not as fast as the underlying technologies. This
has been perceived as a negative fact limiting the
potential of a given cloud infrastructure, that sees its
functionality and flexibility decreased. On top of this,
infrastructure management is also perceived too low
level when moving to more service-centric approaches
that require not only the deployment and management
of services, but also all their operational concerns (like
fault or error handling, auto-scaling, etc.) [43].

In this service-centric context, cloud orchestration
is being considered more and more important, as it
will play the role needed to perform the abstrac-
tions needed to deploy complex service architectures
for a wide range of application domains, such as e-
government, industry and science. Cloud orchestration
involves the automated arrangement, coordination and
management of cloud resources (i.e. compute, stor-
age and network) to meet to the user’s needs and
requirements [8]. Those requirements normally derive
from the user demand of delivering a service (such
as a web service where there is a need to orchestrate
and compose different services together), performing
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a business logic or process, or executing a given
scientific workflow.

Cloud orchestration within science applications has
been tackled before by several authors, in works
related to specific scientific areas such as bioinfor-
matics and biomedical applications [40], neuroscience
[79], phenomenology physics [9], astrophysics [77],
environmental sciences [18], engineering [38], high
energy physics [81], etc. This has been also addressed
in more generic approaches, not bounded to a scien-
tific discipline [15, 37, 84]. However, these works tend
to be, in general, too tied to a given type of applica-
tion and workload, and they need to be generalized in
order to be reused outside their original communities.

Several open source orchestration tools and ser-
vices exist in the market, but most of them come
with the limitation of only supporting their own
Cloud Management Platforms (CMPs) as they are
developed within those project ecosystems. As an
example we can cite some of them: OpenStack Heat
[61] and its YAML-based Domain Specific Language
(DSL) called Heat Orchestration Template (HOT)
[59], native to OpenStack [60]. OpenNebula [58] also
provides its own JSON-based multi-tier cloud appli-
cation orchestration called OneFlow [57]. Eucalyptus
[17] supports orchestration via its implementation of
the AWS CloudFormation [4] web service. All of
them are focused on the their own CMPs and further-
more they rely on their own DSL languages (open or
proprietary ones such as CloudFormation).

Moving from the CMP specific tools and focusing
on other orchestration stacks we can find: Cloud-
ify [13], which provides TOSCA-based orchestration
across different Clouds, but is not currently able to
deploy on OpenNebula sites, one of the main CMPs
used within science clouds being supported by the
project. Apache ARIA [6] is a very recent project,
not mature enough and without support for Open-
Nebula. Project CELAR [10] used an old TOSCA
XML version using SlipStream [78] as the orches-
tration layer (this project has no activity in the last
years and SlipStream has the limitation of being open-
core, thus not supporting commercial providers in the
open-source version). CompatibleOne [83] provided
orchestration capabilities based on the Open Cloud
Computing Interface (OCCI) [49, 50, 54]. However
the project has not been active in the last years. Open-
TOSCA [67] currently only supports OpenStack and
EC2 providers.

In contrast, the Infrastructure Manager (IM) [25]
supports TOSCA-based deployments over a variety
of cloud backends including OpenNebula and Open-
Stack, the two main CMPs targeted in the project;
commercial cloud providers such as Microsoft Azure
[51], Amazon Web Services (AWS) [3], Google Cloud
Platform (GCP) [22] and Open Telekom Cloud (OTC)
[56]; and the EGI Federated Cloud [16] a large-
scale pan-european federated IaaS Cloud to support
scientific research.

As we can see, CMP-agnostic tools tend to move
away from specific DSLs and to utilize open stan-
dards such as OCCI or TOSCA. Although both may
seem suitable for orchestration purposes, OCCI is an
standard focused on all kind of management tasks
[45], whereas TOSCA is a standard designed specif-
ically to model cloud-based application architectures.
Choosing TOSCA as the description language for an
orchestration tool is a reasonable choice, as we will
later describe in Section 3.1.

3 INDIGO-DataCloud Vision

The project’s design specification [26] has put the
focus not only on evolving available open-source
cloud components, but also on developing new solu-
tions to cope with the project targets, introducing as
a result innovative advancements at the layer of IaaS,
e.g. by implementing advanced scheduling strategies
based on fair share or preemptible instances [46],
at the layer of PaaS, e.g. by creating SLA-based
orchestration components that support deployments
on multi-Clouds [76] and, finally, at the layer of
SaaS, e.g. by developing high-level REST and graph-
ical user interfaces to facilitate the usage of comput-
ing infrastructures for different scientific communities
[71].

