J Grid Computing (2017) 15:501-526
https://doi.org/10.1007/s10723-017-9414-2

N
@ CrossMark

freeCycles - Efficient Multi-Cloud Computing Platform

Rodrigo Bruno 2 - Fernando Costa -

Paulo Ferreira

Received: 1 October 2016 / Accepted: 9 October 2017 / Published online: 30 October 2017

© Springer Science+Business Media B.V. 2017

Abstract The growing adoption of the MapReduce
programming model increases the appeal of using
Internet-wide computing platforms to run MapRe-
duce applications on the Internet. However, current
data distribution techniques, used in such platforms
to distribute the high volumes of information which
are needed to run MapReduce jobs, are naive, and
therefore fail to offer an efficient approach for run-
ning MapReduce over the Internet. Thus, we pro-
pose a computing platform called freeCycles that runs
MapReduce jobs over the Internet and provides two
new main contributions: i) it improves data distribu-
tion, and ii) it increases intermediate data availability
by replicating tasks or data through nodes in order
to avoid losing intermediate data and consequently
avoiding significant delays on the overall MapReduce
execution time. We present the design and implemen-
tation of freeCycles, in which we use the BitTorrent
protocol to distribute all data, along with an exten-
sive set of performance results, which confirm the

R. Bruno () - F. Costa - P. Ferreira

INESC-ID, Instituto Superior Técnico, Universidade

de Lisboa, Rua Alves Redol, 9, 1000-029 Lisbon, Portugal
e-mail: rodrigo.bruno@tecnico.ulisboa.pt

F. Costa
e-mail: fernando.costa@tecnico.ulisboa.pt

P. Ferreira
e-mail: paulo.ferreira@inesc-id.pt

usefulness of the above mentioned contributions. Our
system’s improved data distribution and availability
makes it an ideal platform for large scale MapReduce
jobs.

Keywords Cloud computing - BitTorrent - BOINC -
MapReduce - Volunteer computing

1 Introduction

Current trends show a growing demand for compu-
tational power; scientists and companies all over the
world strive to harvest more computational resources
in order to solve increasingly complex problems in
less time, while spending the least amount of money
possible [8, 23, 24]. With these two objectives in mind,
we believe that aggregating computing resources all
over the Internet (much like Volunteer Computing
[4], VC, projects do) is a viable solution to access
tremendous untapped computing power, namely CPU
cycles, network bandwidth, and storage, at virtually no
cost.

As Internet computing matures, more computing
devices (e.g., PCs, gaming consoles, tablets, mobile
phones, etc.) join the network. By gathering all these
resources in a global computation pool, it is possible
to obtain huge amounts of resources that would be
impossible, or impractical, for most grids, supercom-
puters, and clusters. For example, recent data from

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-017-9414-2&domain=pdf
http://orcid.org/0000-0003-1578-5149
mailto:rodrigo.bruno@tecnico.ulisboa.pt
mailto:fernando.costa@tecnico.ulisboa.pt
mailto:paulo.ferreira@inesc-id.pt

502

Rodrigo Bruno et al.

BOINC projects [3, 5] shows that, currently, there
are 50 supported projects sustained by an average
computational power of over seven PetaFLOPS.!

Large scale Internet-wide computing platforms
enable large projects that could not be executed on
grids, supercomputers, or clusters due to its size or
cost, to be deployed using Internet-wide resources.
In addition, recent developments of popular program-
ming models, namely MapReduce” [19], raise the
interest of using Internet-wide computing platforms
to run MapReduce applications on large scale net-
works, such as the Internet. Despite increasing the
attractiveness of such platforms, this also requires the
research community to rethink and evolve the archi-
tecture and protocols (in particular, data distribution)
used by existing systems.

Hence, we present freeCycles, an Internet-wide
MapReduce-enabled computing platform which aims
at aggregating as many computing resources as pos-
sible in order to run MapReduce jobs in a scalable,
efficient, and fault-tolerant way, over the Internet. The
output of this project is a middleware platform that
enables upper software abstraction layers (programs
developed by scientists, for example) to use available
resources all over the Internet as they would use a
supercomputer or a cluster.

freeCycles must fulfill several key requirements:
1) improve, compared to other solutions, the over-
all throughput of MapReduce applications (results
presented in Sections 6.2, 6.3, 6.5, and 6.8), ii) col-
lect nodes’ resources such as CPU cycles, network
bandwidth, and storage in an efficient way (results
presented in Section 6.4), iii) tolerate node failures
(Section 4 provides further details on the fault model
we use; Sections 6.7, 6.9, and 6.10 show such results),
and iv) support MapReduce, a particularly interesting
programming model, given its relevance for a large
number of applications (Section 2 presents a descrip-
tion of our solution and how it supports MapReduce
applications).

I'Statistics from boincstats.com

2MapReduce is a popular programming model composed of two
operations: Map (applied for a range of values) and Reduce
(operation that will aggregate values generated by the Map
operation).

@ Springer

MapReduce applications typically have two key
features: i) they require large amounts of input data to
run, and ii) they may run for several iterations, where
data can be processed and transformed several times
(this is specially important for iterative algorithms
such as the page rank [30]). Therefore, in order to take
full advantage of the MapReduce model, freeCycles
must be able to efficiently distribute large amounts
of data while allowing applications to perform sev-
eral MapReduce iterations without compromising its
scalability (in a clustered environment this problem
is solved using tools like Spark [52]). As shown in
Section 6.5, solutions such as BOINC and SCOLARS
do not scale with the number of iterations, as the appli-
cation execution time increases linearly when multiple
MapReduce iterations are required. On the contrary,
freeCycles only adds a small cost when multiple
MapReduce iterations are required.

To better understand the challenges inherent to
building a solution like freeCycles, it is important to
note the differences between the main three comput-
ing environments: clusters, grids, and volatile comput-
ing pools (available from the Internet).

Clusters are composed of dedicated computers,
with fast inter-node connection speeds. Nodes have
very low failure rates, are very similar in hardware and
software and all their resources are focused on cluster
jobs.

Grids may be created by aggregating desktop com-
puters from universities, research labs or even com-
panies. Computers have a moderate to fast connection
with each other and grids may be inter-connected to
create larger grids; node failure is moderate, nodes
are also similar in hardware and software but their
resources are shared between user tasks and grid jobs.

Finally, we have volatile computing pools, i.e.,
Internet-connected nodes. This environment is made
of arbitrary computers, owned by individuals, insti-
tutions, or cloud providers around the world. Nodes
have variable Internet connection bandwidth, different
computation costs (e.g., CPU per hour), node churn is
very high (compared to clusters or grids), nodes are
very asymmetrical in terms of hardware and software
and their computing resources may be preempted by
user tasks (if resources come from volunteer nodes).
As opposed to grids and clusters, computers cannot be
trusted since they may be managed by malicious users.



freeCycles - Efficient Multi-Cloud Computing Platform

503

It is important to note that in a real deployment, nodes
can be managed by volunteers (as in Volunteer Com-
puting projects), provided by Cloud Services (such as
Amazon), or even both. In the scope of freeCycles, we
do not distinguish between these scenarios.

By considering all the available solutions, note that
systems based on clusters and/or grids do not fit our
needs. Such solutions are designed for controlled envi-
ronments in which node churn is expected to be low,
nodes are typically well connected with each other,
can be fully trusted, and are very similar in terms
of software and hardware. Therefore, such solutions
(HTCondor [48], Hadoop [50], XtremWeb [21]) and
other similar computing platforms are of no use to
reach our goals.

When considering platforms that harness resources
all over the Internet (GridBot [43], Bayanihan [42],
and others [2, 6, 14, 34]), we observe that most
existing solutions are built and optimized to run Bag-
of-Tasks applications. Therefore, such solutions do
not support the execution of MapReduce jobs, which
is one of our main requirements.

With respect to the few solutions that support
MapReduce [18, 33, 35, 46], we detect some draw-
backs (more details in Section 7): data distribution
could be improved, intermediate data availability is
overlooked, and there is a lack of support for iterative
MapReduce applications.

To solve the aforementioned drawbacks, we present
freeCycles®, a BOINC-compatible computing plat-
form that enables the deployment of MapReduce
applications over the Internet. Besides supporting
MapReduce jobs, freeCycles goes one step further
by allowing nodes (mappers or reducers) to help dis-
tribute both the input, intermediate output, and final
output data. freeCycles uses BitTorrent* to replace
point-to-point protocols (such as HTTP and FTP).
Therefore, freeCycles benefits from nodes’ network
bandwidth to distribute data. Additionally, freeCycles
allows multiple MapReduce iterations to run with-
out having to wait for a central server, i.e., data can
flow directly from reducers to mappers (of the next

3This work is an extended version of a previous artcile pub-
lished in a workshop[11].

4Official BitTorrent specification can be found at www.
bittorrent.org

iteration). Regarding the availability of data stored

on volatile nodes, freeCycles proposes an enhanced

scheduler that automatically replicates data or tasks to
minimize the risk of stalling the MapReduce workflow

(when waiting for the recomputation of some data that

was lost due to some worker node failure).

By providing these functionalities, when compared
to current solutions, freeCycles achieves: i) higher
network scalability (reducing the burden on the data
server network bandwidth), ii) improved dependabil-
ity (by replicating tasks and data automatically), iii)
reduced transfer time (improving the overall turn-
around time), and iv) augmented fault tolerance since
nodes (including the server) can fail during data trans-
fers without compromising other nodes’ transfers.

In short, the contributions of this work are the follow-
ing:

— proposing and evaluating the idea of taking advan-
tage of bandwidth available at remote computing
nodes to help distribute data. To the best of our
knowledge, freeCycles is the first system to take
advantage of all the bandwidth available at remote
working nodes in all phases of a MapReduce compu-
tation;

— a BOINC-compatible Internet-wide MapReduce
computing platform which is able to run multiple
MapReduce iterations efficiently (data does not
have to go back to the server between iterations);

— enhanced data distribution (by using all available
bandwidth at worker nodes through BitTorrent)
and enhanced dependability/fault-tolerance (by
using automatic data and task replication);

— set of performance tests which compares freeCy-
cles with other approaches and highlights the
performance and network scalability gains of this
solution compared to previous ones. In addition,
through some of our experiments, we draw some
conclusions regarding the applicability of MapRe-
duce to volatile pools and how to adapt MapRe-
duce workloads for this specific environment.

The rest of this document is organized as follows.
Section 2 describes the core architecture, Section 3
presents our data distribution algorithms and Section 4
presents our approach to handle fault tolerance and
intermediate data availability. Section 5 describes
some implementation details. We conclude the document

@ Springer


www.bittorrent.org
www.bittorrent.org

504

Rodrigo Bruno et al.

with an extensive set of experiments (Section 6), and
a section presenting the most relevant related work
(Section 7), followed by some conclusions.

