J Grid Computing (2015) 13:1-18
DOI 10.1007/s10723-014-9323-6

Energy Efficient Computational Offloading Framework

for Mobile Cloud Computing

Muhammad Shiraz - Abdullah Gani -
Azra Shamim - Suleman Khan -
Raja Wasim Ahmad

Received: 8 May 2013 / Accepted: 9 December 2014 / Published online: 13 January 2015

© Springer Science+Business Media Dordrecht 2015

Abstract The latest developments in mobile com-
puting technology have changed user preferences for
computing. However, in spite of all the advancements
in the recent years, Smart Mobile Devices (SMDs)
are still low potential computing devices which are
limited in memory capacity, CPU speed and bat-
tery power lifetime. Therefore, Mobile Cloud Com-
puting (MCC) employs computational offloading for
enabling computationally intensive mobile applica-
tions on SMDs. However, state-of-the-art computa-
tional offloading frameworks lack of considering the
additional overhead of components migration at run-
time. Therefore resources intensive and energy con-
suming distributed application execution platform is
established. This paper proposes a novel distributed

M. Shiraz (><) - A. Gani - A. Shamim - S. Khan -

R. W. Ahmad

Centre for Mobile Cloud Computing Research (C4MCCR),
Faculty of Computer Science and Information Technology,
University of Malaya, Kuala Lumpur, Malaysia

e-mail: muh_shiraz@um.edu.my

A. Gani
e-mail: abdullah@um.edu.my

A. Shamim
e-mail: azra.majeed864 @yahoo.com

S. Khan
e-mail: suleman.khan.dr@ieee.org

R. W. Ahmad
e-mail: wasimraja@siswa.um.edu.my

Energy Efficient Computational Offloading Frame-
work (EECOF) for the processing of intensive mobile
applications in MCC. The framework focuses on
leveraging application processing services of cloud
datacenters with minimal instances of computation-
ally intensive component migration at runtime. As
a result, the size of data transmission and energy
consumption cost is reduced in computational offload-
ing for MCC. We evaluate the proposed framework
by benchmarking prototype application in the real
MCC environment. Analysis of the results show that
by employing EECOF the size of data transmission
over the wireless network medium is reduced by
84 % and energy consumption cost is reduced by
69.9 % in offloading different components of the pro-
totype application. Hence, EECOF provides an energy
efficient application layer solution for computational
offloading in MCC.

Keywords Mobile cloud computing - Distributed
systems - Computational offloading - Lightweight -
Energy efficient

1 Introduction

The latest developments in mobile computing technol-
ogy have changed user preferences for computing. The
report of Juniper Research states that consumer and
enterprise market for cloud based mobile applications
is expected to raise $9.5 billion by 2014 [1], which is

@ Springer


mailto:muh_shiraz@um.edu.my
mailto:abdullah@um.edu.my
mailto:azra.majeed864@yahoo.com
mailto:suleman.khan.dr@ieee.org
mailto:wasimraja@siswa.um.edu.my

M. Shiraz et al.

an evidence of the increasing use of MCC. Recently,
a number of computing and communication devices
are replaced by smartphones towards all-in-one ubig-
uitous computing devices such as PDAs, digital cam-
eras, Internet browsing devices, and Global Posi-
tioning Systems (GPS) [2]. Human dependency on
the contemporary smartphones is increasing rapidly
in various domains such as enterprise, e-learning
and entertainment, gamming, management informa-
tion systems, and healthcare [3]. Mobile devices are
predicated as the dominant future computing devices
with high user expectations for accessing computa-
tional intensive applications analogous to the power-
ful stationary computing machines. However, in spite
of all the advancements in the recent years, SMDs
are still low potential computing devices and mobile
applications on the latest generation of smartphones
and tablets are constraint by battery power, CPU
potentials and memory capacity of the SMDs [4].
The latest developments in cloud computing facilitates
to increase the computing capabilities of resources
constrained client devices by offering leased infras-
tructure and services of clouds [5-11]. Computa-
tional clouds employ different IT business models
for the provisioning of computing services; such as
on-demand, pay-as-you-go, and utility computing [6].
For example, Amazon Web Services (AWS) are uti-
lized to store personal data through its Simple Stor-
age Service (S3) [12], and Elastic Cloud Compute
(EC2) is employed for application processing services.
MCC enables computationally intensive and ubiqui-
tous mobile applications by leveraging the services of
computational clouds.

MCC utilizes the application processing services
of computational clouds for the processing of com-
putationally intensive mobile applications. Recently,
a number of Computational Offloading Frameworks
(COFs) are proposed for the processing of intensive
mobile applications in MCC [13-19]. For instance
Apple iCloud [20] and Amazon Silk [21] browser
are two latest mobile applications which leverage
the services of computational cloud for application
processing. However, state-of-the-art computational
offloading frameworks employ adaptive algorithm in
which elastic mobile applications dynamically dis-
tribute intensive partitions to the cloud server nodes
[23]. Such frameworks focus on offloading inten-
sive mobile applications at different granularity lev-
els and establishing distributed application processing

@ Springer

platform at runtime. Runtime computational offload-
ing involves cost of migration of the intensive com-
ponents of the mobile application [13—19, 23], which
involves computing resources utilization in transfer-
ring the application binary file and corresponding
data file of the running instances of mobile appli-
cation. Similarly, a number of application offloading
frameworks implement dynamic application profiling
and partitioning technique for application offload-
ing [13-19], which increases the turnaround time of
the application and energy consumption on mobile
device. Current COFs focus on what components of
the application to offload, how to offload and where
to offload the intensive components of the application.
Traditional computational offloading frameworks lack
of considering the intensity of runtime component
offloading and focus on leveraging the [aaS model
for computational offloading which is resources inten-
sive and time consuming [13, 17-19]. Therefore, such
frameworks employ energy consuming procedure for
computational offloading in MCC.

In this paper, we propose an Energy Efficient
Computational Offloading Framework (EECOF) for
computational offloading in MCC. The framework
focuses on leveraging application processing services
of cloud datacenters with minimal instances of appli-
cation migration at runtime. As a result, energy con-
sumption cost is reduced in remote processing of
computationally intensive components of the mobile
application. EECOF incorporates the Software-as-a-
Service (SaaS) model and the Infrastructure-as-a-
Service (IaaS) model of computational clouds for
leveraging the application processing services of com-
putational clouds. The proposed framework is eval-
uated by benchmarking prototype mobile application
in the real MCC environment. Experimentation is
performed in three different scenarios: (a) execu-
tion of mobile application on local mobile device,
(b) implementing traditional computational offload-
ing technique [15, 42] for the execution of appli-
cation and (c) employing EECOF for computational
offloading in MCC. Energy efficiency is measured
in terms of reduction of energy consumption cost
for computational offloading in MCC. The energy
efficient nature of EECOF is validated by compar-
ing results of different experimental scenarios. It is
examined that by employing EECOF the overhead
of runtime application migration is minimized, which
results in the reduction of energy consumption cost for



Energy Efficient Computational Offloading Framework for MCC

computational offloading. Analysis indicates that the
size of data transmission over the wireless network
medium is reduced up to 84 % and energy consump-
tion cost is reduced up to 69.9 % while offloading
different components of the prototype application.
Hence, the employment of EECOF provides an energy
efficient application layer solution for computational
offloading in MCC.

The paper is classified into the following sections.
Section 2 discusses state-of-the-art computational
offloading frameworks for MCC. Section 3 presents
the architecture of proposed framework and discusses
the operating procedure of EECOF and presents
the distinctive features of the proposed framework.
Section 4 discusses methodology used for the evalua-
tion of proposed framework. Section 5 presents results
and discusses experimental findings. Finally, Section 6
draws concluding remarks and future directions.

2 Related Work

Satyanarayanan [24, 25] introduced the term cyber
foraging to augment the computing potentials of wire-
less mobile devices by utilizing available stationary
computers in the local environment. Earlier, applica-
tion offloading was employed for Pervasive comput-
ing [26], Grid computing [27] and Cluster comput-
ing [28]. Recently, a number of cloud server based
application offloading frameworks are proposed for
outsourcing computational intensive mobile applica-
tions partially or entirely to cloud datacenters [13—
19]. Elastic applications are partitioned at runtime
for the establishment of distributed processing plat-
form [4]. Current frameworks implement computa-
tional offloading at different granularity levels such
as object, class, component, bundle, thread, method
and task. In [17, 19-21, 42] module level offload-
ing is employed for the migration of entire module
of the application. In [13] method level granularity is
employed for the migration of pre-annotated intensive
methods of the application. In [29] object level gran-
ularity is used for dynamic computational offloading.
In [30, 31] thread level granularity is used for sepa-
rating the intensive logic of the application at runtime.
In [32, 33] class level granularity is employed for run-
time computational offloading. In [34, 35] component
level partitioning is employed which indicates that a
group of classes are offloaded to the remote server

at runtime. COFs implement application partitioning
statically or dynamically. The static application parti-
tioning [36] involves one time application partitioning
mechanism for the distribution of workload between
SMD and cloud server node. The intensive compo-
nents of the application are partitioned and transferred
to the remote server node. For example, the primary
functionality offloading [35] mechanism involves par-
titioning and offloading of the intensive components
at runtime.