The heterogeneity in the IaaS platforms has been
addressed by the adoption of the two leading open-
source CMPs, OpenStack [60] and OpenNebula [58].
OpenStack is a major open-source collaboration that
develops a cloud operating system that controls large
pools of compute, storage, and networking resources
throughout a datacenter. OpenNebula provides a sim-
ple but feature-rich and flexible solution for the com-
prehensive management of virtualized data centers to
enable private, public and hybrid IaaS clouds. Both are
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enterprize-ready solution that include the functional-
ity needed to provide an on-premises (private) cloud,
and to offer public cloud services.

Figure 1 shows a high level and simplified overview
of the INDIGO-DataCloud architecture. As it can be
seen, both CMPs at the IaaS layer are used indistinctly
from the PaaS, leveraging the TOSCA open standard
at both layers, as we will describe later in Section 4.
The different software components supporting the
TOSCA standard are key in the INDIGO-DataCloud
architecture, and the disparity in its maturity level have
brought along multiple developments in the codebase
of both CMPs, in many cases resulting in upstream
contributions [63, 65].

In the rest of this section we will elaborate on the
reasons that led us to chose the TOSCA standard, and
the different existing open source components that are
being adopted and enhanced in order to support the
project’s use cases.

3.1 TOSCA

The interoperability required to orchestrate resources
either in OpenStack or OpenNebula from the PaaS
layer has been provided by the usage of the TOSCA
(Topology and Specification for Cloud Applications)
[42] open standard. TOSCA is a Domain Specific
Language (DSL) to describe cloud application archi-
tectures, developed by the OASIS [55] nonprofit
consortium and supported by several companies as
contributors, reviewers, implementers or users. These
companies include, AT&T, Bank of America, Bro-
cade, Cisco, Fujitsu, GigaSpaces, Huawei, IBM, Intel,
Red Hat, SAP, VMWare, Vnomic and ZTE corpora-
tion. The usage of TOSCA was already made practical
by OpenStack projects like TOSCA Parser [66] and
Heat Translator [62]. Both projects are easy to con-
sume via Python Package Index (PyPI) [73] packages
or directly from the master branch of the source code.

Fig. 1 Simplified high
level INDIGO-DataCloud
architecture
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INDIGO-DataCloud adopted the TOSCA language
as it allows to define interoperable descriptions
of cloud applications, services, platforms, data and
infrastructure along with their requirements, capa-
bilities, relationship and policies. TOSCA enables
portability and automated management across multi-
ple clouds regardless of the underlying platform or
infrastructure and is supported by a large and growing
number of international industry leaders.

TOSCA uses the concept of service templates to
describe cloud application architectures as a topol-
ogy template, which is a graph of node types (used
to describe the possible building blocks for construct-
ing a service template) and relationship types (used to
define lifecycle operations to implement the behavior
an orchestration engine can invoke when instantiating
a service template).

Three additional open software components are
taking part on the orchestration solution in the
INDIGO-DataCloud project: TOSCA Parser is an
OpenStack open-source tool to parse documents
expressed using the TOSCA Simple Profile in YAML
[69]. Heat Translator translates non-Heat templates
(e.g. TOSCA templates) to the native OpenStack’s
orchestration language HOT (Heat Orchestration
Template). Last but not least, the Infrastructure Man-
ager (IM) [8] is a TOSCA compliant orchestrator,
which relies on the TOSCA Parser, that enables the
deployment and configuration of the virtual infrastruc-
tures over a large set of different on-premises CMPs
(e.g. OpenNebula and OpenStack) and public Cloud
providers.

3.2 TOSCA Parser

The TOSCA Parser is an OpenStack project, although
it is a general purpose tool, not restricted to be
used within an OpenStack environment. The TOSCA
Parser is a Python library able to read TOSCA sim-
ple YAML templates, TOSCA Cloud Service Archive
(CSAR) and TOSCA Simple Profile for Network
Functions Virtualization (NFV), creating in-memory
graphs of TOSCA nodes and their relationship, as
illustrated in Fig. 2.