2 freeCycles Architecture

freeCycles is a MapReduce-enabled and BOINC-
compatible computing platform. It provides the fol-
lowing main novel contributions: i) efficient MapRe-
duce data distribution using the BitTorrent protocol,
ii) efficient iterative MapReduce job support, and iii)
automatic data and task replication (to guarantee the
progress of MapReduce jobs). In this section, we
describe freeCycles’ architecture. As some of its basic
components are already present in BOINC, we focus
only on freeCycles’ extensions.

2.1 Overview

freeCycles has two main entities: a central server (see
Section 2.2), and many clients (see Section 2.3). The
server schedules tasks to clients. Using the MapRe-
duce model, each task is either a map or a reduce
operation over some data. When a job is deployed, the
scheduler starts by delivering map tasks. Reduce tasks
are delivered once all map tasks are finished.

Using the MapReduce model, input data is first
transformed (by mappers) into intermediate data.
Intermediate data is then shuffled, and finally trans-
formed (by reducers) into output data. The shuffle
phase step is crucial for MapReduce workflow as it
partitions intermediate data (according to some user-
defined partitioning function) among reducers.

Fig. 1 freeCycles Server
and Client Extensions

Server

When running MapReduce applications in BOINC,
all input, intermediate, and output data is stored in the
data server (the data server is a component of the cen-
tral server, as described in Section 2.2) which serves
data to all mappers and reducers using, for example,
HTTP or FTP. When mappers finish their tasks, inter-
mediate data is uploaded to the data server. When all
the intermediate data is available at the server, valida-
tion takes place, followed by the shuffle step. Then, in
the reduce phase, reducers download intermediate data
from the data server (using HTTP or FTP) and upload
the output data back to the server, which validates it.

Since each task is replicated at least three times
to tolerate stragglers and node failures (see Section 4
for more details), at least three copies of each input
will be transmitted by the data server. To eliminate
this overhead, freeCycles uses BitTorrent. Therefore,
all input, intermediate, and output data are distributed
using BitTorrent.

Thus, in freeCycles (using BitTorrent) each mapper
or reducer is able to send input or output data to other
replicas of the same task. Moreover, intermediate data
is not sent to the data server. Instead, it is directly
transfered from mappers to reducers (using the BitTor-
rent protocol, as explained in Section 3.2). The shuffle
and validation steps only manipulate hashes of the
intermediate data (see Section 3.2 for more details).
With this approach, the data server only holds input
data, intermediate data hashes, and the output data.
Thus, with freeCycles, the burden of distributing data
is shared among the server and computing nodes.

To cope with high node heterogeneity and node
failure, freeCycles employs an automatic data and
task replication mechanism. High churn or faults are

Client

Overview

Boinc Core
Components

Boinc Core
Components

/AN

@ Springer




freeCycles - Efficient Multi-Cloud Computing Platform

505

specially harmful for MapReduce jobs because of the
time dependency between the map and reduce phases
(i.e., all intermediate data must be available before the
reduce phase starts). Hence, replication of intermedi-
ate data or map tasks is necessary to keep intermediate
data available while waiting for the reduce phase to
start (more details in Section 4).

Figure 1 presents a high level overview of the
components present in both server and client sides.
Extensions regarding BOINC are presented in dark
gray. Components that are reused from BOINC are
presented in light gray. In practice, freeCycles adds
(regarding BOINC) support for BitTorrent data dis-
tribution and for MapReduce workloads both at the
server and client sides by adding components to sup-
port each of these features (BitTorrent data distribu-
tion and MapReduce workloads). Section 5 provides
a more complete description over both the server
and client side components. In the next sections, we
give an overview over the architectural components of
freeCycles.

2.2 Server Architecture

The server-side architecture (central server) is com-
posed of several components (see the central server
architecture in Fig. 2): i) a data server where input and
output data are stored, and ii) a scheduler that has sev-
eral responsibilities, such as creating, scheduling, and

Reducers

Central Server
Data Server

BitTorrent Tracker

o 0

BitTorrent 3
Client Scheduler
1 G
a -
.
ac o\
Rt @ ... )
VY [V
Mappers
(—
4

Fig. 2 Input Data Distribution

validating tasks. freeCycles adds two additional com-
ponents: i) a BitTorrent tracker (to enable nodes to use
the BitTorrent protocol to download and upload data to
and from other nodes and the central server), and ii) a
BitTorrent client (that is used to share the initial input
and to receive the final output through the BitTorrent
protocol).

2.3 Client Architecture

For the client-side architecture, freeCycles reuses the
BOINC client runtime (that manages all the issues
related to server communication, process manage-
ment, etc.). To support MapReduce applications and
the BitTorrent protocol to distribute data, freeCy-
cles augments the client software with a MapReduce
framework and a BitTorrent client. Therefore, all
nodes, either a map or a reduce node, can download
and upload data to and from other nodes or the data
server (this significantly decreases the used bandwidth
and CPU load at the central server).

3 Data Distribution Algorithm

Having described the architectural components on
both client-side and server-side, we now detail how
freeCycles uses the BitTorrent file sharing protocol to
coordinate input, intermediate and final output data
transfers. By leveraging our data distribution algo-
rithm, we show (in Section 3.4) how freeCycles is able
to run multiple MapReduce iterations without com-
promising its scalability (i.e., avoiding high burden on
the data server).

3.1 Input Distribution

Input distribution (see Fig. 2) is the very first step
in every MapReduce application. Each worker node
starts by asking the scheduler for a task (step 1); then,
it downloads the hash of the input file (step 2), the
.torrent file 7, and then uses it to search for other
nodes that are also sharing that file (step 3). After-
words, it starts downloading the input file from all
nodes sharing the same input file (step 4).

SA .torrent file is a special metadata file used in the BitTorrent
protocol. It contains several fields describing the files that are
exchanged using BitTorrent. A . torrent file is unique for a
set of files to be transfered (since it contains a hash of the files).

@ Springer



506

Rodrigo Bruno et al.

Note that the data server always shares all input
files for all map tasks. Additionally, worker nodes that
already have some file parts will also share them with
other worker nodes interested in the same input file.

Thus, we leverage the task replication mechanisms
to share the burden of the data server. Even if the
server is unable to respond, a new mapper may con-
tinue to download its input data from other mappers.
The transfer bandwidth will also be higher since
a mapper may download input data from multiple
sources (the data server and other mappers).

3.2 Intermediate Output Distribution

Once a map task is finished, the mapper has an inter-
mediate output ready to be used. Figure 3 illustrates
the steps for the intermediate data distribution. The
first step is to create a hash of the intermediate file
(step 1). From this point on, the mapper is able to share
its intermediate data using the BitTorrent protocol:
the BitTorrent client running at the computing node
automatically informs the BitTorrent tracker (step 2),
running at the central server, that some intermediate
files can be accessed through this node. Then, the
mapper notifies the server of the map task termina-
tion (step 3) by sending the intermediate file hash just
created.

As more intermediate hash files arrive at the server,
the server is able to decide (using a quorum of results)
which mappers have the correct intermediate files by

Reducers

y -
A Central Server
BitTorrent Tracker | 9 \D:ta Server

7

o D)

BitTorrent
Client 6 Scheduler
= 3
@ Oy
\ N/
G388
& (V)
1 Mappers

Fig. 3 Intermediate Data Distribution

@ Springer

comparing the corresponding hashes (step 4). When
all the intermediate outputs are available, the server
shuffles all these files and prepares sets of inputs, one
for each reduce task (step 5). When new nodes request
work, the scheduler starts issuing reducer tasks (step
6). These reducer tasks contain references to the inter-
mediate hash files that were successfully validated and
that need to be downloaded (step 7). Once a reducer
has access to these intermediate hash files, it starts
transferring the intermediate files (using the BitTor-
rent protocol) from all the mappers that completed the
map task with success (steps 8 and 9). Reduce tasks
start as soon as all the needed intermediate values are
successfully transfered.

3.3 Output Distribution

Given that reduce tasks are replicated at least on three
nodes, it is possible to accelerate the upload of the
final output files from reducers to the data server (see
Fig. 4).

The procedure is similar to the one used for inter-
mediate outputs. Once a reduce task finishes, the
reducer computes a hash file for its fraction of the
final output (step 1). Then, it informs the BitTorrent
tracker that some output data is available at the reducer
node (step 2). The next step is to send a message
to the central scheduler containing the hash file and
acknowledging the task termination (step 3). Once the
scheduler has received enough results from reducers,

m Reducers

2 / Central Server
K

BitTorrent Tracker

Data Server

3GD

5T"

BitTorrent Scheduler
Client
P 4
Ja
’ ......... q ........ )
VY &b
Mappers

Fig. 4 Output Data Distribution



freeCycles - Efficient Multi-Cloud Computing Platform

507

it can proceed with validation and decide which hash
files will be used to download the final output. All the
trustworthy hash files are then used by the BitTorrent
client at the central server to download the final output
(steps 4, 5, and 6).

Using BitTorrent to transmit the final outputs
results in a faster transfer from reducers to the data
server, a lower and shared bandwidth consumption
from the nodes’s perspective, and increased fault tol-
erance (since a reducer failure will not abort the file
transfer as long as there is at least one reducer replica
still alive).

3.4 Iterative MapReduce Workflows

Using the data distribution techniques just described,
where the central server and all computing nodes have
a BitTorrent client and use the BitTorrent Tracker to
find peers with data, it is possible to use freeCycles to
run applications that depend on multiple MapReduce
iterations. The difference between our solution and
previous ones (namely SCOLARS [18]) is that output
data does not need to go to the central server before
it is delivered to new mappers (i.e., data can flow
directly from reducers to mappers, from one iteration
to another).

From a mappers’s perspective, when a work unit
is received, the BitTorrent tracker is asked for nodes
(which can be reducers or the central server) with the
required data. It does not differentiate between the
single iteration scenario (where the node downloads
from the central server) or the multiple iterations sce-
nario (where the node downloads from reducers of the
previous iteration). Regarding the central server’s per-
spective, the scheduler only needs to know that some
map tasks depend on the output of some reduce tasks
(more details in Section 5).

Figure 5 shows how computing nodes and the
server interact to feed the new iteration with the output
of the previous one (assuming that all steps in Fig. 4 are
finished): 1) when new nodes ask for work, the sched-
uler delivers new map tasks with references to the hash
files sent by the reducers (of the previous iteration), 2)
the new mappers download the hash files from the data
server, 3) after retrieving the hash files, each mapper
asks the BitTorrent tracker for nodes that are sharing
the reducer output data, and 4) mappers from the next
iteration can now download output data from multiple
reducers (from the previous iteration).