In [17] a middleware framework is proposed for the
dynamic distribution of application processing load
between SMD and cloud server node. The frame-
work deploys the application partitioning in optimal
mode and dynamically determines the execution loca-
tion for modules of the mobile application. In order
to reduce search space, the framework implements a
preprocessing mechanism on the consumption graph.
Preprocessing separates local and remote bundles of
the application. It searches for the application modules
which can result in high cost in offloading and for that
reason are not feasible for offloading. The framework
distributes workload as per the statistics of resources
available on SMD. The distributed platform in AIDE
[16] is composed of computing devices in the local-
ity of mobile devices. SMD access a preconfigured
surrogate server which maintains information of the
volunteer server nodes. The runtime profiling mecha-
nism of the framework is activated dynamically which
implements class level granularity for partitioning of
mobile application.

Mobile Assistance Using Infrastructure (MAUI)
[13] focuses on energy saving for SMD. Application
developers identify the local and remote components
of the application at design time. The MAUI pro-
filer determines the feasibility of remotely annotated
method for offload processing. Each time a method is
called, the profiler component assesses it for energy
saving which utilizes additional computing resources
(CPU, battery) on SMD. MAUI solver operates on the
input provided by application profiler. It determines
the destination of execution for the method anno-
tated as remote. MAUI implements application level
partitioning for outsourcing computational load of
SMD. However, the mechanism of runtime application
profiling and solving at runtime involves additional
computing resources utilization for application parti-
tioning. Development of the applications on the basis
of MAUI requires additional developmental efforts

@ Springer



M. Shiraz et al.

for annotating the execution pattern of each indi-
vidual method the application. MAUI involves the
overhead of dynamic application profiling, solving,
partitioning, migration, and reintegration on SMD. In
CloneCloud [37] the partitioning and reintegration of
the application occur at application level. Partition-
ing phase of the framework includes static analysis,
dynamic application profiling, and optimization solu-
tion. A preprocess migratory thread is implemented
on mobile devices to assist in the partitioning and
reintegration of the thread states. Elastic application
model [14] provides a middleware framework for
mobile applications. Application is dynamically par-
titioned into weblets which are migrated dynamically
to cloud server node. The framework implements dif-
ferent elastic patterns for the replication of weblets
on the remote cloud. It considers different param-
eters for offloading of the weblets; such as status
of the mobile device, cloud, application performance
measures and user preferences which comprise power
saving mode, high speed mode, low cost mode and
offload mode. The framework implements a resources
intensive mechanism for runtime application partition-
ing and the migration of weblets between SMD and
remote cloud nodes. It includes additional resources
utilization on SMD in the process of application pro-
filing, dynamic runtime partitioning, weblets migra-
tion and reintegration, and continuous synchronization
with cloud server node for the entire duration of
application processing.

Current COFs accomplish distributed application
processing platform for the processing of inten-
sive mobile applications in diverse modes. Several
approaches exploit VM migration [13, 23]; others
focus on part(s) of the application to be offloaded
[13, 17, 21]. A number of approaches implement
dynamic application partitioning [13, 14], whereas
other focus on static partitioning [36, 37]. Diverse
objective functions are considered [4]; saving pro-
cessing power, efficient bandwidth utilization, saving
energy consumption [38], user preferences and exe-
cution cost [14]. Recently, a number of mobile cloud
applications are witnessed which employ cloud com-
puting to mitigate resources constraints of SMDs.
Apple’s iCloud [20] provides on demand access auto-
matically to applications such as music, photos, apps,
calendars, documents. Amazon EC2 and Microsoft
Azure host the application store of Apple’s iCloud.
Similarly, Amazon released Silk application [21]

@ Springer

which is a cloud-accelerated web browser Silk is a
“split browser”” which resides on both Kindle Fire and
EC2. For each web page request, Silk dynamically
determines distribution of computational load between
the local SMD and remote Amazon EC2. Silk consid-
ers the objective functions of network conditions, page
complexity and the location of any cached content
[21].

In traditional computational offloading frameworks
cloud based application processing is composed of
three phases which include offloading initialization,
computational offloading and remote application exe-
cution. (a) In the initialization phase, the availability
of services on the cloud server node are discov-
ered, network and mobile context information reports
are collected from the corresponding sensor modules.
Furthermore, user preference and application charac-
teristics such as security level and QoS demands are
also gathered. The information collected in this phase
is used for the offloading mechanisms. (b) In the
computational offloading process decisions are taken
and parameter configurations are performed. This
phase includes decision of application partitioning and
offloading of an application, user authentication and
authorization, VM instance creation on mobile and
cloud server if supported by an execution framework,
migration of VM clone, QoS parameter negotiation,
SLA exchange, resource reservation and admission
control. (c) Once the delegated application is config-
ured the running state of the application is resumed
on the remote virtual device instance and applica-
tion is executed on remote server node. The initiation
and preparation overhead is required to be reduced so
that application faces minimum disruption during the
execution due to application of?oading.

Traditional COFs employ computational offloading
at runtime which requires virtual device instances on
cloud server node by employing IaaS services of com-
putational clouds [13, 17-19]. The binary files of the
application and the data states of the running appli-
cation are offloaded at runtime which increase the
energy consumption cost of computational offloading
for MCC. The Energy consumption Cost (E.) for each
component offloaded at runtime includes energy con-
sumed in runtime component migration (E,,), energy
consumed in saving the data states of running instance
of the mobile application (Ey), energy consumed in
uploading the data file to remote server node (E},) and
energy consumed in returning the resultant data files



Energy Efficient Computational Offloading Framework for MCC

to local mobile device (E;). Hence, the total energy
consumption cost for each component offloaded at
runtime is represented by equation (1).

E.=E,+E;+E,+ Ey4 (1)

Let E represents the set of energy consumption cost
of all instances Ec,=12,... , of the runtime component
offloading and FE is the cardinality of set E, which
shows energy consumption cost of the total instances
of runtime component offloading. The total energy
consumption of the runtime application offloading is
represented by p, which is shown as follows.

n
n = Z Ecq
a=1

S VEc, e EAE|>1 (2)

3 Proposed Energy Efficient Computational
Offloading Framework (EECOF)

We propose an energy efficient computational offload-
ing framework for the processing of intensive mobile
applications in MCC. The framework focuses on
leveraging application processing services of cloud
datacenters with minimal instances of application
code migration at runtime. The instances of runtime
component migration are minimized by deploying
computational task offloading as the primary offload-
ing procedure rather than intensive component migra-
tion. As a result, energy consumption cost is reduced
in remote processing of computationally intensive
components of the mobile application. Traditional
computational offloading frameworks [13, 17-19, 23]
employ TaaS model for the deployment of virtual
mobile device instances on the virtual machine of
the cloud server node, which is resources intensive
and energy starving mechanism. EECOF incorporates
SaaS model with IaaS model of computational clouds
for reducing the instances of runtime component
migration.

The deployment of SaaS model eliminates energy
consumption cost of runtime component migration
(E,,), energy consumption cost of saving states of
running mobile application (E;) and energy con-
sumption cost of uploading the data file to remote
server node (E,). Therefore, by employing EECOF
the energy consumption cost is reduced in computa-
tional offloading. The advantages of the employing

SaaS services for the configuration of intensive oper-
ations of the mobile application are mentioned as
follows: (a) The overhead of runtime computation
offloading involves the cost of application partitioning
and cost of migration of binary code of the applica-
tion and data states of the running instances of mobile
application. Therefore, the configuration of resources
intensive components of the mobile application on
the cloud server nodes results in minimal instances
of intensive component migration at runtime which
reduces the overhead of computationally intensive
components of the mobile application. (b) In tradi-
tional computational offloading frameworks [15, 42],
the delegated computationally intensive components
of the mobile application to the cloud server node are
configured on the instances of virtual mobile device,
which involves additional overhead of virtual device
deployment and management on the cloud server
node [35]. EECOF however, reduces this overhead by
configuring remote services on the powerful virtual
machines in the cloud datacenters rather than virtual
devices instances of mobile devices, which decreases
the turnaround time and energy consumption cost of
the application. As a result, size of data transmission,
computational resources utilization (RAM and CPU),
energy consumption cost and turnaround time of the
application is reduced.

