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Abstract Cloud infrastructures are designed to simul-
taneously service many, diverse applications that con-
sist of collections of Virtual Machines (VMs). The
placement policy used to map applications onto phys-
ical servers has important effects in terms of applica-
tion performance and resource efficiency. We propose
enhancing placement policies with network-aware
optimizations, trying to simultaneously improve appli-
cation performance, resource efficiency and power
efficiency. The per-application placement decision is
formulated as a bi-objective optimization problem
(minimizing communication cost and the number of
physical servers on which an application runs) whose
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solution is searched using evolutionary techniques.We
have tested three multi-objective optimization algo-
rithms with problem-specific crossover and mutation
operators. Simulation-based experiments demonstrate
how, in comparison with classic placement tech-
niques, a low-cost optimization results in improved
assignments of resources, making applications run
faster and reducing the energy consumed by the data
center. This is beneficial for both cloud clients and
cloud providers.
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1 Introduction

In recent years, the utilization of cloud infrastructures
to host applications has widely spread. The character-
istic that makes these cloud systems so appealing is
their elasticity, that is, resources can be acquired on
demand, depending on the needs of the time-varying
application, but paying only for those actually booked
(a scheme known as pay-as-you-go). Virtualization
technologies enable the cloud infrastructure to provide
such elastic usage. The resources offered by physical
servers, organized in several data centers, are pro-
vided in the form of abstract compute units that are
implemented as Virtual Machines (VMs). Each VM is
assigned a pre-configured set of resources, including:
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number of cores, amount of memory, disk and network
bandwidth.

Virtualized data centers support a large variety of
applications, including batch jobs (typically used for
scientific applications), and web applications (e.g. an
online bookshop). Each application is deployed on a
set of VMs, which can be allocated to any collection
of physical servers in the data center. The problem of
assigning a physical location to each VM is known
as VM placement and it is performed by the manager
of the cloud infrastructure. This manager is typically
called the Infrastructure-as-a-Service (IaaS) provider.

The challenge for the provider is to host a large
and diverse set of applications (VM sets from different
clients) in the infrastructure trying to (1) maximize its
revenue and (2) provide a good service to the clients.
An adequate application placement would be able to
maximize the resource usage of physical servers and
reduce the energy consumption of the data center,
for example, by turning off (or setting to idle state)
the inactive servers and network elements (typically,
switches). At the same time, the infrastructure man-
agement policies should trade off the obtained revenue
with the Quality of Service (QoS) agreed with the
client, guaranteeing that each application receives the
resources paid for.

The VM placement problem has been extensively
explored in the literature (e.g. [10, 12, 17, 23]). Most
efforts have been directed towards optimizing the
usage of CPU, memory and disk resources, and reduc-
ing the energy consumption of physical servers. How-
ever, not enough attention has been paid to the uti-
lization of the network. An inappropriate placement of
VMs with heavy communication requirements could
lead to the saturation of certain network links, with the
subsequent negative impact on applications (longer
execution or response times). Besides, as stated in
[15], the network power has been estimated at 10–
20 % of the overall power consumption. For this rea-
son, the VM placement policy should try to reduce not
only the use of physical servers, but also the use of
network links and switches to reduce the total power
footprint.

The most common topology of data center net-
works is a tree of switches arranged in several tiers.
The communication latency of any pair of VMs
depends on the distance between the physical servers
in which they are allocated. This, in turn, depends
on their position in the tree. Distance is measured as

the number of hops from the sender VM to the recip-
ient. The collection of VMs forming an application
communicate among them following a certain com-
munication pattern. In web applications, the VMs are
arranged into several layers and there may be intra
and inter-layer communication. Other patterns are
possible, depending on the particular characteristics of
the application.

Based on the communication pattern of an appli-
cation, and with an estimation of the workload
imposed by its end-users, it is possible to approximate
the input/output network bandwidth needed by each
VM. The most communicative VM subsets should
be placed as close as possible (minimizing the dis-
tance between them in terms of network hops). This
means using the minimum number of physical servers,
because intra-server communication is the cheapest.
The constraint is that the external aggregated band-
width required by all the VMs in a server, from the
same or from different applications, cannot exceed the
bandwidth of its network connection.

Two examples of common VM placement policies
that are used in data centers are first fit (FF) and round
robin (RR). Each of them has a different characteris-
tic, that the infrastructure manager has to consider to
choose the “right” one. FF simply selects the required
physical resources consecutively, starting from the
first available server. The use of this policy results in a
higher utilization of the active servers because it tends
to fill the possible gaps inside them. For the same rea-
son, the number of active servers is expected to be
reduced, thus saving energy. RR tries to equalize the
utilization of all servers to avoid excessive wearing-
out of server subsets and thermal peaks. The chosen
policy affects not only the use of the infrastructure, but
also the applications running on it. In the long term,
FF tends to place applications in several, non con-
secutive nodes (“consecutive” has to be read in terms
of network position), whereas RR favors contiguous
placement of all the VMs of an application. This has
an impact in the use of network elements (and the
network-related power used) and on the performance
of the applications.

In this work we demonstrate how it is possi-
ble to take these policies as starting points and use
evolutionary optimization techniques to find place-
ments that improve the benefits for both the infras-
tructure provider and the application. In particular,
we evaluate three well-known multi-objective evo-
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lutionary algorithms with problem-specific crossover
and mutation operators. They implement mecha-
nisms to converge rapidly to high quality place-
ments. Experiments demonstrate that allocating appli-
cations using optimization-based policies results in
a lower utilization of resources (servers, network-
ing elements) while improving the performance of
applications.

