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Abstract Profound attention to MapReduce frame-
work has been caught by many different areas. It is
presently a practical model for data-intensive appli-
cations due to its simple interface of programming,
high scalability, and ability to withstand the sub-
jection to flaws. Also, it is capable of processing
a high proportion of data in distributed computing
environments (DCE). MapReduce, on numerous occa-
sions, has proved to be applicable to a wide range
of domains. However, despite the significance of the
techniques, applications, and mechanisms of MapRe-
duce, there is no comprehensive study at hand in
this regard. Thus, this paper not only analyzes the
MapReduce applications and implementations in gen-
eral, but it also provides a discussion of the differences
between varied implementations of MapReduce as
well as some guidelines for planning future research.
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1 Introduction

Nowadays, with the excessive growth in the informa-
tion and data, their analysis has become a burdensome
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challenge. MapReduce is a fault-tolerant, simple, and
scalable framework for data processing that enables its
users to process these massive amounts of data [1]. It
is a framework for efficient large-scale data process-
ing which is presented by Google in 2004 in order to
tackle the issue of processing large amounts of data
with reference to the Internet-based applications [2].
These large input data need to be indexed, stored,
retrieved, analyzed and also mined to allow a simple
and continues access to these data and information [3].
MapReduce is one of the forerunners in the so-called
“NoSQL” trend to steer it away from mainstream
relational databases [4]. Nowadays, there are four
factors, including processing, storing, visualization,
and analyzing large data in modern organizations and
enterprises. The MapReduce can automatically run the
applications on a parallel cluster of hardware and in
addition, it can process terabytes and petabytes of data
more rapidly and efficiently. Therefore, its popularity
has grown swiftly for diverse brands of enterprises in
many fields. It provides a highly effective and efficient
framework for the parallel execution of the applica-
tions, data allocation in distributed database systems,
and fault-tolerance network communications [5, 6].
The main objective of MapReduce is to facilitate data
parallelization, data distribution and load balancing in
a simple library [7]. The easy availability and acces-
sibility of the MapReduce platforms, such as Hadoop,
makes it sufficient for a productive parallelization
and execution of data-intensive tasks [8]. The used
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algorithms in the MapReduce have an allowance to
manage the data-intensive applications, parallel exe-
cutions and fault control mechanisms [9]. Program-
mers who use the library of MapReduce must consider
two functions, i.e. a Map and a Reduce function [10,
11]. The Map function receives a key/value pair as input
and creates the intermediate key/value pairs for extra
processing. The Reduce function merges all the interme-
diate key/value pairs and then creates the last output
[12].

Google’s MapReduce and its open-source imple-
mentation, Hadoop, have become highly popular in
recent years. The software environment of Apache
Hadoop delivers a distributed implementation of the
data storage and MapReduce computing [13]. Lately,
Apache Hadoop has drawn strong attention due to its
applicability for big data processing [14] and it pro-
vides execution of the tasks over a cluster of many
machines which are based on commodity hardware
[15]. The programs of MapReduce in Hadoop are
usually written in Java, even though it also supports
the use of stand-alone Map and Reduces kernels,
which can be written as shell scripts or in other lan-
guages [16]. Its popularity has increased by the use of
some significant factors such as simplicity, automatic
parallelizability, accepted scalability, and commod-
ity hardware implementation capability [17]. Also,
large-scale data-intensive cloud computing [18, 19]
with the MapReduce framework is becoming perva-
sive for many academic establishments, enterprises,
governments, and industrial organizations [20]. Cloud
computing as a progressive Internet-based technol-
ogy [21-23] provides a highly available, scalable,
and flexible computing platform for many kinds of
applications [24-27]. However, the MapReduce pro-
gramming model used in the cloud computing has
many limitations. Hence, developers have to excel in
programming with the MapReduce model and spend
adequate time to understand the variegated features of
different cloud platforms. With automatic paralleliza-
tion software, the usage of cloud computing will be
limitless for many applications [28]. There are also
many applications which use MapReduce for paral-
lel and efficient execution, including data mining [29],
web ranking [30], inverted indexing [31], k-means
[32], self-join [33], ontology [34], bioinformatics [35]
and graph analysis [36].

Despite the importance of MapReduce framework
and its prevalence, there have not been any detailed
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and comprehensive study to analyze its implemen-
tation and application. Therefore, this paper aims
to review and survey the MapReduce applications,
architecture and the environment needed for its imple-
mentation as well as specifying the main differences
between them. Into the bargain, a taxonomy to dif-
ferentiate the considered applications and implemen-
tations coupled with some suggestions for future
research are provided. In outline, the contributions of
this paper are as follow:

e Providing an anatomy of various usages of MapRe-
duce framework for big data processing and cloud
computing.

e Offering a review and analysis of the MapRe-
duce applications to accentuate the advantages
and disadvantages in each domain.

e Overviewing the existing implementations of
MapReduce framework in cloud environments in
order to underscore the advantages and disadvan-
tages of each framework.

e  Outlining the key areas for enhancing the MapRe-
duce framework in the future.

This paper has been structured as follows: Firstly,
the related works are analyzed and reviewed in
Section 2. Secondly, then big data and the MapReduce
architecture are described and investigated respec-
tively in Section 3. Then, Section 4 sheds light on
the implementation of MapReduce models. Subse-
quently, Section 5 analyses the MapReduce applica-
tions in different kinds of domains. Section 6 jux-
taposes and summarizes the reviewed mechanisms.
The open issues are mapped out in Section 7. Finally,
Section 8§ concludes the paper.

2 Related Work

Some studies on MapReduce in the cloud environ-
ment have been carried out as yet. This paper aims to
deal with the application and the implantation aspects
of MapReduce framework. In fact, a broad variety
of MapReduce frameworks has been developed dur-
ing the last few years. These reviews are more or
less described separately in the corresponding lit-
erature. This section refers to some review papers
which pertain to the MapReduce framework and out-
lines their main advantageous and disadvantageous
features.
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Lee et al. [37] has proposed the parallel data pro-
cessing with MapReduce survey. To investigate vari-
ous technical aspects of the MapReduce and its pros
and cons are the main goals of this paper. Also, it
suggests a new classification for MapReduce improve-
ments. However, this paper does not discuss the major
limitations of MapReduce, especially in cloud envi-
ronments.

Reviewing the state-of-the-art about MapReduce
parallel programming models is done in [38]. What
they pursue in their survey is underlying MapReduce
paradigm, describing several widely used open-source
runtime systems and discussing the major shortcom-
ings of original MapReduce Moreover, this study
describes MapReduce optimization approaches and
categorizes them according to their characteristics and
capabilities. evertheless, this paper does not include the
disadvantages and advantages of different methods.

Khezr and Navimipour [39] have considered
MapReduce and its application in the optimization
algorithms. The paper presents some MapReduce
applications in the optimization algorithms like a
genetic, PSO, cuckoo search, and ant colony algo-
rithm. This paper does not examine the exploitation
of MapReduce application techniques such as paral-
lel computation, multi-core systems, data allocation,
graph processing and, various application areas.

Also, in [40], the MapReduce issues including
applications and implementation have been evaluated.
The issue has been discussed and some articles have
been reviewed. However, the discussed applications
and implementations of MapReduce are not reviewed
in adequate detail.

Finally, a review of MapReduce limitations, opti-
mizations, and open issues have been presented in
[41]. This survey revolves around Hadoop frame-
work and it’s identified limitations. But, the paper has
merely discussed other implementations of MapRe-
duce and no more.

It is important to point out that the reviewed papers
did not present the use cases and benefits of MapRe-
duce application in alternative areas like algorithms,
cloud computing, data mining, health care and so
forth. This paper has classified the exploring and shar-
ing the MapReduce framework. On the other hand, the
existing implementations of MapReduce framework
and their pros and cons are not included in the pub-
lished papers thoroughly. Therefore, in the rest of this
paper, these weaknesses have been taken into account.