Figure 1 shows the architecture of the proposed
framework. Middleware on both mobile device and
server is deployed for enabling the execution of
mobile application in the primary operating proce-
dure. Whereas, the components employed in the sec-
ondary operating procedure include orchestrator, pref-
erences manager, upload manager and download man-
ager. Synchronizer component is used for ensuring
consistency in the distributed processing of applica-
tion.

Orchestrator The orchestrator component of EECOF
monitors switching between the operation modes
(online/offline) of the mobile application and oper-
ation procedures of the online mode of the applica-
tion. In the Primary Operating Procedure (POP) the
orchestrator enables mobile application on the local
device to access the preconfigured services, whereas
in the Secondary Operating Procedure (SOP) pref-
erences manager component is activated to save the
data states of the running mobile application. Appli-
cation orchestrator is responsible for the configuration

@ Springer



M. Shiraz et al.

Fig. 1 Architecture of the Wireless
proposed EECOF Medium
i oath Delegated Mobile
Mobhile. Application Preconfigured Services Application
Orchestrator Middleware Orchestrator
»
Preferences Manager | Middleware » Saas Preferences Manager
IPC Virtual Device Instance
Upload | Download (Iaa$)
Manager | Manager
Synchronizer P Synchronizer
il
Operating System | Operating System
. Virtual Machine
Device Hardware

Mobile Device

of the mobile application on SMD and remote server
node. On the cloud server node, application orches-
trator configures the delegated service application
on the remote server node. Application orchestrator
component on the remote server node resumes the
running state of the delegated mobile application by
accessing the preferences files from the persistent stor-
age. The application orchestrator component on the
mobile device arbitrates with the remote server node
for offloading the selected running component of the
mobile application. The orchestrator component is
assisted by the preferences manager component.

Preferences Manager Mobile applications are asso-
ciated with a separated preferences manger which
provides access to the preferences file. Preference
manager reads and writes the data states from per-
sistent storage during the activation and deactivation
of mobile application. The preferences manager com-
ponent copies the preferences file to the external
storage device which is directly accessible for the
upload manger and download manager component.
The preferences manager component of the server
node is responsible for providing access to the data
files which are downloaded with the delegated service
application. Similarly, whenever the service applica-
tion completes execution on the remote server node,
the preferences manger saves the final results to the
preferences file. The upload manager component is
responsible for uploading the preferences files of the
application to remote server node in the SOP. The
preferences files are stored on the persisted stor-
age by the preferences manager which is accessible
for upload manager. Whenever, the offloaded mobile

@ Springer

Cloud Server Node

application is installed on the remote virtual device
instance, the synchronization manger component of
the server connects to the upload manger component
of the application running on mobile device and makes
request for preferences file.

Upload Manager Upload manager sends the
requested preferences file to the synchronizer of the
server node. The download manager component on
mobile device is responsible for downloading the
preferences files of the application from the remote
server node in the SOP. Whenever, the offloaded
component of the application completes execution,
download manager component of the EECOF client
is connected to return the resultant preferences file.

Download Manager The synchronization manger
component of the EECOF framework utilizes the ser-
vices of download manager and upload manager for
the synchronization of distributed application process-
ing in the SOP EECOF framework. In the SOP, mobile
application is enabled to offload the intensive compo-
nents of the application to cloud datacenters which are
executed on temporarily allocated server node. Once
the execution of delegated component of the appli-
cation is completed, download manager receives the
resultant data file and saves it to the persistent storage
of the local mobile device.

Synchronizer The synchronizer component of the
framework is responsible for the synchronization
of transmission between SMD and remote server
node. In the POP of distributed processing, the syn-
chronizer component is responsible for ensuring the



Energy Efficient Computational Offloading Framework for MCC

consistency of transmission between mobile applica-
tion on SMD and the server application running on
the cloud server node. In the SOP, whenever the states
of the application are saved on the persisted medium,
the synchronizer component is activated to offload the
service application to remote server node. The orches-
trator component searches for the configuration file of
the identified intensive component on mobile device.
Whenever, the configuration of the service application
is validated, the synchronizer component is activated
to outsource the configuration files to remote server
node. Synchronizer component of the remote server
node is activated to receive the delegated service appli-
cation. Whenever, the configuration file of the dele-
gated service application is received successfully on
the remote server node, the orchestrator component of
the server node is activated to configure the delegated
service application and resume the running states from
the preferences file. The synchronizer component is
also responsible for the uploading and download-
ing of preferences files between mobile device and
remote server node. In such scenario, the role of
synchronizer is to coordinate between local mobile
application and the offloaded components of the appli-
cation. The primary responsibility of synchronizer is
to ensure the consistency of transmissions between
application executing on mobile device and server
application.

Reliance on the preconfigured services of the cloud
server nodes leads to the problem of dependency on
the centralized services and reduces offline usability.
Similarly, it leads to the employment of thin client
applications like traditional web and email applica-
tions, wherein the processing logic of the application
is hosted on the remote server nodes and client appli-
cations provide user interface. Therefore, the EECOF
employs replication of the mobile application on
mobile device and cloud server node and proposes
two distinct operating modes (offline mode and online
mode) for the execution of mobile application. Sim-
ilarly, it proposes two different operating procedures
for accessing the application processing services of
computational clouds. EECOF enables mobile appli-
cations to operate in two distinct modes; online
and offline. Offline mode indicates the availabil-
ity of sufficient computing resources on the mobile
device wherein the components of mobile application
are scheduled for execution on local mobile device.
The online mode indicates the critical condition of

insufficient resources on local mobile device, wherein
the computational load of the application is offloaded
to cloud server node. The online mode is imple-
mented by deploying two distinct operation proce-
dures including POP and SOP. Mobile application is
designed with the objectives to offload computational
task instead of offloading application in the primary
operating procedure and employ runtime application
migration in the secondary operating procedure. In the
offline mode all the components of mobile application
are executed locally on SMD. Whereas in the online
mode, mobile application is enabled to access the pre-
configured services of EECOF server and offload the
intensive components of the application on demand
basis. The dual operation mode enables mobile appli-
cation to operate with full functionalities in the situa-
tions of inaccessibility of remote services. Offloading
active service to cloud server node involves com-
plicated mechanism. However, mobile users remain
unaware of the complications of the remote execution.
EECOF employs middleware service for providing the
notion as entire components of the mobile application
are executed locally on SMD.

The preconfigured services of the cloud server are
composed of the components of the mobile appli-
cation which are computational intensive and do
not require user interaction. Application on mobile
device is an ordinary application with all the com-
ponents available on local mobile device. However,
two types of additional attributes are included in the
ordinary mobile application. The profiler mechanism
evaluates availability of resources (RAM, CPU, bat-
tery power) and accessibility of remote services for
switching between online and offline mode. Mobile
application is capable to operate in the two distinct
operating procedures of the online mode. In the POP
of online mode, the preconfigured services on the
cloud server node (SaaS model) are accessed, whereas
in the SOP the states of the running instance of
the application are saved and the intensive compo-
nents are offloaded at runtime. The runtime com-
putational offloading mechanism is implemented by
employing the IaaS model wherein platform spe-
cific virtual device instance is created on the cloud
server node and the delegated mobile application is
reconfigured. The primary operating procedure is sig-
nificant for future computationally intensive mobile
applications which need to be designed and devel-
oped on the basis of distributed feature of EECOF,

@ Springer



M. Shiraz et al.

whereas the secondary operating procedure is impera-
tive for the existing mobile applications which lack of
deploying the distributed architecture. Hence, EECOF
addresses the challenges of future computationally
intensive mobile applications for MCC and provides
support for offloading traditional mobile application
at coarse granularity level. Figure 2 shows sequence
of interaction between application running on mobile
device and application running on the cloud server
node in the POP. Mobile application is enabled to
access the preconfigured services of cloud server
node which involves direct communication pattern
using middleware services for interaction between
client application running on mobile device and server
application running on remote server node. Appli-
cation running on mobile device invokes services
on the cloud server node and passes the required
input data. Processing logic of the application is
executed on the cloud server node and results are
returned to the application running on the mobile
device. Middleware hides complications of the com-
munication between the local mobile application and
cloud server application. The communication between
local mobile application and remote server applica-
tion is enabled by employing Inter Process Com-
munication (IPC) mechanism such as RPC or RMI.
The heterogeneous operating system platforms of

Application on Mobile Device

Client , Mobile Device
. . Middleware .
Application Synchronizer
T
f f f

The Pri}nary OpemtingI Procedure Involves Direct Comm

Wireless Cloud Node Cloud Node Server
Medium Synchronizer | Middleware || Application

L

mobile devices implement different middleware ser-
vices [39]. For instance, we employed kSOAP2 API
for accessing the preconfigured services on the clou
d server node. kSOAP2 is a lightweight and effi-
cient SOAP client library for the Android plat-
form [43]. Computational task is offloaded to the
cloud server node and upon the successful execu-
tion of the task on the cloud server node, resul-
tant data is returned to mobile device. The over-
head of sending the binary files of the applica-
tion is eliminated in the POP. Therefore, the size
of data transmission, energy consumption cost and
turnaround time of the offloaded component is
reduced accordingly.