The remaining of this paper is organized as follows.
After a review of the literature (Section 2), in Section 3
we provide models for cloud applications, input work-
loads, data center organizations, and the energy con-
sumed by servers and switches. Then, we formulate
VM placement as a multi-objective optimization prob-
lem and describe the evolutionary techniques used
(Sections 4 and 5). We assess the benefits of our
approach using the experiments defined in Section 6,
whose results are discussed in Section 7. We conclude
in Section 8 with some conclusions and future lines of
work.

2 Related Work

This work is focused on the problem of performing the
initial placement of the collection of VMs that con-
stitute a cloud application. We argue that making a
suitable initial decision about VM placement is essen-
tial to keep the data center in a near-optimal state,
both in terms of energy consumption and resource
utilization, and also to reduce the future need of con-
solidation. Consequently, fewer VM migrations will
be required, that directly implies less network over-
load due to transfers. This review of the literature
pays special attention to papers that target the initial
placement of applications.

Open-source tools for cloud management use rather
simple placement policies. For example, Eucalyp-
tus [2] implements FF and RR strategies that only
consider the VM requirements and the availability
of resources. It also implements a PowerSave policy
that is similar to the ranking algorithm available in
OpenNebula [5]: choosing first the most used servers
(with room for the new demand) with the objective
of minimizing the number of used servers and, there-
fore, the power consumption. Commercial tools for
capacity planning, such as NetIQ PlateSpin Recon
[4], VMware Capacity Planner [6] and IBMWorkload

Deployer [3] also focus on maximizing the resource
usage and power consumption savings. None of these
tools explain how VM placement is carried out.

Open-source tools do not consider the impact of
network topology and the communication patterns of
applications, but they have been analyzed in many
research works [10–12, 14, 15, 17, 23, 24]. For
example, authors in [17] propose grouping VMs and
servers into clusters, addressing VM placement for
each<VM-cluster, server-cluster> pair as a Quadratic
Assignment Problem (QAP). The VM clustering tries
to maximize the intra-cluster communication and
reduce the inter-cluster communication, but all VM-
clusters are of equal size. The server set assigned to a
VM-cluster is fixed. This work does not consider the
energy consumed by physical servers. Authors in [15]
follow a greedy heuristic approach, but they do not
consider the large variety of applications that can run
in the cloud. In [12] a greedy heuristic to improve the
network utilization is presented, but it does not try to
allocate the VMs in the minimum number of physical
servers.

The energy consumption of a data center is derived
from many elements including physical servers and
the network infrastructure. However, most models for
data center energy do not take into account the com-
bined effects of these two elements. For example,
authors in [17] do not consider the energy consumed
by servers and [20] do not include the network infras-
tructure in the energy model.

Some authors address each the of the objectives
separately (e.g. energy consumption and network
usage) [22]. However, the VM placement problem can
benefit from amulti-objective approach, where several
objectives can be optimized at the same time.

Authors of [20] compare a single vs. multi-
objective optimization approach and state that the
latter is able to find the best trade-off between the total
energy consumption and the network overhead.

3 Modeling the Cloud Computing Environment

Three main roles can be identified in a cloud computer
environment: the provider, the client and the end-user.
The provider is the owner of the infrastructure, the set
of data centers that host resources and leases them to
its clients. These in turn are the ones paying for the
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utilization of the collection of VMs (and other
resources) on which their applications run. These
applications serve the requests submitted by many
end-users. For the purpose of this paper, this is the way
the three parties interact:

1. A client wants to deploy an application in the
cloud. For this purpose, he will lease some
resources (VMs) from an IaaS provider. The client
will select a set of VM types with different
capacities, including (among others) the network
bandwidth. This interaction is carried out using a
management API.

2. Given the set of VM types, and (if provided) the
communication pattern of the particular applica-
tion, the provider will decide how to allocate the
VMs onto the different physical servers in the data
center.

3. Once the application has been allocated and
deployed on the assigned resources of the data
center, it is ready to serve requests from end-users.
For example, in case of a web application, end-
users will send HTTP requests generated by their
browsers.

4. Each end-user request arriving to an application
will trigger the execution of pieces of code in one
or more VMs, as well as some inter-VM commu-
nication (using part of the available bandwidth)
for example to carry out a database query.

From the point of view of the provider, the
interaction with the clients consists of requests to
acquire/release collections of VMs, which impact on
the allocation of resources done by the provider. In
contrast, from the point of view of the application,
the interaction with the end-users is by means of
HTTP requests/responses, which act on the use of the
resources on which the application is running.

This section presents several models used through-
out this work to characterize and solve the VM
placement problem. We need (and define) models to:

1. Describe the structure of cloud-hosted applica-
tions as a collection of VMs, and a communica-
tion pattern among them (that is, an application
model)

2. Describe the arrival of end-user requests to a
particular application, and the way each request
triggers the utilization of the resources assigned to
the application

3. Describe the structure of the data center man-
aged by the provider, which is capable of hosting
multiple applications of different clients

4. Describe the way the use of resources translates
onto the use of power (that is, a power model),
considering as resources CPUs (physical servers)
and network equipment (switches)

3.1 Modeling Applications

A client willing to run an application in the cloud
will interact with the provider, requesting a set of
VMs. We assume that the application is built using
a layered organization, with communication between
layers. Also, we assume that the client knows the
structure of his application, and that this structure
is part of the resource request sent to the provider.
The provider may take into account the application
structure in order to make an optimal allocation.