3.3 Heat Translator

The OpenStack Heat Translator project enables inte-
gration of TOSCA into an OpenStack cloud. With

Fig. 2 The in-memory representation of TOSCA nodes

Heat Translator a user can translate TOSCA tem-
plates to the OpenStack native HOT language. These
templates can then be automatically deployed in an
OpenStack cloud (Fig. 3).

The Heat Translator project can be used directly
from the OpenStack command line and web user
interface, and is well integrated into the OpenStack
ecosystem (Fig. 4). It uses various OpenStack projects
for translation purposes (like image and instance type
mapping) and it is also consumed by other OpenStack
official projects like the OpenStack NFV Orchestra-
tion project, Tacker [64].

Listing 1 shows a TOSCA document that, when
passed to the Heat Translator, results in the HOT
output shown in Listing 2.

3.4 Infrastructure Manager

The Infrastructure Manager (IM) [8] performs the
orchestration, deployment and configuration of the
virtual infrastructures and it was chosen within the
project as it provided support for TOSCA based
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Fig. 3 Heat translator architecture

orchestration, as long as a wide variety of back-
ends and infrastructures (as described in Section 2),
specially those targeted by the project.

Figure 5 shows the scheme of the IM procedure. It
receives the TOSCA template and contacts the cloud
site using their own native APIs to orchestrate the

Listing 1 TOSCA document equivalent to Fig. 2

Listing 2 HOT document equivalent to Listing 1

Fig. 4 Heat Translator OpenStack integration
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Fig. 5 The Infrastructure Manager (IM)

deployment and configuration of the virtual infrastruc-
ture. The IM also uses the TOSCA parser to parse and
load in memory the TOSCA documents received as
input. Once the resources have been deployed and they
are running, the IM selects one of them as the “mas-
ter” node and installs and configures Ansible [23] to
launch the contextualization agent that will configure
all the nodes of the infrastructure. The master node
requires a public IP accessible from the IM service
and must be connected with the rest of nodes of the
infrastructure (either via a public or private IP). Once
the node is configured, the IM will launch the con-
textualization agent to configure all the nodes using
the defined Ansible playbooks. Ansible was chosen
over other DevOps tools such as Puppet, Chef or
SaltStack due to the combination of the following
features: i) YAML support, the same language used
to define the TOSCA templates, ii) Ansible Galaxy
[27], an online repository to share with the community
the open-source Ansible roles created to dynamically
install the services and end-user applications, iii) easy
to install tool, and iv) agent-less architecture enabling
the management of the nodes without requiring any
pre-installed software (using standard SSH or WinRM
connections).

4 TOSCA Orchestration in INDIGO-DataCloud

INDIGO-DataCloud provides a comprehensive solu-
tion for deploying cloud applications in multiple
CMPs that may need complex topologies and oper-
ational requirements, such as auto-scaling resources
according to the application needs.

As explained in Section 3, this cloud orchestra-
tion scenario is perfect for using TOSCA to spec-
ify resources in heterogeneous environments, guiding
the operation management throughout the application
lifecycle. The tools described in the previous section
provide the functionalities needed to cope with the
orchestration needs of those cloud applications at the
infrastructure and platform level.

Basically the implemented solution enables a user
to deploy cloud applications over complex cloud
infrastructures. The user interacts with a set of APIs
or GUI based portlets that enable the definition of
the relevant parameters for the application and infras-
tructure deployment. This is internally managed as a
TOSCA document that is sent to the different com-
ponents of the architecture to manage the lifecycle of
the cloud topology: selecting the best image and cloud
site to deploy the infrastructure and then contacting
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the TOSCA orchestration endpoint (IM or Heat) for
the selected site.

Our approach proposes a new solution to deploy
the final application at each resource provider by com-
bining the usage of Docker containers and VMs in
a transparent way for the user. It leverages Docker
containers as the preferred underlying technology to
encapsulate user applications [30], but in case that
containers are not supported natively by the CMP
or provider, it can also use virtual machines, achiev-
ing the same application deployment and execution
environment. This process is being handled by the
orchestration layer and is transparent for the user,
resulting in the application being delivered to the user,
regardless of the using Docker containers or VMs.

