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Abstract The importance of evaluating performance
of cloud systems has been increasing with the rapid
growing market demands for cloud computing. How-
ever, the performance testers often have to go through
the hassle of tedious manual operations when interact-
ing with the cloud. A cloud performance evaluation
framework is designed for both broad cloud support
and good workload extensibility, which provides an
automatic interface to monitor the capability and scal-
ability of Infrastructure-as-a-Service cloud systems.
Cloud API modules are implemented for Amazon
EC2 service and OpenStack. It can achieve flexible
control workflows for multiple of different workloads
and user customization to test scenarios. With several
built-in workloads and metric aggregation methods, a
series of tests is performed on our private clouds to
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compare the performance and scalability from multi-
ple aspects. A methodology is also proposed to build a
cost-performance model to better understand and ana-
lyze the efficiency of different types of cloud systems.
Based on the results of the experiments, the model
indicates a polynomial relation between performance
per instance and the overall cost.

Keywords Cloud computing · Performance
analysis · Measurement · Performance modeling

1 Introduction

Cloud Computing has been one of the most important
and popular topics in the computer industry [1, 2].
Cloud systems process massive amounts of data with a
number of distributed servers and devices, and provide
flexible and on-demand basis services. It promises
high availability, scalability and reliability, which is
expected as the key features ofmodern industrial systems.

Among the major models of cloud computing
service, such as Software-as-a-Service (SaaS) [3],
Platform-as-a-Service (PaaS) [4], Data-as-a-Service
[5], Network-as-a-Service [6] and Benchmarking-as-
a-Service [7], Infrastructure as a Service (IaaS) [8]
aims at providing lower level resources, often in the
format of virtual machines, for the customers and
charging in a pay-per-use basis manner.

A lot of projects and products are developed aiming
at creating a cloud system with high availability and
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scalability. Amazon [9], Microsoft [10], HP [11] and
many other enterprizes sell their public cloud service
to individuals and small companies. Besides, there
are many open-source or free cloud computing soft-
ware, such as Apache CloudStack [12], Opennebula
[13], Eucalyptus [14]. OpenStack [15] is an open-
source project for building private and public clouds
and has great potential with more than 200 companies
participating in.

When a customer decides to move to a cloud, there
are many alternatives to choose. The customer can
purchase some resources from a cloud provider or
build his/her own private cloud with one of the cloud
projects. To compare different choices, a good cloud
service benchmark becomes valuable for the cloud
customers. On the other hand, cloud providers also
pay high attention on the cloud evaluation methods to
prove their own advantage against other competitors.
Massive kinds of tests need to be performed on the
system with different configurations.

However, it is usually quite difficult to evaluate
a cloud due to the complexity of systems. In real-
world practice, there are always different types of
workloads which assess different aspects of the sys-
tem and explore a large scale of the parameter space
of the workload combinations. Cloud customers or
providers have to spend a lot of time and efforts in
preparing the environment and configuring scripts.
Additionally, cloud computing brings more important
performance goals such as scalability, availability and
quality of services, which ask for more comprehen-
sive and realistic test scenarios. What is more, a long
testing period increases the possibility of encountering
system errors, which may fail the test.

There have been quite a lot of tools assessing and
comparing performance on different cloud systems
[16, 17] but they either provide only a limited vari-
ety of clouds and workload parameter space, or need a
quantity of human involvement during the whole test
period, including environment preparation and final
results analysis.

Considering the problems above, a benchmark
framework is designed, which consists of an auto-
matic performance evaluation tool working on dif-
ferent types of cloud and a flexible framework to
expand the workload set, as an IaaS cloud perfor-
mance benchmark leveraging workload models to
free some configuration labors on testers and keep
the simplicity and flexibility of testing. CloudScore

recognizes two different kinds of target testers. One of
them is likely to be cloud providers who require to add
and configure different kinds of workloads to explore
the hidden potential of their clouds. The other kind
of testers, likely to be service customers, only cares
about the performance reports from different clouds of
their own interests. CloudScore provides a framework
for the former testers to develop their set of work-
loads with different scenarios and let the latter take
the advantage of these test cases to focus on their tests
comparing among clouds and configurations.

One important design principle of CloudScore is
to manage resources on the cloud automatically. It
works with the cooperation of the cloud provider’s
interfaces by abstracting the cloud as Cloud System
Under Test (Cloud SUT). Particularly the resources
are Virtual Machines (instances), IP addresses, virtual
storage (volumes), images and so on. The workload
is composed with a coordinator, a configuration file
and some images holding the testing environment. The
tester of CloudScore may use a web-based GUI to give
the test plan, called as a Project, including the Cloud
SUTs and the selectedWorkloads, as well as the provi-
sion mode. Basically, there aretwomodes of provision,
the parallel mode and the sequence mode. The for-
mer launches all required resources and starts to run
at the same time, while the latter continues a dynamic
provision-then-run process during a given period.