In our model, the definition of an application
requires several parameters: the number of layers (L),
the number of VMs in each layer (Ni being i the layer
identifier) and a matrix of the communication needs
(or bandwidth, measured in Mb/s) between each pair
of VMs i and j (BW = [bwi,j ]), and with the exter-
nal world. For this work, we particularize this model
to define two classes of web applications (see Fig. 1).
Web applications are usually implemented using a
three-layer architecture:

1. A load balancer that receives end-user requests
and distributes them evenly along the VMs of
the business layer; it may be implemented on a
hardware device, or as a DNS-based redirection—
thus, we do not include it in the application model.

2. A business layer that contains the logic of the
application. It comprises a pool of VMs that pro-
cesses the input requests (and generates the corre-
sponding replies) redirected by the load balancer.
The number of VMs at the business layer depends
on the intensity of the workload generated by
end-user requests.

3. A persistence layer that processes the database
(DB) requirements of the application. The num-
ber of VMs in the persistence layer depends on
the intensity of the workload generated by the
application. A light workload can be managed
by a single DB server that supports both read r

and write w operations; we represent this class of
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Fig. 1 Two web application
types: L-WA, with a single
R/W database server (left);
H-WA, with a master-slave
database system (right)

applications as L-WA. For applications with heavy
database demands (H-WA), a master-slave repli-
cation scheme may be applied: one of the VMs of
the persistence layer is the master node that pro-
cesses all the write w operations, while the read
queries r are evenly distributed along the remain-
ing VMs in the layer. Whenever a change (write
w) is made on the master node, it is propagated to
the remaining DB replicas.

IaaS providers typically offer different predefined
types of VMs, with different resource sets, called
instances. In this work, we will consider small,
medium and large instances, with different charac-
teristics only in terms of allotted network bandwidth
(in Mb/s): bws= 50, bwm=150 and bwl=300, respec-
tively. For L-WA web applications, we consider that
the business layer (L1) uses small instances and the
database layer (L2) contains a single, large VM. For
H-WA applications, the database is modeled as a sin-
gle large instance for the master DB node, and several
medium-size VMs for read DB nodes.

3.2 Modeling Application Workloads

Once the application has been placed in the data
center, it is ready to serve requests coming from end-
users. Our model considers that a request arriving to a
web application can be of one of these three types: (1)
p: it is processed in the business layer, and requires no
access to the database; (2) r: it requires a query (read
operation) to the database; (3) w: it requires a write
operation on the database.

Each request type implies different inter-VM mes-
sages and processing times in the different layers of
the application. For example, an r request requires the
following execution steps:

1. The initial HTTP request sent by the end-user is
redirected (by the load balancer) to one of the
VMs of the business layer (d0)

2. After an initial processing time in the business
layer, a query is sent to the database layer (d1)

3. The database server will process the request
(again, using some CPU time) and will send the
response back to the business layer (d2)

4. Finally, the VM in the business layer sends the
response to the user, with the HTML content (d3)

Each of the messages involved has an associated
size (d0, d1, d2, d3) that is generated randomly using
the ranges defined in Table 1. These values have
been extracted from a report [1] that analyzes billions
of web pages. The transfer rate will depend on the
bandwidth allocated to each particular VM.

The response time of web applications is usually
in the order of milliseconds. For our simulation-based
experiments, the CPU processing time of each request
is generated randomly, in the range of 50-150 ms
per tier. p-type requests only require 50–150 ms in
the business tier, while both r and w requests imply:
50–150 ms in the business tier, another 50–150 ms
to execute the database read/write query, and 50–
150 additional ms in the business tier to finally send
the response back to the end-user. These values have

Table 1 Data size ranges (in KB) of each message, for each
request type

Req type d0 d1 d2 d3

p 5 − 10 0 0 5 − 500

r 5 − 10 10 − 50 20 − 400 5 − 500

w 5 − 10 10 − 50 20 − 300 5 − 500
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been extracted from [8, 19]. Note that given the time-
sharing nature of the CPU resource, several requests
may be executed concurrently on the same VM and,
thus, the processing time will increase with the degree
of concurrency.

For this work we propose a workload generation
function designed to generate sequences of HTTP
requests, that will be used in our simulation-based
experiments to “feed” applications deployed in the
data center. The model is described in Algorithm 1.
The generated application workload follows a diurnal
pattern, with a lower average request rate at week-
ends (see Fig. 2 for some examples). An initial per-day
basereq parameter (baseline number of requests) is
customized for each application, which is lowered for
weekend days. Then, a sinusoidal function [13, 21] is
used to generate a base number of requests per second.
Using different probability distributions and ranges,
we add burstiness to the workload. Finally, a request
type (p, r or w) is selected randomly, together with
the size of the request. In Fig. 2, we have plotted
two sample application workloads that follow a daily
pattern.

