
J Grid Computing (2016) 14:477–493
DOI 10.1007/s10723-015-9351-x

Modelling Fine-Grained Access Control Policies in Grids

Benjamin Aziz

Received: 29 June 2015 / Accepted: 15 September 2015 / Published online: 29 September 2015
© Springer Science+Business Media Dordrecht 2015

Abstract This paper presents an abstract specifica-
tion of an enforcement mechanism of usage control
for Grids, and verifies formally that such mecha-
nism enforces UCON policies. Our technique is based
on KAOS, a goal-oriented requirements engineering
methodology with a formal LTL-based language and
semantics. KAOS is used in a bottom-up form. We
abstract the specification of the enforcement mecha-
nism from current implementations of usage control
for Grids. The result of this process is agent and oper-
ation models that describe the main components and
operations of the enforcement mechanism. KAOS is
used in top-down form by applying goal-refinement
in order to refine UCON policies. The result of this
process is a goal-refinement tree, which shows how
a goal (policy) can be decomposed into sub-goals.
Verification that a policy can be enforced is then
equivalent to prove that a goal can be implemented by
the enforcement mechanism represented by the agent
and operation models.

Keywords Access control · Grid authorisation ·
Usage control

B. Aziz (�)
School of Computing, University of Portsmouth,
Portsmouth PO1 3HE UK
e-mail: benjamin.aziz@port.ac.uk

1 Introduction

Grids [1] and Data Grids [2] are technologies pro-
viding access to large-scale distributed computing and
storage capabilities that span multiple administrative
domains and are anchored on a variety of operat-
ing systems and technologies. This heterogeneous
distribution of resources requires scalable, flexible,
and fine-grained access control to protect both indi-
vidual and shared resources. At the same time, any
access control mechanism must be driven by well-
structured and well-formulated policy goals capturing
the requirements of the resources, their providers and
their users.

This paper studies the formulation of the require-
ments of fine-grained access control enforcement in
Grid systems as a case-study in how security pol-
icy requirements can be formalised in large-scale
distributed systems. Fine-grained access control tech-
niques, or also known as usage control, extend tradi-
tional access control mechanisms by controlling data
and resources usage as well as their access at the entry
point [3, 4]. The application of usage control tech-
niques to Grid systems has been demonstrated in the
past in works such as [5, 6]. Here we adopt the ref-
erence usage control model as proposed by Park and
Sandhu in [3], which is also known as the UCONabc

model.

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10723-015-9351-x-x&domain=pdf
mailto:benjamin.aziz@port.ac.uk


478 B. Aziz

Our approach is to define a usage-based Grid autho-
risation architecture, which uses the functional com-
ponents of the current Grid systems as outlined by
the Open Grid Forum (OGF)1 group on Grid autho-
risation (part of the Security Area). We focus on two
important aspects in the design of policy-based man-
agement systems: the refinement of policies expressed
as requirements on the system, and the specification
of enforcement mechanisms derived from the above
requirements. In formalising the requirements of an
enforcement mechanism for Grid UCONabc poli-
cies, we adopt the KAOS requirements-engineering
methodology [7].

Our approach is to use the KAOS methodology to
show how one can abstractly specify a UCONabc pol-
icy as a goal or a requirement on the system and its
resources. The specification is expressed in the tem-
poral linear logic-based language provided by KAOS.
We then derive the KAOS agent and operation mod-
els for each of the requirements (polices) specified.
This way, we formally show that the enforcement
mechanism is sound and complete, and capable of
enforcing all the policies pertaining to the UCONabc

family of core models. For reasons of conciseness, we
limit ourselves in this paper to the refinement of a
couple of UCONabc models, namely the PreA0 and
OnA3 models [8]. Nonetheless, the approach is gen-
eral to be applied to the rest of the UCONabc family of
models.

The rest of the paper is structured as follows. In
Section 2, we give some background on the UCON
model providing an overview of the various elements
that constitute the model. We then review the exist-
ing literature related to UCON implementations for
Grid systems in Section 3, and we define a reference
architecture for Grid usage control, which is based
on OGF’s OGSA architecture. In Section 4, we give
an overview of the KAOS requirements engineering
methodology and its various models. This method-
ology is then used to formalise an abstract specifi-
cation of a Grid UCON enforcement mechanism in
Section 5, and in Section 6, we use KAOS to derive
the enforcement mechanism operations for a couple
of UCON policy examples; PreA0 (Section 6.1) and
OnA3 (Section 6.2). Finally, we discuss related work
in Section 7 and conclude the paper in Section 8 giving
directions for future work.

1Web address: http://www.ogf.org

2 The UCONabc Model

The UCONabc usage control model is a framework
defined by Park and Sandhu [3, 9] for the specifica-
tion of fine-grained access and usage control policies.
Henceforth, we simply refer to this framework as
UCON. In UCON, subjects (i.e. users) and objects (i.e.
computational resources) may have mutable as well
as immutable attributes, thereby facilitating the conti-
nuity of the decision-making process when enforcing
security policies. This means that the decision to allow
a user access to a resource is continuously reviewed
before and during the user’s access to the resource.
The decisions themselves are based not only on autho-
risations, but also on obligations and conditions. As
Grid resources must continuously be monitored for
efficient use since the applications that utilise them
are generally computationally intensive, the UCON
model becomes an attractive security policy solution
that can offer fine-grained monitoring and control of
such resources.

Elements of the UCON model include:

– Subjects, Objects and Rights: The subject is the
entity that exercises rights, i.e. that executes
access operations on objects. An object, instead,
is an entity that is accessed by subjects through
access operations. Rights are the privileges that
subjects can exercise on objects. UCON deter-
mines the existence of a right dynamically, when-
ever a subject attempts to access and exercise a
right on some object.

– Attributes: Both subjects and objects have
attributes. These attributes can be mutable, i.e.
they can change over time and be updated, or
immutable, i.e. they are constant and cannot
change over time. An example of a mutable
attribute is the number of times that a subject
accesses an object, whereas an immutable is a
subject’s or an object’s identity.

