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Abstract Energy efficiency has grown into a lat-
est exploration area of virtualized cloud computing
paradigm. The increase in the number and the size
of the cloud data centers has propagated the need for
energy efficiency. An extensively practiced technol-
ogy in cloud computing is live virtual machine migra-
tion and is thus focused in this work to save energy.
This paper proposes an energy-aware virtual machine
migration technique for cloud computing, which is
based on the Firefly algorithm. The proposed tech-
nique migrates the maximally loaded virtual machine
to the least loaded active node while maintaining
the performance and energy efficiency of the data
centers. The efficacy of the proposed technique is
exhibited by comparing it with other techniques using
the CloudSim simulator. An enhancement in the aver-
age energy consumption of about 44.39 % has been
attained by reducing an average of 72.34 % of migra-
tions and saving 34.36 % of hosts, thereby, making the
data center more energy-aware.
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1 Introduction

Cloud computing [1] characterizes a vital step in com-
puting by offering shared computational power of the
resources on demand [10]. Being grounded on the
fundamental concept of virtualization [2], it has sig-
nificantly transformed the manner of delivering the IT
services with minimized infrastructural requirements.
The virtual environment involves the creation of mul-
tiple VMs (or virtual servers) on a single physical
node. In actual context, the multiple operating systems
(OSs) can run on a single OS underlying the same
hardware platform. The running of virtual servers
minimizes the resource idle time, thus preventing the
resource under-utilization [16, 17]. Additionally, the
reduction in the amount of required hardware lowers
the power needed for operation which consequently
cuts down the energy demand. The diminution in the
energy demand by the ICT (Information and Com-
munication Technology) sector is highly appreciated
in the current scenario of rising energy crisis. Energy
efficiency [3] has thus gained prominence in the ICT
data centers that host massive servers resulting in the
induced upsurge of energy consumption levels [13].

The emergence of cloud computing and the virtu-
alization support offered by it, has further corrobo-
rated the efforts for realizing energy efficient comput-
ing. It has been observed that the virtualized cloud
data centers require lesser energy as compared to
the non-virtualized ICT data centers. The extended
facility of migrating the running VMs without any
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perceptible downtime, from the heavily-loaded nodes
to the lowly-loaded nodes, helps to manage the
workload to minimize the energy consumption. The
decrease in the consumed energy is due to the
improved node utilization that results from a well-
adjusted distribution and execution of workload on
the nodes. The composed distribution of the workload
among the nodes prevents node over-utilization that
would have otherwise occurred. The optimally uti-
lized nodes consume less energy as compared to the
nodes that are over-utilized or under-utilized [18]. The
under-utilization of a node indicates that the node is
sitting idle while the over-utilization of a node means
it is running tasks beyond its capability. The concept
of dynamically and transparently migrating the VMs
from one host to the other, to find the best target host is
known as Live migration [11]. Apart from this, the key
benefit of VM migration is the identification of hot-
spots in the data centers [12]. The over-utilized nodes
are the hot-spots and their identification helps to lower
the energy consumption by migrating their load to the
less utilized nodes, leading to green cloud data centers.

Obtaining the energy optimization through VM
migration by regulating the workload on individual
nodes is an NP (Nondeterministic Polynomial) - hard
problem [14] and the heuristic methods are often used
to resolve such kind of problems. To find an optimal
solution, local heuristics may not be adequate, there-
fore, meta-heuristic approaches are suitable to effi-
ciently crack these types of problems. Meta-heuristic
is a repetitive primary procedure to guide and amend
the jobs of secondary heuristics to yield high-grade
results [15]. The nature-inspired multi-agent Firefly
optimization (FFO) [4] meta-heuristic algorithm is
chosen for this work as it is an efficient and pow-
erful tool to find a nearly optimum solution by first
performing local search and then global search on the
problem’s search space. The local search is called as
Diversification while the task of global searching is
called as Intensification [4, 5, 7].

The motivation for this work is to put forward an
energy-aware VM migration technique applicable in
the cloud environment which will help to lower the
consumed energy in the cloud data centers. This work
proposes a FireFly Optimization based Energy-aware
Virtual Machine Migration (FFO-EVMM) technique
to find the best VM-Host pair. It intends to maximize
the energy-efficiency through the optimum migration

of VMs, thereby improving the resource utilization
levels. Several Bio-inspired techniques that exploit
the behavioural and social instincts of the biologi-
cal creatures exist today. The reasons for choosing
FFO technique for our work over other social behav-
ior inspired techniques are: (1) It offers systematic
partitioning and capability to handle multiple modes,
(2) its computation time is less in possibility of find-
ing the global optimized answer, (3) it has high speed
of convergence which is due to the quality parame-
ters that can be regulated, (4) a balanced and optimal
solution is obtained by properly exploiting and explor-
ing the problems search space, (5) it involves lesser
number of function evaluations, (6) its status can be
changed from one optimization point to the other one,
(7) random variables are used and the answers have
the probable nature [5, 7–9].

The contribution of our work is as follows:

– An energy-aware meta-heuristic technique that
performs live migration of the VMs from one
active node to the other active node.