The benchmark framework about resource manage-
ment is introduced in [18]. Based on this research,
a cost-performance benchmark framework is pro-
posed which provides flexible cloud support expan-
sions and extensible workload control methods. In
our CloudScore, Cloud API modules are implemented
for Amazon EC2 service and OpenStack. A series of
experiments are carried out on our private clouds to
show the robustness and compatibility of our frame-
work by comparing different cloud platform. A cost-
performance modeling is introduced to analyze the
cost-performance relations of the cloud system to
evaluate the cost efficiency of resource utility.

The rest of the paper is organized as follows.
Section 2 mentions some related efforts about cloud
computing and cost performance. And then Section 3
discusses the challenges of evaluating the performance
of a cloud system due to the complicate charac-
teristics. Some of the important design targets of
the CloudScore are introduced in Section 3 and the
modeling method in Section 4. More details about
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implementation is presented in Section 5. A series
of experiments are carried out on OpenStack private
clouds. The analysis results are presented in Section 5.
Section 6 includes a brief conclusion about the whole
paper, as well as our expectations of the future
work.

2 Related Work

There have been quite a lot of tools to access the perfor-
mance of virtualized clusters or web services. vCon-
solidate [19] is a workload methodology introduced by
Intel, and is intended to characterize the performance
of virtualization clusters. VMmark [20] is a bench-
mark designed for the scalability of virtualized system
released by VMware. These works focus on virtual
clusters and do not consider the software layer in the
scope of cloud management. But CloudScore provides
the abstract of cloud management operations. It sim-
plifies the automatic allocation of cloud resources to
reduce the workload of the test staff.

Plenty of works concentrating on cloud computing
have sprung up in recent years. CloudSim [19] models
the behavior of cloud system components and intro-
duces generic provisioning techniques for applications
with good extensibility. [20] presents a characteriza-
tion of Dropbox and shows possible bottleneck in
the current system architecture and storage protocol.
The paper introduces a credit model for the resource
usage providing automatic management and presents a
model prototype in federated cloud [21]. In this paper,
a new method is designed in CloudScore to illustrate
the performance data relations of the cloud system
obtained from single load or multi load operations,
and it provides the changing models of the perfor-
mance with different scales of the workload. Utilizing
the models, cloud providers can optimize allocation
of cloud resources and service customers can compare
among clouds with a better choice.

Works concentrate on some aspects of distributed
systems and cloud services, rather than evaluating and
profiling of IaaS cloud system itself. Cloud Serv-
ing Benchmark is a generic open-source tool focused
on assessing cloud serving, key-value storage and
some other NoSQL services. [22] proposes a mixed
approach for cloud service negotiation to fulfill the
Service Level Agreement of cloud providers and
cloud consumers. However, it is quite complex and

time-consuming to set up the test environment and
configuration. CloudStone consists of an open-source
Web 2.0 social application, and is available for auto-
matic load generation for testing performance in
different deployment environments. [23] develops a
novel parallel intelligent algorithm to solve the large
scale service composition optimal-selection problem
with numerous constraints in Cloud manufacturing.
BigDataBench [24] provides diverse and representa-
tive data sets, together with broad application sce-
narios to benchmark web-based big data systems and
architectures. [25] creates a model with quality dimen-
sions and metrics that targets general cloud services,
containing six quality dimensions to represent, mea-
sure, and compare clouds and build a mutual under-
standing among different cloud providers. In [26],
they investigates the applications of Internet of things
technologies in cloud manufacturing and designs a
five-layered structure resource intelligent perception
and access system.

Public cloud systems also attracts a lot of atten-
tion. The paper gives a federated hybrid cloud model
of Infrastructure as a Service (IaaS) to provide
eScience and depicts an architecture for construct-
ing Platform as a Service (PaaS) and Software as
a Service (SaaS) [27]. CloudHarmony [28] provides
a form of Benchmark-as-a-Service. With its online
interface, the tester is able to generate reports on
performance comparison across public clouds. Cloud-
Cmp [29] is a multi-cloud comparison framework
with micro-benchmark-level profile of multiple pub-
lic cloud providers. The works mentioned above focus
on assessing public clouds services, but not available
for evaluating private clouds. Besides, some efforts
have been made on analyzing the architecture of cloud
systems instead of comparing among different clouds.
DeepDiv [30] addresses some performance issues of
interference between instances co-located on the same
physical machine in IaaS cloud systems.