3.3 Describing the Data Center Structure

As previously stated, current data centers are usually
built using tree-based topologies, such as fat tree and
VL-2 [17]. This kind of networks are composed of
several tiers of switches (we assume homogeneous

Algorithm 1 Per-application process to generate end-
user HTTP requests

switches) and several servers connected to the bot-
tom tier of the tree (the edge or access tier). Each
server is divided into several slots, where each slot
can be a fraction of a core, an entire core or several
cores. Application VMs are assigned to different slots
of the data center servers. Throughout this work we
assume that a VM consumes a slot, and that one slot
is equivalent to one core of a multi-core server.

The physical configuration of a data center is
defined as the number of servers (P ), the number of
cores (slots) per server (Cp) and the network topology.
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Fig. 2 Two examples of HTTP workloads generated by end-users, with different values for basereq



Towards a Greener Cloud Infrastructure Management 381

In particular, a tree-based topology is defined by the
number of uplinks and downlinks of the switches (Sup

and Sdown), the bandwidth (Mb/s) offered by each
switch port (Sbw) and the number of tiers of the tree
(T ). The communication latency between two cores
i and j depends on the distance between them, mea-
sured in terms of hops. Given a topology, the distance
di,j between a any pair of cores (actually, any pair of
servers) can be computed. A per-data center matrix
D = [di,j ] summarizes all these distances.

In this work we have focused on interconnection
networks built using fat trees. The main character-
istics of these trees are the low average path length
and the availability of multiple paths between nodes,
thus performing well with almost any kind of work-
load. Therefore, it is the network of choice in high-
performance data centers. The particular fat tree net-
work that we have used is composed of three tiers (as
depicted in Fig. 3a) with the same number of switches
in each of them (see Fig. 3b). We consider that core
switches are directly connected to the Internet, the
bandwidth of this connection being the aggregated
bandwidth of all the switches. Also, we assume that
the network interfaces of the servers in the access tier
are of capacity Sbw. In this kind of tree the distance
between two cores/servers is computed as follows:
cores in the same physical server are at distance 0;
servers connected to the same access switch are at dis-
tance 2; if aggregation or core switches are required,
the distance grows to 4 or 6 respectively.

The configuration parameters used in the experi-
ments to model the data center are those specified in
Table 2.

Table 2 Parameter configuration for the data center
infrastructure

Par Value Description

P 512 Number of servers

Cp 8 Cores (slots) per sever

T 3 Number of tiers in the fat-tree

Sup 8 Number of uplink ports per switch

Sdown 8 Number of downlink ports per switch

Sbw 1000 Capacity of links (Mb/s)

3.4 Modeling Power Requirements

Nowadays, the reduction of the power consumption of
data centers is receiving increasing attention. Energy
is consumed by servers and switches, and also by cool-
ing and energy distribution systems. Reducing power
use has direct benefits for the infrastructure provider
(lowering the energy bill), while reducing the carbon
footprint of the data center.

PowerNap [16] aims to reduce the consumption of
unused servers by switching off memory, disk and
other elements. In this work we assume that a strategy
like this is used in the data center: unloaded servers
and switches operate in an idle state that minimizes
energy waste. We define a general model of power uti-
lization of a device (server or switch), inspired on that
provided in [16].

E =
{

Eidle Uactive = 0
Eactive + Erem·(Uactive−1)

Utotal−1 Uactive > 0

Fig. 3 Representation of the physical configuration of a data center (network and servers)
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The energy consumption E of a server/switch (in
Watts) depends on the number of active cores or ports
Uactive. In the idle state, the consumption is equal to
Eidle. The transition from the idle state to the activa-
tion of the first core/port implies an important increase
in the energy utilization, because it requires turning
on other resources (memory, disk) or internal fans.
The activation of additional cores/ports causes a linear
increase of used power. This energy model is similar
to the one proposed by [18]. In this work we do not
consider the penalty time due to the transition from
the idle to the active state. As the authors state in [16],
this time is negligible for jobs that last more than 10
ms using this model, which is actually our case.

Table 3 shows the energy consumption values used
in the experiments, both for servers and switches. Val-
ues for servers are based on those in [16]. Values for
switches are taken from manufacturer data sheets, and
are similarly to those reported in [15].

4 Multi-objective Optimization Algorithms

This section describes the optimization algorithms
used in this work to solve the problem of the ini-
tial VM placement, formulated as a multi-objective
problem. We have selected three multi-objective evo-
lutionary algorithms: NSGA-II, SPEA2 and Hype.

At each step of the optimization process (called
generation), each of the algorithms maintains a set
(population) of individuals (candidate solutions for
a given VM placement problem). The quality of a
solution is assessed using several fitness functions
(objectives) that represent the (possibly constrained)
problem; in this case, the placement of a collection
of VMs. At each generation, the most promising indi-
viduals are chosen using a selection criterion and
included in the new population. The offspring is gen-
erated by applying crossover and mutation operators
over the individuals of the current population. The
optimization process is repeated until the stopping
criterion is fulfilled.

The result of this optimization process is a set of
solutions that simultaneously optimize each of the
objectives (called Pareto set). The value of the func-
tions achieved by the Pareto optimal solutions is called
Pareto front. Formally, we define a multi-objective
optimization (minimization) problem subject to some
restrictions as:

min
{
f1(x), . . . , fNObj

(x)
}

(1)

{
gj (x) = 0 j = 1, . . . , M,

hj (x) ≤ 0 j = 1, . . . , K
(2)

where fi is the i − th objective function, x is a vector
that represents a solution,Nobj is the number of objec-
tives, M + K is the number of constraints, and gj and
hj are the constraints of the problem.