– Predicates: Predicates are logical statements
about the subjects’ and objects’ attributes and the
requested right. Predicates can be either autho-
risation, obligation or condition predicates or
any combination of these. Authorisation predi-
cates express set rules that determine whether
to grant the requested right or not, and could
exploit both attributes of subjects and objects.

http://www.ogf.org


Modelling Fine-Grained Access Control Policies in Grids 479

Fig. 1 Access and usage
control stages in the UCON
model [8]

The evaluation of the predicates can be performed
before or during the execution of an action. Obli-
gation predicates are UCON decision factors that
are used to verify whether the subject has satisfied
some mandatory requirements before performing
an action or whether the subject continuously sat-
isfies these requirements while performing the
action. Finally, condition predicates are environ-
mental or system-oriented decision factors, i.e.
dynamic factors that do not depend on subjects
or objects. Condition predicates are evaluated at
runtime when the subject attempts to perform the
access, and they can be evaluated before or during
an action.

The complete UCONabc family of models encom-
passes several factors. These factors include the pres-
ence of Authorisations (A), oBligations (B) and Con-
ditions (C), pre- and on-going decisions, as well as
the mutability of attributes (immutable (0), mutable
preUpdate (1), mutable onUpdate (2) and mutable
postUpdate (3)). The various UCON models differ in
the presence of attribute updates and in the sequen-
tiality of the operations taking place. Therefore, an
enforcement mechanism for UCON policies must be
able to enforce not only the single operations, but the
sequence in which these operations are invoked. The
different actions that subjects and the system can per-
form in the UCONmodel relate to the different phases
of an object’s usage. Given that the triple (s, o, r)

represents the subject s requesting the right r for
accessing the object o, we consider the following set
of actions [8]:

(i) tryaccess(s, o, r): performed by subject s when
performing a new access request,

(ii) permitaccess(s, o, r): performed by the system
when granting the access,

(iii) denyaccess(s, o, r): performed by the system
when rejecting the access,

(iv) revokeaccess(s, o, r): performed by the system
when revoking an ongoing access,

(v) endaccess(s, o, r): performed by s when end-
ing an access,

(vi) update(s, o, r): performed by the system to
update a subject’s or an object’s attributes, any-
time before, during or after the access and
usage of the object.

The various stages of the UCON access and usage
control are shown in Fig. 1.

All the UCON authorisation policies are defined for
positive permissions: if there is no policy to enable the
permission according to the attribute values, then the
access is denied by default. This is sometimes called
the closed system assumption, whereby no policy is
specified to deny an access in a system. The same
holds for obligation and condition core models.

3 Usage Control for Grids

In this section, we first review some reference imple-
mentations of UCON for Grids. Then, using notions
extracted from the implementations and from the
OGF’s Open Grids Services Architecture (OGSA)
authorisation working group,2 we introduce the tar-
get Grid security architecture for our UCON-policy
enforcement mechanism.

2Web address: https://redmine.ogf.org/projects/ogsa-authz-wg/

https://redmine.ogf.org/projects/ogsa-authz-wg/


480 B. Aziz

There exists a number of implementations of the
UCON model tailored for Grid systems, e.g.[5, 6, 10,
11]. In [5, 10], the authors provide a model of usage
control for computational Grids, following Park and
Sandhu’s UCONabc model [3]. One of the contribu-
tions of their work is the use of a special process
algebra, called the POlicy Language based on Process
Algebra (POLPA). POLPA is used as a policy specifi-
cation language, which is especially suitable to model
usage control policies related to the UCONabc model.
The process algebra is also capable of expressing the
order in which the security-relevant actions are to be
performed.

The POLPA-based prototype implements an archi-
tecture where the main components are a Policy
Enforcement Point (PEP) and a Policy Decision Point
(PDP), such as is the architecture in most of the com-
mon distributed authorisation systems [12]. The PEP
receives a request from an external user and gener-
ates a tryaccess(s, o, r) action that it sends to the
PDP. Similarly, when the subject ends their access to
the object, the PEP generates an endaccess(s, o, r)

action to the PDP. The PDP gets the security pol-
icy from a repository, exploits its representation and
determines whether the access should or should not be
allowed, returning to the PEP a permitaccess(s, o, r)

or a denyaccess(s, o, r) action. The PDP continuously
evaluates a set of given authorisations, conditions and
obligations while an access is in progress, and it could
invoke the PEP to terminate the access through the
revokeaccess(s, o, r) action, if any of the predicates
associated with it becomes false.

In [6], Zhang et al. propose a UCON prototype
implementation for Grids and collaborative applica-
tions, by following a layered approach with pol-
icy enforcement and implementation models, called
the Policy-Enforcement-Implementation (PEI) frame-
work. The security architecture leverages a cen-
tralised attribute repository in each virtual organisa-
tion and a usage monitor in each resource provider
for attribute management. The policies are specified
with the eXtensible Access Control Markup Lan-
guage (XACML) [12], which, as recognised by the
same authors, suffers from the impossibility to exactly
encode an abstract UCONabc policy, this is despite the
fact that in recent years, some works (e.g. [13, 14])
have attempted to use XACML to encode usage con-
trol, to varying degrees of success. Within the archi-
tecture, both PDP and PEP are located on the resource

provider side. For an access, the PDP collects the sub-
ject and object attributes, the system attributes, and
makes the usage control decision, which is enforced
by the PEP. The immutable subject attributes are
pushed to the PDP by the requesting subject.

Related to the above POLPA language and policy
enforcement architecture, [15], have proposes a cou-
ple of methods for testing any implementation of the
architecture based on two strategies; a fault-based to
uncover vulnerabilities and problems that may occur
during a PDP implementation, and the other is based
on conditions coverage with a methodology for sim-
ulating the continuous control of the PDP during
the runtime execution. In [11], an architecture and
implementation were proposed for enforcing UCON
policies in a Grid system, based on the Globus Grid
middleware3 [16]. The architecture extended that for
POLPA, and the language used was also a simplified
version of the POLPA policy language.