– Our approach makes use of a bio-inspired Firefly
optimization technique to achieve energy effi-
ciency in cloud data centers.

– The energy-efficiency has been maximized
through the optimum migration of VMs, thereby
improving the resource utilization levels.

– This approach also sustains scalability to the large
number of heterogeneous cloud nodes.

– The achievability of the proposed technique has
been shown by executing it in the CloudSim
simulator [59].

– The efficacy of the proposed technique is exhib-
ited by comparing it with other techniques. An
enhancement in the average energy consumption
of about 44.39 % has been attained by reducing
an average of 72.34 % of migrations and saving
34.36 % of hosts.

The rest of the paper is structured as follows:
Section 2 briefly discusses the related literature. The
Firefly Optimization (FFO) Algorithm is discussed
in Section 3. In Section 4, the proposed FFO-based
VMM technique is described. Section 5 presents the
existing reference algorithms and Section 6 demon-
strates the experimental setup used for the simulations
and result analysis. Section 7 lays out the derived
conclusion and future work.
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2 Related Work

A lot of research is being conducted in the area of
cloud computing to reduce the power consumption
in the data centers as surveyed in [56, 57]. Many
different techniques to overcome the power wastage
have been proposed and devised with and without
VMmigration. Live VMmigration is being vigorously
investigated since long and numerous techniques have
been developed to migrate a running VM from one
active node to the other active node. It has been
observed to be an influential technique for efficiently
managing the data center energy. Most of the prevail-
ing VM migration methodologies for energy manage-
ment in cloud data centers are not straight forward,
as primarily they involve VM consolidation or VM
placement approaches at the higher level of implemen-
tation. Thissection briefly discusses such techniques.

Feller et al. [30] have put forward a scalable and
autonomic VMs management framework that uses a
centralized ACO-based VM consolidation algorithm
to locally consolidate the VMs. Tarighi et al. [24] have
offered a fuzzy decision making based VM migra-
tion scheduling algorithm, that discovers the maxi-
mally loaded servers and takes a migration decision
by using TOPSIS (Technique for Order Preference
by Similarity to Ideal Solution) approach. Wood et
al. [25, 26] have suggested two gray-box and black-
box approaches for virtualized cluster to diminish the
hotspots by monitoring and detecting hotspots and
then allowing the live migration of VMs. Marzolla et
al. [32] have projected a VM consolidation protocol
based on a coarse-grained gossip that apply local VM
consolidation by migrating the VMs from the smallest
laden node to the greatest laden node. All the above
mentioned techniques have considered VM migration
in one or the other way, but there is no reflection of
energy savings. Thereby, these techniques differ from
our proposed approach, which principally aims to
achieve energy savings with the help of VMmigration
in the cloud data centers.

Nathuji et al. [45] have designed an architecture
for the management of the energy in the virtualized
data centers by using VM live migration to consoli-
date multiple VMs on a single server. Tolia et al. [29]
have practiced a short-term VMmigration for consoli-
dating workloads and to put the under-utilized servers
in the sleep mode. Lim et al. [27] have presented a

way of consolidating VMs onto a lesser number of
hosts by dynamically migrating virtual machines to
save energy in a virtualized environment. A multi-
objective profit-oriented algorithm to place VMs has
been proposed by Goiri et al. [38]. Performance in
terms of SLA violations, energy efficiency and over-
heads of virtualization have been considered in this
algorithm. Ghribi et al. [13] have offered a combina-
tion of an exact VM allocation algorithm and an exact
VM migration algorithm for reducing the number of
nodes and hence to save energy in cloud data centers.
Verma et al. [28, 34] have proposed a framework that
examines the VM placement algorithms by consider-
ing the energy and the migration costs as well as the
performance benefit in a virtualized sever cluster, to
maximize performance and to minimize energy con-
sumption. Mehta and Neogi [40] have preseneted a
ReCon tool to dynamically consolidate servers in data
centers. The VMs are mapped to the servers by con-
sidering the static and the dynamic costs of physical
servers, the cost of VM migration, and the resource
consumption data from the history.

The work cited in [13, 27–29, 34, 38, 40, 45], does
not consider energy consumption done by memory
unlike our FFO-EVMM technique which in addition
to the CPU energy consumption offers energy opti-
mization at the memory level as well. In other words,
it tries to handle the impact of time-space parameters
in terms of the consumed energy.

An approach for VM consolidation has been
offered by Cardosa et al. [37] that agrees to the high-
est and lowest resource requirements of the VMs
to achieve energy-efficiency. Resource utilization is
improved and energy consumption is reduced by con-
solidating several VMs onto a single server. Effectual
energy-aware heuristics to allocate VMs dynamically
have been advocated by Beloglazov et al. [17, 35, 36].
These heuristics practice live migration of VMs to
minimize energy consumption by reducing the num-
ber of used nodes and without having required the
knowledge of VMs applications [44, 61]. A solution
for VM placement and consolidation that is grounded
on Bernoulli trials has been proposed by Mastroianni
et al. [31] by considering energy and migration cost.
Dong et al. [41] have recommended a scheme to place
VMs that meets several resource restrictions to reduce
energy consumption by enhancing resource utilization
and by saving number of used servers and network
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elements. All these papers [17, 31, 35–37, 41, 44, 61]
have emphasized on the VM placement techniques
and their focus is mainly on reducing the used servers
in order to lower the energy levels whereas our work
employs a VM migration technique to reduce the
energy consumption by saving hosts and minimizing
VM migrations.