Once the TOSCA document is built upon the user
requirements the system starts with the deployment
of the application. In this TOSCA document, the
user application is referenced, so that the INDIGO-
DataCloud Orchestrator [31] can select the most suit-
able site for executing it. After the site is selected,
the orchestrator can apply two different procedures for
deploying it, based on the image availability at the
selected site:

1. Whenever the requested image is registered at the
cloud site, the configuration step is removed, so
the user application is spawned right away without
the need of any image contextualization.

2. For those cases where the pre-configured image
is not at the local catalog of the cloud site, the
deployment of the application is performed on
a vanilla virtual machine or Docker container
using Ansible roles. The execution of the Ansi-
ble Role on the provisioned computing resource
is performed by either the IM, on an OpenNeb-
ula site, or Heat, on an OpenStack site. Therefore
the application deployment is automatically done,
without any user intervention. The Ansible role
deals with the installation and configuration of a
given application, so every application supported
in the project need to have its corresponding role
online available before its actual instantiation.

A user application made available through the sec-
ond approach will notably take more time to be
deployed, when compared with the pre-configured
image instantiation already described. However using
Ansible roles at this stage allows a more flexible
customization since they can be designed to support

application installation on a wide set of platforms and
operating system distributions. Therefore, they are not
being constrained to a specific OS distribution, as it is
the case of using pre-configured images.

The availability of the Ansible role for each sup-
ported application is taken for granted within the
workflow, since the pre-configured images are also
created from them in order to install the application
in a Docker image that will be made available in
Docker Hub [30]. Having a single, unified approach
to describe the application installation and config-
uration steps, promotes re-usability and simplifies
maintenance.

Applications being integrated in INDIGO-
DataCloud require: i) an Ansible Role that performs
the automated installation of the application together
with its dependences on a specific Operating System
flavor (or a subset of them); ii) an entry in Ansible
Galaxy to easily install the Ansible Role; iii) a new
TOSCA node type that defines the requirements for
the application; iv) a TOSCA template that references
the new node type and optionally specifies an existing
Docker image in Docker Hub with the application
already installed inside. This Docker image will be
automatically registered in a Cloud site supporting
a Docker-enabled CMP by means of the INDIGO
RepoSync tool [32]. Notice that this process is just
required once. The user would later just use the same
TOSCA template to automatically provision instances
of the application on-demand.

Figure 6 describes a simplification of the INDIGO-
DataCloud architecture that enables the deployment of
complex application layouts. In particular, the figure
describes the workflow that involves both the TOSCA-
based provision of the computing resources and their
dynamic management for the specific case of a virtual
elastic cluster.

The TOSCA document is obtained out of a TOSCA
template, explicitly created for each particular appli-
cation, filled with some runtime parameters. These
parameters are provided, through the interaction with
a high-level graphical user interface (GUI) (step 1).
The GUI first asks for the user credentials by means of
an identity access management service (step 2), then
prompts for the selection of the TOSCA template (step
3). For the sake of example, we assume that the user
wants to deploy a virtual elastic cluster.

The INDIGO-DataCloud orchestrator is the entry
point to the PaaS layer, receiving TOSCA documents
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Fig. 6 Simplified architecture of the usage of TOSCA for the deployment of computing clusters in INDIGO-DataCloud

as input (step 4), to find the best match for the resource
provisioning. The decision-making process is based
on a SLA (Service Level Agreement) analysis and
the assessment of the potential target providers avail-
ability (step 5), leveraging the INDIGO-DataCloud
PaaS service stack [52, 76]. One important feature
of the orchestration system is that it supports hybrid
deployments across different public or on-premises
Cloud providers, making use of the VPN technology
to establish secure and seamless connections among the
compute nodes located in the different infrastructures
(see an example TOSCA template for a hybrid deployment

in [34]). The hybrid capabilities are particularly inter-
esting for use cases involving virtual elastic clusters,
allowing them to potentially scale out to access more
servers than a single infrastructure could provide.

The CMP type of the selected cloud resource
provider marks the remaining steps in the TOSCA
orchestration workflow. Whenever an OpenStack
cloud provider is selected, the orchestrator performs
the interaction with the Heat service, preceded by the
TOSCA template translation by means of the Heat
Translator API. As described in Section 3, Heat Trans-
lator makes use of TOSCA Parser utility to load
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the TOSCA template, ending up with a OpenStack’s
native HOT description of the stack to be deployed.