M. Caballer, et.al presents a componentmodel in order
to reduce the access and the usability of IaaS clouds
by automating the VMI selection, deployment,
configuration, installation of Virtual Appliances.
CloudSuite [31] provides a benchmark that performs
scale-out workloads testing and can be used to address
the inefficiencies in the modern micro-architecture.
CloudGauge [32] is proposed as a dynamic and an
experimental benchmark for virtualized and cloud
environments, which attempts to provide abstractions



560 H. Mao et al.

at the workload level for supporting more complex
workload interactions. They use some pre-defined
workloads without good workload extensibility and
only perform on some specific cloud platforms. But,
in CloudScore, it uses the unitization and abstract
of workload structure and workload running logic to
improve the reuse rate of operation logic and the scal-
ability of load set. Utilizing the management module
of cloud operation, CloudScore can interface with the
specified cloud system expediently. And the encap-
sulation of complex resource management operation
greatly reduces the interaction between the tester and
the tested cloud system.

IBM proposes an open-source project CloudBench
[33] as a framework that perform cloud-scale evaluation
and benchmarking automatically by running controlled
experiments. C-Meter [17] is expected as a portable
and extensible framework for generating and submitting
workloads on Amazon EC2 Cloud. However, they are
not easy for configuring a new workload or customiz-
ing a metrics-calculation method to profile the system,
and do not achieve multiple cloud systems support and
flexible application extension at the same time.

And there are increasing number of projects
focused on OpenStack performance testing. Open-
Stack itself proposes project Rally [34], a Benchmark-
as-a-Service project for evaluating its sub-projects.
It is expected to perform the specific, complex and
reproducible tests under real deployment scenarios,
but is still on early stage of developing.

Third parties also make a lot of contribution to
OpenStack deployment and evaluation. Fuel [35] of
Mirantis provides a broad suite of tests to validate
all key services are running correctly, in addition to
some real-world functional tests that aims at isolating
problems in specific OpenStack subsystems.

Two basic kinds of workflow to control the exe-
cution of workload set is designed in CloudScore.
Parallel mode is more accurate to control the paral-
lel degree, gives a constant and diverse pressure on
various components of the cloud system, and imi-
tates the mixed behavior of different user applications.
Sequence mode gives an incremental load to the cloud
in the beginning and may keep a dynamic balanced
period if the whole running period is long enough
which contains some uncertainty factors to make the
test more realistic to the real-world scenarios.

We introduce a new toolwhich is convenient to expand
the workload set and customize the execution workflow,

which supports multiple of IaaS cloud platforms for
comparison.

3 Design

CloudScore is defined as a benchmark for evaluat-
ing the performance of IaaS clouds and is expected to
provide flexible workload extensibility and automatic
execution, together with result analysis and aggrega-
tion methods. It runs the Workloads on the Cloud
SUTs and reports the results after analyzing the per-
formance data. CloudSUT specifies the access method
of the cloud, together with the abstraction of avail-
able resources. Particularly, a Cloud SUT contains
the details about access authentications and resources
identification of the particular public or private cloud
system. A Workload is composed of a set of packages
of executable binaries and scripts to generate load on
the system, as well as the result computing methods.
Several Workloads can be arranged into a Workload
Set flexibly and extensively to perform tests in a more
complex way.

Figure 1 illustrates a high level view of CloudScore.
After the tester submits the Project, Core Daemon
parses the user input and generates the correspond-
ing Job. Core Daemon transfers the user submission to
jobs and process them in a First-In-First-Out manner.
Core Daemon maintains a First-In-First-Out (FIFO)
queue to hold all the Jobs. The jobs will be pro-
cessed in a First-In-First-Out manner. When a Job
starts, a Coordinator Daemon is generated to control
the execution beginning with launching instances and
resources. Coordinator Daemon operates the cloud
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with the assistance from Cloud API, which abstracts
APIs exposed by the cloud controller. When an
instance is launched and becomes available with all
required resources ready to use, it waits for the
start signal to begin the running process. In general,
for every Cloud SUT, CloudScore boots a Master
instance, as the proxy of all the test instances under
test (slave instances). Coordinator Daemon directly
communicates with instances in the cloud via the
Communication Abstract Layer (CAL) and informs
the test instances to start the run after all required
resources are allocated and associated. The work-
load running period can be easily customized and by
default is divided into four stages: Prepare, Run, Stop
and Post.

The original results will be simply processed and
sent back to Coordinator Daemon for more com-
plicated calculations. During the whole job running
period, Core Daemon tracks all the status and results
information about the Job and generates persistent
archives. The front end uses the Django as the devel-
opment framework deployed in Apache Server and
some configure operations are listed in Table 1.