In [17], the OGSA authorisation working group
proposed some functional components for a Grid ser-
vice provider authorisation service middleware. In
their work, great attention was put on credentials,
defined as attribute assertions digitally signed by the
issuer that can be cryptographically validated. Cre-
dentials can be issued by Credential Issuing Services
(CISs) and validated by Credential Validation Ser-
vices (CVSs), which return the valid attributes of the
subject. Other functional components comprise the
usual PDP and PEP components, as well as Context
Handlers (CHs) responsible for handling the com-
munications between PEPs, CVSs and PDPs. The
interactions between these functional components can
be constructed in four different ways, according to
whether the credentials and the authorisation decisions
are pulled or pushed.

A usage-based Grid authorisation architecture does
not require changing the way the functional compo-
nents interact with one another. As the reader can
see in Fig. 2, an access requestor (a Grid User)
pushes his/her credentials to a PEP. Then, after the
CH obtains valid attributes from the CVS, a PDP is
interrogated for an authorisation decision, which in
the end is returned to the PEP. From a UCON point
of view, valid attributes released by a CVS are exam-
ples of immutable (persistent) attributes, and would

3Web address: https://www.globus.org

https://www.globus.org


Modelling Fine-Grained Access Control Policies in Grids 481

include information such as the name or identity of
the user. A complex UCON PDP should be able to
evaluate policies where the predicates are statements
about the subjects’ and objects’ attributes. Three sub-
components, namely the Reference Monitor, the Pred-
icate Validator and the Attribute Manager make up
the UCON PDP. They are explained with details in
Section 5.

External components are needed to supply the
UCON PDP with the needed information: (i) a Virtual
Organisation (VO) UCON policy repository provides
the PDP with the UCON policies to be evaluated,
(ii) a meta-data repository provides the PDP with
the optional immutable object attributes, (iii) a VO
attributes repository stores the mutable attributes of
the subjects, and finally (iv) a Resource Provider (RP)
attributes repository stores the mutable attributes of
the objects.

For an access, the PDP collects the immutable sub-
ject and object attributes, as well as search for the
UCON policies to be enforced. The policy is selected
using the access requestor ID (the UCON subject),
and the UCON object requested. Mutable subject and
object attributes are pulled by the PDP from the VO’s
centralized attribute repository, and from the local
RP’s usage monitor. The updates of mutable subjects’
and objects’ attributes are performed by the Attribute
Manager. Since we only deal with the UCONa fam-
ily of core models, the usage-based Grid autho-
risation architecture does not take into considera-
tion components for obligations and conditions-based
decisions.

4 KAOS or Keep All Objects Satisfied

Knowledge Acquisition in autOmated Specification
(KAOS) [18], or sometimes referred to as “Keep All
Objects Satisfied”, is a generic methodology based on
capturing, structuring and precise formulation of sys-
tem goals [7, 18]. A goal is a prescriptive description
of system properties, formulated in non-operational
terms. A system includes not only the software to be
developed but also its environment. Goals are refined
and operationalised in a top-down manner as the sys-
tem is designed, or with a bottom-up approach while
re-engineering existing systems. The approach also
supports adverse environments, composed of possi-
bly malicious external agents trying to undermine the
system goal rather than to collaborate in the goal ful-
filment. As a Grid system is typically composed of
a large number of nodes interacting in an open and
adverse environment, this approach fits our needs well
and although we do not deal here with Grid attacks
and vulnerabilities, this would be interesting future
research.

The KAOS methodology offers a number of
models:

– The goal model captures and structures the
assumed and required properties of a system by
formalising a property as a top-level goal, which is
then refined to intermediate subgoals and finally
to low-level requirements representing goals that
can be operationalised. Goals may be organised
in AND/OR refinement-abstraction hierarchies.

Access Requestor

VO CIS

Local
CIS

CVS

PEPUserAuthentication

Context
Handler

2. Push
Credentials

1. Pull Credentials

5. Optional pull
more Credentials

3. Request
Usage Decision

4. AuthNName
/ID Reference

Monitor

Predicate
Validator

Attr ibute
Manager

RP Attributes
repository

8. Mutable
Attr ibutes

6. Valid 
Credentials

UCON
PDP

9. Usage
Decision

7. Immutable
subject

attr ibutes

VO UCON
policy

repository

7. UCON
policy

7. Immutable
object

attr ibutes

Meta-data
repository

VO Attributes
repository

Fig. 2 A usage-based Grid authorisation architecture where credentials are pushed



482 B. Aziz

Fig. 3 Overview of the KAOS models and their inter-relationships [20]

AND-refinement links relate a goal to a set of
sub-goals possibly conjoined with domain proper-
ties or environment assumptions; this means that
satisfying all subgoals in the refinement is a suf-
ficient condition in the domain for satisfying the
goal. OR-refinement links relate a goal to a set of
alternative refinements.

– The agent model assigns goals to agents in a real-
isable way. Agents include software components
that exist or are to be developed, external devices,
and humans in the environment. Discovering all
the responsible agents is one of the criteria for
stopping a goal-refinement process.

– The object model is used to identify the con-
cepts of the application domain that are relevant
to the requirements and to provide static con-
straints on the operational systems that will satisfy
the requirements. The object model consists of
objects from the domain, such as any resources
and relationships among resources.

– The operation model details, at state-transition
level, the actions an agent has to perform to realise
the goals and requirements it is responsible for.

The KAOS language has a two-layer structure: an
outer conceptual modelling layer for declaring con-
cepts (such as goals, objects, agents, etc.) and links
between concepts (such as goal refinements, respon-
sibility assignments of goals to agents, etc.), and an
inner assertion layer for formally defining concepts.
The rigour of the KAOS methodology stems from
the fact that any concept defined within its models
incorporates formal definitions using Linear Tempo-
ral Logic (LTL) [19] formulae. LTL formulae con-
sist of combinations of the usual first-order predicate
logic operators (∧ ∨ ¬ →↔) along with the fol-
lowing temporal operators expressed on predicates P

and Q:

�P , which says that P is always true from now on

♦P , which says that P will be true sometime in
the future

◦P , which says that P will be true in the next state

�P , which says that P was always true till now

�P , which says that P was true at sometime in the
past



Modelling Fine-Grained Access Control Policies in Grids 483

•P , which says that P was true in the previous
state

PSQ, which says that Q has been true since a time
when P was true

PUQ, which says that Q will be true until a time
when P will be true

We also write a couple of shorthand notations: (P ⇒
Q) to mean �(P → Q) and (P ⇔ Q) to mean
(P ⇒ Q)∧(P ⇐ Q), and we also utilise the bounded
forms of all of the above operators, as we shall see in
Section 6.2.