3 Basic Concepts

This section introduces big data use cases in MapRe-
duce applications and provides a brief overview of
MapReduce architecture.

3.1 Big Data

Over the recent years, the volume and complexity of
interactions between information systems have been
steadily increasing [4]. Big data analytics (organiz-
ing, collecting and analyzing huge sets of data) are
among today’s most frequently discussed topics in
research and practice [42]. The world is being changed
by data-driven approaches including access to large
amounts of data and available opportunities in com-
merce, science, and computing applications [15, 43].
This category of applications is greatly parallel and
well suited for the MapReduce programming that lets
users execute large-scale data analyses such that the
application execution layer handles the task schedul-
ing, system architecture and data partitioning [44].
As many industries and organizations handle increas-
ing amounts of data, big data processing is being
considered as a most important step. Currently, dis-
tributed computing frameworks are being widely used
for big data processing. These systems allow the user
to write applications through a set of high-level oper-
ations and automatically handle the complex aspects
of distributed computing such as scheduling and fault
tolerance [45, 46]. Apache’s Hadoop and Google’s
MapReduce, its open-source implementation, are the
de facto software systems for big-data applications.
The MapReduce framework aims to create a huge
amount of intermediate data. Big data applications
take a large quantity of input data in most of the
applications [47]. Big data generally refer to a het-
erogeneous class of business applications that operate
on large amounts of data [48]. It also has challenges
related three primary features: volume, velocity, and
variety. Big Data has 3Vs; Volume (a large amount of
data), Velocity (data arrives at high speed ) and Vari-
ety (heterogeneous resources). In big data definition,
big refers to a dataset which makes data concept of
growing so much that it becomes difficult to manage
it by using existing data management concepts and
tools. MapReduce is playing a very significant role in
the processing of big data is an undeniable fact [49].
Since MapReduce gains a lot of popularity for its
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fault tolerance, flexibility, scalability, and simplicity, it
becomes most suitable framework for processing and
analysis big data operations [50].

3.2 MapReduce Architecture

Google created MapReduce to process large amounts
of unstructured or semi-structured data, such as web
documents and logs of web page requests, on large
shared-nothing clusters of commodity nodes. It pro-
duced various kinds of data such as inverted indices
or URL access frequencies [51]. The MapReduce
has three major parts, including Master, Map func-
tion and Reduce function. The Master is responsible
for managing the back-end Map and Reduce func-
tions and offering data and procedures to them [52,
53]. A MapReduce application contains a workflow of
jobs where each job makes two user-specified func-
tions: Map and Reduce. The Map function is applied
to each input record and produces a list of inter-
mediate records. The Reduce function (also called
Reducer) is applied to each group of intermediate
records with the same key and produces a list of

output records [45]. MapReduce program is expected
to be done on several computers and nodes when
it is performed on Hadoop [54]. Therefore, a mas-
ter node runs all the necessary services to organize
the communication between Mappers and Reducers.
An input file (or files) is separated into the same
parts called input splits. They pass to the Mappers
in which they work parallel together to provide the
data contained within each split. As the data is pro-
vided by the Mappers, they separate the output; then
each Reducer gathers the data partition by each Mapper,
merges them, processes them, and produces the output
file. An example of this data flow is shown in Fig. 1.

The main phases of MapReduce architecture are
Mapper, Reducer, and shuffle which are presented below:

Mapper: a Mapper processes input data which are
assigned by the master to perform some computa-
tion on this input and produce intermediate results
in the form of key/value pairs [55].

Reducer: The Reduce function receives an intermedi-
ate key and a set of values of the key. It combines
these values together to form a lesser set of values [56].
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Fig.1 An example of data flows in the MapReduce architecture [7]
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Shuffle: In MapReduce framework, after the Map
task is finished, there are usually large amounts of
middle data to be moved from all Map nodes to all
Reduce nodes in the shuffle phase, the shuffle trans-
fer data from the Mapper disks rather than their
main memories and the intermediate result will be
sorted by the keys so that all pairs with the same
key will be grouped together and it needs to transfer
the data from the local Map nodes to Reduce nodes
through the network [57].

MapReduce is designed to be fault-tolerant because
failures are a common phenomenon in large scale dis-
tributed computing [12]. Google’s MapReduce architec-
ture seems to be a good choice for several reasons [58]:

e Information processing tasks benefit from paral-
lel and distributed architecture with simply the
programming of Map and Reduce methods.

e MapReduce architecture has the ability to process
Terabytes of data on PC clusters with handling
failures.

e Most of the data recovery and excavating infor-
mation can be taken into MapReduce architecture,
similar to the pattern based annotation algorithms.
Distributed Grep is one of the basic examples for
MapReduce using Ontea pattern approach with
regular expressions as well.

4 MapReduce Implementations

The world’s largest companies like Yahoo, Facebook,
Amazon, and IBM use the MapReduce model as a tool

Fig. 2 Hadoop distributed
file system (HDFS) [74]

Metadata ops 'W
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for the cloud computing applications through imple-
menting Hadoop, an open source code of MapReduce,
produced by Apache software foundation [9]. Some
implementations with a different approach are devel-
oped later, such as the Dryad [59], Phoenix [60], Mars
[61], Twister [62] and GridGain [63]. The contribu-
tions of this section are to provide an overview of
existing implementation of MapReduce applications.

4.1 Google’s MapReduce

Google performs the original MapReduce imple-
mentation aims to have large clusters of networked
machines. The first version of the MapReduce library
was written in February 2003, but it gets some sig-
nificant changes. Its library automatically handles
parallelization and data distribution [64]. Google File
System (GFS) as a distributed file system makes
a duplicate of data blocks on multiple nodes for
enhanced reliability, fault tolerance and is intended
to view machine failures as a default rather than an
irregularity. MapReduce is highly scalable. Therefore,
it can be run on clusters comprising of thousands of
low-cost machines [65].

4.2 Hadoop

MapReduce has some other implementations, includ-
ing Mars, Phoenix, Hadoop and Google’s implemen-
tation. Among them, Hadoop has become the most
popular one due to its open source feature [66].
The most general implementation of the MapReduce
model is the Hadoop framework, which lets applica-
tions to run on large clusters [67]. It is applicable for
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performing the cloud-based large-scale data-parallel
applications by providing the reliability and data trans-
fer capabilities [67, 68]. Apache’s Hadoop is an
open-source implementation of Google’s Map/Reduce
framework. It enables distributed, data-intensive and
parallel applications by analyzing a great job into
smaller tasks and a massive data set into smaller par-
titions in a way that each task processes a different
partition in parallel [69]. HDFS, the Hadoop Dis-
tributed File System, is a distributed file system which
is designed (Fig. 2) to hold an immense number of
data (terabytes or even petabytes) and provide high
throughput access to the information. HDFS consists
of a single NameNode and a master server to man-
age the file system and provide the access to files
by the clients. Furthermore, a file breaks into one or
more blocks that they are stored in a set of DataNodes.
The DataNodes are responsible for doing ‘read’ and
‘write’ requests from the file system’s clients. They
also perform block creation, replication, and dele-
tion [70]. High-throughput, fault tolerance and elastic
scalability are the features of Hadoop and Google
frameworks for MapReduce [71]. Amazon, Facebook,
Twitter are considered as leading technology business
based on a policy of co-locating and processing data
to accelerate the performance [72, 73].

Table 1 The pros and cons of Hadoop and its components

Also, Table 1 contains details about various aspects
of Hadoop as well as its pros and cons.

4.3 Hadoop+

Hadoop+- is a heterogeneous MapReduce framework,
which enables GPUs and CPUs for processing the
big data and leveraging the heterogeneity model to
assist users in selecting the computing resources for
different purposes. Figure 3 shows the summary of
the Hadoop+ framework. Hadoop provides the Map
and Reduce primitives and PMap and PReduce are
provided by Hadoop+ to programmers [75].