Reducers

]

Central Server
Data Server

BitTorrent Tracker

o 0

3
BitTorrent
Client Scheduler

@ \ s

DV
\4
N y - 2 )
PV (V)
<—
Mappers 4

Fig. 5 Data Distribution Between MapReduce Cycles

4 Fault Tolerance and Intermediate Data
Availability

freeCycles employs task replication to cope with
stragglers and to tolerate node failures. The default
replication value is three which means that, for each
map and reduce task, three identical replicas are cre-
ated and distributed to three different nodes.

For each task, the central server validates the output
using a quorum of identical results. In other words, if
two outputs are identical, the server does not wait for
a third output and accepts the agreed upon outcome.
If, on the other hand, all the received outputs are dif-
ferent, the validator does not accept them and the task
is re-deployed.

Using this model, the MapReduce workflow
advances as soon as at least two identical results are
received. This is particularly helpful in the following
scenarios:

— one of the three replicas is significantly slower
than the other two;

— one of the three replicas fails (fail stop failure);

— one of the three replicas outputs wrong values
(byzantine failure [13]).

Therefore, freeCycles supports at most one node
failure (fail stop or byzantine) per task. If more node
failures are to be supported, the number of task repli-
cas would have to be updated. We do not cope with

@ Springer



508

Rodrigo Bruno et al.

collusion attacks in which multiple malicious nodes
try to subvert the system.

Previous studies [28, 47] show that the availability
of intermediate data is a very sensitive issue for pro-
gramming models like MapReduce. Note that, when
using embarrassingly parallel applications, there is no
intermediate data and therefore this problem does not
apply.

The problem is that, for performance reasons, typi-
cal MapReduce implementations (targeted to clusters)
do not replicate intermediate results. However, when
MapReduce is applied to Internet wide computing,
where node churn is very high, such lack of replica-
tion leads to a loss of intermediate data. It has been
shown that losing a single chunk of intermediate data
incurs into a 30% delay of the overall MapReduce
execution time [28]. To cope with this problem, and
achieve better fault tolerance, freeCycles supports two
methods:

1. Replicate map tasks aggressively when nodes des-
ignated to execute a particular map task take too
long to answer the central server probes (periodic
messages to assess the liveliness of the client). By
imposing a shorter interval time to report to the
central server, we make sure that we keep at least
a few replicas of the intermediate output. As soon
as a mapper is suspected to be failing, a new map
task will be delivered to replicate the failed one.

2. Replicate intermediate data when there are inter-
mediate outputs that have already been validated
(by the central server) and some of the mappers
that reported these results take too long to answer
to the central server probes. Therefore, nodes
might be used to replicate intermediate data to
compensate other mappers that die while waiting
for the reduce phase to start. These tasks would
simply download hash files and use them to start
downloading intermediate data. Once the reduce
phase starts, these new nodes can also participate
in the intermediate data distribution phase, just
like the mappers that performed the map tasks.

Replicating only the intermediate output is much
faster than replicating a map task since: i) the compu-
tation does not have to be performed, and ii) interme-
diate data is normally smaller than input data. These
two methods are applied before the reduce stage starts.

It is important to note that if a map task is not vali-
dated, it is not safe to replicate the intermediate output.

@ Springer

If there is some intermediate output available (but
not validated), replicating it would possibly replicate
erroneous data which would be wrongly validated.
Another relevant aspect is that freeCycles does not
discard results from nodes that were thought to be
failing. In other words, if we receive results from a
node that took too much time to report to the central
server (but did not fail), we will consider the results
and include them in the initial quorum of results.
Regarding the reduce stage, reducer nodes that take
too long to answer the central server probes will also be
replaced by other nodes until the computation is finished.

5 Implementation

This section describes how freeCycles is implemented
and how to use our solution to create and distribute
MapReduce applications over a computation pool.
We further present a detailed description of all its
components and how they cooperate with each other.

freeCycles is implemented directly on top of
BOINC. It does not, however, change BOINC’s core
implementation since: i) it would create a depen-
dency between our project and a specific version of
BOINC, and ii) it would be impossible to have a
single BOINC server hosting MapReduce and non
MapReduce projects at the same time.

5.1 Server

Figure 6 presents a graphical representation of a
freeCycles server. Light gray boxes are the compo-
nents inherited from BOINC (and therefore, remain
unchanged). Dark gray boxes represent the compo-
nents that were included (BitTorrent client and Bit-
Torrent tracker) or modified (work generator and
assimilator) by our solution.

As a normal BOINC server, freeCycles’ server has
two global components (a database and a data server)
and several project specific daemons (work scheduler,
work generator, validator, assimilator, etc).

In order to support the BitTorrent protocol, freeCy-
cles adds two new global components: a BitTorrent
client (to share the initial input and to retrieve the final
output), and a BitTorrent tracker that is used by all Bit-
Torrent clients, both on the server and client sides to
know the locations of other BitTorrent clients sharing
a desired file.



freeCycles - Efficient Multi-Cloud Computing Platform

509

Fig. 6 freeCycles
Server-side Implementation

Serverl

Global Components

Database

Data Server BT Client

BT Tracker

Project Specific Components

Feeder Transitioner File Deleter Job Scheduler
Validator Work Generator

Regarding the handling of MapReduce applica-
tions, freeCycles provides modified implementations
for two of the project specific daemons, namely: the
work generator (daemon that creates tasks), and the work
assimilator (daemon that closes tasks when finished).

These two specific modifications are needed to
introduce the dependency between reduce and map
tasks (since the reduce phase can only start when all
map tasks are finished). Therefore, when a task is
finished, the assimilator moves the results to some
expected location that is periodically verified by the
work generator. The job configuration (input and out-
put paths, number of mappers and number of reducers)
is stored in a well known configuration file (that is
automatically generated).

When all intermediate results (.torrent files)
are present and validated, the work generator triggers
the shuffle operation. This operation is responsible for
assembling and assigning sets of intermediate results
for each reduce task (since every map task typically
produces data for every reduce task).

For example, consider the scenario of a MapReduce
job with sixteen map tasks and four reduce tasks; each
mapper splits its map output using the user-defined
map function. Each one of the map output splits is
used to create a . torrent file which is sent to the
central server. For the sake of simplicity (but without
loss of generality), assume that each map task pro-
duces four intermediate files (map output splits), one
for each reduce task. After validating (see Section 4)
all map tasks, the server has access to 64 .torrent

files (four files from each map task). The shuffle oper-
ation consists in organizing these 64 files per target
reducer. This results in sixteen groups of files, one for
each reducer task. Each reducer is then responsible
for downloading each one of the sixteen intermediate
files and group all keys before calling the user-defined
reduce function.

5.2 Client

Using freeCycles, all computing nodes run the client
software which is responsible for: i) performing the
computation (map or reduce task), and ii) sharing its
input and output data (which might be input, interme-
diate, or final output data) with all other nodes and
possibly the central server.

To remain compatible with current BOINC clients,
the freeCycles project is implemented as a regular
BOINC application. Therefore, nodes that already use
BOINC will be able to join a MapReduce compu-
tation without upgrading their client software. If we
did not follow this approach, nodes would have to
upgrade their client software in order to fully explore
freeCycles’ capabilities (namely, use BitTorrent to
share files). Previous solutions (e.g., SCOLARS) do
not use this approach and modify the BOINC client.
Therefore, they cannot be used without forcing users
to upgrade their client software.

freeCycles’s client side application is meant to be
used as a framework, i.e., developers would sim-
ply call freeCycles’s code to register the map and

@ Springer



510

Rodrigo Bruno et al.

reduce functions. All other issues related to manag-
ing map and reduce task execution, downloading and
uploading data, is handled by our system.

Notwithstanding, application developers might
analyse and adapt the application code to specific
application needs (e.g., if one needs to implement a
special way to read/write input/output data). Other
optimizations like intermediate data partitioning or
combining intermediate results may be easily imple-
mented as well.

Figure 7 shows a graphical representation of the
freeCycles client implementation. The light gray box,
BOINC Client Runtime, is the core component in the
client software. All nodes that are already contribut-
ing using BOINC will have this component and it is,
therefore, our only requirement. Dark grey boxes are
the components offered by our project:

— freeCycles Application: the central component
and the entry point of our application. It coordi-
nates the overall execution by: i) asking for input
from the Data Handler, ii) preparing and issu-
ing the MapReduce computation, and iii) sending
output data (via the Data Handler). Additionally,
this component is responsible for interacting with
BOINC Client Runtime (initialize BOINC run-
time, obtain task information and acknowledging
the task finish).

— Data Handler: data management APL It is
the component responsible for downloading and
uploading all the necessary data and is the only

Client]

User Map/Reduce Functions MapReduce Tracker

freeCycles Application

Data Handler

BOINC Client Runtime

BitTorrent Client

one that needs to interact with the data distri-
bution protocol (BitTorrent). This API, however,
does not depend on the protocol (so it can be used
for multiple protocols).

— BitTorrent Client: low level and protocol spe-
cific component. It is implemented using an open
source BitTorrent library (libtorrent6).

— MapReduce Tracker: introduces the logic related
to MapReduce applications. It uses a previously
registered function to run map or reduce tasks, and
manages all key and value pairs needed for the
computation.

To create and use an application, one would only
need to provide a map and a reduce function imple-
mentation (white box from Fig. 7). These functions
are then registered in our MapReduce Tracker module,
and thereafter are called for all keys and value pairs.

6 Evaluation

In this section, we go through an extensive set of
evaluation experiments. We compare freeCycles with
SCOLARS (a BOINC-compatible MapReduce com-
puting system), and BOINC, one of the most success-
ful Volunteer Computing platforms. This makes it a
good reference for performance and overall scalability
comparison for an Internet-wide computing system.
We use several representative benchmark applications,
and different environment setups that verify the per-
formance and network scalability of freeCycles.

6.1 Evaluation Setup

To conduct our experiments, we use a set of uni-
versity laboratory computers equipped with Intel(R)
Core(TM) 15-3570 CPUs and 8 GBs of RAM. Each
node is connected in a 1Gbps network. In order to
be more realistic, most of our evaluation is performed
with throttled upload bandwidth, i.e., to simulate
Internet connection bandwidths. This is an impor-
tant restriction since Internet Service Providers tend
to limit users’ upload bandwidth (the ratio between
download and upload bandwidths usually goes from
five to ten, or even more).

