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Abstract Task scheduling and resource allocation are
important problems in grid computing. The work-
flow management system receives inter-dependent
tasks from the users and allocates each task to an
appropriate resource based on user requirements and
constraints such as budget and deadline. Thus this
system has a significant effect on performance and
the efficient use of resources. In general, mapping
tasks to distributed resources is an NP-hard problem.
Hence, heuristic and meta-heuristic methods are typ-
ically employed. Moreover, since tasks can enter the
system at any time, the task scheduling runtime is an
important parameter for workflow management sys-
tems. This paper presents a fast method for schedul-
ing workflows in a grid environment based on a
multi-objective Genetic Algorithm (GA). In the pro-
posed method, the workflows and chromosomes in
the GA are assigned to levels to reduce the schedul-
ing time. In addition, the proposed method prevents
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infeasible solutions being produced in new genera-
tions, so task dependencies do not need to be checked.
New crossover and mutation operators are proposed
to improve convergence and maintain solution diver-
sity. Experimental results are presented and evaluated
using several well-known metrics as well as a new
metric. This shows the effectiveness of the proposed
method compared to other approaches.

Keywords Workflow scheduling · Genetic
algorithm · Multi-objective optimization · Grid
computing

1 Introduction

Computational grids are an alternative to supercom-
puters for solving large scale problems [1]. They can
be divided into two groups: utility grids and commu-
nity grids [2, 3]. The resources in utility grids have
characteristics such as Quality of Service (QoS) and
cost which allow users to consume resources appro-
priately. In a community grid, resources are available
according to a best effort model and cost is not
a consideration. Utility grids allow users to reserve
resources to ensure the availability of services, and
the QoS can be negotiated [4]. Conversely, the QoS
and service availability in community grids may not
be guaranteed [5]. In recent years, utility comput-
ing services have improved due to the development
of service-oriented grid computing. This provides a
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transparent infrastructure that enables users to obtain
secure, scalable, and standard services in a global
network environment [6, 7].

An important issue in the grid computing envi-
ronment is workflow scheduling. In the literature,
several methods have been proposed to address the
job scheduling problem in community grids. How-
ever, very few techniques have been developed for
scheduling in utility grids. Most grid applications
require the execution of a large number of interdepen-
dent jobs in areas such as biotechnology, astronomy,
and weather forecasting. Workflow Management Sys-
tems (WfMSs) such as Pegasus [3], ASKALON [8],
GrADS [9] and others [10–14], have been developed
to define, manage and execute workflows in grid envi-
ronments. Towards this end, the WfMS taxonomy has
been proposed [15–17].

The main issues in workflow scheduling are how to
select an appropriate resource for each job and deter-
mine the execution order of jobs on resources to meet
user requirements such as QoS. Existing workflow
management systems attempt to minimize the work-
flow execution time. However, in utility grids the cost
of executing jobs on various services should also be
considered. Typically, services with a higher QoS cost
more. The key issues in workflow scheduling are as
follows [18]:

• Resources are usually shared between users and
there may be competition between them for these
resources.

• The scheduler is not in control of the resources.
• The available resources vary over time.
• Resources are located on multiple management

sites.
• Resources are heterogeneous.
• Most workflow applications are data-centric and

therefore a large amount of data may be trans-
ferred between sites.

As mentioned above, satisfying user requirements
such as the cost and delay of workflow execution is
an important problem in grid computing. In this paper,
a new workflow scheduling algorithm is proposed
which considers user requirements. Each workflow is
first associated with a level according to the depen-
dency between jobs, and then a multi-objective genetic
algorithm is used to perform the scheduling. The
main goal of this algorithm is not only to optimize

workflow execution time and cost but also minimize
the scheduling time which has a significant impact on
grid performance.

The remainder of the paper is organized as
follows. Section 2 presents related work on the
workflow scheduling problem and multi-objective
workflow scheduling. The workflow scheduling
model and multi-objective optimization are also
presented. The proposed scheduling algorithm is
described in Section 3. Section 4 presents some per-
formance results to illustrate the advantages of this
algorithm, and finally some conclusions are given in
Section 5.

2 Preliminaries

2.1 Related Work

Workflow scheduling focuses on the mapping and
execution management of interdependent tasks on ser-
vices. In general, the problem of mapping tasks to
distributed resources is an NP-hard problem [5, 19],
so algorithms that can find an optimal solution in
polynomial time are not known. Hence, heuristic and
meta-heuristic methods are used to find appropriate
solutions in homogeneous [6] and heterogeneous [20,
21] distributed systems such as grids. For example,
heuristics based on nature have been used for task
scheduling [22–24]. A Genetic Algorithm (GA) and
the Heterogeneous Earliest Finish Time (HEFT) algo-
rithm were employed in the ASKALON project for
job scheduling [8]. Most of the proposed techniques
for workflow scheduling consider only one objective,
and very few attempt to optimize several objectives
simultaneously.