Figure 3 shows an overview of the four KAOS
models and their inter-relations.

5 An Abstract Specification of a Grid UCON
Enforcement Mechanism

Our main focus in this paper is on the sub-family
of UCON models known as UCONa , which is con-
cerned with controlling authorisation decisions only
(i.e. neither obligations nor condition factors are con-
sidered). Henceforth, we use the terms UCON and
UCONa interchangeably. In this section, we define an
abstract specification of an enforcement mechanism
for UCONa policies using the LTL-based require-
ment specification language provided by KAOS. The
specification has been partially abstracted from the
usage-based authorisation architecture of Section 3,
while the operations are inferred from UCON’s for-
mal definitions presented in [8] and overviewed in
Section 2. Figure 4 shows an illustration of the UCON
PDP components as KAOS agents, and the operations
those components (agents) can perform. We identify
three agents in addition to the Subject agent (i.e. the
Grid user):

i) Attribute Manager (AM), which updates the
attributes and returns their values,

ii) Predicate Validator (PV), which validates the
policy predicates, and

iii) Reference Monitor (RM), which is a gateway
for all the authorisation decisions generated by
the UCON policy enforcement mechanism.

The RM is responsible for performing the PermitAc-
cess,DenyAccess and RevokeAccess operations. These
operations are performed in response to a TryAccess

performed by the subject. The subject also performs
an EndAccess, which corresponds to an application
cleanly signalling its end of use of the Grid resources.
The PV can be invoked for the validation of the
predicates, viz. performing the PredicateValidation
operation. The AM can be invoked for the update
of the UCON attributes with the AttributeUpdate
operation.

We now provide a written operational software
specification of most of the operations shown in Fig. 4
using the KAOS operation model. We do not spec-
ify TryAccess nor EndAccess since they are subject-
specific operations outside the scope of the enforce-
ment mechanism; part of the environment (context)
of the mechanism. Each operation defines a state-
transition in the application domain, defined through
domain pre- and post-conditions. Operations have
input and output fields; for example, subject, object
and right are input parameters to the operations Per-
mitAccess, DenyAccess and RevokeAccess.

In KAOS, an important distinction is made between
descriptive domain pre- and post-conditions and pre-
scriptive required pre-, post- and trigger conditions.
The required pre-condition captures a permission
to perform the operation only if the condition is
true. By contrast, the required post-condition defines
some additional conditions that any application of
the operation must establish. The required trigger
condition captures an obligation to perform the oper-
ation if the condition becomes true provided the



484 B. Aziz

  Reference Monitor
  Predicate Validator

  SubjectObject Right

DenyAccess

Perf

In In In

Predicate

ValidationResponse

PredicateValidation
PerfIn

Out

Attr ibuteUpdate
Perf

In

In

In

  Attr ibute ManagerAttr ibute

Operation

Value

Out

Out

RevokeAccess

Perf

PermitAccess

Perf

EndAccessTryAccess

Perf PerfIn In

InIn

In In

InIn

In
In

Fig. 4 UCONa enforcement mechanism expressed in terms of KAOS agents and operations

domain precondition is true. Domain conditions are
a property of the operation itself hence they have
a static definition, whereas the required conditions
relate to the satisfaction of a specific goal/requirement
and hence their definition varies according to the
goal/requirement the operation is assigned to.

6 Using KAOS as a Formal Specification Proof
Language

Policy refinement is concerned with the transforma-
tion of a high-level abstract policy specification into a
low-level concrete format that can be directly enforced

Fig. 5 Goal model for the
UCON PreA0 core model PermitPreA0

Permit CheckPredicates TryToAccess

(a) Initial goal refinement of the UCON PreA0 core model

Permit CheckPredicates

Permit Monitor/Control PermitToAccess CP Monitor/Control PredicatesValidation

(b) Completion of the goal refinement of the UCON PreA0 core model



Modelling Fine-Grained Access Control Policies in Grids 485

[21]. The policy refinement process includes, gener-
ally, the following three steps:

(1) Determining the resources that are needed to
satisfy the requirements of a policy

(2) Translating the high-level policies into opera-
tional policies that can be enforced

(3) Verifying that the lower level policies actually
meet the requirements specified at the higher
levels

Here, we follow the goal-based approach to policy
refinement introduced by Bandara et al. in [22], which
uses the KAOS goal-refinement methodology. KAOS
is appropriate for this task since it includes a rigours
notation for representing goals and strategies to refine
a goal into a set of subgoals, and ultimately imple-
mentable requirements. The refined subgoals imply
the parent goal and are more detailed.

A goal refinement is correct if it is complete, con-
sistent, and minimal. A set of goals {G1, G2, . . . , Gn}
correctly refines a parent goal G under some domain
assumptions and properties, D, if the following corre-
sponding conditions hold:

G1, . . . , Gn, D ⇒ G (completeness)

G1, . . . , Gn, D 
⇒ f alse (consistency)
∧

j 
=iGj , D 
⇒ G for any i ∈ [1..n] (minimality)

More informal explanation of these properties can be
found in [18]. Verifications can then be made on goal
refinements to ensure that the system meets the goals
and that the goal model is well-formed with respect to
the above properties.

Our approach is to define how a UCONa policy
can be enforced in terms of the required operations
and agents, given its definition as a KAOS goal. More

specifically, we can state that our top-level goal is as
follows:

∀s : subject, o : object, r : right
permitaccess(s, o, r) ⇒ policyEnforcing(s, o, r)

Where policyEnforcing(s, o, r) is a predicate that states
that the UCON policy in place is being enforced and
it may have various forms depending on the particu-
lar UCON model adopted. This goal states that if a
request from a subject to an object to execute a right
is to be permitted, it must be the case that the UCON
policy in place to protect the object is being enforced.