Vu et al. [43] have projected a VM placement
algorithm that enhances the performance of commu-
nication by decreasing the overall cost of the virtual
machine traffic and saves energy by increasing the uti-
lization of the CPUs. Sekhar et al. [46] have designed
an energy efficient VM live migration technique based
on greedy heuristics to curtail the consumed energy in
cloud data centers. Jung et al. [50] have established
a framework to optimize the energy consumption by
using the live VM migration for consolidating virtual
servers and by switching-off the idle servers in cloud
data centers. Bila et al. [49] have offered a technique
that partially migrates the VMs that are idle and are
running on the desktops of the users to a consolidation
server to reduce overall consumed energy. Graubner
et al. [39] have extended the Eucalyptus cloud man-
agement framework to incorporate the support for live
migration and consolidation. Xiaoli et al. [42] have
presented an energy-aware VM placement algorithm
for making cloud data centers more energy-efficient
by increasing resource utilization. The resource uti-
lization as well as the energy cost in migrations have
been considered in their approach. Unlike our tech-
nique, none of the techniques listed in this paragraph,
deals with CPU and memory utilization for lowering
the energy consumption. Also, they attempt to dimin-
ish the consumed energy without considering the hosts
and the VM migrations whereas FFO-EVMM cuts
down the used energy accomplished by saving the
number of nodes and by lowering the number of
migrations.

The work in [63] focuses on enhancing cloud ser-
vice reliability by using storage and network resources
optimally, where as our work focuses on enhancing
the energy efficiency of the cloud data centers by
improving the usage of CPU and memory resources.
Although in both the papers, CloudSim has been
used for the implementation, but, their algorithm
exploits data centers network architecture character-
istics and node failure predictor to minimize the net-
work resource usage, whereas, our algorithm migrates

the maximally loaded virtual machine to the least
loaded active node while maintaining the performance
and energy efficiency of the data centers.

The technique mentioned in [33] mainly targets
the reduction in the number of active nodes and the
number of VM migrations to cut down the consumed
energy in the overall data center. The FFO-EVMM
also minimizes the number of nodes and VM migra-
tions but it individually computes the energy con-
sumption of VM and node thereby keeping a track of
the energy consumption of each and every VM and
node in the cloud data center. The purpose behind
computing the individual node and VM energy is
to analyze the workload handling capacity of the
node. The workload handling capacity of the node
can be considered as the capability of a node to
process the types of workloads while keeping the
energy consumption under a set threshold. Our pre-
existing work for the FFO-EVMM technique is the
resource utilization technique described in [6] deals
with two different types of workloads- CPU-intensive
and memory-intensive. It is important to carefully
consolidate variable workloads in order to avoid con-
tention of resources. The contention among resources
can cause performance degradation and hence energy
wastage. The FFO-EVMM also provides workload
scalability such that a large number of workloads can
be processed without violating the energy constraints.

The authors in [35] advocate different energy-
aware heuristics for dynamically allocating VMs in
accordance with the current resource utilization. The
live migration of VMs is practiced to set aside the
free resources that are then switched to the sleep
mode, hence cutting down the energy consumption
done by them when in idle mode. The main focus for
preserving the free resources is to lower the SLA vio-
lations and to improve the energy-efficiency of the
data center. These heuristics run on varied underlying
infrastructure and assorted VMs while maintaining the
SLA constraints imposed by the users. They have pri-
marily attempted to optimize the energy consumption
done by the processor while missing out the energy
consumption done by the memory. The memory is one
of the most vital elements of emphasis in the power
and energy usage optimization in the current scenario
[58]. In order to achieve an optimal VMmigration and
placement, it is important to consider the current uti-
lization of processor and memory which have been
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observed to be the major power consuming units in
a system [35, 58]. Our proposed FFO-EVMM tech-
nique effectively offers the energy optimization at
both the processor and memory level. Apart from this,
it attempts to minimize the number of VM migrations
and the number of hosts, thus avoiding further energy
wastage. Furthermore, it is based on an energy-aware
resource utilization technique that helps to improve
the utility levels of the resources while preventing the
performance degradation. It also takes into account
the energy consumed by NAS unlike the above two
techniques.

Based on the investigation of the existing works,
it can be inferred that most of the techniques have
focused on energy management largely through VM
consolidation and VM placement. Likewise, the pro-
posed technique focuses majorly on the improvement
in the performance and energy consumption levels
through VM migration. Additionally, our technique is
based on the bio-inspired FFO technique. With the ris-
ing diversity and complexity of large-scale distributed
computing services, there is a necessity to design
more scalable, heterogeneous and sustainable comput-
ing techniques that can conjointly deal with the other
issues such as heterogeneity and growing energy crisis
as well. Thus, apart from the underlying infrastruc-
ture support (available through cloud computing in
this case), it is important to explore and adopt new
paradigms.