To address the scheduling problem in grids which
are heterogeneous distributed systems, several objec-
tives are considered such as makespan, reliabil-
ity of the scheduling, required budget to execute
jobs, utilization of the resources, and fault toler-
ance. Some of these objectives have high priority
from the user point of view while others are impor-
tant to resource providers. Therefore, some meth-
ods have been proposed based on a single objective
while others consider a combination of objectives. In
[25], the authors enhanced an existing list schedul-
ing algorithm designed to minimize the workflow
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makespan with advance reservation-based negotiation
functionality. They illustrate through real-world expe-
riments two benefits of their approach: improved exe-
cution predictability from the user perspective and
higher resource utilization fairness through a new
progressive allocation strategy from the provider per-
spective. The multi-criteria approach proposed in [26]
considers job completion time and security risk as
the main objectives of the independent job scheduling
process. They changed the implementation of a tra-
ditional genetic algorithm and proposed the Acceler-
ated Genetic Algorithm (AGA). This provides online
job scheduling with quick convergence to optimal
solutions.

The method presented in [27] proposes a depend-
able grid workflow scheduling system. It employs a
Markov chain-based resource availability prediction
model. Based on this model, a reliability cost driven
workflow scheduling algorithm was developed. It first
predicts the reliability of a resource node during task
execution and then makes a scheduling decision in
terms of the reliability cost of successfully executing
the task. A distributed scientific workflow mapping
algorithm for maximizing reliability under an End-
to-End Delay (EED) bound was proposed in [28].
This algorithm considers both the maximum reliabil-
ity and the minimum EED objectives in a two-step
procedure. In the first step, a mapping algorithm com-
bining iterative critical path search and layer-based
priority assignment techniques is adopted to minimize
the EED by focusing on the optimal allocation of
tasks on the critical path. In the second step, tasks on
noncritical paths are remapped to improve the overall
execution reliability.

In [29], a GA was used to optimize several
objectives concurrently. This method simply searches
points in the solution space (called reference points),
according to user demands rather than conducting a
thorough search. Thus solutions are found quickly,
but the search space is quite limited. The method
proposed in [30] uses different heuristics to generate
an initial population. As a result, good solutions are
obtained using less iteration than with a random popu-
lation, but the complexity is higher. In [31], workflow
scheduling based on a Multi-objective Differential
Evolution (MODE) algorithm was proposed to obtain
a diverse distribution of solutions in the solution space.
To achieve this goal, three parents are employed to

create offspring, and the Ulam distance [32] is used
to calculate the quality of these parents. A scheduling
algorithm based on a multi-objective GA was pre-
sented in [33] and its performance compared with that
of the Min-Min and Min-Max [33] algorithms. In [34],
a trustworthiness method based on an Integer Genetic
Algorithm (IGA) was proposed for scheduling busi-
ness applications. Reliability was considered as a user
QoS parameter in addition to execution time and cost.

2.2 The Workflow Scheduling Model

A workflow is modeled as a Directed Acyclic Graph
(DAG) to schedule N interdependent tasks. In this
model, let � be a limited set of tasks Ti (1 ≤ i ≤ N),
and � be a collection of directed edges ei,j = (Ti, Tj)

where Ti is the parent of Tj and Tj is the child of Ti. A
task without a parent is called an entry task, and a task
without a child is called an exit task. If a workflow
has more than one entry task or exit task, new dummy
tasks Tentry and Texit are added to the beginning and
end of the workflow as required. These tasks have no
jobs to execute and no data to transfer. It is assumed
that a child cannot be executed until all of its parents
have finished.

Let β and D denote the workflow budget and dead-
line, respectively, specified by a user. Then, the work-
flow can be expressed as � (�, �, β,D). Let m be the
number of available services. For each task Ti there is
a set of services that are able to execute it, but only
one service S

j

i =(1 ≤ i ≤ N , 1 ≤ j ≤ mi, mi ≤ m),

can be selected to execute a task. Let ET I
(
Ti, S

j
i

)
and

ECI
(
Ti, S

j

i

)
be the completion time and cost for task

Ti on service S
j

i in solution I , respectively. Estimating
the execution time of each task on a desired service
is important for scheduling. Several methods such as
code analysis, analytical benchmarking/code profil-
ing, and statistical prediction have been proposed for
this purpose [35]. Data transfer also consumes time
and has a cost. Let TTI(ei,j , r, s) and TCI(ei,j , r, s) be
the data transfer time and cost for solution I , respec-
tively, for data to be transferred from service r (task
Ti) to service s (execute task Tj) via edge ei,j . This
time can be estimated based on the size of the data and
the available bandwidth between services.

The purpose of scheduling is to assign each task Ti

to a suitable service S
j
i with the aim of minimizing the
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workflow execution cost and time while satisfying the
user requirements. The optimization problem is then

Minimize F (I ) = (f1 (I ) , f2 (I )) (1)

f1 (I ) : MinT ime (I) = Max
Ti∈�

⎛

⎝ET1

(
Ti, S

j

i

)

+
∑

ei,j∈�

T TI

(
ei,j , r, s

)
⎞

⎠

(2)

f2 (I ) : MinCost (I ) =
∑

Ti∈�

ECI

(
Ti, S

j

i

)

+
∑

ei,j ∈�

T TI

(
ej,j , r, s

)

subject to : f1 (I ) < D, f2 (I ) < β (3)

where I ∈ X, X is the solution space, f1 is the work-
flow execution time function, f2 is the workflow
execution cost function, D is the user time constraint
(deadline), β is the user cost constraint (budget), and
fi(I ) is the value of objective function i for solution I .