Fig.7 freeCycles Client-side Implementation

@ Springer

Slibtorrent is an open source implementation of the BitTorrent
protocol. It is available at libtorrent.org



freeCycles - Efficient Multi-Cloud Computing Platform 511
Table 1 Evaluation experiments summary

Section Benchmark Mappers Reducers Repl Input Bandwidth
6.2.1 grep 16 4 3 512MB 10Mbps
6.2.2 word count 16 4 3 512MB 10Mbps

6.2.3 terasort 16 4 3 512MB 10Mbps

6.3 word count 16 4 3 256-2048MB 10Mbps

6.4 word count 16 4 3 512MB 5-100Mbps
6.5 page rank 16 4 3 512MB 10Mbps

6.6 word count 16 4 3 512MB 10-1000Mbps
6.7 word count 16 4 2-7 512MB 10Mbps

6.8 word count 100 15 3 1024MB unlimited
6.9,6.10 word count 16 4 3 2048MB 10Mbps

During our experimental evaluation, all MapRe-
duce workflows use sixteen map tasks and four reduce
tasks both with a replication factor of 3 (except when
explicitly said in contrary). All map and reduce tasks
run on different nodes (to simulate what would prob-
ably happen in a regular deployment). Thus, we used
a total of 60 physical nodes (48 map nodes and twelve
reduce nodes).

For most tests we use 10 Mbps for upload band-
width with unrestricted download bandwidth (the
maximum link capacity is 1 Gbps). Such upload con-
nection bandwidth is common in typical Internet con-
nections. The download bandwidth is usually not a
performance bottleneck, so we do not limit it.

By default, the MapReduce application running for
most of this performance evaluation is the Word Count
benchmark. Word Count (described in more detail
in the following section) is a popular MapReduce
benchmark that produces medium sized intermediate
data.

Most experiments are executed with a 512 MB
input file (we explicitly alert when this is not true).
This means that, using a replication factor of three
(which is the default value for our experiments), the
central server sends approximately 1.5 GB of data
through the network before the computation starts.
Although this is a very small input size for a clustered
environment, this is representative of the normal file
sizes used in real deployments of Internet-wide com-
putation (such as BOINC projects for example). This
comes from the fact that Internet-wide computation
normally has high compute ratio meaning that a small
amount of data takes a lot of computation effort to
process. However, since we are focused on evaluating

the data management system, we use benchmarks that
have a low compute ratio (i.e., the application runtime
is dominated by the data transfer time). Increasing the
size of the input file or using other benchmarks (with
higher compute ratio) would not bring any novelty
(we have done such experiments in the past). When
increasing the size of the input file, the performance
gap between each solution will naturally increase as
well. When using experiments which take longer to
process the input file, all solutions will have their com-
putation times increased. For a specific experiment
(varying the task replication factor), we also use nodes
from PlanetLab [17] as described in Section 6.8.”

Table 1 presents a summary of the evaluation
experiments. The table presents the section where the
experiment is presented, the benchmark used for the
experiment, the number of map and reduce tasks, the
replication factor for tasks, the size of the input data
and the available upload bandwidth.

6.2 Application Benchmarking

For benchmark testing, we selected a set of MapRe-
duce representative benchmark applications to com-
pare our solution with SCOLARS and BOINC.

From the data handling perspective (and accord-
ing to some previous work [1]), each one of the three
selected benchmarks belongs to a different MapRe-
duce application class: small intermediate output

"PlanetLab is a global research network that supports the
development of new network services. It is available at www.
planet-lab.org

@ Springer


www.planet-lab.org
www.planet-lab.org

512

Rodrigo Bruno et al.

Fig. 8 Grep Benchmark 1600
Application 1400
1200
1000
800
600
400
200

Time (seconds)

(Grep), medium intermediate output (Word Count),
and large intermediate output (Terasort).

For each benchmark we present the results for the
map and reduce phases individually. Note that the map
phase starts when the central server starts delivering
map tasks, goes through the distribution of input data,
and ends when all map tasks are finished. The reduce
phase starts right after the map phase ends; the cen-
tral server starts issuing reduce tasks and reduce nodes
start downloading intermediate data from map nodes
(shuffle step). The reduce phase ends when all reduce
tasks are finished and the final output is uploaded to
the data server.

6.2.1 Grep

Our first benchmark application is Grep. Much like
the application with the same name in the Unix sys-
tem, Grep is a program that searches plain-text data
for lines matching regular expressions. For this eval-
uation, we built a simple implementation of Grep
that was used to match a single word. The word was
selected so that it was possible to have very small
intermediate data.

Fig. 9 Word Count 2500
Benchmark Application

2000
1500

1000

Time (seconds)

500

@ Springer

BOINC SCOLARS

Map ™ Reduce

freeCycles

From Fig. 8, it is possible to see that freeCycles is
able to run the benchmark application in less than half
the time took by BOINC and SCOLARS. The applica-
tion turnaround time is clearly dominated by the input
distribution time. Since freeCycles uses BitTorrent,
it uses available upload bandwidth from computing
nodes to help the server distributing the input.

A slight overhead can be noticed in the reduce
phase for our solution (w.r.t. SCOLARS). This stems
from the fact that the intermediate output is so small
that the time needed to distribute all the intermedi-
ate and final output is dominated by the BitTorrent
protocol overhead (contact the central tracker, contact
several nodes, wait in queues, etc).

6.2.2 Word Count

Our second benchmark application is the widely used
Word Count application. This program simply counts
the number of occurrences for each word in a given
input text. In order to maintain a reasonable size of
intermediate data, we combine output data from map-
pers (the combine operation merges intermediate data
still on the mappers).

BOINC SCOLARS

Map ® Reduce

freeCycles



freeCycles - Efficient Multi-Cloud Computing Platform

513

Figure 9 shows the results of running Word Count.
As intermediate data is larger than in the previous
application (186 MB of generated intermediate data
versus 2 MB, in Grep), BOINC performance is worse
when compared to SCOLARS and freeCycles. SCO-
LARS is able to be much more efficient than BOINC
in the reduce phase (since it allows intermediate
results to travel from mappers to reducers, avoiding
the central server). Nevertheless, freeCycles continues
to be the best system mainly by having a very small
input data distribution time.

6.2.3 Terasort

The last benchmark application is Terasort. Tera-
sort is yet another famous benchmark application for
MapReduce platforms [50]. At a very high level, it is a
distributed sorting algorithm that: i) divides numbers
in smaller chunks (with certain ranges), ii) sorts all
chunks, and iii) combines all sorted chunks. We devel-
oped a simple implementation of this algorithm to be
able to compare the performance of freeCycles with
other systems.

In addition to being a very popular benchmark,
Terasort is also important because it generates large
volumes of intermediate and output data.

Looking at Fig. 10, it is possible to see a long
reduce phase in BOINC. This results from the large
intermediate data generated by Terasort. As SCO-
LARS implements inter-client transfers, it cuts much
of the time needed to perform the intermediate data
distribution (which is the dominating factor). As inter-
mediate data is larger than in the previous application,
freeCycles suffered a slight increase in the reduce
phase duration time.

Despite the size of intermediate data (512 MB),
freeCycles is able to distribute intermediate data faster

Fig. 10 Terasort 4000
Benchmark Application 3500
3000
2500
2000
1500
1000

500

Time (seconds)

than previous solutions. It is almost five times faster
than BOINC, and three times faster than SCOLARS.

6.2.4 Results Analysis

We now analyze the experiments presented in the pre-
vious sections to identify the factors that justify the
benchmark performance results regarding freeCycles.

Starting with the map phase, it is important to note
that all three benchmarks achieve similar performance
results for this phase. This is explained by the fact
that all benchmarks have the same input file size (512
MB). The initial map input transfer is very costly, and
takes almost all the time associated to the map phase.
Transferring 512 MB using a 1.25 MB/s connection
takes at least 410 seconds. Then, we have the fact that
these 512 MBs are replicated three times; even though
BitTorrent is able to efficiently distribute the file, it
takes a little more time to distribute all data, with repli-
cation, than without it. Other sources of overhead are
the following: a) time to prepare and run the map task
at the worker node; b) time to compute the hash of
the intermediate output and send it to the data server;
c¢) BitTorrent peer discovery and exchange time. We
measured the time it takes for the application to run
at the worker node and it takes around 5 seconds for
each benchmark (including preparing the environment
to run, running the benchmark, and hashing the inter-
mediate data). In total, the map phase (comprehending
the input file distribution, map task runtime, hashing
the intermediate data and sending the hash back to the
data server) takes on average 520 seconds.

Regarding the reduce phase (comprehending inter-
mediate date distribution, reduce task runtime, val-
idating the final output and sending it to the data
server), each benchmark leads to different perfor-
mance results. This results from the fact that each

BOINC SCOLARS

Map ™ Reduce

freeCycles

@ Springer



514

Rodrigo Bruno et al.

benchmark produces different amounts of data in the
map phase. Grep has the lowest time for the reduce
phase since it has the lowest amount of intermediate
data to distribute and process (2 MB). Word Count fol-
lows with 186 MB of intermediate data, and Terasort
has the longest reduce phase that results from the 512
MB of intermediate data that needs to be distributed
and processed.

In conclusion, data transfers associated with the
MapReduce workflow dominate the job runtime; this
is expected since we chose low compute ratio bench-
marks to emphasize the data transfer overheads inher-
ent to these Internet-wide computation systems. In
particular, the data transfers associated with the map
phase are particularly costly because all data origi-
nally comes from one single data server.

6.3 Varying Input File Size

For the next experiment, we change the input file size.
In the previous scenarios 512 MB files were used. For
this experiment, we start with a smaller input file (256
MB) and increase the file size until 2048 MB. The
reader might notice that, after replication, the amount
of data in the network is tripled.

The reason for this experiment is to show how com-
puting platforms behave when larger input files are
used. Typical Internet-scale projects use small input
files that require lots of computation (high compute
to communication ratio). However, as previously men-
tioned, typical MapReduce applications need large
input files that, most of the time, will be consumed
quickly.

In our implementation, we divide input data equally
among all map tasks. Therefore, all mappers will have

Fig. 11 Performance
varying the Input File Size

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Time (seconds)

@ Springer

a very similar input file size to process (and conse-
quently, will have similar execution times). We are
also cautious to make sure that intermediate keys are
evenly distributed. The average standard deviation in
the size (MBs) of the intermediate output produced by
each mapper is of 0.12 (average of 0.471 MBs) for
Grep, 5.51 (average of 51.5 MBs) for Word Count, and
12.88 (average of 136 MBs) for Terasort.

For this experiment we use the Word Count appli-
cation (as it has medium intermediate file sizes). We
keep all nodes with their upload bandwidth limited
to 10 Mbps and we maintain the MapReduce con-
figuration of sixteen mappers and four reducers (all
replicated three times).

Figure 11 shows the results for this experiment.
BOINC is the system with the worst execution times.
SCOLARS is able to lower the time by using inter-
client transfers, which effectively shortens the reduce
operation time. Our system, freeCycles, has the best
execution times, beating the other two systems with
great advantage (4.5 times faster than BOINC, and
three times faster than SCOLARS), showing improved
scalability regarding input file size.