Figure 3 shows sequence diagram for the SOP of
online mode of EECOF. In the scenario of unavailabil-
ity of appropriate remote server, SOP of the mobile
application is activated, wherein the intensive com-
ponents of the application are offloaded at runtime
at the service level granularity. SOP of EECOF is
employed for handling the dynamic processing load
on the local mobile device. The profiler mechanism is
activated to identify the larger intensive components
of the application which needs to be offloaded to the
remote server node. The orchestrator component of
EECOF monitors transition between POP and SOP.
The preferences manager component is activated to

Application on Remote Server

nication Pattern l}sing Middleware Services for Ihteraction

between, Client Applicafion Running on Mobile Device and Server Applicatiop Running on Remote Server Npde.

| Primary Operating Procedure | | |
Il

I
I I IPC I I I
1 T T | t I >
2 } ! J - I Processing of Activated Components | """""""
n | | Successful Completion T T T
~ 1 1 1 1 1
4 I Communication Between Mobile Device and Cloud Server Node By Using IPC | -----------------------

(7]

i Synchronization Between Mobile Device and Cloud Server Node t

—_—t — - — 4 A — 4 = — 1 —

—_— — =

Fig. 2 Sequence diagram for the primary operating procedure of EECOF

@ Springer



Energy Efficient Computational Offloading Framework for MCC

Components of EECOF on Mobile Device

Components of EECOF on Server

Application on Prefrences || Upload
Mobile Device || Profiler | [ Orchistrator || Manager Manager

Download \l\’jl/lrgless Preferences Delegated Mobile
Manager eqium Manager Orchistrator (| Application

Seclondary Operating Procedure

Activate Profiler
1 : >

Activate Orchistrator

I Save Prefrences
) h

Request for Deploying Virtual Device Instance on Remote Server

Migrate the Intensive Component of Application

Upload Prefrences File

! Resume Delegated Application

].
| '
| Execution

Save Result to Prefrence File

1.
Download Resultant Prefrences File

T
1
|
|
1
|
Read Resultant Prefrences File :

Synchronization Between Application on SMD and Remote Server I

|
N 1 [
}
|

Network Accessibility Monitoring
T

ful Completion of

I
dary Operating Procedure

—_———e e m e e e

|
|
|
[
S
|

1.

|

I

l.

|

1

| I | | |
1

|

I |
|

|

Fig. 3 Sequence diagram for the secondary operating procedure of EECOF

save the running states of the application. The state
information of the intensive component of the applica-
tion is saved in preferences file. In the mean while, the
orchestrator component arbitrates with the cloud
datacenter for the configuration of remote server
node and virtual device instance. Following that,
the identified intensive component of the applica-
tion is offloaded to the remotely configured cloud
server node. Virtual device instances on the cloud
server node are inaccessible directly from exter-
nal network environment; therefore, a proxy agent
is configured on the cloud server node to forward
the binary code the component of the application
to virtual device instance. The orchestrator compo-
nent on the cloud server node configures the del-
egated component of the mobile application. Fol-
lowing that, the preferences file of the application
is uploaded which is copied to the data folder of
the application by preferences manager component
of the cloud server node. Preferences manager on
the cloud server provides access to the uploaded
preferences file of the application, from where the
running state of the delegated application is resumed.
The synchronizer component on the cloud server
node is responsible for synchronizing the execution

of application on the remote server node and applica-
tion on mobile device. Final results are saved in the
preferences file upon the successful execution of the
application on the remote serve node. The resultant
preferences file is downloaded to the mobile device by
deploying the preferences downloader component of
the ECCOF.

Figure 4 shows generic flowchart for the inter-
action of the components of EECOF framework in
leveraging application processing services of cloud
server node. Mobile application executes on SMD in
two different modes, i.e. online and offline, whereas
the services of remote server are utilized in two dif-
ferent operating procedures of online mode. In the
online mode the services of cloud server nodes are
leveraged for the processing of intensive components
of the mobile application. In the POP, mobile appli-
cation accesses the preconfigured services of EECOF
server. However, in the scenario of unavailability of
the preconfigured server, the intensive components of
the mobile application are offloaded to the remote
server node at runtime.

EECOF employs the replication of intensive com-
ponents of the application on local mobile device and
cloud server node. Application replication involves

@ Springer



10

M. Shiraz et al.

No POP No
Critical J
Condition Preconfigured Services
Server Component
| Required
st

Orchestrator

Preferences
Manager

Ye
Upload Manager Download Manager
. Selection of Cloud Remote Application
Synchronizer X
Server Node Processing
> Stop )

Fig. 4 Illustration of the interaction of the components of
EECOF framework in primary operating procedure and sec-
ondary operating procedure

the complexities of consistency in the local execu-
tion and remote execution and synchronization of
the application execution between mobile device
and remote server node. However, the replication
of intensive components of the mobile application
assists in achieving the goals of rich user experiences
and offline usability. It means that the application on
mobile device still remains functional in offline mode
in the situations of unavailability of preconfigured
services on the cloud server node. Similarly, in the
critical condition application is switched to online
mode, however once the resources become available
on the mobile device, application can be switched
back to the offline mode. The architecture and oper-
ation procedure of EECOF are different from the
traditional client/server applications. The traditional
client/server applications are thin client applica-
tions. The client applications provide user agents
for interaction with the local computer, whereas the
processing logic is implemented on the remote server
machines. Examples of such applications include web
application, email application, social network appli-
cations such as Facebook, and video conferencing
applications such as Skype application. In the tradi-
tional client/server model, the client component of
the application becomes insignificant in the situations

@ Springer

of inaccessibility of the server component. Therefore,
EECOF framework is attributed with the features of
offline usability, on demand access of the preconfig-
ured cloud services and offloading computational load
of the local mobile device in the situation of unavail-
ability of sufficient resources for the processing of
mobile application on local mobile device.

The following section presents analytical model for
the configuration of mobile application on the basis
of EECOF framework. The overall intensive mobile
application (A) is classified into two distinct cate-
gories which are —application on mobile device (A.)
and application on cloud server (Ay). For each cate-
gory, components of the application are configured on
the basis of the computational requirements — either
memory size (i.e., (M,) for A, and M; for Ay) or
processing length (i.e., P, for A, and P for Ay). Typ-
ically, the application on mobile device is composed
of the small intensive and tightly coupled compo-
nents, whereas the application on cloud server node
is composed of big intensive and loosely coupled
components of A (Fig. 5).

Let there are n; components in A, and N, compo-
nents in Ag suchthatny +ny, =n, AcUA;, = A €U
and A.N A = ¢ then by using the particular notations
the following expressions are defined with respect to
different aspects of EECOF.

For the application on mobile device, let T and
Ty be the total memory and processing requirements
respectively, and g and ri be the respective memory
size and processing length of the k" single component
xr € Ac. Then, Q. ={gr € N : qx > 0,1 <k < ny}
and Re ={rr € R:ry > 0,1 <k <ny}.So, T¢ and
Ty are determined as,

nj
Te=3"" i forgie Qcand |0 =1, ()
and

n
TS = Zk;le, for rx € R. and |R.| > 1. 4)

In the same way, for the application on remote
server, if T{ and T} represent the total memory and
processing requirements respectively, then they can be
determined as,

TS =" i, forq € X, and |X,] > 1 (5)
and

n
TS = ZI;RZ, for r; € Ry and |Ry| > 1 (6)



Energy Efficient Computational Offloading Framework for MCC

11

Fig. 5 A typical depiction

of EECOF based mobile
application

Client application (A,)

Server application (A;) ‘

e T
/ Memory \ ' Processmo\
slze M) /\ length (F,) /

where given that, Yy = {y; e N:y; > 0,1 <[ < ny}
for the memory size y; of the I'" single component
xi € Ag,and Z; = {z7 e R:z; > 0,1 <1 < ny} for
the processing length z; of the I'" single component
x; € X;.

AsAc C Ac U, Ay C X e U, At UA; =
X € U and A, N Ay = O the memory size of the
standalone mobile application is equal to the sum of
memory size of application on mobile device and the
memory size of application on the remote server. Now
the equation (1) can be expressed as,

n ni na
T, =Zi:161i = Zkzlqk+21:1‘1’ (as n=nji+ny).

Hence, by using equations (3) and (5), the total
memory size of the mobile application can be deter-
mined as,

T, =T+ T} @)

This standard equation (7) is useful for validating
the total memory size of the mobile application (i.e.,
TS = Ty — T}) and the total memory size of server
application (i.e., T = T, — TY).