2.3 Multi-objective Optimization

A Genetic Algorithm (GA) is an optimization tech-
nique for solving complex problems [36]. Further,
a multi-objective GA considers several objectives,
which may be conflicting, to obtain a problem solu-
tion [37]. From (1), (2), and (3), workflow scheduling
has two conflicting objectives, minimizing execution
time and minimizing execution cost, and there may
be several possible solutions [38]. In general, a multi-
objective optimization problem can be expressed as
[31].

Minimize F(I ) = f1, . . . , fn(I ) (4)

Among the solutions obtained, one solution I ∗ dom-
inates the others if it is as good as or better than the
other solutions for all objective functions [31], i.e.

∀i ∈ [1, . . . , n]; fi(I
∗) ≤ fi (I )

∧
∃j ∈ [1, . . . , n], fi(I

∗) < fi (I )

(5)

A solution is said to be Pareto optimal if it is not
dominated by any other solution in the solution space.

A Pareto optimal solution cannot be improved with
respect to any objective without worsening at least one
other objective. The set of all feasible non-dominated
solutions in a solution space is referred to as the
Pareto optimal set, and for a given Pareto optimal
set the corresponding objective function values in the
objective space are called the Pareto front. For many
problems, the number of Pareto optimal solutions is
enormous (perhaps infinite). The ultimate goal of a
multi-objective optimization algorithm is to identify
solutions in the Pareto optimal set [38].

A genetic algorithm is a reliable search technique
based on the principles of evolution which can find
good solutions in a large solution space in polyno-
mial time [39]. Each solution in the search space is
an individual (chromosome), and previous solutions
are combined to generate new solutions. A fitness
function is used to determine the quality of the new
solutions. In general, a genetic algorithm is composed
of the following steps [39]:

1. Randomly generate an initial population of size
N .

2. Create new offspring (new solutions) using
genetic operators on selected parents (previous
solutions).

3. Evaluate the fitness of each new solution.
4. Select N solutions for the next generation.
5. Repeat steps 2 through 4 until the stopping condi-

tion is satisfied.

3 The Proposed Algorithm

As discussed above, several heuristic algorithms have
been proposed to optimize workflow execution time
or cost. Several multi-objective GA based methods
have been developed such as PAES [40], NSGA-II
[41], VEGA [42], and SPEA2 [43]. They differ in
terms of the features and components employed such
as diversity, elitism and population [38]. In addition
to the user constraints, it is important that the solu-
tions generated satisfy the job dependencies, i.e., each
child in the DAG can be executed only if all of its
parents have finished. Due to the large number of
chromosomes (solutions) generated each generation,
checking these dependencies for each new population
is time consuming, and so will decrease workflow sys-
tem performance. Therefore, a goal of the proposed



Efficient Workflow Scheduling for Grid Computing 641

algorithm is to limit the time required to make
scheduling decisions, including dependency checking.

Since a workflow can consist of a number of inter-
related jobs, the GA for workflow scheduling should
prevent the generation of infeasible solutions and also
ensure the dependencies are satisfied. Thus a new
scheduling algorithm called Level Workflow Schedul-
ing based on a Genetic Algorithm (LWSGA) is pro-
posed to reduce the workflow scheduling time while
satisfying user constraints. In this algorithm, a DAG
is considered as a collection of levels. Then a work-
flow is a collection of interdependent jobs with each
job belonging to a level. Figure 1 shows a workflow
divided into 5 levels. Tasks on a level are sched-
uled only after the previous level has completed to
ensure all children are scheduled after their parents.
This eliminates the need to check task dependencies
and so will reduce workflow scheduling time. A mod-
ified multi-objective genetic algorithm is presented
in Algorithm 1 to implement the LWSGA algorithm.
This algorithm is discussed in detail in the remainder
of this section.

3.1 Problem Formulation

Scheduling problems must be in a form suitable for
Algorithm 1. In the proposed structure, each chro-
mosome represents one scheduling solution consisting
of a sequence of tasks and their associated services.
Solutions are feasible if they satisfy the following
conditions:

1- Each task can be executed only after all of its
parent tasks and all tasks in previous levels have
completed.

Tentry

T0 T1 T2

T3 T4

T5 T6

Texit

Level 1

Level 2

Level 3

Level 4

Level 5

Fig. 1 An example of a workflow divided into levels

2- Each task appears only once in a schedule.
3- Each task is allocated to one time slot in a service.
4- Each task is assigned to an appropriate workflow

level.

After the workflow is divided into levels, the chro-
mosome structure is determined based on these levels.
Each chromosome has Execution Order (EO) and
Service Mapping (SM) fields. The EO specifies the
execution order of each task in each level, and the SM
specifies the services that will execute the tasks. For
each task in a workflow, one time slot of the selected
service will be reserved to execute the corresponding
task. Figure 2 shows the chromosome structure for the
workflow in Fig. 1. Both Tentry and Texit are dummy
tasks, so no services are assigned to them. If two tasks
want access to the same service at the same time, the
task that comes earlier in the EO has priority. For
example, in the workflow shown in Fig. 1, tasks T0
and T4 may be executed concurrently, and according
to Fig. 2, service S2 is assigned to both T0 and T4. In
this case T0 will use S2 first.