Since the job runtime is dominated by the transfer
times involved in the MapReduce workflow, doubling
the amount of data fed to the MapReduce job will
duplicate the amount of input, intermediate, and out-
put data. This has a direct impact in the MapReduce
job runtime. In practice, the MapReduce job runtime
depends linearly on the size of the MapReduce input
file. The difference between all the three systems is
the rate at which the job runtime grows. freeCycles
has the lowest rate, followed by SCOLARS. BOINC
is the system that presents the highest (worst) runtime
growing rate.

o - - .

256MB 512MB 1024MB 2048MB
Input File Size (MB)

BOINC mSCOLARS m freeCycles



freeCycles - Efficient Multi-Cloud Computing Platform 515
Fig. 12 Performance 5000
varying the Upload —
Bandwidth & 4000
S 3000
0
1]
0 2000
]
£ 1000
= 0 . ! - ﬁ- - -
S5Mbps 10Mbps 25Mbps 50Mbps 100Mbps

6.4 Varying Upload Bandwidth

Another important restriction on real-life Internet-
wide computing projects is the speed at which a data
server can export computation. In other words, upload
bandwidth is a very limited resource that determines
the number of tasks that can be delivered at any
moment.

In order to evaluate the behaviour of different
systems with varying upload bandwidth, we present
this evaluation scenario in which we executed the
Word Count application with a 512 MB input, while
changing the upload bandwidth. We keep the sixteen
mappers and four reducers configuration for all runs.

We use a wide range of upload bandwidths. We start
with 5 Mbps and 10 Mbps, reasonable values for home
Internet connections. Then, we move to higher band-
widths that come closer to what is expected for a grid
or a cluster.

In Fig. 12, we can see that as the upload bandwidth
goes up, the difference between different solutions
decreases. The reason for this is that the input file size
was kept constant (at 512 MB). Hence, freeCycles,
for example, always has a small overhead from using

Fig. 13 Aggregate Map 100
Upload Bandwidth 90
80
70
60
50
40
30
20

10

Aggregate Upload Bandwidth (Mbps)

Upload Bandwidth
BOINC m SCOLARS mfreeCycles

BitTorrent (delay to contact the central tracker, con-
tact several nodes, delay in priority queues, etc). This
overhead is particularly noticeable in the last scenario
(with 100 Mbps) where SCOLARS performs better
(since it has far less overhead) and the overall time
for freeCycles’ execution is dominated by BitTorrent
overheads.

Yet, when we move to more realistic scenarios, with
upload bandwidths such as 5 Mbps or even 10 Mbps,
freeCycles is able to perform much better than the
other solutions. This is possible since freeCycles uses
all the available upload bandwidth at the computing
nodes to distribute all the data (input, intermediate and
final output). On the other end of the spectrum there is
BOINGC, that uses a central data server to distribute all
data (and thus, becomes a critical bottleneck).

With the same data from this experiment, we mea-
sure the aggregate usable upload bandwidth in: i)
distribution of input data to mappers (Fig. 13), and ii)
distribution of intermediate data to reducers and distri-
bution of output data to the data server (Fig. 14). Each
figure presents values for different limits of upload
bandwidth (remember that this limit is placed on each
individual node used in this experiment). The values

—H~ BOINC

—%— SCOLARS
=& freeCycles

20 40 60 80 100 120
Individual Node Upload Bandwidth (Mbps)

@ Springer



516

Rodrigo Bruno et al.

Fig. 14 Aggregate Reduce 160
Upload Bandwidth
140
120
100

80

60

40

20

Aggregate Upload Bandwidth (Mbps)

of the y-axis result from dividing the total size of input
(512 MB), in Fig. 13, or intermediate and final data
(189 MB), in Fig. 14, by total time to distribute data
(which depends on how each system distributes data).
The result is the aggregate usable upload bandwidth.
Note that for some scenarios (for example, freeCy-
cles with 10 Mbps), the usable upload bandwidth
is superior to the individual node upload bandwidth
(three times for freeCycles with 10 Mbps). This exper-
iment basically measures how much available upload
bandwidth from worker nodes can freeCycles use to
distribute data. This experiment also shows that for
upload bandwidths greater than 70 Mbps, SCOLARS
is able to generate more aggregate upload bandwidth.
We investigated the source of this potential scalability
limitation and we found out to be a combination of two
factors: i) the actual time each transfer takes is small
(as we increase the upload bandwidth, we maintain the
input file size, 512 MB), leading to ii) large percentage
of the transfer time is lost in BitTorrent peer discovery
and exchange overheads.

Fig. 15 Two Page Ranking
Cycles

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Time (seconds)

@ Springer

BOINC
—%— SCOLARS
=i freeCycles
20 40 60 80 100 120

Individual Node Upload Bandwidth (Mbps)

It is possible to conclude that BitTorrent presents
network scalability benefits when the the upload band-
width at the server is a bottleneck. In this situation,
BitTorrent enables freeCycles to take advantage of
available bandwidth at worker nodes to distribute data.

6.5 Iterative MapReduce Applications

For this next experiment, our goal is to measure the
performance of the three solutions (BOINC, SCO-
LARS, and freeCycles) when a MapReduce applica-
tion needs to run for several iterations (such as the
original Page Ranking algorithm).

For that purpose, we implemented a simple version
of the Page Ranking algorithm which is composed of
two steps: i) each page gives a share of its rank to every
outgoing page link (map phase), and ii) every page
sums all the received shares (reduce phase). These two
steps can run iteratively until some criteria is veri-
fied (for example, if the ranking of every page has
converged).

| i |

SCOLARS freeCycles



freeCycles - Efficient Multi-Cloud Computing Platform

517

We keep the setup used in previous experiments:
upload bandwidth throttled to 10 Mbps, input file size
of 512 MB, sixteen map tasks, four reduce tasks, and
three replicas for each task. To limit the size of the
experiment (and since no extra information would be
added) we use only two iterations.

Results are shown in Fig. 15. BOINC has the high-
est execution times since all the data has to go back to
the server after each map and reduce task. This creates
a high burden on the data server which contributes to a
higher overall time. It is also interesting to note that, in
this experiment, intermediate data is almost 50% big-
ger than input and output data. This is why the reduce
phase takes longer than the input phase.

SCOLARS performs much better than BOINC
since intermediate data flows from mappers to reduc-
ers. However, between iterations, all data must go to
the central data server and therefore, N iterations will
result in N times the time is takes to run one iteration (the
same applies to BOINC). In other words, the execution
time increases linearly with the number of iterations.

freeCycles presents the most interesting results,
i.e., it is much more scalable with regards to the num-
ber of MapReduce iterations (the execution time does
not increase linearly with the number of iterations).
The first map phase (from the first iteration) still takes
a significant time to finish. Subsequent phases (first
reduce, second map and second reduce) execute much
faster. However, the big difference between our solu-
tion and previous ones is that output data does not
need to go to the central data server. Thus, input data
distribution for the next iterations is much faster since
multiple reducers can feed data to the next map tasks
avoiding a big bottleneck on the data server.

6.6 Comparison with Hadoop Cluster

Another interesting experiment to perform is to com-
pare the execution times for the three benchmark
applications on: i) computation pool (freeCycles), and
ii) Hadoop cluster (Hadoop [50] is an open source
MapReduce implementation).

To that end, we use a cluster of 60 machines (the
same number of machines as in our computation pool)
in which ten machines also play as datanodes (datan-
odes are nodes that are hosting the distributed file
system, HDFS [10]). All nodes have four cores, a total
8 GB of RAM, and are interconnected with 1 Gigabit
Ethernet.

For this experiment, we run the three applica-
tion benchmarks: Grep, Word Count, and Terasort.
We did not build these applications for Hadoop, but
instead, we use the implementation provided with the
platform. Regarding the freeCycles platform (compu-
tation pool), we use the same implementation as in
previous experiments. All applications run with six-
teen mappers and four reducers (replicated three times
when using freeCycles).

Results are shown in Table 2. From these results,
it is possible to conclude that a MapReduce appli-
cation deployed on a cluster runs approximately six
times faster than the same application deployed on
a computation pool. This is the performance price
that it takes to port an application to Internet-wide
computing systems.

Nevertheless, it is important to note two factors that
motivate this big performance discrepancy (between
the cluster and the computation pool): i) we limited the
bandwidth to 10 Mbps on the computation pool while
the cluster nodes where connected via 1 Gbps links,
and ii) input data was previously distributed and repli-
cated amongst ten datanodes (in the Hadoop cluster)
while our freeCycles deployment only had one data
server.

Another important difference between Hadoop and
freeCycles is the moment when the shuffle step
takes place. Hadoop starts shuffling intermediate data
before all map tasks are complete. In freeCycles this is
difficult because we follow a pull model, common in
Internet-wide computation systems. In these systems,
worker nodes contact a server asking for work, not the
other way around. Therefore, imagine that we already
have some map tasks finished; we cannot deliver a
reduce task with partial intermediate data and send
the rest of the intermediate data later. Thus, we must
wait until all map tasks are finished to deliver reduce
tasks which contain the complete portion of interme-
diate data for that particular reduce tasks. Therefore,
we only start the distribution of the intermediate data

Table 2 Benchmark execution times

Benchmark Hadoop cluster Computation pool
Grep 102 sec 610 sec
Word Count 106 sec 578 sec
Terasort 92 sec 686 sec

@ Springer



518

Rodrigo Bruno et al.

(shuffle step) after all map tasks are finished. Never-
theless, this is an interesting topic for future work as it
would lead to interesting performance improvements
therefore increasing the attractiveness of our solution.

In conclusion, there is a trade-off between an envi-
ronment with limited size and high cost but highly
clustered (all nodes are very close to each other,
i.e, data transfers between nodes are very fast) or a
very large environment, with low cost, using Internet-
connected working nodes (which result in slower data
transfers between nodes).

Please note that we do not evaluate neither freeCy-
cles in a cluster environment nor Hadoop in a volatile
environment. Both systems (freeCycles and Hadoop)
are designed and optimized to work in specific envi-
ronments. For example, the data distribution protocol
that freeCycles uses (BitTorrent) is very inefficient
for short data transfers (transfers that take only a
couple of seconds) as it takes potentially more time
exchanging control messages than real data. On the
other hand, testing Hadoop in a volatile environment
would be unrealistic for a number of factors: i) it
does not replicate tasks by default, only when some
task fails (and it is known that Hadoop has terrible
performance in these situations [20, 36]); ii) Hadoop
is designed using a push model (which is difficult
to use in a volatile environment since we might not
know all resources before hand) instead of a pool
model (tasks are pushed into workers); iii) HDFS uses
Point-to-Point data transfers.

6.7 Varying the Task Replication Factor

In this experiment, we show how BOINC, SCO-
LARS, and freeCycles behave when increasing the

map task replication factor. In previous experiments
this value was, by default, three (so that a quorum
of answers was possible). To decrease the number
of nodes needed for this experiment, we reduce the
number of map and reduce tasks to four and one,
respectively.