Currently, many researchers are focusing and
implementing the biologically inspired computing as
a preferable paradigm to handle these issues with pro-
ficiency and without the augmented complication. In
spite of the several inherent challenges encountered
while surviving in an enormous, dynamic, incred-
ibly diverse, and highly complex environment, the
biological organisms evolve, self-organize, self-repair,
navigate, and flourish. This is possible with their local
knowledge and without any centralized control [53,
54]. This prompted the research community to dis-
cover and learn lessons from the biological systems
such as Ant Colony Optimization (ACO) [20, 22],
Artificial Bee Colony (ABC) [21], Bacterial Foraging
Optimization (BFO) [62], Particle swarm optimization
(PSO) [4, 22] techniques etc.

For our work, we have chosen biological behaviour
of firefly insects and have devised FFO-based migra-
tion technique. The criteria for choosing it is its faster

convergence speed and global optimization attain-
ment. Furthermore, it exploits the concept of curtailing
the overall upsurge in the incremental power due to
the new VM migrations and has never been used pre-
viously for VM migration approach. Like most of the
VM migration techniques, the designed FFO based
technique saves the storage space by using the capa-
bility of Network Attached Storage (NAS) [47, 48]
which is not the case in all the above mentioned tech-
niques except the work done in [33]. The use of NAS
helps to store the VM images and data thereby saving
space and offering faster data access capabilities. In
the scenario of energy consumption by VMmigration,
a linear model based on FFO is formulated that runs an
FFO algorithm which is able to solve the energy con-
sumption issue with the attraction property of fireflies.
The capability of fireflies to get attracted towards the
brighter fireflies is the basis for considering the FFO.

3 Firefly Optimization (FFO) Algorithm

The Firefly Optimization (FFO) algorithm has been
designed by Xin-She Yang in the late 2007 and 2008
at Cambridge University [4, 5, 7]. It is centred on the
flashing features of fireflies and uses the subsequent
three idealized procedures: (1) One firefly is attracted
to the other fireflies irrespective of their sex as all fire-
flies are unisex, (2) The attractiveness is proportionate
to the brightness, thus they both decrease as their dis-
tance increases and for any two flashing fireflies, the
less brighter one will travel near the brighter one. If
no firefly is brighter than a specific firefly, it moves
arbitrarily and (3) The brightness of a firefly is regu-
lated by the landscape of the objective function to be
optimized.

Thus, the variation of the attractiveness β with the
distance r can be defined as [4, 5, 7]:

β = β0e
−γ r2 (1)

where β0 is the attractiveness at r = 0. The movement
of a firefly i is attracted to another more attractive
(brighter) firefly j is determined by [4, 5, 7]:

xt+1
i = xt

i + β0e
−γ r2ij

(
xt
j − xt

i

)
+ αtε

t
i (2)

where αt is the randomization parameter that controls
the randomness and εt

i is a vector of random num-
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bers drawn from a Gaussian distribution or uniform
distribution at time t . The second term is due to the
attraction and the third term is due to randomization.
If β0 = 0, it becomes a simple random walk. On the
other hand, if γ = 0, it reduces to a variant of particle
swarm optimization (PSO) [4, 22].

4 Proposed FireFly Optimization—Energy-Aware
Virtual Machine Migration (FFO-EVMM)
Technique

The prior work related to the scheduling aspect of
the proposed technique has already been done and is
available in our previously published work [6]. The
previous work proposed an energy-aware resource
utilization model which is shown in Fig. 1.

The model facilitates the energy-aware schedul-
ing decisions by properly and efficiently managing
the cloud resources. It further uses an Artificial Bee
Colony (ABC) based energy-aware resource utiliza-
tion technique to provide the required resources to the
users’ applications in a way to improve the resource
utilization levels and to diminish the energy con-
sumption in the cloud data centers without degrading
the performance. The energy saving is also done by
keeping the idle nodes in a sleep mode. Also, the
energy-aware decisions are based on the past resource
utilization and energy consumption data. Therefore,
it can be said that the model enhances the utility
levels of the server resources, reduces the energy con-
sumption and hence the heat dissipation in the cloud
data centers, thus contributing directly to the green
computing.

Its problem formulation, energy model, mathemat-
ical explication and the detailed working are given in
our previously published work [6].

The present work proposes an energy-aware vir-
tual machine migration technique for cloud computing
that is based on the flashing behavior of fireflies. This
technique tries to migrate the most loaded VM from
an active node which satisfies a minimum criteria for
energy consumption, to another active node that con-
sumes the least energy. It consists of four main parts,
A) Selection of source node, B) Selection of VMs, C)
Selection of destination node and D) Distance updated

values. The description of all the above parts is as
follows:

A. Selection of source node: The source node is
the active node from where the VMs have to be
migrated. The active node which is at the least
distance(defined in step 4.) from the destination
node, is selected as the source node. For this, the
following steps are done.