The PMap and PReduce in Hadoop+ enable pro-
grammers to write explicit parallel CUDA/OpenCL
functions running on GPUs as plug-ins, as shown by
the box of “User-Provided PMap/PReduce Function”
in Fig. 3. Meanwhile, users can also use the Map and
Reduce functions in Hadoop. In Hadoop+-, users can
provide Map, PMap or both, and Reduce, PReduce
or both. Hadoop+- provides different input parameters
for Map and PMap to support explicit parallel Map
functions. In particular, key and value are the input of
Map, while the input of PMap is a dataset, i.e., a list
of (key, value). Meanwhile, Reduce and PReduce have
the same input parameters, which are the outputs with

Pros

Cons

Hadoop is a platform which provides both distributed

storage and computational capabilities.

Hadoop is extremely scalable. In fact, Hadoop was
the first to be considered as to fix a scalability issue that
existed in Nutch (the open source crawler and search engine).
One of the major components of Hadoop is HDFS, which
is optimized for high throughput.

HDEFS uses large block sizes for processing big data
(gigabytes, petabytes...).

HDFEFS is capable of replicating files for a specified number
of times and is tolerant of software and hardware
failure as it can automatically re-replicate the data blocks
on nodes that have failed.

Hadoop uses HDFS and MapReduce, whose master
processes are single points of failure. However, active
work is in progress for high availability versions.

Security is one of the major concerns. It does offer a
security model but it is disabled by default owing to
its extreme complexity.

Hadoop does not offer storage nor network level
encryption, which causes serious concern for data
application in government sectors.

HDFS proves to be inefficient for handling small files
and has no transparent compression.

MapReduce is a shared-nothing architecture (SN);
hence, tasks that require global synchronization or
sharing of mutable data are not a good fit which can
pose challenges for some algorithms.
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Fig. 3 Overview of Hadoop+ framework [75]

the same key from all Map tasks [75]. Table 2 con-
tains the details about various aspects of the Hadoop+
framework as well as its pros and cons.

4.4 GridGain

The GridGain! is another open-source MapReduce
implementation. It is an enterprise open-source grid
computing made for Java. The GridGain and Hadoop
DFS are compatible and it provides a substitute to
Hadoop’s MapReduce. GridGain offers a distributed,
real-time, in-memory and scalable data grid to have
a connection between applications and data sources.
From the technological point of view, the biggest
difference is the primary process of Map tasks assign-
ment to the nodes. GridGain acts as a bridge based
on Java in the processing of big data to have high
performance and finishes fast in-memory MapReduce
implementation. The programmer can process ter-
abytes of data, on 1000s of nodes in less than a second
using GridGain. In the MapReduce algorithm, the task
is split into subtasks and workers drag the split parts as
soon as they have free processor time. In GridGain, the
subtasks are pushed to the nodes. This proves to be an
advantage since it gives more load balancing capabil-
ities. This benefit depends on situations and the user’s
needs. As a part of the extra functionality, it introduces
some additional complexity that the developer has to
plan in advance so that no worker does stay without

! GridGain, http://www.gridgain.com/

reason idle. Although GridGain has less popularity, it
shows to be better documented and it is interested in
beginners [73]. Also, Table 3 contains the details about
various aspects of GridGain as well as its pros and cons.

4.5 Mars

Mars is developed for Graphics Processing Units
(GPUs) using MapReduce framework. It limits the
GPUs complication by means of MapReduce connec-
tion and automatically takes task partitioning, data
distribution, and parallelization on the processors for-
ward [61]. Figure 4 illustrates the workflow of Mars,
assuming the data resides on the disk at the begin-
ning. Its planner operates on the CPU and plans
tasks to the graphics processing unit. Mars has three
stages, including Map, Group, and Reduce. Before the
Map stage, Mars preprocesses the input data from the
disk, transforming the input data to key/ value pairs
(input records) in the main memory. Following that,
it transfers input records from the main memory to
the graphics processing unit device memory. In the
Map stage, Map Split dispatches input records to GPU
threads that the workload for all threads is even. Each
thread performs the user-defined MapCount function
to calculate a local histogram of the number. Then, the
runtime performs a graphics processing unit -based
prefix sum on the local histograms to obtain the out-
put size and the write position for each thread. Finally,
after the output buffer is allocated to the device mem-
ory, each graphics processing unit thread executes the
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Table 2 The pros and cons of the Hadoop+ framework and its components

Pros

Cons

Hadoop+- exploits the GPU capability and achieves
1.4x to 16.1 x speedups over Hadoop for 5 real
applications when running individually.

It is not congruous with distributed computing
applications.

user-defined Map function and outputs the results.
There will be no write conflict between concurrent
threads when each thread has computed its write
position before and it has no contrast with other threads.

In the Group stage, the sort-based and hash-based
strategies are available for grouping records by key.
Yet, some applications need sorting all output records
and the hash-based strategy has to perform additional
sort within each hash bucket. In the Reduce stage,
Reduce Split dispatches each group of records with
the identical key to a graphics processing unit thread.
Howeyver, it causes a load imbalance between threads,
since the number of records of different groups may
vary widely. Furthermore, the MapReduce framework
of Mars enables the integration of graphics processing
unit-accelerated code to distributed environment, like
Hadoop, with the least effort [76]. Table 4 contains
the details about various aspects of Mars as well as its
pros and cons.

4.6 Phoenix

Phoenix implements MapReduce for shared-memory
systems and it aims to support efficient implementa-
tion on multiple cores without troubling the program-
mer with concurrency management. It has a simple

API, which has (Application Programming Interface)
an efficient runtime to apply parallelization, resource
management, and fault recovery [77]. It is used by
application programmers to target for multi-core and
multiprocessor systems. Parallelism is performed by
shared-memory threads. First, a user provides the run-
time with the Map/Reduce functions for applying on
the data. The runtime uses multiple worker threads
to execute the computation. In the Map phase (see
Fig. 5), the input data are split into chunks, and the
Map function is invoked on each chunk. This gener-
ates intermediate key/value pairs. In Reduce phase, for
each unique key, the Reduce function is called with the
values for the same key as an argument and reduces
them to a single key/value pair. The results of the
Reduce tasks are merged and sorted by keys to yield
the last output [60].

Table 5 contains details about various aspects of
Phoenix as well as its pros and cons.

4.7 Tiled-MapReduce

The chip multiprocessor is very popular and it runs
data-parallel applications in clusters on a single
machine with many cores. MapReduce as a program-
ming model is used to program large scale clusters. It

Table 3 The advantages and disadvantage of GridGain and its components

Pros

Cons

It is a more generic distributed computation middleware
that allows you to easily farm out arbitrary tasks to
nodes.

This unique property of GridGain’s MapReduce
implementation has a profound effect on the ability to
develop grid applications with the advanced load
balancing, failover, and collision resolution logic.

GridGain effectively helps to adapt task execution to
non-deterministic nature of execution on the grid.

GridGain only provides distributed computation
support and does not include a distributed file
system like HDFS.

GridGain’s framework does not sort the data
between the Mapper and Reducer. However,

Hadoop provides an automatically distributed sort of
the data between the Maps and Reduces.

GridGain does not have any support for non-Java
applications while Hadoop supports both C++
and text-based applications.