From the point of view of a performance tester,
Cloud SUT is treated as a block box and does not need
to know more details about the cloud than a normal
cloud user. CloudScore asks the user for the necessary
authentication with access information, and takes the
responsibility of sending requests to the cloud under
most situations. It ensures the tester to focus on per-
formance evaluation and analysis, rather than suffer
from a lot of cumbersome commands to operate on the
cloud resources.

3.1 CloudScore Workload

The traditional benchmarks, which are often used to
evaluate one or several aspects such as computation
capacity or network service of application system, are
not appropriate for assessing a cloud system, since
the testing environment becomes quite complicated
in an IaaS cloud. CloudScore provides a set of prac-
tical Workloads supporting automatically evaluating
the performance on different aspects of a cloud sys-
tem, and it is also pleasant to receive new workloads
from a senior tester, or so called Workload Devel-
oper. A CloudScore Workload specifies several roles
that take different responsibilities. For example, a
Workload assessing networking may have two Roles,

Table 1 Configure operation

Operation Arguments Descriptions

list cloudtypes – Cloud types supported
get cloudtype cloud type Obtaining cloud module
get clouddetails cloud type Obtaining cloud resources
list workloads – Workload sets supported
get workload workload name Obtaining detailed

workload information

one for sending packets and the other for receiving.
To enable a Workload, only three components are nec-
essary, one configuration file in XML format, one
coordinator script defining its processing workflow,
and one or several images supplying the environment.
And the coordinator is reusable and the configura-
tion file is easy to be modified for new parameters.
The configuration file defines the basic information of
the Workload including the necessary resources, the
parameters exposed to the tester, and the specific run
stages of all roles.

The coordinator script controls the overall steps
to run the Workload involved with provision and
un-provision parts. CloudScore provides a set of Coor-
dinator APIs for the coordinator script. The default
coordinator script expects to be enough for most of the
simple workload and if more complex workflow con-
trolling logic is required, it is also easy to override it
with another script.

The result processing script gives a metric processing
method, which filters and calculates all the perfor-
mance data retrieved from the instances and aggre-
gates to a final score after analyzing all sub-metrics.
The result process is isolated from the entire workflow
of a Workload considering of the variety of different
requirements to process results of different workloads.

Creating a new Workload is convenient by reusing
the default coordinator script. It is also quite easy for
the tester to configure the own workflow with well-
defined Coordinator APIs. The developer can supply
theirWorkload kits in some images rather than a single
compressed package, which allows to hold all neces-
sary dependency packages, special configurations and
environment variables.

3.2 CloudScore Workload Set

To simulate the realistic usage scenario of cloud sys-
tems, it needs to involve the combination of several
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workloads and the complex execution process run-
ning for a long period. We introduce the concept of
Workload Set to allow more complicated methods for
controlling the execution of several workloads at the
same time.

A performance tester submits a test Project that
specifies the particular Cloud SUTs and Workload
or Workload Set to CloudScore. Then CloudScore
generates a corresponding Job and add it to the Job
Queue. Job Queue Controller is the control center of
CloudScore. All Jobs in the queue are pending for
execution in a FIFO way. At one time there will be
at most one Job under the state of running. Every
Job will be allocated with a Coordinator Daemon to
control its execution. When a Job starts to run, the
Coordinator Daemon will begin to provision the Mas-
ter instance and Slave instances. The Slave instances
are responsible for running the workloads while the
Master instance is responsible for forwarding requests
between the Coordinator daemon and Slave instances.
This design asks for only one extra public IP for
one test process and tries to reduce the interfer-
ence the cloud as much as possible. CloudScore
assumes the influence of the existence of one mas-
ter instance to cloud performance could be ignored
since a cloud is supposed to provide a large provision
capacity.

After a given period of running, CloudScore will
terminate the run, process the raw data and clean
up the cloud environment by releasing all allocated
resources. Adding a new Workload Set is not more
complicated than adding a workload, since all the roles
and images of the workloads are ready to use. The
tester only needs to write a new coordinator script for
the wanted scenario and specify the method to handle
the results collected from different workloads.

3.3 Multi-workload Scenarios

Figure 1 describes the overall workflow of processing
a job. When the tester commits a test plan (Project) to
the Job Queue, the job will enter the pending stage.
When the Job starts to run, it creates a Coordinator
Daemon and the daemon loops to execute for every
Workload. Each Workload first provisions and allo-
cates all necessary resources. Then it turns into the
workload execution period. The workflow divides the
whole running process inside the instances into four
stages by default.

First, on Prepare Stage, CloudScore prepares and
more importantly, verifies all the parameters received
from the tester, together with the whole environment,
to make sure the run is supposed to be successful. It
also provides the logics to decide some parameters
dynamically.