Moreover, if o represents the percentage of mem-
ory saved by outsourcing intensive components of the
application at design time. Then by using (7), o can be
calculated as,

1A
a =% % 100. 8)

Tx
Similarly, by employing equations (4) and (6) the
total processing length of the standalone mobile appli-
cation can be determined by the following standard
equation,

Ty=Ty+ Ty )

The equation (9) is useful for validating the total
processing length of the application on mobile device
(ie., Ty = Ty —T;) and the total processing length of
server application (i.e., Ty = Ty — Ty).

e T
/ Memory \ / Processing \

\ size (M, )/\enmh (P)

If B represents the %age of CPU saved by offload-
ing intensive components of the application at design
time, then by using (9), B can be easily estimated as
follows:

s

Ty

B = — x 100. (10)
‘L'y

4 Methodology

Experimental Setup We evaluate EECOF by bench-
marking the prototype application for the Android
operating system platform in the real mobile cloud
computing environment. The experimental setup for
testing the prototype application in the real wireless
mobile network environment is composed of Wi-Fi
wireless network of radio type 802.11g, Server node
and Samsung Galaxy SII mobile device. We have
deployed our own Hybrid Mobile Cloudlet based on
OpenStack Cloud Operating System which is used for
experimentation and mobile cloud development pur-
poses. The server node is configured in the virtual
machine instance deployed in the cloud datacenter.
The server node runs Microsoft Windows 7 Profes-
sional 32-bit operating system with Intel®core(TM)
i5-2500 CPU having 3.3GHz speed and 4.0 GB RAM
capacity. The Samsung Smartphone runs Android
4.0.3, dual core ARMv7 Application Processor with
1.2 GHz speed, 16GB memory capacity and 1650mAh
battery. Mobile device accesses the wireless network
via Wi-Fi wireless network connection of radio type
802.11g, with the available physical layer data rates
of 54Mbps. The IaaS model of the cloud datacenter is
employed by running Android Virtual Device (AVD)
instances of the mobile device on the virtual machine
instance of the cloud server node which runs Android
4.1-API Level-17 with ARMv7 Processor having
2389.08 BogoMIPS speed and 1GB RAM capacity.
The client application runs on the mobile device,
whereas the server application runs on the remote

@ Springer



12

M. Shiraz et al.

cloud server node. The server machine is configured
for the provisioning of services to the mobile device in
two distinct operating modes of the application. The
preconfigured services of the server node utilizes the
Software as a Service (SaaS) model of cloud com-
puting for the provisioning of distributed services in
the primary operation procedure of EECOF, whereas
the Infrastructure as a Service (IaaS) model employed
for the provisioning of services in the SOP of mobile
application. The virtual device instance is employed
on the server machine for the execution of offloaded
application at runtime.

We employ the server application by using
Microsoft Visual Studio 2010 ASPNET Web Service
Application tool of Visual C#, whereas kSOAP2 API
[43] is employed for the configuration of the client
application. Java based Android Software develop-
ment toolkit [40] is deployed for the development
of client application. The Android ADB (Android
Debug Bridge) Plug in is embedded in the Eclipse
application development tool for the development of
prototype application. The POP of the client appli-
cation is implemented by using kSOAP2 library API
on the mobile devices for accessing the preconfigured
services of the server application. The AVD instance
is created on the remote server machine by using
Android emulator for the execution of offloaded com-
ponents of the client mobile application in the SOP.
Monitoring tools such as ADB and Dalvik Debug
Monitor System (DDMS) [40] are used for the mea-
surement of resources utilization (CPU and RAM),
whereas Power Tutor tool [41] is used for the mea-
surement of battery power consumption in distributed
application processing.

Prototype Application We develop a prototype appli-
cation by using Service Oriented Architecture (SOA)
of Android applications [40]. The SOA enables
to deploy service granularity level for offloading
computational load of the mobile application. The
prototype application is composed of three compu-
tational intensive service components and a single
activity component. The service components imple-
ment the computational logic of the application,
whereas the activity component provides Graphical
User Interface (GUI) for interacting with the mobile
application. The computational logic of the applica-
tion is composed of three service components. (a)
Sorting service component implements the logic of

@ Springer

bubble sort for sorting liner list of integer type values.
The sorting logic of the application is tested with 30
different computational intensities (11000-40000). (b)
The matrix multiplication service of the application
implements the logic of computing the product of 2-D
array of integer type values. Matrix multiplication
logic of the application is tested with 30 different
computational intensities by varying the length of
the 2-D array between 160%160 and 450%450. c) The
power compute service of the application implements
the logic of computing b”e, whereas b is the base and
e is the exponent. The power compute logic of the
application is tested for 30 different computational
intensities by varying the exponent between 1000000
and 200000000. Empirical data are collected by sam-
pling all computational intensities of the application
in 30 different experiments and the value of sample
mean is signified with 99 % confidence for the sample
space of 30 values in each experiment.

Data Gathering and Data Processing The primary
data are collected by testing the prototype applica-
tion in three different scenarios. In the first scenario,
all the components of the mobile application are exe-
cuted on the local mobile device to analyze resources
utilization and execution time of the application on
the local mobile device. In the second scenario, the
intensive components of the mobile application are
offloaded at runtime by implementing the traditional
computational offloading technique. In this scenario,
the resources utilization in distributed processing of
the application, data communication over the wireless
network medium, and turnaround time of the applica-
tion on the virtual device instance on the remote server
machine are analyzed. In the third scenario, the proto-
type application is tested for the operating procedures
of the proposed framework. We evaluate resources
utilization and execution cost of the application in the
POP and SOP of the EECOF.

The empirical data are collected for all the compu-
tational intensities of every component of the mobile
application by executing the component of the mobile
application in 30 experiments. Each experiment is
conducted 30 times for the evaluation of each param-
eter to derive the value of point estimator. Data sam-
pling involves the factor of sampling error; hence the
sample mean can differ from the population mean.
Hence, to signify the goodness of the calculated
point estimate; the interval estimate of each sample is



Energy Efficient Computational Offloading Framework for MCC

13

determined. The confidence level of an interval esti-
mate of a parameter indicates the probability that the
interval estimate contains the parameter.

5 Results and Discussion

We evaluate the ECC of the components of mobile
application in local and remote execution. Experi-
mentation is performed in three different scenarios:
(a) execution of mobile application on local mobile
device, (b) implementing traditional computational
offloading technique [15, 42] for the execution of
application and (c) employing EECOF for computa-
tional offloading in MCC. Energy efficiency is mea-
sured in terms of reduction of energy consumption
cost for computational offloading in MCC. The energy
efficient nature of EECOF is validated by comparing
results of different experimental scenarios. Empirical
data are compared from the perspective of local appli-
cation execution and cloud server based application
execution to validate the energy efficiency of proposed
framework. The value of ECC for different service
components of the prototype application is compared
with 30 different computational intensities.

Figure 6 shows difference in ECC of processing
sort service component of the application on local
mobile device and traditional computational offload-
ing technique for varying computational intensities
(list size 11000-40000). The ECC of the sorting ser-
vice execution is higher in traditional computational
offloading as compared to local execution of the ser-
vice component of the application. The increase in
the ECC in traditional computational offloading estab-
lishes the fact that additional energy is consumed in

140 4
120 4
100 4
80 -

60 -
40 -
||||IIIII||
0

LIRS s S S S B s p S S B s S S S B S S S B S S e e e

Difference in ECC (J)

S & O
QQQQQ

S
s Q“ SN
Q

QQ
\\\xmﬂw%wsﬁ’%
Sort List Size

O O
\) \)
Q \)
4@

Fig. 6 Difference in ECC of sort service execution on mobile
device and traditional computational offloading

offloading the intensive components of the mobile
application at runtime. For instance, ECC of exe-
cuting sorting service on the local mobile device is
observed 21.1 J for sorting 11000 values, 37.1 J for
sorting 25000 values, 68.6 J for sorting 40000 values.
Whereas, the EEC of cloud based processing of sort-
ing service by employing traditional computational
offloading is found 49.8 J for sorting 11000 values,
95.4 J for sorting 25000 values and 201.4 J for sorting
40000 values. It shows that by employing traditional
computational offloading technique the ECC of sort-
ing operation increases 28.7 J (57.6 %) for sorting list
of 11000 values, 58.3 J (61.1 %) for sorting list of
25000 values and 132.8 J (65.9 %) for sorting list of
4000 values. The increase in the ECC is for the reason
of runtime component migration. The mechanism of
runtime component migration involves the overhead
of sending application binary file and data files to the
cloud server node and reconfiguration of the delegated
application on the cloud server node.