Now we explain each of the three optimization
algorithms tested in this work. The main difference
between them relies on the selection criterion used to
choose the best candidate solutions at each generation.

– Non-dominated Sorting Genetic Algorithm II:
The aim of the NSGA-II [9] algorithm is to
improve the adaptive fit of a population of candi-
date solutions to a Pareto front constrained by a
set of objective functions. The population is sorted
into a hierarchy of sub-populations based on the
ordering of Pareto dominance. Similarity between
members of each sub-group is evaluated on the
Pareto front, and the resulting groups and similar-
ity measures are used to promote a diverse front
of non-dominated solutions.

– Strength Pareto Evolutionary Algorithm 2:
SPEA2 [25] uses as selection criterion a combi-
nation of the degree to which a candidate solution
is dominated (strength), and an estimation of den-
sity of the Pareto front as an assigned fitness. An
archive of the non-dominated set is maintained
separate from the population of candidate solu-
tions used in the evolutionary process, providing
a form of elitism.

Table 3 Parameter values
of energy utilization in
physical servers and
switches

Consumption at Server value (W) Switch value (W)

Emax 100 % utilization 200 100

Eidle Idle state 10 10

Eactive One active core/port 160 31

Erem Remaining Uactive − 1 cores/ports 40 69
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– Hypervolume Estimation Algorithm: Hype
selects the best candidate solutions using the
hypervolume indicator. This measure is consistent
with the concept of Pareto-dominance; the set of
solutions with the highest value of the indicator
dominates other sets. However, the calculation of
the hypervolume requires a high computational
effort. Hype [7] addresses this issue trading off
the accuracy of the measured estimates with the
available computing resources.

5 Topology-aware Optimization

The aim of this work is to find a suitable placement
for the VMs forming an application onto a set of avail-
able cores (slots) in the data center servers. Taking
as starting point a VM placement obtained using a
simple policy, either FF or RR, we use a bi-objective
optimization algorithm to obtain a better one. This
optimization takes into account the communication
needs of the application being allocated, as well as
the structure of the data center, aiming to benefit the
cloud client (by making its application perform bet-
ter) while allowing the cloud provider to save energy
costs. In this section we focus on the formal definition
of this particular optimization problem, as well as on
the specific crossover and mutation operators needed
by the three multi-objective optimization algorithms
being evaluated.

5.1 Problem Definition

Given an application A with a VM set V of size N ,
and a subset of available cores C′ ⊂ C, where C is
the whole set of cores in the data center (note that usu-
ally |C′| >> N), the VM placement problem involves
finding a mapping function ϕ that assigns each VM,
v ∈ V to a core c ∈ C ′:

ϕ : V → C′

v �→ ϕ(v) = c

A solution to the VM placement problem has the
form s = (s(1), . . . , s(N)) = (c1, c2, . . . , cN) rep-
resenting that the VM i is assigned to core s(i) =
ci .

Two major selection criteria will be considered to
choose a VM placement. First, we favor solutions that
minimize communication latency. For this reason, the

VM placement will try to allocate the most commu-
nicative VMs onto close cores, in terms of network
distance. The second criterion focuses on reducing
the number of servers allocated to the application.
An allocation solution that fulfills the first criterion
may not satisfy the second one. For example, given
an application A = {v1, v2, v3, v4} in which com-
munication occurs between v1-v2 and v3-v4, the first
criterion may place each pair of VMs on a different
physical server. However, according to the second cri-
terion, it would be better to place all the VMs in the
same server. Both criteria try to positively impact the
use of data center resources, by means of reducing the
number of active servers and switches, but the first one
specifically tries to benefit the application, optimiz-
ing its performance. Placement solutions must obey
a restriction: external communication demands of all
the VMs assigned to a server cannot exceed the band-
width of its network link Sbw. This constraint does not
take into account communication between VMs in the
same server.

More formally, we describe VM placement as a
bi-objective optimization problem. The first objective
function to minimize is defined as follows:

f1(s) :
N∑

i,j∈V

bwi,j · ds(i),s(j) (3)

where ds(i),s(j) is the distance between the cores
assigned to VMs i and j , and bwi,j is the bandwidth
required by VMs i and j .

Given the function σ(c) = p that returns the server
p to which core c belongs to, and a solution s, we
define the set of active servers for this solution as
P s = {p|∃i ∈ {1, . . . , N} s.t. σ(s(i)) = p}. The
second objective function to minimize is defined as:

f2(s) : |P s | (4)

The requirement to guarantee that the total band-
width usage of the VMs allocated to a server does not
exceed the capacity of that server’s network link can
be expressed as this constraint:

∀p ∈ P s : Sbw − S
p
bw ≥ 0 (5)

where Sbw is the bandwidth of a server’s link, and
S

p
bw is the reserved bandwidth of server i, considering

the previously allocated applications and also the new
one.
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5.2 Problem-specific Operators

As stated before, at each generation the optimiza-
tion algorithms must make the current population
evolve using crossover and mutation operators. In
this work, we have developed specific operators that
consider the characteristics of the VM placement
problem.