@ Springer



MapReduce and Its Applications, Challenges, and Architecture: a Comprehensive Review... 303

Notation: GPU Processing

Mars Scheduler

Map Stage
MapCount Map
. —
PrefixSum
Preprocess e
—> L
MapCount Map
—>
A 4
[ | Reduce — Reduce
Count > ‘—.
Group Reduce v -
split —— || PrefixSum |,
Rceduc: 1 Reduce
ﬂ oun » L _’

Group Stage

Reduce Stage

Fig. 4 The workflow of Mars on the graphics processing unit [76]

controls the multicore platform [78], by solving large-
scale data-parallel problems. Multi-core CPU systems
and cell processors are performed on parallel plat-
forms [79]. The environmental differences between
clusters and multicores cause new design spaces and
it has chances to improve the performance of MapRe-
duce on multicore. Tiled-MapReduce, which uses the
“tiling strategy” to partition a large MapReduce job

Table 4 The pros and cons of Mars and its components

into a number of small sub-jobs and handles the sub-
jobs iteratively. MapReduce as a promising program-
ming model for multicore platforms uses the power
of such processing resources [78]. Tiled-MapReduce
extends the general Reduce phase to process the par-
tial results of all iterations, rather than the intermediate
data. The output of the Reduce phase is compati-
ble with the output of the general Reduce phase. To

Pros

Cons

It is an atomic-free and the first implementation of
MapReduce on GPUs.

It executes two preprocessing kernels before the
Map and Reduces phases, the counting, and prefix
summing kernels.

It allows programmers and users to take advantage
of different processors on a single machine.

It causes expensive preprocessing phases in order to adjust

the resulting writing of different threads.

It classifies the clues to sort the results of the Map

function, which has inefficient and time-consuming sorting
in grouping intermediate results.

One of the major disadvantages of Its preprocessing design

is that the Map and Reduce functions need to be executed twice.
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Fig. 5 The basic data flow for the Phoenix runtime [77]

differentiate with that in the final Reduce phase, Tiled-
MapReduce, rename the Reduce phase within one sub
job as the Combine phase. The lower part of Fig. 6
illustrates the processing phases in Tiled-MapReduce
[78].

The overall execution flow of a Tiled-MapReduce
job and the implementation of Tiled-MapReduce run-
time are illustrated in the top part. The mr_dispatcher
function involves a Tiled-MapReduce job, which ini-
tializes and configures the dispatcher according to the
arguments and runtime environments (e.g., available
resources). Then, the dispatcher spawns N workers
and binds them to CPU cores. The dispatcher also iter-
atively splits a chunk from input data in the Iteration
Window, whose size is dynamically adjusted accord-
ing to the runtime configuration. The chunk of data
will be further split into M pieces, which forms M
map tasks. In the Map phase, a worker selects a map
task from the iteration window whenever it is idle

Table 5 The pros and cons of Phoenix and its components

7 Il » Reduce = |-

v 1 > Reduce > I

\ 11 » Reduce ' "

Reduce Stage

Worker 1

; 1l = Reduce = [

Merge

Worker M

and invokes the programmer-provided Map function,
which parses the input data and generates intermedi-
ate key/value pairs. The emit_intermediate function,
which is provided by the runtime, will be invoked to
insert a key/value pair to intermediate buffer, which
is organized as an M by R matrix of buckets, where
R is the number of Reduce tasks. In the Combine
phase, the Worker selects the Reduce tasks in turn and
invokes the programmer-provided combine function
to process a column in the Intermediate Buffer. The
structure of the iteration buffer is an// by R matrix of
buckets, where/is the total number of iterations. When
all sub-jobs have finished, the Workers invoke the pro-
grammer provided Reduce function to do the final
Reduce operation on the data in each column of the
iteration buffer. The Reduce function inserts the final
result of a key to the final buffer by invoking the emit
function. Finally, the results of all Reduce tasks are
merged and sorted into a single Output Buffer [78].

Pros

Cons

It is a MapReduce runtime targeted for shared-memory
multi-cores and multiprocessors. It leads to similar
performance for most applications.

Phoenix provides significant speedups with both systems
for benchmarks and all processor counts.

Phoenix automatically handles key scheduling decisions
during parallel execution and it can also recover from
permanent and transient errors in Mapper and Reducer.

It performs well on small-scale systems with
uniform access latencies but this fact does not
remain true in the large-scale shared-memory system.

The performance of the in-memory data structures
used to store and retrieve intermediate data are
crucial in overall system performance.

It has some laxity in terms of scalability and NUMA-
awareness since it is implemented in C, the 2-D

array structure.
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Fig. 6 The workflow of Tiled-MapReduce [78]

Table 6 contains the details about various aspects of
Tiled-MapReduce as well as its pros and cons.

4.8 Twister

MapReduce programming model has facilitated the
implementations of many data parallel applications.
The simplicity of the programming model and the
high quality of the services and their simplicity are
used by MapReduce requests to parallel computing
communities enormously.

Twister identifies a set of improvement in the pro-
gramming model as well as its architecture according
to the different scientific methods based on MapRe-
duce to develop MapReduce runtime. In Fig. 7, the
Map/Reduce tasks operated with these two types of
data products are illustrated which can be used to load
(read) any static data at the Map and Reduce tasks. For
example, key and value pairs are defined as variable

Table 6 The pros and cons of Tiled-MapReduce

data in the typical Map phase of the computation and
the static data (already loaded) produces a set of output
(key, value) pairs. It also introduces an optional reduc-
tion phase named “combine” to connect the results of
the Reduce phase into a single value. The user pro-
gram and the combined operation are done in a single
process space, which allows its output directly acces-
sible to the user program [62]. Table 7 shows the
advantages and disadvantages of Twister as well as its
details.

4.9 Sector and Sphere

Sector and Sphere are two important factors for high
performing of data cloud. The sector can manage data
across distributed data centers. Similarly, the Sphere
supports user-defined functions (UDFs) over data both
within and across data centers. A Map UDF performs
the MapReduce- style programming in the sphere

Pros

Cons

It provides better data locality and task parallelism.

Tiled-MapReduce explores several optimizations, it
improves the memory and saves up to 85% memory.

Tiled-MapReduce investigates the potential use of the
tiling strategy in the single-node version of MapReduce.

@ Springer



306

S.N. Khezr, N.J. Navimipour

Fig.7 The workflow of
Twister programming
model (Twister, http://www.
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[80]. Sphere as a MapReduce runtime system provides
distributed data storage, distribution, and processing
over large clusters of commodity computers across a
single or multiple data centers. This part has three fea-
tures, including secure, high performance and scalable
distributed file system. The sphere provides Sector
data files on the storage nodes by simple program-
ming, which runs faster than Hadoop. On the other
side, Twister as a programming model strongly sup-
ports iterative MapReduce computations efficiently.
Twister has high performance compared with other
similar implementations such as DryadLINQ and
Hadoop for extremely large data parallel applications

Table 7 The pros and cons of Twister and its components

[62]. Table 8 contains the details about various aspects
of Sector and Sphere as well as its pros and cons.

4.10 iMapReduce

iMapReduce is an adapted Hadoop runtime which
allows users to specify the iterative computation with
the separated Map and Reduce functions. It is used
to perform the repeating algorithms based on a large
cluster environment. The common features of repeat-
ing algorithms are achieved in this way and it provides
the built-in support for these features. It presents
the continuous tasks to reduce the job/task initial-

Pros

Cons

Twister proves to be an efficient support for Iterative
MapReduce computations (extremely faster than Hadoop
or Dryad/DryadLINQ).

It provides features to support MapReduce computations
like distinction on static and variable data.

It combines varied phases to collect all Reduce outputs.

In Scheduling Task, Google’s MapReduce and
Hadoop use a dynamic scheduling mechanism which
is more efficient than Twister.
A possible disadvantage of this approach is that it
does require the user to break up large datasets into multiple files.
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Table 8 The advantages and disadvantage of Sector and Sphere and its components

Pros

Cons

Sector manages the large distributed datasets with
high-reliability, high-performance 1/0, and a uniform
access. The sphere is used to simplify data access,
increase data I/O bandwidth and exploit wide-area,
high-performance networks using the sector-
distributed storage system. Sphere presents a very
simple programming interface by hiding data
movement, load balancing, and fault tolerance.