We also define when to enforce a policy. For
example, each policy pertaining to a PreA0 model
need to be enforced only before the access is actually
granted, while policies pertaining to a PreA3 model
need to be enforced not only before the access, but
also after the access has ended. Moreover, for the
case of OnA-type policies, the policy must also be
enforced during the access period. To demonstrate our
approach, in this paper we only consider two examples
of policies: PreA0 and OnA3.

6.1 Refinement and Operationalisation of the UCON
PreA0 Policy Model

In the PreA0 model, a usage control decision is
determined by authorisations before the usage, and
there are no attribute updates before, during, or after
this usage. Discretionary Access Control (DAC) with
Access Control Lists (ACLs) is a classical example
of such PreA0-type of policies. An immutable subject
attribute could be its identity while an immutable
object attribute could be an ACL, acl, which consists
of pairs (id, r), where id refers to a subject’s iden-
tity, and r refers to a right with which the subject
can access the object. The predicate to be satisfied

PermitToAccess PredicatesValidation

Resp
Resp

  Reference Monitor   Predicate Validator  Subject

Object

Right

PermitAccess Perf

In

In

In

Predicate

ValidationResponse

PredicateValidation

In

Out

Perf

Fig. 6 The operation model for UCON PreA0 showing the agent/responsibility relations



486 B. Aziz

in order for access to be granted can be written as
((s.id, r) ∈ o.acl).

We require the policy (expressing the above pred-
icate) to be enforced in some state prior to when
the access was permitted. Therefore we write the top
goal as:

Goal [PermitPreA0]
RefinedTo: [Permit], [CheckPredicates], [TryToAccess]
FormalDef: (∀ s:subject, o:object, r:right)

permitaccess(s, o, r) ⇒ � policyEnforcing(s, o, r)

Where policyEnforcing(s, o, r) is a predicate stating
that the ACL policy is being enforced. We apply a first
goal refinement, as shown in Fig. 5a, where the for-
mal sub-goals’ definitions follow. We can use tools,
such as the FAUST toolkit [23], to demonstrate that
the refinement is correct.

[TryToAccess] is a final goal, in this case, a require-
ment on the domain of the system (i.e. an assumption
of the system). However, both [Permit] and [Check-
Predicates] are sub-goals that can be further refined.
[Permit] states for the access to be permitted, the pred-
icates controlling that access must be valid in the state
before access is granted. This then acts as a milestone
for the next sub-goal, [CheckPredicates], which fur-
ther states that in the previous state to the state when
the predicates were valid, a request must have been
received. Finally, the domain assumption is that this
request implies that the policy was being enforced

in the previous state. These three sub-goals together
fulfil the parent top goal.

In Fig. 5b, the completion of the goal refinement is
shown, and the formal definitions of each of the sub-
goals follows in the text. We identify two requirement
goals, [PermitToAccess] and [PredicatesValidation],
and assign two agents, the Reference Monitor and the
Predicate Validator to respectively take care to each
of these. The other two sub-goals become assump-
tions on the domain; [Permit Monitor/Control] states
that permitting access is performed by the reference
monitor, and [CP Monitor/Control] states that the val-
idation of the relevant predicates on subject and object
attributes is performed by the predicate validation
component. [PermitToAccess] then refines [Permit] to
include the role of the RM and PV components, and
similarly, [PredicatesValidation] also refines [Check-
Predicates] to include the role of the PV component.

We are now capable of deriving the KAOS
agent and operation models. Figure 6 shows
the KAOS operation model, together with the
agent/responsibility model. As the reader can see,



Modelling Fine-Grained Access Control Policies in Grids 487

we identify a couple of operations: PermitAccess
and PredicateValidation, which operationalise
the above requirements [PermitToAccess] and
[PredicatesValidation], respectively.

The operations are defined formally as follows.

These operations can be considered as the enforce-
ment mechanism for the UCON PreA0 model of secu-
rity policies. Indeed, the approach itself is to derive
the specification of such enforcement mechanisms for
any policy that the requirements specify using the
KAOS operationalisation (patterns) presented in [24].
The semantics of the KAOS operations defines a set
of proof obligations that lead to the realisation of
the required trigger, pre- and post- conditions of a
goal, and therefore the satisfaction of the goal itself.
In this sense, and in our context, the proof of the
semantics of an operation, in relation to the required
conditions of a goal, validates the fact that the enforce-
ment mechanism represented by the operation indeed
implements (i.e. enforces) the corresponding UCON
security policy expressed by the goal or requirement.

The only difference between these operations and
those shown in Section 5 is in the specification of the
Required Pre-Condition clause. This clause is required
to ensure that the goals assigned to the individual
agents are met. They are dependent on the order of
the operations as specified by the model definition.
Other UCON models encode a different sequentiality
of the operations, and therefore may result in different

required conditions. The rest of the operations defi-
nitions are the same as specified in Section 5. This
strategy-based approach, is similar to that introduced
in [22]. A possibility for the encoding of such strategy
directly in the policy is the use of an operational policy
language, such as for example a process algebra as
that defined in [5, 10] with some notion of sequential-
ity. Alternatively, when writing UCON policies using
other policy languages, another possibility would be to
encode the strategy using an external scheduler, which
is capable of implementing the right temporal order-
ing for the execution of the enforcement mechanism’s
operations.

6.2 Second Example: Refinement
and Operationalisation of the UCON OnA3 Policy

In the UCON OnA3 core model, a usage control deci-
sion is determined by authorisations during the usage,
and there is one or more attribute updates after this
usage. We require the policy to be enforced before as
well as throughout and after the access is permitted.
The top goal is then the following, where we have
used bounded temporal operators with the time range
[t1, t2] representing the period access takes place:
Goal [PermitOnA3]
RefinedTo: [PermitOnA3-pre], [PermitOnA3-on],

[PermitOnA3-post]
FormalDef: ( ∀ s:subject, o:object, r:right )

(permitāccess(s,o,r) ⇒ �<t1policyEnforcing(s,o,r)) ∧
(�t1,t2policyEnforcing(s,o,r)) ∧(♦>t2policyEnforcing(s,o,r))

We have assumed that t1 is the time point at which
access is granted, and t2 is the point at which access
ends. The first part of the conjunction states that the
policy must be enforced prior to when access starts,
i.e. at time t1. The second part, on the other hand,
states that the policy must be enforced all the time dur-
ing the access, which is between the times t1 and t2.
Finally, the third part states that the policy also must
eventually be enforced after the access has ended,
i.e. after time t2. Note that for the case when pre-
authorisation is not an issue, the first part simply
becomes permitaccess(s,o,r) ⇒ True.