5.2.1 Guided Crossover Operator

Crossover is applied with probability pcross . It com-
bines two individuals to generate a new one, taking
into consideration the specific characteristics of the
problem. Given two parents s1 and s2, the crossover
operator generates a new child ch as follows. We
define φ(i, s) as the communication cost of VM i

in a candidate solution s, considering all the destina-
tions with which it communicates, the corresponding
input/output bandwidths, and the distances:

∀i ∈ {1, . . . , N} : φ(i, s) =
N∑

j=1,j �=i

(bwi,j +bwj,i)·ds(i),s(j)

(6)

Child ch will be constructed taking from the parents
those cores that cause the lowest communication cost.
That is, for each VM i, if φ(i, s1) < φ(i, s2), then core
s1(i) is assigned to VM i of child ch. A correction step
to remove any possibly repeated position (cores) of
each child may be required. In that case, the repeated
core will be replaced with one of the non-used cores
from one of the parents.

5.2.2 Guided Mutation Operator

Mutation is applied with a probability pmut . There are
two types of mutation, and the one to apply is selected
based on another probability pmtype. The first type
performs a simple swap between any two elements
of the chosen solution, without considering cores in
the same server, because this change would not affect
the values of the objective functions. With probabil-
ity 1-pmtype, the second type of mutation is applied:
one of the cores assigned to the solution is replaced
with a core c ∈ C′, selected randomly from the free

ones using a distance-based distribution that favors
physically close cores.

5.2.3 Selection Criterion for a Solution in the Pareto
Front

The bi-objective optimization algorithm generates a
collection of solutions for a given application (Pareto
set), with different trade-offs between locality and
number of allocated servers. As all Pareto optimal
solutions are considered equally good, a selection cri-
terion is required to choose one. We select the solution
that is most beneficial for the provider: one that min-
imizes the global number of active servers in the data
center Pactive. Note that this criterion is completely
different from the one used in f2. With f2 we try to
minimize the number of servers assigned to a particu-

lar application, while here we select the solution that
achieves the lowest number of active servers in the

whole data center.

6 Experimental Framework

This section presents the simulation-based framework
used to evaluate the VM placement strategies. The
experiments try to provide answers to two questions:
(1) which optimization algorithm performs the best
when applied to the VM placement problem? and (2)
what is the benefit of a network-aware multi-objective
VM placement, in terms of resource usage and energy
consumption?

6.1 Simulation Environment

The VM placement has been evaluated using an in-
house developed simulator. This tool is able to sim-
ulate the dynamics of a realistic data center, using
the models described in Section 3 for the data cen-
ter topology, applications, workload generation and
power consumption.

For each new application allocation request
(resource acquisition request from the cloud client)
arriving to the provider, the best initial placement
of the collection of VMs has to be computed. A
preliminary placement is generated using a simple
VM placement policy: FF which searches free cores
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sequentially, always starting at the first one, or RR
which also performs a sequential search but starting
from the last core used in the previous placement.
Afterwards, the preliminary placement is improved
using an optimization algorithm.

The data center is initially empty: none of the
resources are reserved for any application. Sequences
of acquisition/release operations (new applications,
applications that end) are generated in order to pop-
ulate the data center. Depending on the rate of these
operations, we deal with three different load scenar-
ios: low (25 %), medium (50 %) and high (75 %). These
percentages indicate the average use of data center
resources caused by the corresponding load.

Each experiment carried out on the simulator is
divided into two phases. The first one is a warming-up
phase, not used for measurements, that ends when the
target load of the data center is reached and the sys-
tem arrives to a steady state. The second phase, with
the system in steady state, is that used for gathering
metrics. It consists of ten batches with sets of 1000
operations (equally distributed between arrivals and
departures). The simulator collects a variety of per-
batch metrics. We have performed five repetitions of
each experiment, using the same list of operations, and
summarized in several tables the averaged metrics of
the five repetitions.

6.2 Experiments to Compare Optimization
Algorithms

Our first task was to identify the best multi-objective
algorithm for our placement problem, from a set of
three candidates: NSGA-2, SPEA-2 and Hype. To do
so, we carried out a collection of 120 experiments in
a simplified environment, i.e. the data center imple-
ments the acquisitions and releases of sets of VMs
as requested by the cloud clients, but the dynamics
of the deployed applications is not simulated: they do
not execute end-user HTTP requests. For this evalua-
tion we need to use two models: a description of the
data center topology and a description of the struc-
ture (and communication needs) of the application.
With this set-up, we can determine which algorithm is
the one providing better values for the objective func-
tions to be optimized, and for the criterion used to
choose a solution from the Pareto set. The parameter

configuration for the optimization algorithms is
detailed in Table 4. Note that for this work we have not
made any particular effort to tune the parameters, and
we have used the same values with all the optimization
algorithms.

6.3 Experiments to Evaluate VM Placement
in Realistic Scenarios

Once a good optimization algorithm for VM place-
ment has been identified, we can carry out more
complex experiments, which involve the interaction
of all the parties of a cloud computing set-up, in a
detailed simulation: we simulate the arrival of acquisi-
tion/release of applications from cloud clients (which
trigger operations for VM allocation/release by the
infrastructure manager), and we also simulate the
arrival of HTTP requests from end-users to the appli-
cations deployed in the cloud infrastructure (which
trigger the use of resources in the VMs running the
applications and, consequently, on the servers and
attached switches). In order to implement this, we
need to use a data center load model (low, medium or
high), a per-application model of its HTTP workload,
and a per-application model of resource utilization.
As in the previous set-up, we have carried out 120
simulations.