On the other hand, if the target cloud provider is
based on OpenNebula framework or external public
cloud platforms (such as Amazon AWS or Google
Cloud), then the Orchestrator delegates on the IM to
perform the provision and the configuration of the vir-
tual infrastructure (step 6). The IM component will
act as the unified TOSCA orchestrator, receiving the
TOSCA template and acting as the orchestration layer
with TOSCA support on top of the CMP.

The last steps in the workflow are related to the
concrete example of deploying the virtual cluster. The
orchestration layer —IM or OpenStack Heat— per-
forms the automated deployment of the different tools
to configure the virtual cluster along with CLUES
[2] as the elasticity manager of the cluster (step 7).
The user is then provided with the endpoints and
credentials to access his virtual cluster. Once the user
starts submitting jobs (step 8), CLUES automatically
detects that additional resources are required, contact-
ing the Orchestrator (step 9). It will then restart the
provisioning process of step 5, resulting in new nodes
dynamically added to the existing virtual cluster (step 10).

Figure 7 describes the relation among the Ansible
roles and Docker images, as described in the TOSCA
template [33]. The source code of the user applica-
tions are available in GitHub together with the Ansible
roles that describe their installation and configuration

process. Profiting from the GitHub and Docker Hub
tight integration, automated builds of each application
image are triggered once a new change is committed
to its repository’s default branch, thus making the last
version of the application online available in Docker
Hub registry. The Ansible roles are also centrally reg-
istered in the Ansible Galaxy online catalog. These
Ansible roles are then referenced in the corresponding
TOSCA types and used in the TOSCA templates so
that applications can be automatically deployed on the
provisioned virtual infrastructure.

5 Use Cases

This section illustrates two different use cases that
have been implemented within INDIGO-DataCloud:
A single node based application (Powerfit) and an
elastic Mesos cluster. Both examples use new TOSCA
types added by the INDIGO-DataCloud project to
extend TOSCA Simple Profile in YAML Version 1.0.

5.1 Powerfit

The Powerfit [85] use case provides an example of
a single-node application workflow. The reduced ver-
sion of the TOSCA template required to deploy the
application is shown in Listing 3 (the full example is
available at tosca-types GitHub repository [36]).
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Ansible Role 
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TOSCA Templates
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Build

Hosted on

Fig. 7 Relation among Ansible Roles, Docker images and TOSCA templates
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In this use case the user selects a node of the type
tosca.nodes.indigo.Powerfit, defined as
shown in Listing 4. The definition includes the
Ansible role needed to install and configure the
application [28]. This is the same role used to
build the Docker image specified in the template,
i.e., indigodatacloudapps/powerfit). The
deployment of this application follows the steps
shown in Section 4, i.e. using the pre-installed Docker
image whenever it is locally available, or otherwise
using a vanilla VM or Docker container.

This example demonstrates the capability to extend
TOSCA with additional non-normative types that best
match the application requirements. These new types
also link to the appropriate automated deployment
procedures (i.e. Ansible roles), previously tested to
guarantee the success under different environments.
Having custom types for different applications simpli-
fies the TOSCA templates, enhancing their readability
while preventing users from introducing changes that
could affect the deterministic behavior of the applica-
tion deployment.

Listing 3 A modified excerpt of the Powerfit TOSCA template

Listing 4 tosca.nodes.indigo.Powerfit node type definition

5.2 Elastic Mesos Cluster

Using virtual Apache Mesos clusters [5] in the
cloud enables scientific communities to get access to
customized cluster-based computing on-demand, to
address both the execution of batch jobs and long-
running services via Chronos [12] and the Marathon
[48] framework, respectively. The project made avail-
able TOSCA templates to support the deployment of
different types of customized virtual elastic computing
clusters.

These clusters are elastic since, initially, only the
front-end nodes are deployed. Moreover, unlike tra-
ditional computing clusters based on more traditional
Local Resource Management Systems (LRMS) —like
SGE, Torque or HTCondor—, Mesos provides with a
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Listing 5 A modified excerpt of the virtual elastic Mesos
cluster TOSCA template

high-availability mode that features multiple masters
and load balancers.