This is a particularly important experiment to ana-
lyze how current platforms, including freeCycles, sup-
port a larger replication factor. A high replication
factor is fundamental to improve the resilience of the
MapReduce computation in environments with high
churn. For this experiment we are specially interested
in increasing the map task replication factor to provide
good availability for the intermediate data.

Figure 16 presents the overall MapReduce
turnaround time. One important conclusion is that
freeCycles’ performance is not hindered by the
increase of map replicas (as opposed to SCOLARS
and BOINC). Since freeCycles uses the nodes’ upload
bandwidth to distribute data, as more replicas come,
more aggregated upload bandwidth there is to spread
data. As a matter of fact, as the number of map
replicas is increased, more nodes will be available to
upload intermediate data leading to a faster reduce
phase. In other words, while BOINC and SCOLARS
experience a linear increase in time when we increase
the replication factor, freeCycles does not (mean-
ing that the execution time does not depend on the
replication factor).

6.8 PlanetLab Deployment

In this specific experiment, we use a different execu-
tion environment. Instead of using a set of nodes in
our local cluster, we use nodes from PlanetLab [17].

— freeCycles
BOINC
—4— SCOLARS

Fig. 16 MapReduce Total 4000
Finish Time for Different
Map Task Replication 3500
Factors 3000
2
2 2500
=]
v
ﬁ 2000
g 1500
£
1000
500

@ Springer

3 4 5 6
Map Task Replication Factor



freeCycles - Efficient Multi-Cloud Computing Platform

519

Fig. 17 Word Count in 10000
PlatnetLab

9000
8000
7000
6000
5000

4000

Time (seconds)

3000
2000
1000

0

The main difference between running MapReduce
on PlanetLab and in our cluster is that we do not have
to artificially limit upload bandwidth; this means that
with PlanetLab, we may obtain more realistic results.
Besides that, in PlanetLab, nodes capacity is not uni-
form, upload bandwidth available at each node is also
not uniform, and the latency is much higher than in
our previous environment. These factors contribute for
a longer job runtime for all solutions when compared
to the runtimes achieved in our previous environment.

For this experiment, we run the Word Count bench-
mark with an input file of 1 GB. We use 50 worker
nodes (all from PlanetLab), and we deploy a MapRe-
duce computation with 100 map tasks and 15 reduce
tasks. The dataset we used for this experiment pro-
duces approximately 1 GB of intermediate data.
Figure 17 presents the results for this experiment.

As with the previous experiments, BOINC has the
worst performance, followed by SCOLARS. freeCy-
cles achieves the best performance in both phases,
map and reduce. Compared to previous Word Count
experiments, the reduce phase in this experiment is
significantly longer. This results from the fact that the
dataset used in this experiment produces much more
intermediate data then the previous one.

6.9 Real World Simulation

Until now, all described experiments used a set of
machines that were always ready to receive work.
Since this is not much representative of a real world
computation pool, we now use a virtual scenario
where we try to approximate a real world environ-
ment. To do this, we developed a simulated envi-
ronment (a Java application) that simulates all the

Reduce mMap

BOINC SCOLARS freeCycles

elements present in a real freeCycles deployment and
all the interactions between them. This tool is used to
estimate the performance of freeCycles in a real world
deployment (in which new nodes can join and leave
the computation pool at any time).

The main goal of this experiment is to assess how
the node churn rate affects the performance of our
solution. Remember that the churn rate is the num-
ber of nodes that join or leave the network in a fixed
amount of time. Therefore, to emulate it we manip-
ulate two settings in our simulator: the average node
session time (it is important to note that each node will
have a different session time in a real world deploy-
ment), and the new node rate (how many nodes join
the network in a fixed amount of time). To introduce
some indeterminism, we use a normal distribution
(which is one of the most used distributions to model
node churn [9, 45]) to calculate the node session time
for each node.

Using these two arguments we can simulate the
node churn rate. The higher the session timeout, the
lower the churn rate is. On the other hand, the higher
the new volunteer rate, the higher the churn rate is.

Using published results [9, 45] on peer-to-peer
node churn (in BitTorrent networks in particular), we
decided to use a session time of two hours (aver-
age), and a new node rate of one per minute. As with
the previous experiments, we performed a MapRe-
duce workflow with sixteen map tasks and four reduce
tasks, all with a replication factor of three. The input
data has 2 GB of size. The upload bandwidth is always
limited to 10 Mbps (1,25 MBps).

Figure 18 presents the results of freeCycles for
two different environments: a computation pool, and
a cluster. In a computation pool, nodes can leave and

@ Springer



520 Rodrigo Bruno et al.
Fig. 18 Environment 4000
Comparison using Word 3500
Count Benchmark

—~ 3000

0

ki

2 2500

]

& 2000

[}

1500
£
F 1000

500

join the workflow (node churn) while in a cluster, all
nodes participate in the workflow (and do not fail).

From Fig. 18, we can conclude that the perfor-
mance difference between the two environments is
still significant. The total time almost doubles when it
is moved to a computation pool, where node churn is
a real problem.

We further demonstrate the effects of higher and
lower churn rate in Table 3. Results were obtained
with the same job parameters used in the previous
experiment (Fig. 18). The difference is that we now
manipulate the node session time and new node rate
to change the network churn rate (in the previous
experiment, these variables are fixed).

Results from Table 3 show that the time needed to
complete a MapReduce job is reduced by: i) increas-
ing the node session time, and ii) increasing the new
node rate (number of new volunteers per minute). The
interesting result is the one obtained for one hour
of session time, and one new node per minute. Our
simulation shows that, for this specific job character-
istics: 1) there are not enough connected nodes, and ii)
nodes’ session time is too short to complete the job.
Caused by these two factors, most of our runs never
end because the few nodes that exist fail too often, and
the MapReduce workflow never completes.

Map Reduce Total

B Computation Pool Cluster (no node failures)

One important conclusion to take from this experi-
ment it that each MapReduce job should be carefully
designed to keep the overall job execution time below
the average node session time. The best way to achieve
this, and still be able to process large amounts of
data, is to partition jobs in many relatively small tasks
(which will take less time to complete than large
tasks). This is a very simple way (which has also been
proposed in other works [7, 26]) to avoid extra repli-
cation costs that would increase the turnaround time.
In a previous experiment we showed that having extra
replication of map tasks and/or intermediate data can
decrease the reduce phase time. However, for exam-
ple, failed reduce tasks will always delay the finish
time.

6.10 Varying the Replication Timeout

The last experiment shows how much time one should
wait to start replicating map tasks or intermediate
data (if already validated). To this end, we repeated
the experiment of the previous section (using the
environment configuration for a computation pool),
and used an increasing number of seconds for the
time we wait before we consider that a node has
failed. As soon as a node is detected to be failing,

Table 3 Real world

simulations Session time / New node rate 1 vol/min 10 vol/min 100 vol/min
1 hour Infinite symbol 2710 sec 2282 sec
2 hour 3922 sec 2527 sec 2114 sec
3 hour 3880 sec 2398 sec 2104 sec
4 hour 3754 sec 2354 sec 2104 sec
5 hour 3754 sec 2354 sec 2104 sec

@ Springer



freeCycles - Efficient Multi-Cloud Computing Platform

521

the corresponding replication process is started: inter-
mediate data replication (if the failed node is a mapper
and the map output is already validated), or task
replication.

Analysing the results shown in Fig. 19, we are able
to confirm our prediction: the sooner we start the repli-
cation process, the faster the MapReduce job finishes.
This is explained by the fact that our data distribu-
tion protocol (that uses BitTorrent) is not hampered by
the addition of replicas (see a detailed explanation in
Section 6.7). This is not true for other platforms, such
as BOINC and SCOLARS. Note that these results
were obtained using our simulator. In a real world set-
ting, using a replication timeout too low (one second
for example) would be unwise since Internet connec-
tions can have latency spikes that can go up to a few
seconds.

6.11 Final Analysis

Throughout the evaluation section, we showed that
freeCycles is able to perform better than current sys-
tems (BOINC and SCOLARS) mainly because it
leverages bandwidth available at volatile nodes, thus
reducing the time spent on distributing data.

We also show that running a MapReduce job in a
cluster is faster than in a volatile pool mainly because
we have to pay the price of sending data through slow
links (Internet) and this confirms that compute bound
workloads are a better fit for Internet-wide scenarios
than data bound workloads.

Regarding the applicability of MapReduce to wide-
area scenarios (studied in Section 6.9) we are able
to conclude that MapReduce jobs should be carefully
designed to keep the overall execution time below the
average node session time. Otherwise the job might

Fig. 19 Performance
Evaluation Varying the
Replication Timeout

6000

5000

4000

3000

2000

Time (seconds)

1000

3783

fail to complete because nodes fail (for example, the
map-reduce barrier is difficult to pass if map workers
start to fail).

7 Related Work

In this section we analyse and discuss systems that
are similar to freeCycles. In addition, we analyse
and discuss some data distribution protocols that we
considered when designing freeCycles.

7.1 Computing Platforms

Most of the existent Internet-wide computing platforms
are focused and optimized to run Bag-of-Tasks A2HA -
automatic and adaptive host allocation utility compu-
ting for bag-of-tasks’ JISA 2011 (i.e., embarrassingly
parallel applications), and thus cannot support MapRe-
duce applications. Nevertheless, as MapReduce’s popu-
larity increased, some platforms decided to use available
resources over the Internet to run MapReduce jobs.
Several of these platforms (that already support
MapReduce) are specialized in deploying MapReduce
jobs on multiple clusters/clouds connected through the
Internet ([12, 16, 27, 31]). For example, in Kailasam
[27], the authors use streaming to hide high latency
derived from using Internet connections to transfer
MapReduce data between two separate clusters. In
Li [31], the authors propose a scheduler that decides
where to place tasks according to the amount of neces-
sary input and the amount of produced output (the goal
is to minimize data transfers between separate clusters).
Although the previously mentioned systems are
able to deploy Internet-wide MapReduce computa-
tions, they do not cope with all the goals we set for

5006
4675
4283

3922 4091

30 60 120 240
Time To Replicate (seconds)

480

@ Springer



522

Rodrigo Bruno et al.

freeCycles. In particular, these systems assume that
nodes and the connection between them are reliable.
Another important difference between freeCycles and
these systems is that we can not assume that only
one connection will go through the Internet, and all
other connections are reliable, have low latency and
high bandwidth. In conclusion, we aim at allowing
any Internet-connected device to join the computation
(and not only specific nodes from clusters).

Solutions such as SCOLARS [18], MOON [33],
Tang [46], and Marozzo [35] share some goals with
freeCycles as they support MapReduce applications
and allow arbitrary nodes to join the computation.