Sector breaks up large datasets into multiple files and
uses a device to complete it. Sector assumes that the
user to develop code for working with large datasets
is as complicated as the user to split a large dataset
into multiple files if required.

ization overhead, provides efficient data management
to avoid the shuffling of static data among tasks,
and allows asynchronous Map task execution when
it would be possible. Figure 8 shows the data flow
in the MapReduce implementation on the left side.
Each MapReduce should load the input data from DFS
before the function starts. Then, it derives the interme-
diate key-value pairs because of the Reduce function
operation on the intermediate data and it drives the
output of this iteration, which is written to DFS. The
same process happens in the next iteration since the
Map function loads the iterated data from DFS again.

— — N l‘//‘
I
[ Map '
\ ﬁ,L\
job1 < Map '|
| Reduce\
J
- o) s
__DFS -
job2 ( | Reduce |
| Map w
RCSRICD

DFS

S~ o -

MapReduce
dataflow

iMapReduce
dataflow

Fig. 8 The workflow of MapReduce and iMapReduce [81]

Additionally, the repeated DFS has an expensive load-
ing/dumping. Hadoop provides locality optimization
that reduces the remote communication. The same
operations are done at each iteration. It means that the
same Map and Reduce functions are done. iMapRe-
duce uses Map/Reduce tasks persistently. That is the
Map/Reduce operations in Map/Reduce tasks contin-
ues functioning till the iteration is completed. Fur-
ther, iMapReduce enables the Reducer’s output to be
passed to the Map for the next round iteration [81].

The data flow in iMapReduce is shown on the left.
The dashed line indicates that the data loading from
DFS happens only once in the initialization stage, and
the output data are written to DFS only once when the
iteration completes [81]. Moreover, Table 9 contains
details about various aspects of iMapReduce as well
as its pros and cons.

5 MapReduce Applications

The MapReduce application facilitates the perfor-
mance of many data parallel applications [62]. The
MapReduce is the main factor in many important
applications and it can improve system parallelism
[82]. It gets considerable attention, for data-intensive
and computation-intensive applications on machine
clusters [83]. It is used as an efficient distributed
computation tool for variable problems, e.g., search,
clustering, log analysis, different types of join oper-
ations, matrix multiplication, pattern matching, and
analysis of social networks [84]; It allows researchers
to investigate in different domains. MapReduce is
used in many big data application such as short mes-
sage mining [85], genetic algorithms [86], k-means
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Table 9 The pros and cons of iMapReduce and its components

Pros

Cons

iMapReduce results in the context of various
applications, show up to 5 times of faster operation
compared with traditional Hadoop MapReduce.

iMapReduce is not suitable for more iterative
computations.

clustering algorithm [32], DNA fragment [87], intelli-
gent transportation system [88], Healthcare scientific
applications [89], Fuzzy rule based classification sys-
tems [90], heterogeneous environments [9], cuckoo
search [91], extreme learning machine [92], Random
Forest [93], energy proportionally [94], Mobile Sensor
Data [95], semantic web [96] and so many. Therefore,
in this section indicates the brief analyzes of these
applications and a brief look to various domains of
MapReduce applications.

5.1 Distributed Grep

Distributed Grep searches plain-text data sets for lines
matching a regular expression [97]. It is used to search
for a given pattern in a large number of files. Finding
the top searched papers requires a web administrator
to search web server logs in accordance with a given
pattern.? Figure 9 illustrates the very popular example in
order to explain how Map-Reduce works in this scope.

In Fig. 9, a line of input data is sent to the Map
function; each Map function takes its line of input and
splits it into words. The Mapper outputs a (key, value)
pair of the word and the value 1. In the Reducer, the
keys are grouped together and the values for simi-
lar keys are added. Thus, Reduce function forms an
aggregation phase for keys.

5.2 Word Count

Word count is considered as MapReduce application
which counts the occurrences of each word in large
text data [12] and extracts a small amount of data from
a large dataset [20]. Figure 10 gives an overview of
how the MapReduce paradigm operates in order to
count the number of words in a file; each instance of
the Mapper receives one line of input. Each Mapper

Zhttp://web.cs.wpi.edu/~cs4513/d08/OtherStuff/
MapReduce-TeamC.ppt
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receipts its line of input and splits it into words. The
Mapper outputs a (key, value) pair of the word and
the value 1. Since all the lines are independent of each
other, all Mappers run in parallel.

The word count operation takes place in three
stages: Mapper, Shuffle and a Reducer. In Mapper,
first the input file is split into words and then make
alterations to key and value pairs with these words—
the key is being the word itself and value ‘1°. For
example, consider the sentence “Book Pen Apple
Apple Pen Pen Ball Ball Book” in Mapper the sen-
tence would be split as words and from the initial
key value pair as <Book, 1> <Pen, 1> <Apple,
1> <Apple, 1> <Pen, 1> <Ball, 1> < Ball,
1> <Book, 1>. After the Map task is complete, the
body of intermediate data is transferred from Map-
per to Reducer in the shuffle phase. The data transfer
by shuffle happens from the Mapper disks rather than
their main memories and the intermediate result will
be sorted by the keys to group the pairs with the
same keys together. In Reducer, the keys are grouped
together, and the values for similar keys are added. So
there are only one pair of similar keys ‘Book’ the val-
ues for these keys would be added so the output key-
value pairs would be <Book, 2> <Pen, 3> <Apple,
2> <Ball, 2> this would give the number of occur-
rence of each word in the input and Reducer forms an
aggregation phase for keys and shows the final result
as Fig. 10 clearly reveals the word count process.

5.3 TeraSort

TeraSort is a standard MapReduce sorting algorithm
with a custom Reducer in which each reducer receives
a sorted list of N — 1 sampled keys with predefined
ranges [98]. This package includes three Map/Reduce
applications for Hadoop to compete in the annual
terabyte competition.

e Termagant is a Map/Reduce program in which the
data is produced.
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Fig. 9 The overall MapReduce distributed Grep process (http://www.slideshare.net/romain_jacotin/the-google-mapreduce)

e The input data is sorted by TeraSort and it uses
Map/Reduce to sort the data into a total order.

e TeraValidate is a Map/Reduce program, which
makes possible to validate the sorted output.

e TeraSort is a standard Map/Reduce type but it

does not include a custom partitioner that uses a
sorted list of N-1 sampled keys that define the key
range for each Reduce. In specific, it sends all
keys such as the sample [i-1] < =key <sample[i]
to Reduce i. TeraValidate certifies the globally
sorted of the output. It creates one Mapper a file

in the output directory and each Map ensures that
each key is less than or equal to the previous one
[99].

5.4 Inverted and Ranked Inverted Index

An inverted index is utilized to store a mapping from
content, such as words or numbers, to its location in a
database file or a document. MapReduce application
takes a list of documents as input and produces word-
to-document indexing. Basically, each document is

Input Splitting Mapping Shuffling Reducing Final Result
Book, 1
\ Book, 1
Book, 2
Pen, 1
Apple, 1
Book, 2
Apple, 1
Book Pen Apple Pe. 1 Apple, 2
Ball Ball Book
Apple, 2
Ball, 1
Ball, 1
Book, 1 Ball, 1

Fig. 10 The overall MapReduce word count process
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analyzed by the Mapper and emits a sequence of
<word, document ID> pairs. The Reducer accepts all
pairs for a given word, sorts the corresponding doc-
ument IDs and emits a < word, list (document ID)
> pair. A simple inverted index is created using all
output pairs. This computation should be enhanced to
follow up word positions.>

One type of MapReduce application is called
Ranked-inverted-index which takes a list of words
and their incidences of each document and produces
the lists of documents containing the given words to
decrease frequency [97]. Furthermore, it takes lists of
words and their frequencies in a file and generates lists
of files containing the given words in decreasing order
of frequency [100].