Figure 7 shows difference in ECC of process-
ing sort service component of the application on
local mobile device and EECOF based computational
offloading. Analysis of the results show that ECC is
lower in EECOF based computational offloading as
compared local processing of sorting service compo-
nent of the application. For Instance, in the POP of
EECOF the ECC is found 7.4 J for sorting 11000,
14.1 J for sorting 25000 values and 23 J for sorting
40000 values. It shows that by employing the proposed
framework, the ECC of sorting operation is reduced in
cloud based processing of sorting operation as com-
pared to the execution of sorting operation on mobile
device. For instance, the reduction in ECC of sort-
ing operation in EECOF as compared to the execution
of service on mobile device is found 14.2 J (65.7 %)

—_ —_ [} N

=3 W S (%%

=} f=1 =} f=1
1 1 1 ]

w
(=]
1

Difference in ECC (J)

O N PN N AN AN OO IO I IR
\ F I EFTIF ST ST SN S
QS Q” A N QN S N NSNS

S FEE PGS D S S S

Sort List Size

Fig. 7 Difference in ECC of sort service execution on mobile
device and EECOF based computational offloading

@ Springer



14

M. Shiraz et al.

for sorting 11000 values, 90.6 J (86.5 %) for sorting
25000 values and 230.6 J (90.9 %) for sorting 40000
values. The overall decrease in the ECC in employing
EECOF is 90.9 % varying computational intensities of
sorting operation (11000-40000).

Figure 8 shows the comparison the ECC in local
and cloud based execution of sort service component
of the application in different scenarios. It shows that
the employment of EECOF for computational offload-
ing reduces the ECC of performing sorting operation
on the cloud server node as compared to the ECC
of executing sorting service component of the appli-
cation on local mobile device and traditional compu-
tational offloading. The decrease in ECC of sorting
operation is for the reason of employing computa-
tional task offloading to cloud server node rather than
runtime component offloading. The ECC in EECOF
based computational offloading reduces 85.1 % for
sorting list of 11000 values, 85.2 % for sorting list of
25000 values and 88.6 % for sorting list of 40000 val-
ues, as compared to traditional computational offload-
ing. The overall reduction in ECC value for sorting
service in EECOF based computational offloading is
found is 86(4+/—) 0.9 % for varying computational
intensities of sorting operation (11000-40000 values).

Similarly, we found that the ECC of the matrix mul-
tiplication service execution is higher in traditional
computational offloading as compared to local exe-
cution of the service component of the application.
For instance, the EEC of executing matrix multipli-
cation service on the local mobile device is found
11.5 J for multiplying matrices of 160*160 size, 24.7
J for multiplying matrices of 300*300 size, 69.9 J
for multiplying matrices of 450*450 size. Whereas,
The EEC of executing matrix multiplication service by

——ECC of Sorting Operation on Local Mobile

250 4 Device
+——ECC in Offloading Sorting Operation by Using
200 1 pOP of EECOF

ECC in Offloading Sorting Operation by Using
Traditional Computatioan] Offloading

W
=1

—_

(=3

(=]
L

Energy Consumption (J)

\

o+——— T T T T

L S DD
OEOMIR RN IR IR SRR SRR A SR SN R SR SN SN
QQQQQQQQ%QQQQ%Q
O R R A

Length of The Sorting List

Fig. 8 Comparison of energy consumption cost (ECC) for
sorting service in local and cloud based remote execution

@ Springer

employing traditional computational offloading is
observed 40 J for multiplying matrices of 160*160
size, 71.9 J for multiplying matrices of 300*300 size,
131.7 J for multiplying matrices of 450%450 size.

Figure 9 shows difference in ECC of process-
ing matrix multiplication service of the application
on local mobile device and traditional computational
offloading technique for varying computational inten-
sities (matrices size 160%160-450*450). It is found
that by employing traditional computational offload-
ing technique the ECC of matrix multiplication oper-
ation increases 28.5 J (71 %) for multiplying matrices
of 160*160 size, 47.2 J (66 %) for multiplying matri-
ces of 300%300 size and 61.8 J (47 %) for multiplying
matrices of 450%450 size. The overall increase in the
ECC of matrix multiplication operation is found 47.5
J in traditional computational offloading as compared
to the local execution of matrix service for varying
intensities (160*160-450%450).

The comparison of ECC of matrix multiplication
operation on local mobile device and ECCOF based
computational offloading shows that the ECC of the
matrix multiplication service execution is lower in
EECOF based remote execution as compared to exe-
cution of the component of the local mobile device.
However, difference in ECC is smaller for lower
intensities of the application. For example, percent
difference in ECC of matrix multiplication service
execution in EECOF based remote processing is up to
0.87 % for intensities between 160*160 and 260*260.
Difference in ECC by deploying EECOF for lower
intensities of matrix multiplication service is lower
for the reason of additional overhead involved (for
instance, uploading input parameters and download-
ing results) in remote processing of application.

70 4
60 -
50

40 4
30 4
20 A
10 4
0 T

LI S S S S S B S S S B S B S S S B S S S S s s |

Difference in ECC (J)

N $ Y o
Q*\‘OQ Q ,9/ ,\P‘ ,-\,b QG)Q ,‘;\, ﬁ’b( f,)b ”;% VQ b‘:\, *b&b‘
FSEFPFEFTFF SIS
Matrix Size

Fig. 9 Difference in ECC of matrix multiplication service

execution on mobile device and traditional computational
offloading



Energy Efficient Computational Offloading Framework for MCC

15

However, it is found that energy gain is higher
in deploying EECOF for higher intensities of the
application. For instance, difference in the ECC of
executing matrix multiplication service in the POP
of EECOF as compared to execution of the applica-
tion on local mobile device is found up to 4.04 % for
higher intensive of matrix multiplication (270%270-
450*450). Figure 10 shows difference in ECC of
processing matrix multiplication service of the appli-
cation in the POP of EECOF and the local execu-
tion of matrix service for varying higher intensities
(270%270-450%450). It shows that deploying EECOF
for higher intensities of the application is more signif-
icant as compared to low intensities of the application.
The overall decrease in the ECC of matrix multipli-
cation operation is found 3(+/-)1.1 J in the POP of
EECOF as compared to the local execution of matrix
service for varying intensities (160%160-450%450).

Figure 11 shows the comparison the ECC in local
and cloud based execution of matrix multiplication
service execution in different scenarios. It shows that
the employment of EECOF for computational offload-
ing reduces the ECC of performing matrix multiplica-
tion operation on the cloud server node as compared
to the ECC of executing matrix multiplication ser-
vice component of the application on local mobile
device and traditional computational offloading. The
decrease in the ECC of matrix multiplication oper-
ation is for the reason of employing computational
task offloading to cloud server node rather than run-
time component offloading. The reduction ECC of
EECOF based computational offloading as compared
to traditional computational offloading is found 73 %
for multiplying matrices of length 160*160, 70 %
for multiplying matrices of length 270%270, 62 % for
multiplying matrices of length 350*350 and 50 % for

Percent Difference
S —~ N WA ULV ®
N S S S TR S R

O O N A VO O VN O OO O N OO N D IO DD D
B O A R gy
AN R AR NN O RS I S S A O SN 2
Matrix Size
Fig. 10 Difference in energy consumption cost of matrix multi-

plication service execution on mobile device and EECOF based
computational offloading

multiplying matrices of length 450*%450. The overall
reduction in ECC value for matrix multiplication ser-
vice in POP of EECOF is 64.3 (+/-) 5.4 % with 99 %
confidence in the sample space of 30 values.

The ECC of application processing remains lower
in EECOF based computational offloading as com-
pared to local execution of the application. For
instance, 14.4 J energy is consumed in multiplying
440*440 size matrix on mobile device, where as 10.8
J energy is consumed in deploying POP of EECOF,
which shows reduction 25 % in energy consump-
tion while deploying EECOF. Similarly, 15.9 J energy
is consumed in multiplying 450%450 size matrix on
mobile device, where as 11.3 J energy is consumed
in deploying POP of EECOF, which shows reduc-
tion 28.9 % in energy consumption while deploying
EECOF. However, the total ECC for higher intensi-
ties of matrix multiplication operation increases for
the reason of energy consumed in downloading the
resultant file from the remote server node. For that
reason the total ECC in deploying EECOF becomes
closer to the ECC of the application on mobile device.
However, in comparison to the traditional runtime
component migration, the total ECC of EECOF based
offloading always remains lower as shown in Fig. 11.