Second, on Run Stage, it starts the workload and
will not stop until the termination condition is satisfied
or time is up. On Stop Stage, it cleans the environ-
ment by terminating processes and services, deleting
files generated during the run and resetting some envi-
ronment parameters. And on Post Stage it collects raw
data to generate a result package. The last stage is also
responsible for the first-round data filtering and pro-
cessing. It is easy to add, remove or customize the
stages with the relevant parameters by modifying the
configuration file of the particular workload.

Two basic kinds of workflow to control the execu-
tion of workload set is available at the current stage.
And it is also convenient to customize it by modifying
the coordinator script of the corresponding workload
set. One is to run the specified Workloads simultane-
ously, and the other is to continue to sequentially boot
the instance holding a particular workload proportion-
ally to a specific ratio every several seconds during
the execution period. The combination of Workloads
in a Workload set is firstly defined by an XML for-
matted configuration in advance. Every Workload is
assigned with a digit number indicating the possibility
of launching this workload at every provision stage.
These numbers also play an important role when
CloudScore calculates the final score for this run. This
file is configurable to the tester, and it leverages the
optimization aspects of the cloud system.

Parallel Mode The parallel mode will boot all
instances at first with all necessary IP address or vol-
ume resources. Then it starts all the workloads at the
same time and runs for a certain period. This gives a
constant and diverse pressure on various components
of the cloud system, and imitates the mixed behavior
of different user applications.

Sequence Mode The sequence mode keeps booting
new instances and runs the workloads at a certain
rate, which gives an incremental load to the cloud
in the beginning and may keep a dynamic balanced
period if the whole running period is long enough.
The number of instances running a certain workload
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out of all instances is expected to be close to the
provision ratio defined in the configuration file. This
emulates more realistic usage scenarios with carefully
controlled parameters.

Finally, CloudScore retrieves all the result packages
via the master instance and calls the metric process
method to analyze them. These four stages can be
easily redefined by the tester.

Besides, new stages can be added and the default
stages can be removed.

3.4 CloudScore Perform Unit

There are a lot of other important metrics presenting
the overall quality of a cloud system, for example,
the provision ability, the scalability, the reliability and
so on. CloudScore defines CloudScore Performance
Unit to simply the complex data calculation process.
CloudScore Workload defines the necessary resources
and the Coordinator Daemon is responsible for allo-
cating and preparing them. Coordinator Daemon first
checks whether all instances are accessible and if they
are, it will ask the cloud to prepare the other necessary
resources, such as public IP addresses and volumes, to
continue the test process. Workload also specifies the
necessary stages to complete the run, and by default
there are four stages, Prepare, Run, Stop and Post.
If the default workload flow is used, the Coordina-
tor will start to call all the Prepare Stage to execute
to deploy the workload under the proper environment
automatically once the corresponding instances are
prepared.

A CloudScore Performance Unit can be a single
instance or a group of several instances holding the
specified Workloads. Besides, CloudScore introduces
a parameter named as Parallelism, which specifies the
parallel degree of the Performance Unit.

4 Model

4.1 Performance Scale Analysis

A lot of different kinds of experiments are performed
in different clouds including CSPU Parallel and
Sequence Mode, with a lot of conditions and param-
eters changing. To aggregate the results and do per-
formance comparisons of the clouds, a new method is
introduced to illustrate the performance of cloud with

the scale of workloads. In this model, the work scale
changes with performance and it is divided into two
segments. The turning point of the piecewise func-
tion is represented by d. The first half of the model
indicates the relationship between the scale and per-
formance with the shortage of resources. It is an expo-
nential function, e suggests the changing tend, and a1
can adjust the exponential relationship to describe the
performance trend accurately. The second part of the
model is the relationship between the scale and per-
formance with enough resources. It is a polynomial
function, adjusting the polynomial coefficient a2, c, b

to adjust the changing trend. This performance model
is based on a series of experiments, and the experi-
ments contains basic mode and complex mode. The
basic mode focuses on one aspect such as computing
power, network capacity, and it generally uses only
one workload. Complex mode including static paral-
lel mode or dynamic incremental mode uses a variety
of workloads for a multifaceted evaluation of cloud
system.

A scatter diagram is drawn with the performance
value of different parameters in the x-axis and the
level of parallel in the y-axis. Pairs of the performance
metric(P) and the parallel level(Scale) of the work-
load are composed. An interval of performance value
is defined to divide the range of performance into seg-
ments. The pair representing the largest parallel level
in the corresponding ranges of performance is picked
out and every series of pairs are calculated to a trend
line. For the multi-workloads case, a final metric, for
example, the geometric mean of all the average value
of the independent workloads, is defined as an aggre-
gation metric for the whole system. The aggregation
method is easy to customize in the coordinator script
of the workload.