We now apply a first goal refinement as shown in
Fig. 7a. The formal definitions of the three immediate
sub-goals are given as follows:



488 B. Aziz

These sub-goals split the main goal by cases;
before, during and after enforcement of the UCON
policy. The next level of refinement details more the
enforcement of the policy in each case:

The [Permit] and [TryToAccess] refinements of the
pre-authorisation stage represent another sub-goal and
an assumption on the domain, respectively. [Permit]
states that to be permitted access to the resource, the
subject must have tried in the previous state to access
the resource with some right. [TryToAccess], on the
other hand, states that trying to access a resource
implies that some relevant (UCON) policy is in place
to be applied. Note that since the policy is an on-going
authorisation policy, there is no specific mention here
of the kind of predicates needed to validate the pre-
authorisation.

The next two sub-goals represent another domain
assumption, [ContinuousCheck] and another sub-goal,
[CheckPredicates]. [CheckPredicates] represents the
on-going checks on the validity of the predicates,
whereby such predicates must remain valid until
access is revoked by the system or ended by the
subject. This is a specific definition of on-going autho-
risation as was suggested by [8]. The righthand side of
the implication represents a milestone for the refine-
ment [24], and as such, it reappears in the domain
assumption [ContinuosCheck], which states that the
satisfaction of this milestone condition leads to the
assumption that the UCON policy is being upheld
throughout the whole period, t1 to t2, when access is
taking place.

Finally, the last three sub-goals are the refine-
ment of the post-authorisation stage, which include
two domain assumptions [EndOrRevoke] and [Pos-
tUpdateCompleted], and another sub-goal [Update].
These three together again implement a milestone
refinement strategy of their parent sub-goal. The first
sub-goal, [EndOrRevoke], which is a domain assump-
tion, states that there is an assumption that permitting
an access will eventually lead to that access ending or
being revoked. This then becomes the milestone for
the next sub-goal, [Update], which states that such an
end or revocation of the right to access is eventually
followed by some update of the subject or resource’s
attributes. Finally, the domain assumption [PostUp-
dateCompleted] states that such an update of attributes
assumes that the UCON policy will have been even-
tually enforced, beyond the completion time t2 of the
access.

The second part of Fig. 7b, shows how the
refinement process is completed for the remaining
sub-goals. This results in three more refinements, as
defined below:



Modelling Fine-Grained Access Control Policies in Grids 489

[Permit] is refined to [Permit Monitor/Control],
which is another sub-goal, and [PermitToAccess],
which is a requirement. [Permit Monitor/Control]
states that permitting an access is dependant on the
decision of the Reference Monitor (RM) component.
This decision then itself depends on receiving, in a
previous state, a request to access as represented by
the tryaccess signal, in the requirement [PermitToAc-
cess]. This latter requirement is assigned a responsible
agent, called the Reference Monitor (RM). The next
two sub-goals, again represent a sub-goal [CP Mon-
itor/Control] and a requirement [OnValidation], both
of which refine the parent sub-goal [CheckPredicates].
CP Monitor/Control states that the predicates required
for the policy are always checked by a component
called the Predicate Validator (PV). This then results
in the requirement [OnValidation] being defined in
terms of PV (Fig. 8 ).

Finally, the last pair of refined sub-goals repre-
sents a sub-goal, [Update Monitor/Control], which
is a sub-goal refining [Update], and a requirement
[UpdateAfterEnd], which is also refining [Update].
The first refined sub-goal, [Update Monitor/Control],
states that the updating action is performed by a new
component called the Attribute Manager (AM). This

then allows us to redefine what an update is in terms
of this component, leading to the definition of the
[UpdateAfterEnd] requirement.

We are now capable of deriving the KAOS agent
and operation models, that will operationalise the
above three requirements. Figure 6.2 shows the KAOS
agent/responsibility model, and the formal operational
specification for the UCON OnA3 enforcement mech-
anism.

As shown in the figure, there are three operations.
These are PermitAccess, PredicateValidation
and AttributeUpdate, derived using the KAOS
operationalisation patterns, most of them presented in
[24]. It should be noted that the formal specification
of goals and operations allows the completeness, con-
sistency and minimality of operationalisation to be
formally verified. The semantics of the KAOS opera-
tions defines a set of proof obligations verifying that
realising an operation when the required trigger, pre-
and post- conditions of a goal are true implies the goal.
In this sense, a proof of the semantics of each oper-
ation in relation to the required conditions validates
that operations implement (i.e. enforce) the corre-
sponding policies. The only difference between these
operations and those shown in Section 5 is in the spec-
ification of the Required Pre-Condition and Required
Post-Condition clauses. These clauses are required to
ensure that the assigned requirements are met.

7 Related Work

There are many approaches in the past (e.g. [25–28])
that have been proposed to control access and usage in
a Grid environment, not all of which would be directly
related to our approach. However, we mention here a
few in order to contrast our work and approach with
the aforementioned approaches.

In [25], the authors propose a platform (PRIMA)
for the fine-grained management of access requests to
Grid resources. While the approach is flexible in that
access rights can be managed externally to a resource
in a fine-grained manner, it does not consider the time
continuity of such access requests, which is where our
UCON-based approach fits in. In [26], usage control
in Grids is considered at a higher level of abstraction;
namely at the level of service level agreements. While
this is complementary to our approach, it certainly
does not provide the operational mechanisms (i.e.



490 B. Aziz

the architecture) necessary for enforcing UCON-like
policies. Other non-UCON access control approaches
have also been proposed, including attribute-based
access control (e.g. [27]) and role-based access con-
trol (e.g. [28]), however, these can be expressed in the
UCON model as was outlines in [3, 8].