5.5 Term-Vector

A MapReduce defines the most frequent words in a
host, which is useful in analyzing of a host’s relevance
to a search. Map phase emits <host, term vector>
tuples where ferm vector is itself a tuple of the form
<word, I1>. The words with below frequency are dis-
carded by reducing phase., It sorts the rest of the list
considering to count and emits tuples of the form
<host, list(term vector)> [101].
A term vector may look like this [102]:

[("wordl", 8), ("word2", 4), ("word3", 7)]

A Map phase is used to represent a term vector.
Reduce phase then receives a set of term vectors for a
given host from several Map instances:

("hostX", [("word1", 8), ("word2", 4), ("word3", 7)])
("hostY", [("word1", 3), ("word5", 6), ("word3", 3)])
("hostZ", [("word1", 1), ("word6", 3), ("word2", 9)])

5.6 Random Forest

Random forests (RF) is very popular in classifica-
tion, prediction, studying variable importance, vari-
able selection, outlier detection, and classification.
The RF popularity is due to its high performance

3http://mapreduce-specifics.wikispaces.asu.edu/
Applications+and+Limitations+of+MapReduce
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in relation with other classification algorithms [103].
The techniques have an influence on big data by
fast, scalable and parallel implementations. MapRe-
duce is the best solution to get this goal [104].
RF classifier helps this to handle this technique
to handle imbalanced datasets in the big data sce-
nario. Specifically, oversampling, undersampling and
cost-sensitive learning have been adapted to big
data using MapReduce. In consequence, these tech-
niques are able to manage datasets as large as
needed to correctly identify the underrepresented class.
The Random Forest classifier provides a solid basis for the
comparison because of its performance, robustness,
and versatility [93].

5.7 Spark

Spark as a cluster computing framework supports
applications with working sets while providing similar
scalability and fault tolerance properties to MapRe-
duce. It is used to maintain the scalability and fault
tolerance of MapReduce by means of an abstraction
called resilient distributed datasets (RDDs). An RDD
is a read-only group of objects, which are divided by
a set of machines that can be rebuilt if a partition
is lost. The main idea in Spark is the construction
of resilient distributed dataset (RDD), which is a
read-only collection of objects maintained in mem-
ory across iterations and supports fault recovery. Spark
provides three simple data abstractions for program-
ming clusters: resilient distributed datasets (RDDs),
and two restricted types of shared variables, namely,
broadcast variables and accumulators. These abstrac-
tions have the ability to represent some challenges
by regarding its limitation for existing cluster com-
puting frameworks, including iterative and interactive
computations [105].

5.8 Extreme Learning Machine

Extreme learning machine (ELM) has gained momen-
tum from various research fields in MapReduce
framework. applications due to its Fast convergence
and good generalization performance are consid-
ered as its features [106]. Different types of ELM
have been proposed in practical applications [107],
such as basic ELM [108], random hidden layer feature


http://mapreduce-specifics.wikispaces.asu.edu/Applications+and+Limitations+of+MapReduce
http://mapreduce-specifics.wikispaces.asu.edu/Applications+and+Limitations+of+MapReduce

MapReduce and Its Applications, Challenges, and Architecture: a Comprehensive Review... 311

mapping based ELM [109], incremental ELM [110],
kernel based ELM [111], etc. Online sequential
extreme learning machine (OS-ELM) is one of the
improved extreme learning machine algorithms to
support online sequential learning efficiently. It ana-
lyzes the dependency relationships of matrix cal-
culations of OS-ELM and proposes a parallel OS-
ELM (POS-ELM) based on MapReduce [1]. How-
ever, it is able to deal with very large-scale training
dataset in big data applications. Elastic ELM is a new
MapReduce-based elastic extreme learning machine
framework, which covers the shortage of ELM whose
learning ability is weak for updated large-scale train-
ing dataset [106]. Due to the exponentially increasing
volume of training data in massive learning applica-
tions, the centralized ELM with kernels suffers from
the great memory consumption of large matrix oper-
ations. Also, it has high communication cost, which
does not allow these matrix operations to directly
apply on shared-nothing distributed computing model
like MapReduce. Distributed Kernelized ELM (DK-
ELM) is an implementation of ELM with kernels on
MapReduce [92].

5.9 DNA Fragment

A DNA sequence contains the genetic information of
an organism. To understand the organism’s build, it is
necessary to achieve the complete sequence of DNA
and understanding the structure and composition of a
gene. The sequence assembly technology is the basis
of DNA sequence data processing. Fragment assem-
bly is one of the most important problems of sequence
assembly. Algorithms for DNA fragment assembly
using de Bruijn graph have been widely used but these
algorithms require a large amount of memory and
running time to be formulated. De Bruijn approach
suffers from the loss of information. Three key factors
must be considered to develop a sequence assembly
parallel algorithm, including avoiding graph division
which can cause an adverse impact on splicing results,
overcoming memory limitations in large sequence
assembly by distributing de Bruijn graph, and putting
MapReduce to use, is an ideal solution for sequence
assembly algorithm. MapReduce separates de Bruijn
graph division and the employment of this frame-
work as well as developing a sequence assembly parallel

algorithm, which can effectively improve the compu-
tational efficiency and remove the memory limitations
of the assembly algorithm [87].

5.10 Mobile Sensor Data

Mobiles are equipped with different sensors like
accelerometer, magnetic field, and air pressure meter,
which help in the process of the extracting situational
information about the user like location, state, etc.
One of the massive jobs is to provide the extracted
sensor data in which data is removed from mobiles
to the public cloud. The utilization of parallel com-
puting using MapReduce on the cloud for training
and recognition of human activities from accelerom-
eter sensor data is based on classifiers that can easily
scale in performance and accuracy in this process.
It aims to recognize and predict the human activity
patterns. The data should be gathered as close as pos-
sible to real scenarios for training goals. In general,
data collected in laboratories does not cover the activ-
ity patterns that people use in their life. Furthermore,
gathering training data for such human activity pat-
tern discovery is a tricky process, especially when it
involves embedded sensors such as the accelerome-
ter in mobile devices. Accelerometer sensors must be
set in smartphones to face these problems. It is used
for collecting the data in real scenarios and cloud ser-
vices and storing training repositories, which are fur-
ther classified using parallel computing (MapReduce
framework) in the cloud. The user helps in gathering
real accelerometer data which is further used for train-
ing and prediction purposes by the classifiers in the
cloud [95].

5.11 Social Networks

The Social Networks Service (SNS), is becoming
more and more popular and an exponential growth in
a number of empirical studies have been carried out
in this active field [112-114]. Nowadays, it not suit-
able to use the traditional analysis methods due to the
rapid growth of the network. MapReduce framework
can solve large-scale social network analysis problem
by making use of the power of multi-machines, which
is qualified in processing large-scale social network
data. Hadoop takes the place of many traditional anal-
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ysis methods to conduct a series of analyses on large-
scale social networks, including several distributions
like clustering coefficient and diameter [115]. A social
network, the graph of relationships and interactions
within a group of individuals, plays a fundamental role
in spreading information, ideas, and influence among
all its members. Due to its importance, existing algo-
rithms of influence maximization problem (IMP) for
a social network are not efficient enough to cope with
real-world social networks. MapReduce and Hadoop
should be parallelized to handle big social networks as the
platform or other implementations of MapReduce [116].

5.12 Algorithms

Algorithms are the key factors in developing or engi-
neering the software and applications. They have
always been indispensable in all aspects of com-
puter sciences. Algorithm plays an important role in
most of the computer sciences, including, networks,
databases, web technologies or Core Programming,
without algorithms none of them would operate. This
section introduces some algorithms that are imple-
mented with MapReduce framework to allow the han-
dling of data-intensive applications, abstractions for
parallelism, and fault control.