The pairs of performance value and parallel level
present the performance levels in different test scenar-
ios, and the overall trends of the scale are available for
comparing and analyzing the capability and bottleneck
of the clouds.

4.2 Cost Performance Analysis

A cost performancemodel is built based on the scale per-
formance model mentioned above. The model describes
the relationship of the cost of allocating some
resources and the performance achieved with these
resources. Basically, the cost is defined in different
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ways in different clouds. The cost performance mod-
els can be used to distinguish the economic efficiency
of the clouds.

The total cost of each experiment is calculated by
adding the cost of every kind of resource after mul-
tiplying the execution time and the price per hour of
one kind of resources. The performance is described
in the same way with scale performance model. The
data point of the pair of the cost and performance per
workload instance is illustrated. Its trend line is fitted
and summarized into the following formula.

5 Evaluation

Amazon EC2 is chosen as a representative of the pub-
lic cloud, and two different OpenStack private clouds
are built. A series of experiments are performed with
CloudScore to evaluate and compare their computing
capacity, network and storage ability, as well as provi-
sion ability and scalability. The architecture of the two

private clouds as Cloud A and Cloud B is illustrated in
Fig. 2 and details is shown in Table 2.

Cloud A has eight homogeneous compute nodes
with two Intel®®Xeon® X5670 Westmere 2.93GHz
processors. The machines in Cloud B are installed

Table 2 Physical environment

Config Cloud A Cloud B

Core #, MemSize Core #, MemSize

Compute Node 12, 64GB 16, 128GB

Image Node 16, 32GB 16, 128GB

Volume Node 12, 64GB 16, 128GB

Database Node 12, 32GB 16, 128GB

Network Node 12, 16GB 16, 128GB

Compute Node # 8 16

Internal Network 1Gb/s 10Gb/s

Storage Back end ISCSI Ceph

Storage Capacity 576GB 18TB

OpenStack Version Grizzly Havana
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Table 3 Openstack standard instance type

Types vCPUs RAM Types vCPUs RAM

Small 1 2GB Large 4 8GB

Medium 2 4GB Xlarge 8 15GB

with two Intel® Xeon® E5-2670 Sandy Bridge-EP
2.6GHz processors. Extreme x670V Switch is used
in Cloud B to provide enough 10Gbit/s links for
the compute nodes and others are Helion ProCurve
2910al-48G-PoE+ J9148A Switches. All servers are
hyper-threading enabled. Cloud A uses iSCSI for
storage back end, while Cloud B uses Ceph 0.72.2.
All machines in Cloud A are installed with Ubuntu
12.04.3 LTS and CentOS release 6.4 in Cloud B. The
images for booting instances are based on Ubuntu in
Cloud A and CentOS in Cloud B. The OpenStack
architectures are deployed with default parameters and
it is scheduled to spread instances evenly on all the
compute nodes to ensure load-balancing.

5.1 Hadoop on Amazon

Several experiments are performed on the Amazon
EC2 platform, by applying the Hadoop benchmarks,
wordcount and kmeans from HiBench. The Hadoop
cluster is defined with one Hadoop controller node
and several Hadoop slave nodes. The Hadoop con-
troller runs as the Name Node and Resource Manager,
while the Hadoop slave nodes run as the Data Nodes
and Node Managers. The instance types used in these
experiments are summarized in Table 3.

Each workload with each instance type are run for
three types. The Hadoop cluster has 51 nodes. One
node is used as a name node of the distributed file sys-
tem level and a resource manager of application level.
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Fig. 3 Throughput of kmeans

It is also added in calculation and data processing as a
data node and a node manager. But the other 50 nodes
are only used as data nodes and node managers. The
results of kmeans running in Amazon EC2 service are
shown in Table 4.

The datasize is set to 32G and the throughput, time
for data prepare, time for running and time for provi-
sion are shown respectively in Figs. 3, 4, 5 and 6. The
result of wordcount are not shown in this section, but
it is used to build the cost performance model.

Figure 3 shows that the throughput seems in pro-
portion to the vCPUs numbers of the instance type.
It is because that the kmeans is CPU intensive. Also
Figs. 4 and 5 indicate more vCPU and more memory
reduce the preparation and run time for the workload.
The repeated experiments with the same instance type
all show some fluctuation in the results of through-
put, prepare time and run time, and larger the instances
are, smaller the fluctuation is. The provision time
results also show some instability, while it seems less
concerned about the instance type.