MOON (MapReduce On Opportunistic Envi-
ronments) is an extension of Hadoop (an open
source implementation of MapReduce). MOON ports
MapReduce to opportunistic environments mainly by:
1) modifying both data and task scheduling (to sup-
port two types of nodes, stable and volatile nodes), and
ii) performing intermediate data replication. However,
although MOON was designed to run MapReduce
tasks on volatile nodes, it still relies on a large set
of dedicated nodes (mainly for hosting dedicated data
servers). This assumption does not hold in a volatile
computing setting as the Internet (where the availabil-
ity of such dedicated resources can not be garanteed).

The solution presented by Tang [46] is a MapRe-
duce implementation focused on desktop grids. It was
built on top of a data management framework, Bit-
dew [22]. Even though BitDew supports BitTorrent,
the authors do not mention it or even evaluate it. Nev-
ertheless, this solution presents the same problem as
MOON: it relies on the high availability of several
central services, which is prohibitive in large pools
connected through the Internet.

Marozzo [35] presents a solution to exploit the
MapReduce model in dynamic environments. The
major drawbacks of this solution are: i) data is dis-
tributed point-to-point (which fails to fully utilize the

node’s bandwidth), and ii) there is no intermediate
output replication.

SCOLARS (Scalable Complex Large Scale Volun-
teer Computing)[18] is a modified version of BOINC
that supports MapReduce applications, and presents
two contributions: i) inter-client transfers (for inter-
mediate data only), and ii) hash based task validation
(where only a hash of the intermediate output is vali-
dated on the central server). However, it presents the
same drawbacks as the previous solution: only point-
to-point transfers, and no intermediate data replication.

In conclusion, all the analysed solutions present
problems that invalidate them as candidate solutions
for the problem we are addressing. Table 4 provides a
taxonomy of the discussed systems. For each system,
we show the target environment, the data distribution
strategy, and if the system supports MapReduce jobs
or not. It is therefore possible to conclude that no sys-
tem is able to provide Peer-to-Peer data distribution
(i.e., have multiple nodes helping to distribute data) in
a volatile pool and also provide MapReduce support.

In addition, Internet-wide solutions such as BOINC
and SCOLARS do not handle faults adequately in the
sense that they do not provide means to keep interme-
diate data available. Additionally, no solution showed
that it was able to fully utilize the node’s upload
bandwidth, or that it was possible to run multiple
MapReduce iterations, while avoiding a bottleneck on
the data server.

7.2 Data Distribution Protocols

In this section we discuss possible existing protocols
that could be used in an Internet-wide system to be
able to use distribute data. Since we are interested in
supporting MapReduce workflow, protocols should be
able to efficiently distribute data in all stages of the
MapReduce workflows. More specifically, protocols
must support efficient data distribution in: one to all,

Table 4 Internet-wide

computing platforms System Environment Data distr. MR Support
taxonomy
BOINC Volatile Pool Point-to-Point No
SCOLARS Volatile Pool Point-to-Point Yes
MOON Desktop Grid Point-to-Point Yes
work by Tang Desktop Grid Peer-to-Peer Yes
work by Marozzo Desktop Grid Point-to-Point Yes
XtremWeb Desktop Grid Peer-to-Peer No

@ Springer



freeCycles - Efficient Multi-Cloud Computing Platform

523

all to all, and all to one data transfers. Please also
note that, since freeCycles is targeted to volatile envi-
ronments (where nodes fail frequently), we assume
that all MapReduce tasks are replicated. We begin
our discussion by considering the difference between
Point-to-Point protocols and Peer-to-Peer protocols
and why we chose Peer-to-Peer protocols. Then we
discuss some existing Peer-to-Peer protocols.

7.2.1 Point-to-Point VS Peer-to-Peer

Point-to-Point protocols (for example FTP) are typi-
cally used to transfer data from one node to another.
On the other hand, Peer-to-Peer protocols are typi-
cally used to transfer data from one (or possibly many)
nodes to one (or possibly many) nodes. For example,
if some node has some data that other nodes want, data
can be transferred to one or more nodes. These nodes
(that received data from the first node) can then start
also sharing the data with other nodes that still want
the data. In other words, while in Point-to-Point proto-
cols there is only one source node which is responsible
for sending data to all nodes, in Peer-to-Peer proto-
cols, all nodes can work as source node and send all
the data they already have locally.

If we think about this, we realize that Point-to-point
algorithms take O(D*N) seconds to distribute all data,
where D represents the size of the data to distribute and
N represents the number of times D needs to be sent to
different nodes. On the other hand, Peer-to-Peer proto-
cols take O(D) seconds to distribute the same amount
of data. This is because the protocols harness available
bandwidth at remote nodes to distribute data.

In conclusion, we find Peer-to-Peer protocols more
suitable for MapReduce data operations, namely: 1)
one source to many nodes (map input distribution), ii)
many sources to many nodes (intermediate data dis-
tribution), and iii) many sources to one node (output
distribution). Also note that Peer-to-Peer only makes
sense when we consider replication. If freeCycles did
not need to replicate worker tasks, every worker node
would receive a different piece of data and therefore
there would be no opportunity for sharing with other
worker nodes.

7.2.2 Peer-to-Peer Protocols

Regarding Peer-to-Peer protocols, we only analyze
those that we found to be more relevant and closer

to our objectives. Thus, other systems such as
Gnutella [40], FastTrack [32], eDonkey2000 [25], and
OceanStore [29] are not addressed. Therefore, in this
section, we only discuss two protocols that are rel-
evant to our objective (distribute large amounts of
data efficiently within a large set of volatile nodes):
FastReplica [15], and BitTorrent [37].

FastReplica is a replication algorithm focused on
replicating files in Content Distribution Networks
(CDNs). It was designed for use in large-scale dis-
tributed networks of servers, and it uses a push model
(where the sender triggers the data transfer). Fas-
tReplica works in two steps: i) distribute equally
sized parts of the original data among the destination
servers, and ii) all destination servers send to all other
destination servers their part (at the end of this step,
all destination servers can merge all parts to obtain the
original file).

Despite being very efficient, we point out two main
issues: i) FastReplica relies on a push model, which
can be very difficult to use when there is a variable set
of destination nodes, and ii) it does not cope with node
failures (since it was designed for servers, which are
supposed to be up almost all the time).

BitTorrent is a peer-to-peer data distribution pro-
tocol widely used to distribute large amounts of data
over the Internet. Its key idea is to use available upload
bandwidth at peer nodes to distribute files that other
peers want. This is specially useful to avoid the bottle-
neck of file servers (such as FTP servers). In order to
find peers sharing the same file, a BitTorrent Tracker
is used.

This protocol has proven to be capable of scaling
up to millions of users and providing high efficiency
in the distribution of large amounts of data [37]. Thus,
we decided to integrate this protocol in our solution
given that: i) it enables a pull model where data can
flow as nodes need it (as opposed to FastReplica),
and ii) it is more tolerant to faults regarding point-to-
point protocols (if one client fails, other clients can
still download the file from other clients), and iii) it
scales up to millions of users.

8 Conclusions
freeCycles is a new, Internet wide, MapReduce-

enabled computing platform. It presents a new data
distribution technique for input, intermediate and final

@ Springer



524

Rodrigo Bruno et al.

output data using the BitTorrent protocol. freeCycles
is able to harness node’s upload bandwidth to help
distributing data. Moreover, it presents an improved
map task and data replication scheduler, and is able to
efficiently run iterative MapReduce applications.

From our experiments, we conclude that freeCycles
is able to perform much better (performance and net-
work scalability wise) than current platforms, namely
BOINC and SCOLARS. Hence, with our work, it is
possible to improve MapReduce applications’ execu-
tion time on large computation pools such as the Inter-
net. The current version of our prototype (freeCycles)
is is publicly available.?

We describe (and built) freeCycles in the most
generic way, i.e., making as few assumptions as possi-
ble regarding computing nodes. However, we believe
this project could be of great use in two specific sce-
narios (or a combination of both). First, freeCycles
can be used as a VC platform, harnessing volunteer
node’s resources in order to process MapReduce tasks.
This is the most simple and generic scenario. Second,
freeCycles can be used to deploy MapReduce jobs
over multi-cloud environments. In this scenario, the
user can utilize VMs (Virtual Machines) from differ-
ent cloud providers and volunteer nodes at the same
time. Using multi-cloud environments, instead of only
one, can be of great use for several reasons: i) mini-
mize the cost of all VMs (resource selection is out of
the scope of this work, several existing solutions [38,
39,41, 44,49, 51] can be used to take into account sev-
eral parameters such as network quality, CPU power
and hourly cost), ii) fault tolerance (tolerate cloud
provider faults), and iii) securing computation privacy
by distributing it over multiple independent clouds.

Regarding future work, we plan to support the
scheduling ability to decide which tasks to give each
node according to its capacity (amount of CPU, band-
width, storage, RAM, etc.), and its reliability. For
reliability we assume that volunteer nodes are less reli-
able (nodes can go down at any time) while VMs from
cloud providers are more reliable. Taking into consid-
eration the capacity of each node we hope to be able
to improve task distribution and therefore reduce the
amount of stragglers (caused by bad scheduling deci-
sions). Reliability will be used to tune the replication

8The source code can be found at https://github.com/rodrigo-
bruno/freeCycles.

@ Springer

factor of each task. For example, tasks given to more
reliable nodes can have a reduced replication factor.