More realistically, this paper is associated with
two strands of related work: policy refinement and
derivation of enforcement mechanisms. The use of
goal-refinement for refining policies as used here was
introduced by Bandara et al. in [22]. The emphasis of
[22] was on applying abduction techniques in order to

determine the sequence of events needed to achieve a
goal given a system architecture that already includes
enforcement components. Close to Bandara’s work is
Loyola’s work [29], in which also policies refinement
is defined by applying requirement engineering and
model checking techniques based on a temporal logic
formalisation similar to the one used in this paper.
The approach adopted in [22] allows one to find sys-
tem executions aimed at fulfilling low-level goals that
logically entail high-level strategic guidelines. From
system executions, policy information is abstracted
and eventually encoded into a set of refined policies

Fig. 7 Goal refinement
of the UCON OnA3 core
model

PermitOnA3

PermitOnA3-pre PermitOnA3-post

TryToAccess

Permit

PermitOnA3-on

CheckPredicates

ContinuosCheck

Update

PostUpdateCompleted

EndOrRevoke

(a) Initial goal refinement of an UCON OnA3 core model

Update

Update Monitor/Control

UpdateAfterEnd

CP Monitor/Control

OnValidation

CheckPredicatesPermit

Permit Monitor/Control

PermitToAccess

(b) Completion of the goal refinement of the UCON OnA3 goal model



Modelling Fine-Grained Access Control Policies in Grids 491

PermitToAccess

OnValidation

Resp

Resp

  Reference Monitor

  Predicate Validator

  Subject

Object

Right

PermitAccess Perf

In

In

In

Predicate

ValidationResponse

PredicateValidation

In

Out

UpdateAfterEnd

Resp

Attr ibuteUpdate Perf

In

In

In

  Attr ibute Manager

Attr ibute

Operation

Value

Out

Out

Perf

Fig. 8 KAOS agent and operation models for the enforcement
mechanism for UCON OnA3

specified in Ponder. All the above approaches have
been applied to the networking management domain.

An alternative approach is presented by Chadwick
et al. in [30], based on the existence of a resource hier-
archy. Their work exploits Semantic-Web technology
to automate the refinement process. We consider the
representation of a resource hierarchy as an interesting
idea and plan to study as future work the inclusion of
resource hierarchy in goal-based approaches to policy
refinement.

In relation to the derivation of enforcement mech-
anisms, Janicke et al. present in [31] a framework for
the derivation of enforcement mechanisms that guar-
antees compliance with the policies. Their work is
based on formalising the policies in Interval Temporal
Logic (ITL) and concentrates only on history-based
access control policies. Our work is more operational
and we consider that our work can be linked better
to existing efforts in implementing usage control for
Grids that we reviewed in Section 3. Nonetheless, our
approach suffers from the lack of a direct method for
expressing the sequential order in which the derived

operations related to a particular UCON policy will
need to be executed. Despite the fact that such encod-
ing is possible (as a additional layer of expressivity),
the approach would benefit from enhancing the opera-
tional model with a high-level language for expressing
such execution strategies. As such, more low-level
operational languages, such as POLPA [5], adopt a dif-
ferent approach whereby the policy specification itself
encodes the execution strategy (i.e. the temporal order
in which operations are executed.) Another possibil-
ity in our case would be to use an external scheduler,
conscious of the UCON sub-model the policy to be
enforced pertains to.

8 Conclusion and Future Work

This paper presented a fine-grained access and usage
control Grid authorisation architecture with strong
reference to the OGSA work [17], and a rigorous
approach to the design of an enforcement mecha-
nism for usage control policies. We concentrated on
the UCONabc model proposed by Park and Sandhu
[3] and studied its application for the case of Grids.
Our approach consists in applying the KAOS require-
ments engineering methodology to the derivation
of the enforcement mechanism, based on the treat-
ment of UCON policies as requirements. The UCON
policies can be refined into concrete requirements
(that could be enforced by the resulting system) by
repeatedly applying the KAOS goal refinement pro-
cess. KAOS offers a formal language to represent a
goal/requirement based on temporal logic, which is
similar to the formal language used to give semantics
to UCON models [3, 8]. The refinement method also
includes strategies and patterns to guide the refine-
ment process, and there is tool support aiding the
user in this process [23]. We assigned the low-level
policies to software agents responsible for execut-
ing the operations that enforce the concrete policies.
Our resulting architecture consists of three agents: an
Attribute Manager, responsible for updating attributes
associated to subjects and objects, a Predicate Valida-
tor, responsible for validating policy predicates and
a Reference Monitor, acting as a gateway for all the
usage decisions in the Grid.

In future works, we plan to use KAOS to formally
analyse the requirements for a general enforcement
mechanism that covers the complete range of the



492 B. Aziz

UCONabc policies, thus including not only authori-
sations (i.e. the UCONa family of models), but also
obligations (the UCONb model family) and conditions
(the UCONc model family). We plan to work on the
definition of an architecture with the final objective
of either propose a prototype, or extend the already
developed implementations for Grid authorisation sys-
tems (e.g. the OGF architecture). We shall also review
the already deployed policy languages and analyse
their capacity to encode UCON policies, keeping in
consideration the OGF recommendation on the use of
standards. Finally, we plan to extend this work to the
domain of Cloud computing by proposing an architec-
ture and a model for controlling access and usage for
Cloud infrastructures.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the
grid: enabling scalable virtual organizations. International
Journal of Supercomputer Applications 15(3) (2001)

2. Venugopal, S., Buyya, R., Ramamohanarao, K.: A tax-
onomy of data grids for distributed data sharing, man-
agement, and processing. ACM Comput. Surv. 38(1), 3
(2006)

3. Park, J., Sandhu, R.: The UCONABC usage control model.
ACM Trans. Inf. Syst. Secur. 7(1), 128 (2004)

4. Pretschner, A., Hilty, M., Basin, D.: Distributed usage
control. Commun. ACM 49(9), 39 (2006)

5. Martinelli, F., Mori, P.: A model for usage control in
GRID systems. In: Grid-STP2007, International Confer-
ence on Security, Trust and Privacy in Grid Systems. IEEE
Computer Society (2007)