Table 4 Results of kmeans run in amazon ec2 service

Instance Config KMEANS WordCount

Type vCPUs RAM GB Perf MB/s RunTime second Perf MB/s RunTime second

t2.small 1 2 3.3 2413 10.8 1875

t2.medium 2 4 8.9 894 66.5 825

m3.medium 1 3.75 3.3 2347 29.3 1325

m3.large 2 7.5 8.8 900 76.5 802

m3.xlarge 4 15 16.1 490 137.1 434
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Fig. 7 Throughput of Java in Parallel

5.2 Parallel Mode

CloudScore provides more complex test scenarios
involving several workloads which gives a more com-
prehensive view of the cloud. The Parallel Mode boots
and prepares the instances and resources in advance,
and starts to run different workloads at the same time.
Java, WebServer and Database workloads are grouped
as a Parallel workload in this section. It is run on dif-
ferent instances at different parallel levels in Cloud
B. It is also defined two different availability zones.
For the WebServer workload, the server instances
and client instances are provisioned in the different
availability zones. The other two workload boot their
instances in both the zones. Thus, the total number
of instances provisioned in the cloud actually is four
times that of the parallelism shown in Figs. 7, 8 and 9.

Fig. 8 Throughput of WebServer in Parallel
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Fig. 9 Throughput of Database in Parallel

When the parallelism reaches 32, there are actu-
ally 128 instances launched in the cloud (32 for Java
workload), and each compute node hosts 8 instances
because of the load balancing scheduling methodol-
ogy. When running with large instances (4 vCPUs),
each physical core in the host is shared by 4*8/16=2
vCPUs. But the throughput (Operations per second)
does not decrease drastically, because the other two
workloads are not CPU-intensive.

The throughput of Web workload reaches the peak
of all instance types at parallel level 8. Because the
cloud does not limit the available bandwidth for the
instance types and due to the best effort network prin-
ciple, all bandwidth are occupied at parallel level 8.
When parallel level reaches 8, the instances running
Web workload have to share the physical link with
co-host instances, which leads to the drop of through-
put between each client-server pair. In spite of the
fact that the total throughput of the Java workload
still grows slightly after parallel level 28, the aggre-
gate throughput of Database workload drops at par-
allel level 32, which means the bandwidth of remote
volumes becomes the bottleneck.

5.3 Sequence Mode

The SequenceMode runs a set of workloads in a simul-
taneous way by provisioning workloads at a defined
speed, say 5 seconds or 15 seconds. The workload may
continue to run for several minutes, so the cloud will
keep dynamically stable after some ramp up period.
The set of workloads in this section also contains the
Java, WebServer and Database sub-workloads. All the
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Fig. 10 Throughput of Java in Sequence

running stages of the sub-workloads last for 300s.
During the steady period of the run, the shorter the
provision interval is, the more the number of instances
alive in the cloud varies. When the interval is 5s, the
number of instances ranges from 80 to 100, while the
number of instances keeps near 30 at 15s-interval. And
in all experiments, it takes about 400s for the cloud to
get into the steady state, when the first boot workload
finishes its execution.

All the experiments set the provision ratio
Java:WebServer:Database to 4:3:3, and the workload
is decided randomly according to the ratio at every
provision time. The actual ratio does not apply per-
fectly to 4:3:3 due to the randomness of decision and
a quite small provision ratio of WebServer with the
interval as 25s on small instances is observed. This is
because the provision interval is not small enough to
provision more workloads. The actual ratio gets closer
to the theoretical ratio with smaller provision interval
such as 5s. The aggregated results of the throughput
of three workloads on three kinds of instances are
shown in Figs. 10, 11 and 12. With provision inter-
val becomes shorter, the average performance of all
the three workloads drops. But the decrease of perfor-
mance is not very outstanding, except for WebServer,
which leads to the rise of the aggregation results of
shorter provision interval experiments.

5.4 Scale Performance Model

The method mentioned in Section 3 is used to eval-
uate the scalability of Cloud A and B. Figure 16
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shows the aggregation of the Parallel tests on medium
instances in Cloud A, CSPU Parallel and Sequence
tests on small, medium and large instances in Cloud
B applying. The aggregation method is defined as
the geometric mean value of the average throughput
of sub-workloads. Cloud A shows poor overall per-
formance because of its smaller network bandwidth
(1Gbit/s), and poor scalability because that the stor-
age networking collapses quickly when parallel level
increases. Cloud B Sequence and Parallel tests show
the similar tendency, as well as better performance and
scalability.

To analyze different aspects of the cloud ability, the
results of Java, WebServer and Database workload are
shown respectively in Figs. 13, 14 and 15.

There are three groups of points in Fig. 13, repre-
senting the average operation throughput in one test
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in Cloud A and in Cloud B with 8 compute node
enabled and 16 compute node enabled. Every group
indicates that with the increase of parallelism, the
average performance of large instances gets closer to
that of medium instances, and so is medium to small
instances.