3.2 Initial Population

In a genetic algorithm, the initial population can have
a significant effect on performance. If the initial popu-
lation contains infeasible solutions, it can consume an
excessive amount of time and thus limit the number
of solutions obtained. In the proposed method, the ini-
tial population is generated based on workflow levels,
task requirements, and resource availability to prevent
infeasible solutions. The algorithm for creating the ini-
tial population is shown in Algorithm 2. In Algorithm
2, the workflow levels and chromosome structure are
considered so as to prevent infeasible solutions. The
output is an initial population with N chromosomes.

3.3 Fitness Function

The fitness function is used to measure the quality
of the solutions. Here the objectives are to minimize
workflow execution cost and time simultaneously, so
two fitness functions are considered, Ftime and Fcost.
Ftime corresponds to the workflow processing time
and Fcost to the workflow execution cost. These func-
tions have two parts, objective and penalty. Objective
functions encourage the algorithm towards better solu-
tions, while penalty functions degrade solutions that
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Algorithm 1 (LWSGA Algorithm)

do not meet workflow constraints so they have less
chance of being selected for the next population. The
objective functions for an individual I are defined as
follows

Cost objective function : fcost (I ) =cost(I ) /β (6)

Time objective function : ftime (I ) =t ime(I ) /D (7)

Considering workflow constraints, the penalty func-
tion for an individual I is defined as

P (I ) = Pbudget (I ) + Pdeadline (I ) (8)

where Pbudget (I ) and Pdeadline(I ) are the penalties for
violating the budget and deadline, respectively, given
by

Pbudget (I ) =
{

fcost (I )

0
if (cost(I )+ω)>β,

otherwise. (9)

Pdeadline (I ) =
{

ftime(I )

0
if (t ime(I )+α)>D,
otherwise. (10)

where ω and α are the acceptable deviations from the
user budget and deadline, respectively.

A solution is feasible if it meets both budget
and deadline constraints, so P(I ) is added to both
objective functions to penalize solutions that are not
feasible. However, this may eliminate solutions near
the constraint boundaries. Thus solutions close to the

deadline such as y1 in Fig. 3, and close to the budget,
such as y2, are also used by the genetic operators as
they can lead to feasible solutions. To achieve this, the
penalty functions in (9) and (10) are set to 0 for small
regions ω and α beyond the limits, respectively. How-
ever, at the end of the algorithm those solutions that do
not meet the deadline or budget are eliminated from
the final solution set.

The fitness functions for the cost and time are given
by

Fcost (I ) = fcost (I ) + P (I ) (11)

Ftime (I ) = ftime (I ) + P (I ) (12)

respectively. A lower function value for a chromosome
indicates better workflow scheduling.

3.4 Genetic Operators

Genetic operators are applied on population mem-
bers called parents to generate new individuals called
offspring. Three types of each of the genetic opera-
tors crossover and mutation are employed. The use
of genetic operators can change the order of tasks,
so dependencies may be violated. Thus task depen-
dencies must be checked for all offspring. To avoid
this problem, the offspring obtained with the proposed

Fig. 2 The chromosome
structure (EO and SM
fields) corresponding to
Fig. 1

54321Levels

TexitT5T6T4T3T0T2T1TentryEO

NullS5S1S2S3S2S5S1NullSM
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Algorithm 2 (Population Initialization)

Input: N (population size)

Output: B (solution set)

Step 1. Repeat steps 2 to 8 until the initial population is filled.

Step 2. For each of the L levels in the workflow do steps 3 to 8.

Step 3. For each task T in level l do steps 4 to 8 (tasks are selected randomly).

Step 4. Insert Ti in an appropriate EO cell.

Step 5. Compute the time until Ti is ready to be executed.

, where Pi is the parent tasks for Ti.

Step 6. Select a service Sij randomly from the services available to execute Ti, and insert this service in 

the SM cell corresponding to Ti.

Step 7. Compute the data transfer time between Ti and its parents, .
Step 8. Assign the free time slots Sij so that they start after , where

operators are guaranteed to satisfy the task depen-
dencies. Since the parents chosen from the current
population will have a significant impact on the qual-
ity of the offspring, the Binary-Tournament Selection
(BTS) method is used to select parents for the mating
pool. This is a well-known mechanism which ran-
domly selects pairs of individuals and chooses the
one with the higher rank (lower fitness value) for the
mating pool.

3.4.1 Crossover Operator

The crossover operator is used to create new entities
by modifying parts of current individuals. The idea
is that combining good solutions is likely to produce
better solutions [44]. To increase the efficiency of the
algorithm in different conditions and workflow struc-
tures, three crossover operators have been developed,
and they are described below.

Fig. 3 The effect of ω and
α on the penalty functions Deadline

Budget

y1

y2

x1

x2

x3

x4
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I. Level exchange: This operator first generates
a number between one and L randomly, where L is
the number of workflow levels. Then, these levels
are swapped between the parents. Figure 4 shows the
result of this operator for the workflow in Fig. 1 where
the third level is exchanged.