The Mesos masters are customized with the
required scientific applications, specific for a given
user community. They are also configured with
CLUES support, the elasticity management system for
clusters introduced in Section 4. CLUES monitors the
state of the job queue to detect when additional Mesos
slaves are required to be deployed in order to cope
with the number of pending jobs. The cluster is then
dynamically adapted to a given workload, constrained
by the maximum number of slaves specified in the
TOSCA document as “max instances”. CLUES was
extended within the INDIGO-DataCloud project to
provision additional nodes from the PaaS Orchestra-
tor, as well as to introduce elasticity for Apache Mesos
Clusters and HTCondor batch resources.

An example of a TOSCA-based description for
these virtual elastic computing clusters is available in
the tosca-types GitHub repository [35], and summa-
rized in Listing 5. The TOSCA template provides a
description of the elastic cluster in terms of the com-
puting requirements for all the Mesos cluster nodes
(master, load balancer and slave nodes). It also speci-
fies the maximum number of slaves to launch (5 in this
example). For the sake of simplicity, some information
has been omitted in the TOSCA template depicted.
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6 Conclusions and Future Work

This paper has described the challenges of orchestrat-
ing computing resources in heterogeneous clouds and
the approach carried out in the INDIGO-DataCloud
project to overcome them, with discussion of real life
use cases from scientific communities.

The TOSCA open standard has been adopted for
the description of the application layouts. Different
examples have been shown ranging from a simple
single-node application to an elastic Apache Mesos
cluster. For this, an orchestration approach based on
prioritizing cloud sites with existing pre-configured
Docker images is employed, while being able to
dynamically deploy the applications on cloud sites
supporting only vanilla VMs or Docker images. By
adopting a configuration management solution based
on Ansible roles to carry out both the deployment of
the application and the creation of the pre-configured
Docker images, a single consistent unified approach
for application delivery is employed.

By using TOSCA to model the user’s complex
application architectures it is possible to obtain repeat-
able and deterministic deployments. User’s can port
their virtual infrastructures between providers trans-
parenty obtaining the same expected topology.

The time required to deploy a virtual infrastructure
is strictly dominated by the time required to provi-
sion the underlying computational resources and the
time to configure them. Therefore, provisioning from
a Cloud site that already supports the pre-configured
Docker images requested by the user is consider-
ably much faster than having to boot up the Virtual
Machines from another Cloud site and perform the
whole application installation and its dependencies.
The overhead introduced by the PaaS layer is negligi-
ble compared to the time to deploy an infrastructure,
since it just requires a reduced subset of invocations
among the different microservices.

As it can be seen from the use cases described in
Section 5, several non-normative TOSCA node types
were introduced in the context of INDIGO-DataCloud
project to support both different user applications and
specific services to be used within the deployed appli-
cations. Indeed, the extensibility of the TOSCA lan-
guage and the ability of the underlying TOSCA parser
to process these new elements facilitates the proce-
dure of adopting TOSCA as the definition language to

perform the orchestration of complex infrastructures
across multiple Clouds.

It is important to point out that a key contribution
of the INDIGO-DataCloud Orchestration system, with
respect to other orchestration platforms, is the imple-
mentation of hybrid orchestration to satisfy demands
of dynamic or highly changeable workloads, such as
the virtual elastic cluster use case presented.

The approach described here is being used by sev-
eral user communities that have been engaged within
the project [1, 11, 14, 19, 20, 41, 53, 68, 72]. The
developed solutions have also resulted in community
and upstream code contributions to major open source
solutions like OpenStack and OpenNebula.

Future work includes supporting different complex
application architectures used by scientific commu-
nities. For example, this work will include architec-
tures for Big Data processing in order to automat-
ically provision virtual computing clusters to pro-
cess large volumes of data using existing frameworks
such as Hadoop and Spark). Regarding the tools that
have been described, the OpenStack Heat Transla-
tor is expected to evolve into a service that could
be deployed along with the OpenStack Orchestra-
tion (Heat) service, enabling the direct submission of
TOSCA documents to the endpoint that this service
will provide.
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45. López Garcı́a, Á., Fernández-del Castillo, E., Orviz
Fernández, P.: Standards for enabling heterogeneous IaaS
cloud federations. Comput. Standard Inter. 47, 19–23
(2016). https://doi.org/10.1016/j.csi.2016.02.002
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