The ECC of the power compute service execu-
tion is evaluated by employing the primary operat-
ing procedure and secondary operating procedure of
EECOF. The employment of POP of EECOF shows
that ECC of power compute operation is lower in
cloud based processing of the operation as com-
pared to the processing of power compute service
on the local mobile device. For instance, in the sce-
nario of local execution of power compute option the
ECC is found 2.2 J for computing 21000000, 5.4 J
for computing 260000000 and 67 J for computing
22000000000. However, in the POP of EECOF the
ECC of power compute operation is found 2 J for com-
puting 21000000, 3.5 J for computing 260000000
and 11.1 J for computing 2°2000000000. It shows
that in the POP of EECOF the ECC reduces 0.2 J
(9.1 %) for computing 21000000, 1.9 J (35.2 %)
for computing 260000000 and 55.9 J (83.4 %)
for computing 2" 2000000000. The overall decrease
in the ECC of power compute operation in the
POP of EECOF is 44 % for 30 varying intensi-
ties of the power compute operation (2*1000000-
2/2000000000). Figure 12 shows the comparison of
ECC for power compute execution on local mobile

@ Springer



16

M. Shiraz et al.

Fig. 11 Comparison of
energy consumption cost
(ECC) for matrix
multiplication service in
local and cloud based

120 A

100 -

—=— ECC of Matrix Multiplication Operation on Local Mobile
Device

—— ECC in Offloading Matrix Multiplication Operation by
Using POP of EEFCO
ECC in Offloading Matrix Multiplication Operation by
Using Traditional Computatioanl Offloading

remote execution 80 -

40 4

Energy Consumption (J)

20 A

<o

160*160
170*170
180*180

device and cloud server nodes by using POP of
EECOF for 30 different computational intensities of
the power compute operation.

To evaluate the viability of proposed framework,
the power compute service component of the appli-
cation is also executed by using the SOP of EECOF,
wherein the running instance of power compute ser-
vice component is offloaded to the cloud server node.
It is assumed that the power compute service cannot
be accessed in the POP of EECOF for the reason of
unavailability of preconfigured service on the cloud
server node. Mobile device is pushed into the critical
condition, wherein the profiler mechanism reports the
critical condition and the orchestrator component the
framework switches mobile application to the online
mode. It determines the power computing task cannot
be offloaded by using POP of EECOF; therefore the
running instance of power compute application is
offloaded to the remote server node. The delegated
component is reconfigured on the cloud server node

190*190
200%200
210%210

Fig. 12 Comparison of 80 -

energy consumption cost 70

for power compute service C
execution on local mobile 60 1 Device
device and cloud server 50 1

node in the POP of EECOF

Energy Consumption Cost (J)

271000000
272000000
273000000
274000000
275000000
276000000
2/7000000
278000000
279000000
2710000000
2720000000
2730000000
240000000
2750000000
2760000000
2770000000
2780000000
2790000000
27100000000
27200000000
27300000000
2400000000
27500000000
2600000000
27700000000
27800000000
27900000000
2100000000
21900000000
272000000000

@ Springer

220%*220
230*230
240*240
250*250
260%260
270*270
280*280
290%290
300*300
310*310
320%320
330*330
340*340
350*350
360*360
370*370
380*380
390*390
400*400
410*410
420*420
430*430
440*440
450*450

Length of Matrix

and power compute operation is performed. The sig-
nificance of active services migration in the SOP of
EECOF to cloud server nodes is that it reduces the
computational load on SMD which results in saving
computing resources (RAM and CPU). However,
migration of the active services at runtime involves
the additional complications of the establishment
and management of distributed platform at runtime.
Therefore, the ECC of offloading power compute time
is increased in SOP of EECOF. For instance, the ECC
in SOP of EECOF as compared to local execution of
power compute service increases 59.3 % for comput-
ing 21000000, 76.7 for computing 260000000 and
89.9 % for computing 2*2000000000.

Analysis of the results shows lower energy con-
sumption cost by employing ECCOF for cloud based
processing for the intensive component of mobile
application. It is observed that the additional cost
of application binary code migration and active data
state migration to the cloud server node is reduced

| mECC of Power Compute Service
Execution on Local Mobile

B ECC of Power Compute Service
Execution In POP of EECOF

Compute Length



Energy Efficient Computational Offloading Framework for MCC

17

by employing EECOF for cloud based processing of
computationally intensive mobile applications. As a
result, the energy consumption cost of the component
of the mobile application is reduced. For instance,
by employing EECOF the size of data transmission
for sorting service is reduced 74.8 %, and the energy
consumption cost is reduced 86.7 % compared to the
traditional computational offloading technique. Simi-
larly, the size of data transmission for matrix multi-
plication operation is reduced 92.8 % and energy con-
sumption cost is reduced 64.2 % compared to the tra-
ditional computational offloading technique. Hence,
EECOF provides a lightweight and energy efficient
mechanism for computational offloading in MCC.

6 Conclusion and Future Work

Traditional COFs are based on the establishment of
distributed platform at runtime and lack of distributed
architecture for the intensive mobile application as
a result additional energy is consumed in compo-
nent offloading at runtime. Hence, EECOF addresses
the issue of additional energy consumption in com-
putational offloading for MCC by deploying a dis-
tributed architecture and employs lightweight proce-
dure for minimizing the overhead of runtime com-
ponent offloading. EECOF leverages the SaaS model
for the configuration of intensive components on the
cloud server node and the IaaS model for adaptive
offloading of mobile application. The incorporation of
preconfigured services access technique and runtime
computational offloading technique facilitates in the
optimal deployment procedure with minimal energy
consumption cost for the establishment of distributed
platform in MCC. The dual operating nature of the
proposed framework contributes to the versatility and
robustness of the distributed and elastic model for
intensive mobile application in MCC.

The additional cost of application binary code
migration and active data state migration to the cloud
server node is reduced by employing EECOF for
cloud based application processing. As a result, the
ECC of the component of the mobile application
is reduced. Analysis indicates that by employing
EECOF the size of data transmission over the wireless
network medium is reduced up to 84 % and energy
consumption cost is reduced up to 69.9 % by offload-
ing different components of the prototype application.

Hence, EECOF provides an energy efficient appli-
cation layer solution for computational offloading in
MCC. The future research work includes extending
the scope this research to address the issues of consis-
tency of simultaneous application execution between
local mobile device and remote cloud server node, and
seamless application execution in cloud based appli-
cation processing of intensive mobile application.

Acknowledgment This research is carried out as part of
the Mobile Cloud Computing research project funded by the
Malaysian Ministry of Higher Education under the Univer-
sity of Malaya High Impact Research Grant with reference
UM.C/HIR/MOHE/FCSIT/03.

References

1. Holman, R.: Mobile Cloud Computing: $9.5 billion
by 2014. http://www.juniperresearch.com/analyst-xpress-
blog/2010/01/26/mobile-cloud-application-revenues-to-hit-
95-billion-by-2014-driven-by-converged-mobile-services/
(2010). Accessed on 18 August 2013

2. Prosper Mobile Insights, Smartphone/tablet user sur-
vey. http://prospermobileinsights.com/Default.aspx?pg=19
(2011). Accessed on 20 July 2013

3. Albanesius, C.: Smartphone shipments surpass PC ship-
ments for first time. What’s next? http://www.pcmag.com/
article2/ Accessed on 15 December 2013

4. Shiraz, M., Gani, A., Khokhar, H.R., Buyya, R.: A
review on distributed application processing frameworks
in smart mobile devices for mobile cloud computing.
IEEE Commun. Surv. Tutorials 15(3), 1294-1313 (2013).
doi:10.1109/SURV.2012.111412.00045

5. Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., Buyya,
R.: Cloud-based augmentation for mobile devices: Motiva-
tion, taxonomies, and open issues. IEEE Commun. Surv.
Tutorials 16(1), 337-368 (2014)

6. Rings, T., Caryer, G., Gallop, J.,, Grabowski, J,
Kovacikova, T., Schulz, S., Stokes-Rees, I.: Grid and cloud
computing: Opportunities for integration with the next
generation network. J. Grid Comput. 2009(7), 375-393
(2009). doi:10.1007/s10723-009-9132-5

7. Rimal, P.B., Jukan, A., Katsaros, D., Goeleven, Y.: Archi-
tectural requirements for cloud computing systems: An
enterprise cloud approach. J. Grid Comput. 2011(9), 3-26
(2011). doi:10.1007/s10723-010-9171-y

8. Chohan, N., Bunch, C., Krintz, C., Canumalla, N.: Cloud
platform datastore support. J. Grid Comput. 2013(11), 63—
81 (2013). doi:10.1007/s10723-012-9238-z

9. Shamsi, J., Ali, K.M., Qasmi, A.M.: Data-intensive cloud
computing: Requirements, expectations, challenges, and
solutions. J. Grid Comput. 2013(11), 281-310 (2013).
doi:10.1007/s10723-013-9255-6

10. Troger, P., Merzky, A.: Towards standardized job submis-
sion and control in infrastructure clouds. J. Grid Comput.
2014(12), 111-125 (2014)

@ Springer


http://www.juniperresearch.com/analyst-xpress-blog/2010/01/26/mobile-cloud-application-revenues-to-hit-95-billion-by-2014-driven-by-converged-mobile-services/
http://www.juniperresearch.com/analyst-xpress-blog/2010/01/26/mobile-cloud-application-revenues-to-hit-95-billion-by-2014-driven-by-converged-mobile-services/
http://www.juniperresearch.com/analyst-xpress-blog/2010/01/26/mobile-cloud-application-revenues-to-hit-95-billion-by-2014-driven-by-converged-mobile-services/
http://prospermobileinsights.com/Default.aspx?pg=19
http://www.pcmag.com/article2/
http://www.pcmag.com/article2/
http://dx.doi.org/10.1109/SURV.2012.111412.00045
http://dx.doi.org/10.1007/s10723-009-9132-5
http://dx.doi.org/10.1007/s10723-010-9171-y
http://dx.doi.org/10.1007/s10723-012-9238-z
http://dx.doi.org/10.1007/s10723-013-9255-6

18

M. Shiraz et al.

11.