II. Task Exchange: This operator randomly selects
a task from a level of the first parent, and according to
the position of this task in the second parent, the tasks
and services in these positions are exchanged within
the parents. This is done for all workflow levels. The
task exchange operator algorithm is as follows:

1. For each level in list L

2. T id = a random task from .
3. P1= position of T id in Parent 1.
4. P2= position of T id in Parent 2.
5. Exchange tasks/services in P1 with tasks/services

in P2 of Parent 1.
6. Exchange tasks/services in P1 with tasks/services

in P2 of Parent 2.
7. End

Figure 5 show the task exchange operator when task
T0 is selected in level 2. The position of T0 in Parent
1 is 3 and in Parent 2 is 1. Therefore tasks T0 and T1
in Parent 1, and tasks T2 and T0 in Parent 2, and their
corresponding services, are exchanged.

III. Service Exchange: This operator selects one
task from each level of the workflow randomly, and
exchanges the corresponding services between par-
ents. The algorithm of this operator is as follows:

1. For each level in list L

2. T id = a random task from .
3. P1= position of T id in Parent 1.
4. P2= position of T id in Parent 2.
5. Exchange service in P1 of Parent 1 with service in

P2 of Parent 2.
6. End

Figure 6 shows the service exchange operator when
task T2 in level 2 of the workflow is selected. The
position of task T2 in Parent 1 is 2 and in Parent 2 is
3, so service S5 in Parent 1 is exchanged with service
S4 in Parent 2.

3.4.2 Mutation Operator

The mutation operator is used to allow offspring to
obtain features that their parents do not have. This

operator helps the algorithm move from local opti-
mums and search in new objective spaces. Three types
of mutation operators have been developed, and they
are described below.

I. Exchange Task: This operator exchanges the
positions of two tasks in one parent. The selected tasks
should be in same level to meet the task dependencies.
The steps of this operator are as follows:

1. Select a random workflow level l.
2. Select two random tasks P1 and P2 from level l.
3. Exchange P1 and P2.

II. Exchange Service: This operator changes the
services for up to N /4 workflow tasks. The new ser-
vices are chosen randomly. The steps of this operator
are as follows:

1. Generate a random number K between 1 and N /4.
2. Repeat steps 3 to 5 K times.
3. Randomly select a task T from the parent.
4. Randomly select a service S from the available

services for T .
5. Assign S to T and place in it the chromosome.

Figure 7 shows an example of the exchange service
operator. In this case tasks T3 and T5 are randomly
selected to change their services. The new services are
randomly selected from the available services for the
tasks. The available services for T3 are S1, S3, S5,
and S8, and for T5 are S2, , S6, and S7. The current
services are highlighted and the selected services are
underlined.

III. Recorder Level: This operator selects one
chromosome level and randomly changes the order of
the tasks as well as assigning new services. Figure 8
shows an example of this operator where the second
level is selected. All tasks in this level are reordered
and new services are randomly selected from the list
of available services. The available services for T0
are S1, , S5, and S8, for T1 are , S4, S6, S7,
and for T2 are S2, S3, , and S8. The current ser-
vices are highlighted and the selected services are
underlined.

4 Performance Results

In order to evaluate the efficiency and perfor-
mance of the workflow scheduling algorithms in
a grid environment, four metrics are employed,
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Parent 1:

54321Level:
TexitT5 T6T4 T3T0 T2 T1TentryEO
NullS5 S1S2 S3S2 S5 S1NullSM:

Parent 2:
54321Level:

TexitT5 T6T3 T4T1 T2 T0TentryEO:
NullS1 S3S5 S4S4 S1 S2NullSM:

Offspring 1:

54321Level:
TexitT5 T6T3 T4T0 T2 T1TentryEO:
NullS5 S1S5 S4S2 S5 S1NullSM:

Offspring 2:

After Crossover

Before Crossover

54321Level:
TexitT5 T6T4 T3T1 T2 T0TentryEO:
NullS1 S3S2 S3S4 S1 S2NullSM:

Fig. 4 An example of the level exchange crossover operation

the hypervolume indicator, the epsilon indicator,
convergence, and a new metric which will be
described later. The proposed LWSGA algorithm
is compared with three well-known algorithms:
SPEA2, PAES and NSGA-II. Next, the character-
istics of the simulation environment are described,
and then the performance results are presented and
discussed.

4.1 Workflow Applications

Workflows have different structures which can affect
the performance of scheduling algorithms. To evalu-
ate these algorithms, two approaches are commonly
employed to choose the workflows:

1. Randomly generate DAGs with different
characteristics.

2. Select from realistic workflow libraries that are
accepted by the scientific community.

The second approach seems more appropriate for the
fair evaluation of workflow scheduling algorithms [45,
46], thus the workflows given by Bharathi et al. [47]
are employed. This workflow library was compiled
from diverse scientific applications. Three workflow

types have been selected for use in this section:
Montage (astronomy), Epigenomics (biology), and
LIGO (gravitational physics). They are available in
Directed Acyclic Graph in XML (DAX) format on
their web site.1 Figure 9 shows the structure of a small
instance of each workflow. They have structural dif-
ferences in terms of basic components (pipeline, data
distribution, etc.) and composition. In this paper, three
different workflow sizes are considered: small (about
25 tasks), medium (about 50 tasks), and large (about
100 tasks).