Notice that the infrastructure manager will run a
placement algorithm each time an application alloca-
tion request is received, and this can be done in a
straightforward way (plain FF or RR) or in combi-
nation with an optimization algorithm. In this set of
experiments we will consider only the multi-objective
optimization algorithm which provides the best results
in the previous set of experiments.

Table 4 Parameter configuration for the optimization algo-
rithms (NSGA-2, SPEA-2 and Hype)

Parameter Value Description

Npop 100 Number of individuals per generation

Ngen 100 Number of generations

pcross 0.8 Probability of crossing operator

pmut 0.8 Probability of mutation operator

pmtype 0.5 Probability for mutation type
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All this simulation set-up will allow us to assess the
effectiveness of placement policies in terms of appli-
cation efficiency (time to process HTTP requests),
resource utilization and energy consumption. Notice
that these metrics reflect more closely the actual needs
of cloud users and providers.

7 Analysis of Results

In this section we summarize and analyze the results
of the experiments reported in Sections 6.2 and 6.3.

7.1 Simplified Experiments: Evaluation
of Optimization Algorithms

The results of the simplified experiments allow us to
compare the simple placement policies, FF and RR,
with the same ones enhanced with a topology-aware
optimization, performed with NSGA-II, SPEA-2 and
Hype. The first question to ask is whether or not
optimization is effective (applications and data cen-
ter provider benefit from it). Then, if the first answer
is affirmative, the best optimization strategy must be
selected.

Results are summarized in Table 5, which gathers
the mean μ and standard deviation σ of the multi-
ple simulation runs for both objective functions, f1

(communications locality) and f2 (number of servers
assigned to the application). The number of total
active servers in the data center Pactive (Pa for short) is
also included in the table.

If we focus on non-optimized policies (non-opt),
clearly RR is better for applications, as it provides
lower communication costs than FF in all scenarios
(see f1 values), while simultaneously providing better
(smaller) f2 values (number of servers per applica-
tion). However, FF uses on average substantially fewer
servers than RR. The most relevant result, though,
is that applying optimization always provides better
values for both objective functions, compared to the
baseline, non-optimized FF and RR.

It is not easy to decide which optimization algo-
rithm performs the best. We should consider f1, f2 as
well as the number of active servers Pactive used as the
Pareto selection criterion. Attending to Pactive values,
non-optimized FF and RR almost always use more
servers than the optimized counterparts (the single
exception is NSGA-II-optimized RR for high loads).
Among the optimized placements, SPEA-2 is, in a

Table 5 Means and deviations of values of objective functions f1 and f2 and number of active servers Pa for non-optimized FF and
RR (non − opt), and for FF and RR with an additional optimization step (using NSGA-II, SPEA-2 and Hype). Results computed for
High,Medium and Low data center loads

First fit Round Robin

μf1 σf1 μf2 σf2 μPa μf1 σf1 μf2 σf2 μPa

High non-opt 731865.40 102999.24 37.23 3.73 354.10 702092.96 113376.77 32.33 4.25 454.53

NSGA-II 621818.21 95383.95 35.71 2.91 341.87 699406.83 107713.29 32.15 3.36 456.46

SPEA-2 649312.15 89880.09 35.18 3.33 339.47 660725.75 65739.05 30.04 2.72 438.10

Hype 671846.80 115480.83 36.53 3.99 353.79 697650.12 107674.54 30.91 2.94 449.66

Medium non-opt 722702.32 107985.19 33.53 3.44 228.65 645590.51 107245.73 21.65 2.97 303.00

NSGA-II 607612.69 101509.97 31.52 2.34 227.98 592405.23 112321.56 19.94 2.36 283.41

SPEA-2 630735.40 106386.83 31.69 2.54 227.57 569869.03 104114.19 20.00 2.08 286.05

Hype 600308.65 112778.65 32.06 2.70 227.59 573890.04 120745.76 20.08 2.19 287.77

Low non-opt 690180.40 135298.79 27.35 2.63 111.15 604539.18 114483.78 17.31 1.64 125.37

NSGA-II 574469.29 159677.89 24.72 2.19 108.05 539529.24 145097.25 16.42 1.52 109.12

SPEA-2 559766.55 167074.10 24.52 2.39 96.75 468476.31 115624.85 15.75 1.49 112.88

Hype 580084.18 132498.60 25.51 2.50 104.63 509938.20 131754.41 15.88 1.58 114.21
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Fig. 4 Mean execution
time per HTTP request (in
seconds) for the data center
with high load, comparing
FF and RR without and
with an additional
optimization with SPEA-2

majority of cases, the one using the smallest number
of servers. Furthermore, in most cases it also obtains
the lowest values of objective functions f1 and f2.

Note that the criteria used to choose an optimization
algorithm only provide hints about the expected bene-
fits for applications (clients) and data center providers.
The achievable benefits, expressed in more tangible
terms, are analyzed in the following section.

7.2 Detailed Experiments: Evaluation of the Benefits
of Optimization-based Placement

The objective functions f1 and f2, together with the
Pareto selection criterion, were designed to have a
positive impact on both the applications and the data

center, but we need to assess those impacts in a mean-
ingful, measurable way. For applications, we want to
know the improvements in terms of the mean execu-
tion time per HTTP request. For the data center, we
are interested in achieved energy savings. For the lat-
ter we could also provide the number of active servers
and switches, but energy provides a single metric that
assesses how “green” our proposals are.