Step 1. The CE of each active node is calculated
using the (3) and then, all the values are stored in a
list.

Fig. 1 Energy-aware resource utilization model[6]
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1. Compute CE for each active node using the
following equation

CEi =

(
v∑

j=1

u∑
k=1

cpuijk

)(
v∑

j=1

u∑
k=1

muijk

)

M
× t

(3)

where v is the number of VMs running on the
ith node and u is the number of jobs assigned
to v VMs. cpuijk and muijk are the processor
and the memory utilizations of k jobs running
in j VMs on the ith node respectively and M is
the number of memory units [6].

2. Store these values in a list, CE.

Step 2. Time-based optimization: After computing
the CE of each active node, the next step is to
optimize the proposed technique for performance
in terms of minimizing the execution time (Node
Computation Time). The Node Computation Time
(NCT) is calculated for each active node using the
(4) and the values are again stored in a list.

1. Compute Node Computation Time (NCT ) for
each active node using the following equation

NCTi =
v∑

j=1

u∑
k=1

NCTijk (4)

where NCTijk is the execution time of k jobs
running in j VMs on the ith node [6].

2. Store these values in a list, NCT.

Step 3. Attraction Index (AI): The attraction prop-
erty of the fireflies has been modelled by comput-
ing an AI value. The AI value is calculated using
Indexed based searching and a sorted AI list is pre-
pared according to CE values. The active node with
the least CE is obtained as the first element of the
list.

1. Compute AIi(CEi, NCTi) for each active
node,
where AIi is the Attraction Index, CEi

is the energy consumption and NCTi is the
Node Computation Time for the ith node
respectively.

2. Store these values in a list, AI and sort this list
in an ascending order according to CE values.

Step 4. The node to be selected as a potential source
for VM migration, must satisfy a minimum criteria
for energy consumption and this is controlled by a
distance value which is computed by using the (5).
When finding a solution, this distance has to be the
least in order to keep the energy consumption to the
minimum. Thus, the node is selected, which has the
CE value nearest to the computed distance value,
to be the source node from where the VMs will be
migrated.

1. Compute Distance, using the following equa-
tion:

Distance = Avg(AImid, AImax) (5)

where AImid and AImax are the middle and the
maximum values from the AI list.

2. Select the node with CE value closest to the
above computed Distance value.

B. Selection of VMs: The VMs to be migrated are
determined.

Step 5. To select the VMs to be migrated from the
source node, calculate the load of each VM on the
source node according to the (6). Then, these val-
ues are stored in a list and the list is arranged from
higher load value to the lower load value. The VM
with the highest load value is selected to be moved
to the destination node.

1. Compute Load for each VM of the above
selected node at time instance �t , using the
following equation:

Loadij =

v∑
j=1

jobj

⎛
⎜⎝

v∑
j=1

cpuij

v∑
j=1

muij

M

⎞
⎟⎠ × �t

(6)

where jobj represents the total number of
jobs running in the j th VM on ith node

and

(
v∑

j=1
cpuij

)(
v∑

j=1
muij

)

M
is the total consumed

power of the ith node in �t units of time.



334 N.J. Kansal, I. Chana

2. Store these values in a list, Load and sort this
list in the descending order.

3. Move the first element of the obtained list,
Load to the first element of the AI list, i.e. move
the most loaded VM towards the most brightest
node.

C. Selection of destination node: The destination
node for VMs is discovered.

Step 6. Discovering the most brightest node: The
property of fireflies to move towards the brighter
nodes requires to identify the brighter node. The
node is said to be the brightest if its energy con-
sumption (CE) is minimum. The active node with
the least CE is obtained as the first element of
the AI list and is thus the primary contender for
migrating the overloaded/culprit VMs to it.

D. Distance Updated Values: The distance values
are updated.

Step 7. The updation involved after each iteration is
the updated value for the distance, which is given
by the (7) as follows:

(Distance)t+1 = (Distance)t

+

v∑
j=1

jobj

⎛
⎜⎝

v∑
j=1

cpuij

v∑
j=1

muij

M

⎞
⎟⎠ × �t

+ ε(7)

where (Distance)t & (Distance)t+1 are the dis-
tance values at time t & t + 1, second term is
due to the Load and ε is the gaussian distribu-
tion error. The corresponding pseudocode is given
below and the pseudoflow & interaction chart for
the FFO-EVMM technique has been presented in
Fig. 2.