4.2 Simulation Environment

The experiments were carried out by simulation using
an implementation in MATLAB. All algorithms, grid
resources and connections, scheduling, and their spe-
cific characteristics were defined and implemented
in this environment. The performance results were
then evaluated using the metrics implemented in
MATLAB. To simulate resources in utility grids and
execute the workflows, eight services with different

1https://confluence.pegasus.isi.edu/display/pegasus/
WorkflowGenerator.

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
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Parent 1:

54321Level:
TexitT5T6T4T3T0T2T1TentryEO:
NullS5S1S2S3S2S5S1NullSM:

Parent 2:

54321Level:
TexitT5T6T3T4T2T1T0TentryEO:
NullS1S3S5S4S4S1S2NullSM:

Before Crossover

Offspring 1:

54321Level:
TexitT5T6T4T3T1T2T0TentryEO:
NullS5S1S2S3S1S5S2NullSM:

Offspring 2:

54321Level:
TexitT5T6T3T4T0T1T2TentryEO:
NullS1S3S5S4S2S1S4NullSM:

After Crossover

Fig. 5 An example of the task exchange crossover operation

properties and processing speeds are considered. For
each task of a workflow, only those services able to
execute the task are selected. It is assumed that each
task has at most five services that can execute it. This
assumption is realistic due to the diversity of task
requirements in a grid environment. For example, of
the five services S1, S1, S3, S4, and S5 available for
a workflow, Task 3 can only be executed on services
S2, S3, and S5. The processing cost must be consid-
ered for each service, and in general the resources with
higher speed are more costly. Each task is assigned to
a free time slot of one service which is able to exe-
cute it. The execution time and cost of each task on
each service can be predicted using parameters such
as task length and the number of instructions a service
can execute per unit time. For example, Table 1 shows
the execution time and cost of Task 3 on each service
provider. This indicates that Task 3 can be executed
faster on service S3, but the cost is higher.

A task may create data for its children. This data
must be transmitted to the corresponding service

provider before the children can start execution. It
is assumed that the connections between service
providers have bandwidths of 100, 200, 512, and 1024
megabytes per second, and these are assigned to ser-
vices randomly. The data transfer time and cost can
then be predicted from the available bandwidth and the
amount of data to be transmitted. An increased band-
width will typically lower the data transfer time but
increase the cost.

The performance of the algorithms is investi-
gated under three constraint environments denoted as
relaxed, medium and tight. In the relaxed environ-
ment, users have high budget and deadline values,
whereas in the tight constraint environment these
values are low. The budgets and deadlines for each
environment are defined by minimum and maxi-
mum values. Tmax is the maximum workflow exe-
cution time with minimum cost Cmin, and Cmax is
the maximum workflow execution cost with mini-
mum execution time Tmin. In this paper, Cmax and
Cmin were obtained using the workflow execution
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2
T0T2T1
S2S5S1

2
T2T1T0
S4S1S2

Parent 1:

5431Level:
TexitT5T6T4T3TentryEO:
NullS5S1S2S3NullSM:

Parent 2:

5431Level:
TexitT5T6T3T4TentryEO:
NullS1S3S5S4NullSM:

Offspring 1:

54321Level:
TexitT5T6T4T3T0T2T1TentryEO:
NullS5S1S2S3S2S4S1NullSM:

Offspring 1:

54321Level:
TexitT5T6T3T4T2T1T0TentryEO:
NullS1S3S5S4S5S1S2NullSM:

Before Crossover

After Crossover

Fig. 6 An example of the service exchange crossover operation

cost optimization algorithm GreedyCost [4], and Tmin

and Cmax were obtained using the workflow exe-
cution time optimization algorithm HEFT [20]. The
workflow execution deadline and budget are then
given by

D = Tmax − k (Tmax − Tmin) (13)

β = Cmax − k (Cmax − Cmin) (14)

respectively, where k is 0.2, 0.5 and 0.8 for the relaxed,
medium and tight constraint environments, respec-
tively. The genetic algorithm parameters are given in
Table 2.

Parent:

54321Level:
TexitT5 T6T4 T3T0 T2 T1TentryEO:
NullS5 S1S2 S3S2 S5 S1NullSM:

Offspring:

54321Level:
TexitT5 T6T4 T3T0 T2 T1TentryEO:
NullS6 S1S2 S8S2 S5 S1NullSM:

After Mutation

Before Mutation

Fig. 7 An example of the exchange service mutation operation
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Parent:

Before Mutation

54321Level:
TexitT5 T6T4 T3T0 T2 T1TentryEO:
NullS5 S1S2 S3S2 S5 S1NullSM:

Offspring:

54321Level:
TexitT5 T6T4 T3T2 T0 T1TentryEO:
NullS6 S1S2 S8S2 S8 S4NullSM:

After Mutation

Fig. 8 An example of the reorder level mutation operation

4.3 Performance Measures

To evaluate the performance of the algorithms, the
solution sets obtained are evaluated using the Hyper-
volume indicator [48, 51], epsilon indicator [49], con-
vergence metric [50], and the time required to sched-
ule the workflow (the new metric). The corresponding
results are presented below.