5.12.1 Genetic Algorithm

Genetic Algorithms are a class of development algo-
rithms. The use of Genetic Algorithm is a quickly

Map Phase

Seed Population

| Worker 1

T

evolving field of research in numerous spheres such
as chemistry, bioinformatics, economics, biology, etc.
It is better to use Parallel Genetic Algorithms since
processing Genetic Algorithms generally takes a very
long time for large problems. The iteration method
of Genetic Algorithms cannot directly be executed
with Map and Reduce functions. MapReduce should
be extended to support such algorithms and Parallel
Genetic Algorithm needs a phase for global selection
at the end of every iteration. This requires a coordi-
nator client for coordinating the execution of Parallel
Genetic Algorithms iterations which are achieved by
adding a second Reduce phase after the iterations and a
client for coordinating the implementation of iterations.

Figure 11 illustrates an MRPGA (MapReduce for
Parallelizing Genetic Algorithms) architecture. First
of all, the coordinator generates offspring and per-
forms mutation. Then, it sends the offspring to the
master for evaluation. The master divides the off-
spring into m pieces for m Map tasks. The value of
m is selected so as to maximize parallelism for Map
tasks. Commonly, this value is greater than the num-
ber of machines. Each piece of offspring is sent to a
machine with a Mapper worker. Each Reducer worker
is assigned with Reduce tasks for the 1st phase of
reducing operations. Normally, the input is taken from
the local machine. The Reduce function is used to
choose the local optimum individuals that are then
kept on the local machine. Also, a Reducer worker
is allocated to perform the final Reduce function.
This worker collects all the results generated in the
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Runtime System |

|
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Fig. 11 Architecture MRPGA [86]
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Ist phase of reducing operation. The final Reduce
function is invoked to produce the global optimum
individuals as final results. The final results are sent
to the client for the next round of the evolutionary
algorithm [86].

5.12.2 PSO Algorithm

Particle Swarm Optimization (PSO) algorithm was
first introduced by Eberhart and Kennedy [117]. It
is inspired by experiments with simulated bird flock-
ing and became popular because of its simplicity
and little tuning efforts [118, 119]. Large amounts of
data suffer from web content, commercial transaction
information, or bioinformatics data, which requires
minutes or hours for each function evaluation. To
optimize such functions, PSO must be parallelized.
MapReduce framework shows this parallelization in
PSO model without explicitly addressing any of the
details [120].

5.12.3 Cuckoo Search Algorithm

Cuckoo search (CS) is a new metaheuristic opti-
mization algorithm for solving structural optimiza-
tion tasks [121, 122]. A new approach is used to
incorporate cuckoo search to the analysis of big
data using latest cloud computing with MapReduce
paradigm, which has been widely applied to solve
large-scale data-intensive problems [123]. It combines
the divide-and-conquer algorithm with MapReduce
programming paradigm to apply them in the sequen-
tial cuckoo search method. Finally, this approach has a
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much better runtime performance when processing large
dataset [91].

5.12.4 Ant Colony Algorithm

Ant colony algorithm (ACO) is a class of metaheuris-
tics, which can solve combinatorial optimization prob-
lems effectively by the behavior of real ants [124—
126]. This algorithm is considered as a form of adap-
tive memory programming [127]. In the algorithm,
the social behavior of ants are simulated and it could
be a good choice to existing algorithms. Paralleliza-
tion is the most effective way to solve large-scale ant
colony optimization algorithms over a large dataset.
MapReduce algorithm is used to solve the problem by
available methods and it makes sufficient use of the
simplicity and scalability of the MapReduce model.
As shown in Fig. 12, in the Search Space Replication
Approach, the input is replicated m copies, where m is
the number of Map tasks.

Each Mapper executes the ACO algorithm sepa-
rately while emitting its output with a constant integer
as the key and its ACO result as output. Since the out-
puts have the same keys, they will be sent to the only
Reducer. In the Reducer, the optimal value is chosen
and recorded as output. In the first approach, the input
is not divided and no information exchange happens
between execution units. In the second approach, the
solution space is divided to Mapper. The segmenta-
tion is done carefully and each part has a convenient
location to show how ACO algorithms can be modeled
into the MapReduce framework and implementation
of ACO on Hadoop [128].
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Fig. 12 Parallel ACO approach with MapReduce [128]
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5.12.5 Fuzzy Algorithm

The era of big data has great volume, high speed,
and complex structures. Data can be produced by
offline and online transactions, sensors, social net-
works, Worldwide Web and through our daily life
activities. Big data applies Fuzzy sets due to their abil-
ities to represent and quantify aspects of uncertainty
[129]. For example, underwater image segmentation
has to deal with the rapidly increasing volume of
images and videos. The MapReduce framework as
a workable solution is used to manage this issue.
Therefore, a MapReduce-based fast fuzzy c-means
algorithm (MRFFCM) has been offered to paralyze
the segmentation of the images. It uses a two-layer
distribution model to cluster the large-scale images
and adopt an iterative MapReduce process to par-
allelize the FFCM algorithm. Also, a combinational
segmentation technique is utilized to raise the algo-
rithm’s efficiency. The improvement of fuzzy c-means
algorithm and the use of parallel programming model
speed up the processing of massive data [130].

6 Results and Comparison

MapReduce is one of the most well-known and signif-
icant parallel processing techniques in cloud comput-
ing. MapReduce is a programming model for large-
scale parallel processing, or a software framework in
Hadoop or other platforms such as GridGain, Phoenix,
Twister, and Mars. Each platform that implements
the concept of MapReduce has different properties in
specific provinces. Nevertheless, Apache Hadoop is
an open-source software framework implementation
of MapReduce is being improved by many software
researchers and developers. Many companies and
researchers use big data by means of Hadoop in the
past few years although it requires improvements [131].
Hadoop and Sphere, mostly adopt the initial pro-
gramming model and the architecture presented by
Google. These architectures concentration is on per-
forming single step MapReduce with an optimized
fault tolerance. It is possible to store most of the data
outputs to some form of file system throughout the
computation. A new Map/Reduce task is created in
each iteration by loading or accessing any static data
repetitively in these runtimes. These features can be
justified for single-step MapReduce computations and
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they introduce considerable performance overheads
for many iterative applications, for instance, iMapRe-
duce, a distributed framework that supports iterative
processing. It allows users to specify the iterative com-
putation with the Map and Reduce functions and to
support the automatic iterative processing within a job
[81]. In Hadoop, each Mapper and Reducer may gen-
erate zero or more key/value pairs. Hadoop presents
HDEFS that provides storing to 1000’s of nodes and
Petabyte of data reliability and scalability. It provides
an automatically distributed sort of the data between
the Maps and Reduces. Hadoop uses a much more
flexible serialization, which can use either java.io or
user-defined serialization. It provides a web interface
to track the job’s progress. Hadoop supports both
C++ and text-based applications and it has more sup-
porters than GridGain. But, GridGain is not suitable
for large data sets.

In GridGain system, each Mapper and Reducer
returns a single value. It provides only distributed
computation support and does not have a distributed
file system. GridGain’s framework does not have the
data classification between the Maps and the Reduce
stage like Hadoop. Counters or combiners are not sup-
ported by GridGain implementation. It does not pro-
vide a web interface to track the job’s progress. Also,
it does not have any support for non-Java applications
[73]. Hadoop can easily handle analytical risk over big
data. It controls the processing of the input datasets
completely. However, MapReduce can be easily used
by developers without having much experience and
knowledge of databases, but with a little knowledge of
Java. It gives a satisfied and acceptable performance
in scaling large clusters for developers [132]. Hadoop
and GridGain both realize the MapReduce frame-
work. Hadoop has a relatively high latency because of
HDES. On the contrary, GridGain is a computational
tool of MapReduce and has low latency [63].