References

1. Ahmad, F., Chakradhar, S.T., Raghunathan, A., Vijayku-
mar, T.N.: Tarazu: Optimizing mapreduce on heteroge-
neous clusters. SIGARCH Comput. Archit. News 40(1),
61-74 (2012)

2. Alexandrov, A.D., Ibel, M., Schauser, K.E., Scheiman,
C.J.: Superweb: towards a global web-based parallel com-
puting infrastructure. In: Parallel Processing Symposium,
1997. Proceedings., 11th International, pp. 100-106 (1997)

3. Anderson, D.P.: Boinc: a system for public-resource com-
puting and storage. In: 2004. Proceedings. Fifth IEEE/ACM
International Workshop on Grid Computing, pp. 4-10
(2004)

4. Anderson, D.P., Christensen, C., Allen, B.: Designing a
runtime system for volunteer computing. In: SC 2006 Con-
ference, Proceedings of the ACM/IEEE, pp. 33-33 (2006)

5. Anderson, D.P,, Fedak, G.: The computational and storage
potential of volunteer computing. In: 2006. CCGRID 06.
Sixth IEEE International Symposium on Cluster Comput-
ing and the Grid, vol. 1, pp. 73-80 (2006)

6. Baratloo, A., Karaul, M., Kedem, Z.M., Wijckoff, P.: Char-
lotte: Metacomputing on the web. Futur. Gener. Comput.
Syst. 15(5-6), 559-570 (1999)

7. Bazinet, A.L., Cummings, M.P.: Subdividing long-running,
variable-length analyses into short, fixed-length boinc
workunits. J. Grid Comput. 14(3), 429-441 (2016)

8. Bertis, V., Bolze, R., Desprez, F., Reed, K.: From ded-
icated grid to volunteer grid: Large scale execution of
a bioinformatics application. J. Grid Comput. 7(4), 463
(2009)

9. Binzenhofer, A., Leibnitz, K.: Estimating churn in struc-
tured p2p networks. In: Managing Traffic Performance in
Converged Networks, pp. 630-641. Springer, Berlin (2007)

10. Borthakur, D.: The hadoop distributed file system: Archi-
tecture and design. Hadoop Proj. Website 11, 21 (2007)

11. Bruno, R., Ferreira, P.. Scadamar: Scalable and data-
efficient internet mapreduce. In: Proceedings of the 2Nd
International Workshop on CrossCloud Systems, CCB’ 14,
pp. 2:1-2:6. ACM, New York (2014)

12. Cardosa, M., Wang, C., Nangia, A., Chandra, A., Weiss-
man, J.: Exploring mapreduce efficiency with highly-
distributed data, In Proceedings of the Second International
Workshop on MapReduce and its Applications, 27-34,
ACM, New York (2011)

13. Castro, M., Liskov, B., et al.: Practical byzantine fault
tolerance. In: OSDI, vol. 99, pp. 173-186 (1999)

14. Chakravarti, A.J., Baumgartner, G., Lauria, M.: The organic
grid: self-organizing computation on a peer-to-peer net-
work. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans
35(3), 373-384 (2005)

15. Cherkasova, L., Lee, J.: Fastreplica: Efficient large file dis-
tribution within content delivery networks. In: USENIX
Symposium on Internet Technologies and Systems, Seattle
(2003)


https://github.com/rodrigo-bruno/freeCycles.
https://github.com/rodrigo-bruno/freeCycles.

freeCycles - Efficient Multi-Cloud Computing Platform

525

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.L., Sto-
ica, I.: Managing data transfers in computer clusters
with orchestra. ACM SIGCOMM Comput. Commun. Rev.
41(4), 98-109 (2011)

Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson,
L., Wawrzoniak, M., Bowman, M.: Planetlab: an over-
lay testbed for broad-coverage services. ACM SIGCOMM
Comput. Commun. Rev. 33(3), 3-12 (2003)

Costa, F., Veiga, L., Ferreira, P.: Internet-scale support for
map-reduce processing. J. Internet Serv. Appl. 4(1), 1-17
(2013)

Dean, J., Ghemawat, S.: Mapreduce: simplified data pro-
cessing on large clusters. Commun. ACM 51(1), 107-113
(2008)

Dinu, F., Ng, T.S.: Understanding the effects and impli-
cations of compute node related failures in hadoop. In:
Proceedings of the 21st international symposium on High-
Performance Parallel and Distributed Computing, pp. 187—
198. ACM, New York (2012)

Fedak, G., Germain, C., Neri, V., Cappello, F.: Xtremweb:
a generic global computing system. In: 2001. Proceed-
ings. First [IEEE/ACM International Symposium on Cluster
Computing and the Grid, pp. 582-587 (2001)

Fedak, G., He, H., Cappello, F.: Bitdew: A data man-
agement and distribution service with multi-protocol file
transfer and metadata abstraction. J. Netw. Comput. Appl.
32(5), 961-975 (2009). Next Generation Content Networks
Gentzsch, W., Girou, D., Kennedy, A., Lederer, H., Reetz,
J., Riedel, M., Schott, A., Vanni, A., Vazquez, M., Wolfrat,
J.: Deisa—distributed european infrastructure for super-
computing applications. J. Grid Comput. 9(2), 259-277
(2011)

Georgatos, F., Gkamas, V., Ilias, A., Kouretis, G., Varvari-
gos, E.: A grid-enabled cpu scavenging architecture and a
case study of its use in the greek school network. J. Grid
Comput. 8(1), 61-75 (2010)

Heckmann, O., Bock, A.: The edonkey 2000 protocol. Rap-
port technique, Multimedia Communications Lab, Darm-
stadt University of Technology, 13 (2002)

Heien, E.M., Anderson, D.P., Hagihara, K.: Computing
low latency batches with unreliable workers in volunteer
computing environments. J. Grid Comput. 7(4), 501 (2009)
Kailasam, S., Dhawalia, P, Balaji, S.J., Iyer, G., Dha-
ranipragada, J.: Extending mapreduce across clouds with
bstream. IEEE Trans. Cloud Comput. 2(3), 362-376
(2014)

Ko, S.Y., Hoque, 1., Cho, B., Gupta, I.: Making cloud inter-
mediate data fault-tolerant. In: Proceedings of the 1st ACM
Symposium on Cloud Computing, pp. 181-192. ACM,
Berlin (2010)

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S.,
Eaton, P., Geels, D., Gummadi, R., Rhea, S., Weatherspoon,
H., Weimer, W., et al.: Oceanstore: An architecture for
global-scale persistent storage. ACM Sigplan Not. 35(11),
190-201 (2000)

Langville, A.N., Meyer, C.D.: Google’s PageRank and
beyond: the science of search engine rankings. Princeton
University Press, Princeton (2011)

Li, P, Guo, S., Yu, S., Zhuang, W.: Cross-cloud mapre-
duce for big data. IEEE Trans. Cloud Comput. PP(99), 1-1
(2015)

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Liang, J., Kumar, R., Ross, K.W.: The fasttrack overlay: A
measurement study. Comput. Netw. 50(6), 842-858 (2006)
Lin, H., Ma, X., Archuleta, J., Feng, W.-c., Gardner, M.,
Zhang, Z.: Moon: Mapreduce on opportunistic environ-
ments. In: Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing,
HPDC ’10, pp. 95-106. ACM, New York (2010)

Lo, V., Zappala, D., Zhou, D., Liu, Y., Zhao, S.: Clus-
ter computing on the fly: P2p scheduling of idle cycles
in the internet. In: Peer-to-Peer Systems III, pp. 227-236.
Springer, Berlin (2005)

Marozzo, F., Talia, D., Trunfio, P.: Adapting mapreduce for
dynamic environments using a peer-to-peer model. In: Pro-
ceedings of the 1st Workshop on Cloud Computing and its
Applications (2008)

Nguyen, T., Shi, W.: Improving resource efficiency in data
centers using reputation-based resource selection. In: Green
Computing Conference, 2010 International, pp. 389-396,
USA (2010)

Pouwelse, J., Garbacki, P., Epema, D., Sips, H.: The bit-
torrent p2p file-sharing system: Measurements and analy-
sis. In: Peer-to-Peer Systems IV, pp. 205-216. Springer,
Berlink (2005)

Qureshi, M.B., Dehnavi, M.M., Min-Allah, N., Qureshi,
M.S., Hussain, H., Rentifis, 1., Tziritas, N., Loukopou-
los, T., Khan, S.amee.U., Xu, C.-Z., Zomaya, A.Y.: Survey
on grid resource allocation mechanisms. J. Grid Comput.
12(2), 399-441 (2014)

Rasooli, A., Down, D.G.: Guidelines for selecting hadoop
schedulers based on system heterogeneity. J. Grid Comput.
12(3), 499-519 (2014)

Ripeanu, M.: Peer-to-peer architecture case study: Gnutella
network. In: 2001. Proceedings. First International Confer-
ence on Peer-to-Peer Computing, pp. 99—-100. IEEE, USA
(2001)

Rood, B., Lewis, M.J.: Grid resource availability
prediction-based scheduling and task replication. J. Grid
Comput. 7(4), 479 (2009)

Sarmenta, L.F.G., Hirano, S.: Bayanihan: building and
studying web-based volunteer computing systems using
java. Futur. Gener. Comput. Syst. 15(5-6), 675-686 (1999)
Silberstein, M., Sharov, A., Geiger, D., Schuster, A.: Grid-
bot: execution of bags of tasks in multiple grids. In:
Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis, SC’09, pp. 11:1—
11:12. ACM, New York (2009)

Singh, S., Chana, I.: A survey on resource scheduling in
cloud computing Issues and challenges. J. Grid Comput.
14(2), 217-264 (2016)

Stutzbach, D., Rejaie, R.: Understanding churn in peer-
to-peer networks, In Proceedings of the 6th ACM SIG-
COMM Conference on Internet Measurement, 189-202,
ACM, New York (2006)

Tang, B., Moca, M., Chevalier, S., He, H., Fedak, G.:
Towards mapreduce for desktop grid computing. In: 2010
International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing (3PGCIC), pp. 193-200 (2010)

Tang, B., Tang, M., Fedak, G., He, H.: Availability/
network-aware mapreduce over the internet. Inf. Sci. 379,
94-111 (2017)

@ Springer



526

Rodrigo Bruno et al.

48. Thain, D., Tannenbaum, T., Livny, M.: Distributed comput-
ing in practice: the condor experience. Concurr. Comput.
Pract. Exper. 17(2-4), 323-356 (2005)

49. Toth, D., Finkel, D.: Improving the productivity of volun-
teer computing by using the most effective task retrieval
policies. J. Grid Comput. 7(4), 519 (2009)

50. White, T.: O’Reilly (2012)

@ Springer

51.

52.

Yang, S., Butt, A.R., Fang, X., Hu, Y.C., Midkiff, S.P.:
A fair, secure and trustworthy peer-to-peer based cycle-
sharing system. J. Grid Comput. 4(3), 265-286 (2006)
Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S.,
Stoica, I.: Spark: cluster computing with working sets. In:
Proceedings of the 2nd USENIX Conference on Hot Topics
in Cloud Computing, pp. 10-10 (2010)



	freeCycles - Efficient Multi-Cloud Computing Platform
	Abstract
	Introduction
	freeCycles Architecture
	Overview
	Server Architecture
	Client Architecture

	Data Distribution Algorithm
	Input Distribution
	Intermediate Output Distribution
	Output Distribution
	Iterative MapReduce Workflows

	Fault Tolerance and Intermediate Data Availability
	Implementation
	Server
	Client

	Evaluation
	Evaluation Setup
	Application Benchmarking
	Grep
	Word Count
	Terasort
	Results Analysis

	Varying Input File Size
	Varying Upload Bandwidth
	Iterative MapReduce Applications
	Comparison with Hadoop Cluster
	Varying the Task Replication Factor
	PlanetLab Deployment
	Real World Simulation
	Varying the Replication Timeout
	Final Analysis

	Related Work
	Computing Platforms
	Data Distribution Protocols
	Point-to-Point VS Peer-to-Peer
	Peer-to-Peer Protocols


	Conclusions
	References