4.3.1 Hypervolume Indicator

The hypervolume indicator,IH , is used to evaluate
results from genetic algorithms. This metric gives
the volume of the solution space covered by a non-
dominated Pareto front returned by an algorithm,
and how close the solutions are to optimal. The

algorithms were repeated 20 times for each of the
workflow and constraint combinations. A reference
set R was then constructed by merging all of the
resulting non-dominated fronts. Then, the hypervol-
ume difference indicator I−

H [48] was used to mea-
sure the difference between the non-dominated fronts
obtained from each combination for an algorithm and
R. A lower value of I−

H indicates better algorithm
performance [48].

Figure 10 a-1, b-1, and c-1 show the best non-
dominated front obtained from each of the algorithms
for the workflows and constraints. The x axis shows
the workflow execution time and the y axis shows
the workflow execution cost, both normalized to the
range [0, 1]. Figure 10 a-2, b-2, and c-2 show the
corresponding values of I−

H according to the results

(a) Epigenomics (b) Montage (c) LIGO

Fig. 9 The structure of three realistic scientific workflows [47]
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Table 1 Execution time and cost of Task 3 on five services

Service S1 S2 S3 S4 S5

Time (seconds) ∞ 300 100 ∞ 400

Cost (dollars) ∞ 80 200 ∞ 50

from 20 runs. The x axis indicates the algorithm
employed and they axis the I−

H value. These results
indicate that the LWSGA algorithm provides better
non-dominated fronts, except for the large Montage
workflow with medium and tight constraints. How-
ever, in these cases the other algorithms obtained
better solutions for only a few locations in the solu-
tion space, and I−

H for the LWSGA algorithm was only
slightly higher. In medium LIGO workflows with tight
constraints, the I−

H values for the SPEA2, PAES and
NSGA-II algorithms have the same functionality but
LWSGA provides better results. In addition, in large
Epigenomics workflows with relaxed constraints, the
I−
H values for LWSGA are much less than NSGA-II,

PAES and SPEA2. With medium Montage workflows
and medium constraints, the I−

H values for all algo-
rithms are similar and the performance differences are
minimal.

In addition to providing better solutions, the pro-
posed algorithm has better coverage of the solution
space than the other algorithms. In particular, the cov-
erage of the solution space close to the constraint
boundaries is much better. For example, Fig. 10 c-
1 shows the results for large LIGO workflows with
relaxed constraints. In this case, the LWSGA algo-
rithm covers the entire solution space, but the solu-
tions obtained with the other algorithms are clustered
near the center of the solution space with none near
the boundaries.

4.3.2 Epsilon Indicator

Although I−
H is widely used to compare GA per-

formance, it sometimes provides differing results for
two solution distributions even when they are simi-
lar [31]. The epsilon indicator, Iε+, is used to make
more specific comparisons. According to the degree
of non-domination ε, it specifies how much two solu-
tion distributions differ. A lower value of Iε+ indicates
a better front. Iε+ in this section was obtained using
the same simulation parameters as for IH . Each of
the algorithms was run 20 times and the average
used to measure Iε+. The results obtained are pre-
sented in Fig. 11, where the x axis indicates the
algorithm and the y axis gives the corresponding val-
ues of Iε+. This shows that Iε+ for the LWSGA
algorithm is in most cases significantly lower than for
the other algorithms. Thus the differences between the
non-dominated solutions generated by the proposed
algorithm and the reference set R are lower. How-
ever, with small Montage workflows and relaxed con-
straints, the SPEA2 algorithm has the lowest Iε+ val-
ues, while with large Montage workflows and relaxed
constraints, the PAES algorithm has the lowest Iε+
values. However, in many cases the non-dominated
fronts obtained are not significantly different. For
example, with small LIGO workflows and tight con-
straints, the Iε+ values are essentially the same. Note
that algorithm performance varies according to the test

Table 2 The genetic
algorithm parameters Parameter Type/Value

Population Size 70 individuals

Crossover probability 0.7

Mutation Probability 0.3

Fitness Function time and cost

Initial Population random generation

External Archive Size (SPEA2, PAES) 70 individuals

Maximum Number of Generations (NSGA-II, SPEA2, LWSGA) 200 generations

Maximum Number of Iterations (PAES) 20000 iterations
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Fig. 10 Non-dominated fronts and the hypervolume indicators
(box plots) for workflows under different constraints: a-1, b-
1, and c-1 non-dominated front solutions for small, medium,

and large workflows, respectively; a-2, b-2, and c-2 hyper-
volume indicators for small, medium, and large workflows,
respectively
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(a-2) Values of for small workflows.

Relaxed (K=0.2) Medium (K=0.5) Tight (K=0.8)
Epigenomics Epigenomics Epigenomics

Montage Montage Montage

LIGO LIGO LIGO

(b-1) Non-dominated Pareto fronts for medium workflows.

Fig. 10 (continued)

case. For example, in small Montage workflows with
relaxed constraints, SPEA2 has a lower Iε+ value than
PAES, but in large Montage workflows the results are
reversed.

In medium Epigenomics workflows with medium
constraints, the Iε+ values obtained for LWSGA are
significantly different than with the others algorithms,
while SPEA2, PAES and NSGA-II have similar
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Relaxed (K=0.2) Medium (K=0.5) Tight (K=0.8)
Epigenomics Epigenomics Epigenomics

Montage Montage Montage

LIGO LIGO LIGO

(b-2) Values of for medium workflows.