Figure 14 shows the average throughput of Web-
Server workload with assigning different bandwidth
quota to the instances in Cloud A and Cloud B. If there
is no limit to the bandwidth of the instances, Cloud

A and Cloud B will occupy all the bandwidth of the
physical link, respectively 1Git/s and 10Git/s at the
low scale. If the physical link is shared, the average
throughput becomes in inverse proportional to the par-
allel level, because the total bandwidth is fixed. The
inverse coefficient is proportional to the sum of band-
width of all compute nodes. With bandwidth quota
assigned to the instances, the Cloud B provides good
isolation among the co-hosted instances, and the average
throughput does not collapse until some link is shared.

S =
{

3.50 × 106P −1.04 P < 1.20 × 105

−1.25 × 10−8P 2 + 2.24 × 10−3P − 95.11 P ≥ 1.20 × 105
(1)

S =
{

2.75 × 106P −0.96 P < 1.26 × 105

−3.24 × 10−9P 2 + 3.39 × 10−4P + 43.28 P ≥ 1.26 × 105
(2)

S =
{

1.57 × 106P −0.86 P < 1.09 × 105

−2.11 × 10−9P 2 + 3.65 × 10−4P + 136.76 P ≥ 1.09 × 105
(3)

Database Workload is also performed on medium
instances in Cloud A and three kinds of instances
in Cloud B. Cloud A provides much better perfor-
mance when the parallel level is low, but the average
throughput collapses rapidly in large scale in Fig. 15.
In contrast, Cloud B provides a relatively stable stor-
age ability and the throughput does not decrease very
much in large scale. This is the difference caused
by the different back ends of their remote storage
solution. Figure 16 shows the relationship between
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the overall performance and the number of virtual
machines in Cloud A and Cloud B experiments.

5.5 Cost-Performance Modeling

The pricemethod ofAmazonEC2 is chosen to evaluate
the cost performance model introduced in Section 4.
The model is built by calculating all costs of all
instance types. Figures 17, 18 and 19 show the mod-
els built on individual workload experiments of Java
Server, Web Server and OLTP Database respectively.

 0

 1

 2

 3

 4

 5

0.0×100 1.0×106 2.0×106 3.0×106 4.0×106 5.0×106

C
os

t (
$)

Performance (Operations / Second)

Cloud B

Fig. 17 Cost model based on Java



570 H. Mao et al.

 0

 2

 4

 6

 8

 10

 12

 0  2000  4000  6000  8000  10000

C
os

t(
$)

Performance (Requests / Second)

Cloud B

Fig. 18 Cost model based on WebServer

Figure 20 gives the overall cost-performance rela-
tion, with getting the total cost of every individual
instances and getting the overall performance by cal-
culating the geometric mean value of the average per-
formance of every workload. The cost-performance
relations based on Java Server, OLTPDatabase and the
overall case are illustrated in Formula 7, 8 and 9.

Cost = 8.44×10−14P 2+6.01×10−7×P +0.01 (4)

Cost = 4×10−6 ×P 2 +1.65×10−4 ×P +0.16 (5)

Cost = 1.97×10−8×P 2−1.62×10−4×P +0.93 (6)

The cost seems in proportion to the performance
in Java Server model, but the costs rise rapidly with
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larger performance in OLTP Database model and
overall model.

Besides, the cost-performance model is also built
on the Hadoop workloads. Figures 21 and 22 illustrate
the cost-performance model by applying workdcount
and kmeans to t2 and m3 family of instances in Ama-
zon EC2. Formula 10 and Formula 11 shows the
formula of the trendlines for instance type class t2 and
m3 of wordcount, and Formula 12 and Formula 13
shows that of kmeans of t2 and m3 family.

Cost = 1.78×10−6×P 2−3.74×10−4×P +0.04 (7)

Cost = 3.84×10−6×P 2−3.80×10−4×P +0.06 (8)

The m3 family costs more for the same perfor-
mance, because Amazon increases its price for more
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disk resources, which neither wordcount nor kmeans
asks for.

Cost = 5.59×10−10×P 2−7.69×10−6×P+0.06 (9)

Cost =4.98×10−10×P 2−7.15×10−6×P+0.09 (10)

6 Conclusion

A benchmark CloudScore is proposed and it targets at
assessing the cost performance of IaaS clouds. Cloud-
Score aims at automatically cloud resource manage-
ment for multiple clouds and flexible workload exten-
sion. Based on the open source, the cloud API module
are realized that the parameters can be automatically
collected and calculated. A series of experiments are
also carried out to show how it works to identify the
problems of a small scale private cloud. The conve-
nience and efficiency of CloudScore benefit testers
to carry out their experiments by comparing cost
performance values on different clouds.
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