Figure 4 compares the HTTP request processing
time for FF and RR without and with the optimiza-
tion step carried out with SPEA-2. The figure is only
for the highly-loaded data center, but values for other
loads are similar because the (simulated) data cen-
ter never does over-subscription: it is guaranteed that
clients use the resources they pay for in an exclusive

Table 6 Energy consumption (in MWatts/hour)used by physical servers, switches and total, for non-optimizedNon−opt and SPEA-2
placements, for different data center loads

First fit Round Robin

Eserver Eswitch Etotal Eserver Eswitch Etotal

High non-opt 69.97 24.41 94.38 73.54 24.83 98.37

SPEA-2 62.85 24.68 87.53 59.87 24.92 84.79

Medium non-opt 45.05 25.43 70.49 70.82 25.54 96.37

SPEA-2 42.61 25.60 68.20 49.12 25.36 74.48

Low non-opt 43.80 26.21 70.02 68.24 26.28 94.52

SPEA-2 42.00 26.17 68.17 45.81 26.21 72.02
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way. However, the placement policy has an impact on
the inter-VM communication cost: a good placement
reduces inter-VM distance and, thus, HTTP requests
are performed faster. We have measured 656 vs. 802
ms for FF (optimized vs. non-optimized) and 710 vs.
793 ms for RR.

Regarding the energy consumed by the data cen-
ter, we have to consider that FF-based policies (with
or without optimization) always use fewer servers
than the RR-based alternatives. Simultaneously, all
the tested policies make very similar use of network
links and switches, because of the fat-tree topology
that distributes data movements along all upper-level
switches: locality only translates into negligible gains
at the access layer. This comes at no surprise because
the locality function to optimize is used on a per-
application basis, not taking into consideration the
global use of the network. The combined result is
that the placement policy using fewer servers is the
one consuming less power, as reflected in the mea-
surements summarized in Table 6. Plain RR is more
power-hungry than FF. When SPEA-2 is put to work,
differences between these two strategies blur. Opti-
mized FF is in most cases still superior, but RR is the
best choice for highly loaded data centers.

8 Conclusions and Future Work

Throughout this paper we have demonstrated that
an IaaS provider can improve the VM placement
policy in use by applying an optimization strategy,
achieving benefits not only for the provider but also
for clients and end-users. Furthermore, this optimiza-
tion can be done at a negligible cost: it is applied
when allocating a new application, taking only a few
seconds. Benefits for the provider are measured in
terms of used servers and switches, and immediately
translate into reduced power demands (resulting in a
“greener” data center). Benefits for the applications
are achieved by improving their ability to process user
requests. As a direct effect of improving communica-
tion latencies, the average execution time per request
is reduced (up to 11–19%). Thus, the cloud client (that
is, the application owner) will be better able to com-
ply with QoS expected by end users. Simultaneously,
using optimization we are able to improve the number
of active servers in the data center and, therefore, the

overall energy consumed: for highly loaded data cen-
ters, savings range between 7.26–13.81 %. Globally,
the best tested placement strategy is FF with SPEA-2
optimization, although in some instances (optimized)
RR yields better results.

The utilization of this optimization-based place-
ment requires an effort from the clients: they must
specify, or at least provide some hints about, the
application architecture and its communication needs.
This is an old and well-known problem: application
dimensioning. Our proposal also requires including,
in the decision processes for data center resource
management, knowledge about the structure of its
interconnection network.

This work is focused on the initial VM placement
of applications. However, the state of a data center
is very dynamic: new applications arrive, other appli-
cations are removed, and deployed applications can
increase/reduce the resources allocated to it. After all,
one of the key characteristics of cloud computing is
elasticity. Most probably, after some time, the initial
VM placement may become sub-optimal (for exam-
ple, using an excessive number of active servers), and
reallocation of some VMs could be necessary (for
example, to consolidate more VMs in fewer servers
to obtain a smaller set of active servers). This process
is called re-consolidation. We plan to address re-
consolidation as a multi-objective optimization prob-
lem, trading off its benefits with its costs. Each VM
migration should be planned carefully as it causes
extra CPU costs and network overhead that may neg-
atively affect the allocated applications.

Elasticity allows the applications to dynamically
scale the acquired resources (the number of VMs in
horizontal scaling) depending on the input workload.
Thus, the number of VMs will vary with time and
the infrastructure provider should be able to optimize
not only the initial placement, but also the addition of
new VMs. We plan to adapt our proposal to deal with
scalable applications.

Providers usually over-subscribe resources: users
rarely exploit 100 % of the assigned resources (includ-
ing cores, memory, network bandwidth, etc.) There-
fore, it is common practice to assign to a server “extra”
slots. However, providers have to monitor resource
usage carefully, to ensure that the aggregated current
demands do not exceed server capacity: this would be
very negative in terms of the QoS perceived by clients.
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The QoS could be easily fitted as an extra objective in
a multi-objective optimization formulation of the VM
placement and/or re-consolidation.

Finally, we plan to implement optimization-based
VM placements as part of an open source cloud infras-
tructure managing software package, in order to better
assess its real-world applicability.
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