An example has been provided to have a bet-
ter understanding of the algorithm. Suppose that
there are 5 active nodes (N1....N5) and 12 VMs
(V M1....V M12) are running on them. Let the VMs
V M1 and V M3 are running on the node N1 which is

represented asN1 = (V M1, V M3), and same is for all
the other four nodes, i.e. N2 = (V M2, V M4, V M6),
N3 = (V M5, V M7), N4 = (V M8, V M10, V M11)

and N5 = (V M9, V M12). The CE values of these
active nodes are calculated using the (3) as 1308.89
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Fig. 2 Pseudoflow &
interaction chart for
FFO-EVMM technique

Wsec, 2507.24 Wsec, 1764.06 Wsec, 2872.72 Wsec
and 1922.52 Wsec respectively, and the NCT val-
ues of these active nodes are calculated using the
(4) as 0.36 sec, 0.38 sec, 0.42 sec, 0.49 sec and
0.53 sec respectively. These values are used to find
the AI values as AI 1 = (1308.89, 0.36), AI 2 =
(2507.24, 0.38), AI 3 = (1764.06, 0.42), AI 4 =
(2872.72, 0.49) and AI 5 = (1922.52, 0.53). The
AI values are stored in a list which is sorted in
an ascending order of CE, to obtain another list as
(AI 1 = (1308.89, 0.36), AI 3 = (1764.06, 0.42),
AI 5 = (1922.52, 0.53), AI 2 = (2507.24, 0.38) and
AI 4 = (2872.72, 0.49)). Now, the distance value is
computed as the average of AI 5 = (1922.52, 0.53)
and AI 4 = (2872.72, 0.49) using the (5), which is
equal to (1922.52 + 2872.72)/2 = 2397.62 Wsec.

Next step is to select that node from the sorted AI list
whose CE value is nearest to 2397.62 Wsec, which
is the node having value 2507.24, that is the node
N2 which becomes the source node from where the
VMs will be migrated. Now the load of each VM on
the node N2 is calculated using the (6) as V M2 =
835.75 Wsec, V M4 = 1253.62 Wsec and V M6 =
417.87 Wsec. These values are stored in a list and
that list is sorted in descending order and a list is
obtained as (V M4, V M2, V M6). Therefore, the V M4

becomes the VM to be migrated. Next, the destina-
tion node is chosen where this VM will be moved.
As the destination node is the node with the least CE
value, it is obtained from AI list where The nodes are
arranged in ascending order of CE. So, the first ele-
ment of the sorted AI list, that is the node N1 is the
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destination node where V M4 will be migrated and the
distance value will be updated using the (7) for the
next iteration.

Whenever a running VM needs to be migrated, the
entire state of the VM (embracing the virtual CPUs,
the drivers’ configuration, the memory of VM and
the storage) is relocated [47]. For the efficient VM
migration and the centralized availability, the images
and data of all the VMs have been stored on a com-
mon storage called the NAS. NAS is reachable to
all the nodes and serves as a storage for the VMs
where non-redundant data is stored [48]. Whenever
a VM is migrated, only in-memory states and CPU
registers of that VM need to be migrated from one
node to the other as its image and storage contents
are accessed from NAS [47, 48]. This saves the stor-
age space, improves the search rate and the look up
time, gears up the flow rate of the data during a VM
migration. This further helps in diminishing the data
transfers and hence the time taken to migrate a VM,
thereby dropping the consumed energy and the asso-
ciated energy expenditures incurred while migrating
VMs from one node to another. The faster execu-
tion of the tasks results in the minimization of the
overall system execution time and hence improves the
performance. Wholely, FFO-EVMM with the use of
NAS, tends to deal with the overheads involved in VM
migrations.

5 Existing Reference Algorithms

Ant Colony Optimization (ACO) [20, 22] and First Fit
Decreasing (FFD) [52] algorithms have been used as
reference algorithms.

5.1 FFD

One of the eminent greedy algorithms for classic bin
packing problems is FFD algorithm. In FFD algo-
rithm, the objects are sorted by their decreasing order
followed by packing each object in the most suitable
bin that can accommodate it. Although, this algorithm
becomes quite effective by sorting the list of objects
decreasingly, yet it does not give an assurance of an
optimal solution. The running time of this algorithm
may escalate for the extensive lists. However, it is
identified that for at least one existing order of the
objects, FFD yields an optimal solution [51, 52].

5.2 ACO

Ant Colony Optimization (ACO) [20, 22] algorithm
has been used as reference algorithm in this work.
ACO is a meta-heuristic to find near optimal solu-
tions by means of a probabilistic technique, which can
be used for problems belonging to the NP class. M.
Dorigo discovered ACO algorithm [20] by perceiving
the usual food-discovering manners of actual ants that
converse indirectly via their surroundings by deposit-
ing a chemical element called pheromone. This mode
of conversation is called stigmergy. A probabilistic
verdict is practiced by the ants for their travel to search
the food where the routes with higher quantity of
pheromone are likely to be chosen. On discovering
the food, the ants dreg the pheromone on their return
to persuade the other ants to trail the food source. A
natural pheromone disappearance process is used to
lessen the volume of pheromone over time to retain
the regularly used paths that lead to the better solu-
tions. Synthetic ants act as a multi-agent system and
create a complex solution when applied on combina-
torial problems like Bin Packing Problem (BPP) [19,
20, 22, 23].