Mars has low performance in comparison with its
CPU-based counterparts and the native implemen-
tation without MapReduce. Mars proves the effec-
tiveness of GPU-oriented optimization strategies. On
average, the MarsCUDA is 22 times quicker than the
CPU-based MapReduce, Phoenix, and is three times
slower than the hand-tuned native CUDA implemen-
tation. Additionally, the applications developed with
Mars had a code size reduction up to seven times,
compared with hand-tuned native CUDA code [61].
Mars develops on an NVIDIA G80 GPU, which has
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one hundred processors and is evaluated in compar-
ison with Phoenix. It hides the programming com-
plexity of the GPU behind the simple and familiar
MapReduce interface. It is up to 16 times quicker
than its CPU-based counterpart for six common web
applications on a quad-core machine [76]. Table 10
provides details about various aspects of MapReduce
implementations.

Also, this article aims to show various existing
MapReduce applications connecting with other algo-
rithms and frameworks to handle big data easily and
to render them time and cost-effective for program-
mers in performance tuning. This paper comprehen-
sively explains the MapReduce applications such as
WordCount, Distributed grep, TeraSort, Inverted and
Ranked Inverted Index and Term-vector and how
these typical MapReduce applications work. Develop-
ers are able to write and create applications to process
huge volumes of unstructured data in parallel, across
a distributed cluster of processors such as extreme
learning machine, multi-core systems, social networks
and DNA fragment using MapReduce framework.

Table 10 The pros and cons of MapReduce implementations

This paper shows how MapReduce could cope with
algorithms to the handling and supporting of data-
intensive applications and provide high scalability
to supports automatic parallelization, distribution of
computations, fault tolerance, and task management.
Table 11 shows the advantages and disadvantages of
MapReduce applications.

7 Open Issues

The discussion of the human challenges and future
directions of research continue in the era of big data
with a great set of digital information [133]. Big
data and large-scale data processing techniques have
become an important developing area. Big data appli-
cations create development in the diverse large-scale
data management systems in various organizations
from traditional database vendors to new emerging
Internet-based enterprises [134]. MapReduce is an
enabling technology of cloud computing. Big data sys-
tems and the MapReduce model are an active research

MapReduce implementations Pros

Cons

Google MapReduce

It makes a duplicate of data blocks on

It is a batch-based architecture which means it

Hadoop

GridGain

Mars

Tiled-MapReduce

multiple nodes for enhanced reliability
and fault tolerance.

Scalability and availability are
the distinguishing features
to achieve data replication and fault
tolerance system.

GridGain approach of giving tasks to the
control of sub-task distribution, enables

early and late load balancing algorithms.

Mars is the first MapReduce
implementation on GPUs. Mars exploits
the massive thread parallelism within
the GPU.

Providing convergence and good
generalization performance.

Phoenix Phoenix is a well-organized
implementation on the multi-core CPU.
Twister It supports typical MapReduce

computations and has tools to manage
data easily.

does not lend itself to use cases that need
real-time data access.

Cluster management is difficult in Hadoop. In the
cluster, operations like debugging, distributing
software, collection logs are too hard.

It doesn’t have any support for non-Java
applications. GridGain has only one supporter
that is GridGain.

Its implementation does not employ atomic
operations, it requires expensive preprocessing
kernels to coordinate output from different
threads to the global memory.

The cost of implementation is high.

The scalability of Phoenix does not appear to
be enhanced.

A possible disadvantage of this approach is that
it does require the user to break up large
datasets into multiple files.
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Table 11 The pros and cons of MapReduce applications

MapReduce applications

Pros

Cons

Distributed Grep

Word count

TeraSort

Inverted and ranked
inverted index

Term-vector

Random Forest

Extreme Learning Machine

Spark

Algorithms
DNA fragment

Mobile Sensor Data

A generic search tool used in many data
analyses.

Counting the occurrences of each word and
massive document collection.

Offers load balancing time in large clusters.

Consisting of a collection of postings lists, one
associated with each unique term in the
collection.

Useful in analyses of a host’s relevance to a
search.

Provides high scalability.

Providing convergence and good generalization

performance.

Spark performs better when all the data fits in
the memory, especially on dedicated clusters.

Handling of data-intensive applications.

Developing a sequence assembly parallel
algorithm.

Help in the process of the extracting context of

Suffering from prolonged response time
in large clusters.

Limiting memory usage.

Suffering from overhead.
Lots of pairs to sort and shuffle.

Requiring many sequential tasks.

It has been observed to over fit for some
datasets with noise classification.

It causes an additional uncertainty
problem, both in approximation and
learning.

Spark needs a lot of memory.

It is time-consuming.

Require a large amount of memory.

Difficult to implement.

the user like location, situation etc.

Social Networks

Access large samples of respondents quickly.

Develop appropriate data analytic
techniques for huge samples.

area, which are in the early stages. Although many
vital steps forward have been made, there are still sev-
eral open issues in this area. There lies a bright future
ahead for Big Data, it has an important role in busi-
nesses and organizations realizing the value of ana-
lyzing and storing information. Developing ways to
process the vast amounts of data available in business
innovation, health discoveries, algorithms, bioinfor-
matics, and science progress allow us to find novel
ways to solve problems. Nowadays, with MapRe-
duce framework, a large amount of data can easily
process and analyze the impossible problems in the
past. The application of MapReduce concepts and
techniques has yet to blossom to its full potential in
different domains. There are still some MapReduce
application techniques that have not been examined
adequately in parallel computation, graph process-
ing, multi-core systems, optimizing frameworks and
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data allocation. Various open issues are considered to
organize promising directions for future research for
example how to Optimize execution model based on
different application and cluster characteristics, new
communication strategy, how mappers could commu-
nicate with each other easily and faster and overlap-
ping phases to improve the MapReduce architecture.
This survey has already outlined the framework
of knowledge discovery in MapReduce applications,
it also brings several new future works. One inter-
esting work in the future includes Identifying dif-
ferent patterns and applications of the MapReduce
and optimizing MapReduce model based on different
application and cluster characteristics or on the hetero-
geneous cluster are considered as future goals. These
may improve the system performance and increase
fault tolerance on different applications. Cloud com-
puting considers the most promising technology due
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to its cost-efficiency, flexibility, and its vision of
unlimited and unrestricted access to computing for
everybody [135-137]. In the cloud environment, the
fault-tolerance for data sets and database is a challeng-
ing research issue due to increasingly larger volumes
of datasets for example, when nodes are malware and
malicious, the final results may be untrustworthy and
inaccurate [138, 139]. One of the interesting future
research refers to the MapReduce model to increase
the fault-tolerance in the database in the wider area.
There are many open issues for big data and MapRe-
duce applications, in particular in the computational
algorithms, multicore systems, data allocation and
many other fields. Some characteristics and open
issues of these challenges have been discussed in this
paper, such as parallel computation aspects and the
capability of being flexible enough to collect and ana-
lyze a different kind of information. The MapReduce
is exponentially growing up in different domains in
the world in an uncontrollable way.

8 Conclusion

MapReduce has efficiency and scalability in most of
the studies [140]. It is used for generating and pro-
cessing big Data in various different applications.
The purpose of this essay is to review, MapReduce,
its architecture, big data and an appropriate use of
programming model in conjunction with the applica-
tions of MapReduce in big data have been discussed
thoroughly. Also, we have surveyed and analyzed
the implementations of MapReduce. The applications
of MapReduce framework in different contexts like
the cloud, multi-core system, and parallel compu-
tation have been investigated precisely. This paper
examines and categorized a number of applications
which have been surveyed in MapReduce Framework
based on Graph processing, Join and parallel queries,
optimizing frameworks, multi-core systems, and data
allocation. The goal of the MapReduce Framework
is to provide an abstraction layer between the fault-
tolerance, data distribution and other parallel systems
tasks, and the implementation details of the specific
algorithm. Obviously, the requirements of MapReduce
applications is growing rapidly. This survey gives the
reader a general review of the MapReduce applica-
tions and it will be a good introductory reference to
improve the article that is easier to comprehend.
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