12.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Shiraz, M., Ahmed, E., Gani, A., Han, Q.: Investigation
on runtime partitioning of elastic mobile applications for
mobile cloud computing. J. Supercomput. 67(1), 84—103
(2014). doi:10.1007/s11227-013-0988-6

Amazon S3 [Online Available] http://status.aws.amazon.
com/s3-20080720.html (Accessed on 20th July 2011)

. Cuervo, E., Balasubramanian, A., ChoK, D.O., Wolman,

A., Saroiu, S., Chandra, R., Bahlx, P.. MAUI: Making
Smartphones Last Longer with Code Offload MobiSys’10.
San Francisco (2010)

Zhang, X., Kunjithapatham, A., Jeong, S., Gibbs, S.:
Towards an elastic application model for augmenting the
computing capabilities of mobile devices with cloud com-
puting. Mobile Netw. Appl. 16(3), 270-285 (2011)

Hung, H.S., Shih, S.C., Shieh, PJ., Lee, P.C., Huang,
H.Y.: Executing mobile applications on the cloud:
Framework and issues. Comput. Math. Appl. 63(2), 573—
587 (2012)

Messer, Greenberg, 1., Bernadat, P., Milojicic, D., Chen, D.,
Giuli, T.J., Gu, X.: Gu Towards a Distributed Platform for
Resource-Constrained Devices. Hewlett-Packard Company
(2002)

. Giurgiu, Riva, O., Juric, D., Krivulev, I., Alonso, G.:

Calling the cloud: Enabling mobile phones as inter-
faces to cloud applications. Middleware’09 Proceedings of
the ACM/IFIP/USENIX 10th International Conference on
Middleware, pp. 83—102. ACM Press (2009)

Chun, B.G., Maniatis, P.. Augmented Smartphone Appli-
cations Through Clone Cloud Execution. Intel Research
Berkeley (2009)

Kovachev, D., Klamma, R.: Framework for computation
offloading in mobile cloud computing. Int. J. Interact.
Multimedia Artif. Intell. 1(7), 6-15 (2012)

Apple — iCloud http://www.apple.com/icloud/ Accessed on
1 January 2013

Introducing Amazon Silk. http://amazonsilk.wordpress.
com/2011/09/28/introducing-amazon-silk/ Accessed on 1
January 2013

Yang, L., Cao, J., Cheng, H.: Resource Constrained Multi-
user Computation Partitioning for Interactive Mobile Cloud
Applications. Hong Kong Poly-technical University, Tech-
nical Report (2012)

Abebe, E., Ryan, C.: Adaptive application offloading using
distributed abstract class graphs in mobile environments. J.
Syst. Softw. 85(12), 2755-2769 (2012)

Goyal, S., Carter, J.: A Lightweight Secure Cyber Foraging
Infrastructure for Resource-Constrained Devices WMCSA
2004 6th IEEE Workshop. IEEE (2004)

Satyanarayanan, M.: Pervasive computing: Vision and chal-
lenges. IEEE Pers. Commun. 8(4), 10-17 (2001)

Oh, Lee, S., Lee, E.: An adaptive mobile system using
mobile grid computing in wireless network. In: Proceed-
ings of the 6th International Conference on Computational
Science and Its Applications (ICCSA 2006), pp. 49-57.
Glasgow, UK (2006)

Chunlin, Layuan, L.: Energy constrained resource allo-
cation optimization for mobile grids. J. Parallel Distrib.
Comput. 70(3), 245-258 (2010)

@ Springer

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Begum, Y., Mohamed, M.: A DHT-based process migra-
tion policy for mobile clusters. In: 7th International
Conference on Information Technology, pp. 934-938. Las
Vegas (2010)

Tilevich, E., Smaragdakis, Y.: J-orchestra: Automatic java
application partitioning. ECOOP 2002—Object-Oriented
Programming, pp. 178-204 (2006)

Musunoori, B.S., Horn, G.: Intelligent ant-based solution
to the application service partitioning problem in a grid
environment. In: 6th International Conference on Intelligent
Systems Design and Applications, ISDA’06, pp. 416424
(2006)

Newton, R., Toledo, S., Girod, L., Balakrishnan, H., Mad-
den, S.: Wishbone: Profile-based partitioning for sensornet
applications. In: Proceedings of the 6th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), pp. 395-408. Boston (2009)

Bi-Ru, D., Lin, C.I.: Efficient Map/Reduce-Based
DBSCAN Algorithm with Optimized Data Partition. In:
Cloud Computing (CLOUD), 2012 IEEE 5th International
Conference, pp. 59-66. Honolulu (2012)

Gu, X., Nahrstedt, K., Messer, A., Greenberg, 1., Milojicic,
D.: Adaptive offloading inference for delivering applica-
tions in pervasive computing environments. In: Proceedings
of the 1st IEEE International Conference on Pervasive
Computing and Communications, 2003. (PerCom 2003),
pp. 107-114 (2003)

Chu, H., Song, H., Wong, C., Kurakake, S., Katagiri, M.:
Roam, a seamless application framework. J. Syst. Softw.
69(3), 209-226 (2004)

Satyanarayanan, M., Bahl, P., Caceres, R.: The Case for
VM-Based Cloudlets in Mobile Computing IEEE Comput-
ing Society (2009)

Dou, Kalogeraki, V., Gunopulos, D., Mielikainen, T.,
Tuulos, V.H.: Misco: A MapReduce Framework for
Mobile Systems, PETRA’10 Samos. ACM Press, Greece
(2010)

Chun, G., Ihm, S., Maniatis, P.,, Naik, M., Patti,
A.: CloneCloud: Elastic Execution between Mobile
Device and Cloud, EuroSys’11. ACM Press, Salzburg Aus-
tria (2011)

Kumar, K., Lu, H.Y.: Cloud computing for mobile users:
Can offloading computation save energy. Comput. IEEE
Comput. Soc. 43(4), 51-56 (2010)

Shiraz, M., Gani, A., Khokar, R.H.: An Extendable Sim-
ulation Framework for Modeling Application Processing
Potentials of Smart Mobile Devices for Mobile Cloud Com-
puting, Proceedings of Frontiers of Information Technology
2012. Pakistan (2012)

Android Developers. http://developer.android.com/index.
html Accessed on 10 July 2011

Power Tutor. http://ziyang.eecs.umich.edu/projects/power
tutor/ Accessed on 15 April 2012

Shiraz, M., Gani, A.: A lightweight active service migra-
tion framework for computational offloading in mobile
cloud computing. J. Supercomput. 68(2), 978-995 (2014).
doi:10.1016/j.jnca.2014.04.009

Ksoap2-android. https://code.google.com/p/ksoap2-android/
Accessed on 1 May 2013


http://dx.doi.org/10.1007/s11227-013-0988-6
http://status.aws.amazon.com/s3-20080720.html
http://status.aws.amazon.com/s3-20080720.html
http://www.apple.com/icloud/
http://amazonsilk.wordpress.com/2011/09/28/introducing-amazon-silk/
http://amazonsilk.wordpress.com/2011/09/28/introducing-amazon-silk/
http://developer.android.com/index.html
http://developer.android.com/index.html
http://ziyang.eecs.umich.edu/projects/powertutor/
http://ziyang.eecs.umich.edu/projects/powertutor/
http://dx.doi.org/10.1016/j.jnca.2014.04.009
https://code.google.com/p/ksoap2-android/

	Energy Efficient Computational Offloading Framework for MCC
	Abstract
	Introduction
	Related Work
	Proposed Energy Efficient Computational Offloading Framework (EECOF)
	Orchestrator
	Preferences Manager
	Upload Manager
	Download Manager
	Synchronizer



	Methodology
	Experimental Setup
	Prototype Application
	Data Gathering and Data Processing



	Results and Discussion
	Conclusion and Future Work
	Acknowledgment
	References