6 Experiments & Results

This section evaluates the proposed FFO-EVMM
algorithm and compares it with the ACO-based and
FFD-based algorithms, using the CloudSim toolkit
[59]. The CloudSim toolkit is an existing cloud
computing simulation framework for accomplishing
simulation-based trials to percept the actual behav-
ior of the algorithm. It is an entirely adaptable tool
practiced for continuous exhibiting, simulation, and
investigation of evolving cloud computing frames and
application amenities. It permits research community
and industry-based developers to focus on explicit
system design concerns that they need to explore,
without bothering about the low-level aspects linked
to Cloud-based frames and facilities. It has been used
for the assessment owing to the subsequent reasons
[59, 60]:

– Enables the cloud users to demonstrate and sim-
ulate huge & extendable virtualized data centers,
offering adaptable strategies for allocating the
resources to the VMs.
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– Helps to model and simulate energy-conscious
computational resources, data center network
topologies and message-passing applications.

– Provisions the run-time insertion of simulation
components, break and continuation of simulation.

– Provides the facility to allocate hosts to VMs as
per the customized procedures.

– Supports policies to allocate the host resources to
VMs.

6.1 Performance Comparison

Table 1 gives the specification details of the hosts
and the VMs in the cluster. Up to 200 VMs and 200
hosts(fireflies) have been simulated and the simulation
is repeated for 40 runs.

The Consumed Energy (CE), the number of saved
hosts and the number of reduced migrations have
been calculated through the proposed FFO-EVMM
technique. The energy consumption has also been
computed using different node utilization thresholds.
The obtained results have been compared to the ACO-
based and the FFD-based techniques and are shown in
Figs. 3–11.

Figure 3 presents the comparative view of the three
techniques, that is, FFD, ACO and FFO-EVMM on
the basis of the required number of active hosts over
the number of virtual machines as independent axis.
It is important to keep a track of the number of hosts
operating in the system in order to prevent situations
where the probability of most of the hosts sitting

idle and consuming unnecessary power is high, which
will violate the minimum energy requirement criteria.
Upon identification of idle hosts, they are set to sleep
mode. Based on the analysis of the obtained results,
it is evident that FFO-EVMM technique runs lesser
number of active hosts in comparison to the other two
techniques. This is because FFO-EVMM runs firefly
optimization algorithm that chooses accurate nodes
for VM allocation with reduced discovery time result-
ing in an optimal utilization of the host nodes. It attains
global optimization with faster convergence speed.
The improvement in the resource utility levels mini-
mizes the number of VM migrations thereby averting
energy wastage.

The same is shown through Fig. 4. The graph in
Fig. 4 depicts the number of VM migrations done
by the three techniques. As observed in the Figs. 3
and 4, the FFO-EVMM technique uses lesser number
of hosts and performs lesser number of VM migra-
tions in contrast to FFD and ACO. The capability
of the FFO-EVMM to pro-actively discover the best
node for VM allocation without compromising with
the energy consumption affects the future migration
decisions and number of VMmigrations required. The
overall energy consumption in the system is optimal
upon the arrival of the new workload, as all the pre-
vious workload allocations to the VMs running on the
system nodes have been done considering the energy
thresholds. Thereby, the need to incur more and more
VM migrations is low while making further workload
allocations as per the energy constraints.

Table 1 Simulation
parameters Parameter Value Comment

No. of VMs 20–200 Backing Cloud Environment

No. of Hosts 10–200 Hosts running VMs

Bandwidth 2.5 Gbps Maximum allowed data rate

Host Types 2 Types of Hosts used

Host PES 2 Dual-core Hosts

Host MIPS 1860–2660 MIPS allocated to each Host

Host RAM 4GB Primary Memory allocated to each Host

Host Storage 1 TB Secondary storage allocated to each Host

VM Types 4 Types of VMs used

VM PES 1 Single-core VMs

VM MIPS 500–2500 MIPS allocated to each VM

VM RAM .5GB-4GB Primary Memory allocated to each VM

VM SIZE 2.5GB Secondary Memory allocated to each VM
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Fig. 3 VMs vs hosts

With the lesser number of required hosts and VM
migrations, FFO-EVMM poses lesser energy demand.
The energy consumption done by FFO-EVMM is low
as compared to FFD and ACO as observed from the

graph given in Fig. 5. The tendency to discover and
reduce the number of active but idle hosts curtails
the energy demand. It attains efficient resource util-
ity levels affecting the number of VM migartions.

Fig. 4 VMs vs number of migrations



FFO-EVMM Technique for CC 339

Fig. 5 VMs vs energy consumption

The reduction in the number of VM migrations
cuts down the amount of the energy consumed, that
would have otherwise been wasted when the VMs

are being migrated. Consequently, the required opera-
tional energy and the energy consumption level drops
down.