6. Zhang, X., Nakae, M., Covington, M.J., Sandhu, R.:
Toward a usage-based security framework for collaborative
computing systems. ACM Trans. Inf. Syst. Secur. 11(1), 3:1
(2008)

7. van Lamsweerde, A.: Requirements Engineering in the
Year 00: A Research Perspective. In: International Confer-
ence on Software Engineering, pp. 5–19 (2000)

8. Zhang, X., Parisi-Presicce, F., Sandhu, R., Park, J.: For-
mal model and policy specification of usage control. ACM
Trans. Inf. Syst. Secur. 8(4), 351 (2005)

9. Sandhu, R., Park, J.: Usage control: A vision for next
generation access control. In: MMM-ACNS, pp. 17–31
(2003)

10. Martinelli, F., Mori, P.: On usage control for GRID systems.
Futur. Gener. Comput. Syst. 26(7), 1032 (2010)

11. Naqvi, S., Massonet, P., Aziz, B., Arenas, A., Martinelli,
F., Mori, P., Blasi, L., Cortese, G.: Fine-grained continuous
usage control of service based grids - The GridTrust

approach. In: Proceedings of the 1st European Confer-
ence on Towards a Service-Based Internet, Springer-Verlag,
ServiceWave’08, pp. 242–253 (2008)

12. OASIS: Oasis Extensible Access Control Markup Lan-
guage (XACML), http://www.oasis-open.org/committees/
xacml (2005)

13. e Ghazia, U., Masood, R., Shibli, M.A., Bilal, M.: Usage
control model specification in XACML policy language.
In: Proceedings of the 11th IFIP TC 8 International Con-
ference on Computer Information Systems and Industrial
Management, Springer-Verlag, CISIM’12, pp. 68–79
(2012)

14. Colombo, M., Lazouski, A., Martinelli, F., Mori, P.: A pro-
posal on enhancing XACML with continuous usage control
features. In: Desprez, F., Getov, V., Priol, T., Yahyapour,
R. (eds.) Grids, P2P and Services Computing, pp. 133–146.
Springer (2010)

15. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., Mar-
tinelli, F., Mori, P.: Testing of PolPA-based usage control
systems. Softw. Qual. Control 22(2), 241 (2014)

16. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the
grid: Enabling scalable virtual organizations. Int. J. High
Perform. Comput. Appl. 15(3), 200 (2001)

17. Chadwick, D.: Functional Components of Grid Service
Provider Authorisation Service Middleware. Technical
Report, Open Grid Forum (2008)

18. van Lamsweerde, A.: Requirements engineering - from sys-
tem goals to UML models to software specifications. Wiley
(2009)

19. Vardi, M.Y.: Branching vs. linear time: Final showdown.
In: Margaria, T., Yi, W. (eds.) Proceedings of the 7th Inter-
national Conference On Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2001), Lecture
Notes in Computer Science, vol. 2031, pp. 1–22. Springer
(2001)

20. Objectover: A Power Tool to Engineer Your Business
and Technical Requirements. http://www.objectiver.com/
fileadmin/download/documents/leaflet.pdf (2015)

21. Moffett, J., Sloman, M.: Policy Hierarchies for Distributed
Systems Management. IEEE J. Selected Areas in Commu-
nications 11(9), 14 04 (1993)

22. Bandara, A.K., Lupu, E.C., Moffett, J., Russo, A.: A goal-
based approach to policy refinement. In: 5th IEEE Work-
shop on Policies for Distributed Systems and Networks.
IEEE Computer Society (2004)

23. Ponsard, C., Massonet, P., Molderez, J.F., Rifaut, A., van
Lamsweerde, A., Hung, T.V.: Early verification and vali-
dation of mission critical systems. J. Form. Methods Syst.
Des. 30(3) (2007)

24. Letier, E., van Lamsweerde, A.: Deriving operational soft-
ware specifications from system goals. In: FSE’10: 10th
ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering (2002)

25. Lorch, M., Kafura, D.: The PRIMA grid authorization
system. J. Grid Comput. 2(3), 279 (2004)

26. Dumitrescu, C.L., Raicu, I., Foster, I.: The design, usage,
and performance of GRUBER: A grid usage service level

http://www.oasis- open.org/committees/xacml
http://www.oasis- open.org/committees/xacml
http://www.objectiver.com/fileadmin/download/documents/leaflet.pdf
http://www.objectiver.com/fileadmin/download/documents/leaflet.pdf


Modelling Fine-Grained Access Control Policies in Grids 493

agreement based brokERing infrastructure. J. Grid Comput.
5(1), 99 (2007)

27. Lang, B., Foster, I., Siebenlist, F., Ananthakrishnan, R.,
Freeman, T.: A flexible attribute based access control me-
thod for grid computing. J. Grid Comput. 7(2), 169 (2009)

28. Muppavarapu, V., Chung, S.: Role-based access control in a
data grid using the storage resource broker and shibboleth.
J. Grid Comput. 7(2), 265 (2009)

29. Rubio-Loyola, J., Serrat, J., Charalambides, M., Flegkas,
P., Pavlou, G., Lafuente, A.: Using linear tempo-
ral model checking for goal-oriented policy refinement

frameworks. In: 6th IEEE International Workshop on Poli-
cies for Distributed Systems and Networks, pp. 181–190
(2005)

30. Su, L., Chadwick, D., Basden, A., Cunningham, J.: Auto-
mated decomposition of access control policies. In: 6th
IEEE International Workshop on Policies for Distributed
Systems and Networks, pp. 3–13. IEEE Computer Society
(2005)

31. Janicke, H., Cau, A., Siewe, F., Zedan, H.: Deriving
Enforcement Mechanisms from Policies. IEEE Computer
Society (2007)


	Modelling Fine-Grained Access Control Policies in Grids
	Abstract
	Introduction
	The UCONabc Model
	Usage Control for Grids
	KAOS or Keep All Objects Satisfied
	An Abstract Specification of a Grid UCON Enforcement Mechanism
	Using KAOS as a Formal Specification Proof Language
	Refinement and Operationalisation of the UCON PreA0 Policy Model
	Second Example: Refinement and Operationalisation of the UCON OnA3 Policy

	Related Work
	Conclusion and Future Work
	References