Fig. 6 Thresholds vs avg energy consumption
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Fig. 7 Overall improvement of FFO-EVMM

Figure 6 depicts the average energy consumption
at different threshold values according to the host
utilization levels for all the three techniques. It is
visible from the graph that as the utilization of the
hosts increases from 20 % to 80 %, the threshold

values also vary accordingly. Upon simulation, it has
been concluded that at different values of thresh-
olds, in FFD and ACO based techniques, there is a
fluctuation in the energy consumption done by FFD
and ACO. The energy consumed by FFD and ACO

Fig. 8 Improvement graph of FFO-EVMM over FFD



FFO-EVMM Technique for CC 341

Fig. 9 Improvement graph of FFO-EVMM over ACO

in comparison to our proposed technique follows an
irregular behaviour, that is, the energy consumption
keeps on increasing or decreasing for different thresh-
old values. Relatively, the energy consumption in the
FFO-EVMM technique decreases consistently with
varying thresholds. The declining trend in the energy
consumption of FFO-EVMM is due to the improve-
ment attained in the host utility levels because of
energy-aware VM allocation decisions.

6.2 Discussion

Figures 7–10 vindicate the reliability and competence
of our proposed technique. Figure 7 indicates the
overall enhancement of the proposed technique over

the other two. The outcomes determine that an aver-
age of 72.34 % of migrations have been reduced
and 34.36 % of hosts have been saved with FFO-
EVMM.

Due to the less number of migrations and hosts, an
average of 44.39 % of energy has been saved using
FFO-EVMM over ACO-based and FFD-based tech-
niques. Further, the comparison of the proposed FFO-
EVMM technique has been done to FFD-based and
ACO-based techniques separately, to get an insight
into its efficacy over each technique.

When, the FFO-EVMM technique is compared to
FFD-based technique as shown in Fig. 8, on an aver-
age, a reduction of 82.61 % migrations and a saving of
44.43 % hosts & 57.77 % energy have been observed.

Fig. 10 Savings
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Fig. 11 Performance analysis

Figure 9 denotes the comparison of the FFO-
EVMM over ACO-based technique indicating the
saved percentage of the nodes and the energy as
24.29 % & 30.99 % respectively, whereas the percent-
age of the reduced migrations is 62.07 %.

Figure 10 gives the overall and individual sav-
ing percentage of the FFO-EVMM over the rest.
The improvement in the energy consumption and the
decrease in the number of hosts state the effectiveness
of the proposed solution showing the optimization
with reduced number of migrations. The performance
evaluation of VM migration illustrates that the pro-
posed schema can effectively be used for the larger
cloud environment, thus making it highly scalable.

Figure 11 shows the run time analysis for all the
three approaches. It can be interpreted from the graph
that the FFO-EVMM has outperformed the other two
techniques. Being based on FFO, the execution time of
the proposed technique is better than ACO and FFD as
the convergence rate of FFO is very high. The trend-
ing curve shows the improvement in execution time
of the overall applicability of the proposed algorithm.
The lower execution time also decreases the overall
complexity of the system.

7 Conclusion and Future Work

Energy efficiency has appeared as the utmost essen-
tial design requirements for the current computing

systems in recent years. It extends from single servers
to data centers and Clouds, as they consume massive
volumes of electrical power. For this reason, an effec-
tual energy management is particularly essential for
cloud data centers.

Currently, many researchers are focusing and
implementing the biologically inspired computing as
a preferable paradigm to handle heterogeneity and
growing energy crisis with proficiency and without the
augmented complication. Likewise, for our work, we
have chosen biological behaviour of firefly insects and
have devised FFO-based migration technique. The cri-
teria for choosing it is its faster convergence speed
and global optimization attainment. Furthermore, it
exploits the concept of curtailing the overall upsurge
in the incremental power due to the new VM migra-
tions and has never been used previously for VM
migration approach. In the scenario of energy con-
sumption by VM migration, a linear model based on
FFO is formulated that runs an FFO algorithm which
is able to solve the energy consumption issue with the
attraction property of fireflies. The capability of fire-
flies to get attracted towards the brighter fireflies is the
basis for considering the FFO.

In other words, this paper has proposed an energy-
aware virtual machine migration technique that per-
forms live migration of the VMs from one active
node to the other active node. The proposed technique
makes use of a bio-inspired Firefly optimization tech-
nique to find the best node for the overloaded VMs to
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be migrated, to achieve energy efficiency in cloud data
centers. It maximizes the energy-efficiency through
the optimummigration of VMs, thereby improving the
resource utilization levels.

The proposed approach can be used as an effec-
tive solution for VMMigrations in cloud environment
where a large number of nodes are available with the
energy restrictions. Improvement in the results with
respect to the existing approaches—ACO & FFD,
proves the efficacy of the proposed algorithms with
higher scalability and lower number of host usage. The
proposed technique is better in achieving the energy
efficiency as compared to the other techniques as it
saves an average of 44.39 % of energy by saving an
average of 34.36 % of hosts and by reducing an aver-
age of 72.34 % of migrations. Thus, this technique
reduces the energy consumption of cloud data centers
by saving the nodes and the number of migrations,
thereby contributing towards the green computing.

Future work is targeted to study the robustness of
FFO-EVMM technique and further expand its perfor-
mance by verifying it in an existent cloud computing
environment like Aneka [55] or some private, public
or hybrid cloud. Besides, this technique will addition-
ally be used to design an energy-aware load balancing
technique for cloud computing. That load balanc-
ing technique will experimentally be investigated for
performance and efficiency using a real environment.
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