Relaxed (K=0.2) Medium (K=0.5) Tight (K=0.8)
Epigenomics Epigenomics Epigenomics

Montage Montage Montage

Fig. 10 (continued)

values. Moreover, the Iε+ values in medium Epige-
nomics workflows with tight constraints for SPEA2
and PAES are similar, but both are better than NSGA-

II and worse than LWSGA. In large LIGO workflows
with tight constraints, the Iε+ values for LWSGA
are much lower than NSGA-II and PAES, while



Efficient Workflow Scheduling for Grid Computing 653

LIGO LIGO LIGO

(c-1) Non-dominated Pareto fronts for large workflows.

Relaxed (K=0.2) Medium (K=0.5) Tight (K=0.8)

Epigenomics Epigenomics Epigenomics

Montage Montage Montage

LIGO LIGO LIGO

(c-2) Values of for large workflows.

Fig. 10 (continued)
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Montage Montage Montage

LIGO LIGO LIGO

(a)

Relaxed (K=0.2) Medium (K=0.5) Tight (K=0.8)
Epigenomics Epigenomics Epigenomics

Fig. 11 The epsilon metric for different workflows and constraints, (a) small workflows, (b) medium workflows, and (c) large
workflows

SPEA2 has similar performance. With medium Mon-
tage workflows and relaxed constraints, the Iε+ values
for LWAGA and SPEA2 are similar and better than
NSGA-II, while PAES has the worst performance.
The Iε+ values in medium LIGO workflows with
tight constraints for NSGA-II and PAES are some-
what the same, but neither is better than SPEA2
and LWSGA. In Epigenomics workflows, NSGA-II is
sometimes better than both SPEA2 and PAES, but in
other cases is worse. Thus it is difficult to choose a
best algorithm. As another example, for LIGO work-
flows, in most cases SPEA2 is better than PAES and
NSGA-II, but not always. Therefore, additional results
using other metrics are needed to definitively rank the
algorithms.

4.3.3 Convergence Metric

Multi-objective optimization has two goals: (1) keep
solutions in the solution space, and (2) converge
towards the Pareto-optimal set. The first goal is mea-
sured adequately by the hypervolume and epsilon
metrics. In this section, the convergence metric,
γ [50], is used to measure the convergence of
the non-dominated fronts obtained in the Pareto-
optimal sets. The same simulation parameters and
environments were used as in the previous sections.
Each of the algorithms was run 20 times for each case.
A lower γ value indicates better convergence towards
the Pareto-optimal set. The mean (γ ) and variance
(σγ ) of this metric are shown in Table 3 for different
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Relaxed (K=0.2) Medium (K=0.5) Tight (K=0.8)
Epigenomics Epigenomics Epigenomics

Montage Montage Montage

LIGO LIGO LIGO

(b)

Fig. 11 (continued)

workflows and constraint environments. This shows
that in most cases the LWSGA algorithm is signifi-
cantly better than the others as it has lower means and
variances. For example, with the Epigenomics work-
flows, this algorithm has considerably lower values.
However, with large Montage workflows and tight
constraints the other algorithms have lower γ values
than LWSGA, and with small LIGO workflows and
tight constraints, PAES has the lowest values. In many
cases, the difference between the algorithms is small.

4.3.4 The Proposed Metric (Stability Metric)

In addition to convergence metric, it is important to
determine how the algorithms converge to the final
solution set and at what point they become stable.

To quantify these parameters, a new metric is pro-
posed called the stability metric, Ŝ. To calculate Ŝ Ŝ,
after each generation of the genetic algorithm, γ is
calculated. This is done for multiple runs of each algo-
rithm. The mean of these values gives the Ŝmetric for
each generation. A lower mean denotes better algo-
rithm performance. This metric indicates how many
GA generations are required to achieve a stable solu-
tion with an acceptable population.

The Ŝmetric was determined using the same
simulation environment and parameters as used
previously. Each of the algorithms was run 20 times,
and the results are shown in Fig. 12. The x axis
shows the generation number and the y axis the met-
ric values. This shows that the LWSGA algorithm
becomes stable much faster than the other algorithms
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Relaxed (K=0.2) Medium (K=0.5) Tight (K=0.8)
Epigenomics Epigenomics Epigenomics

Montage Montage Montage

LIGO LIGO LIGO

(c)

Fig. 11 (continued)

with relaxed constraints, except with the large Mon-
tage workflows where NSGA-II has the lowest Ŝ. In
the other cases, Ŝfor the LWSGA algorithm is as
good or better, except with large Epigenomics work-
flows and tight constraints where NSGA-II again has
the lowest Ŝvalue. The number of generations for the
LWSGA, NSGA-II, and SPEA2 algorithms was 200
and the number of iterations for PAES was 20000.
Thus with PAES, Ŝwas calculated only every 100
iterations as this is equivalent to one generation.

4.3.5 Scheduling Time

In a grid environment, algorithms should provide
scheduling solutions quickly. Thus the goals are to
improve the quality of the solutions generated and

also reduce the time required for workflow schedul-
ing. To compare scheduling times, each of the algo-
rithms for all workflows and constraints was executed
on the same computer. The number of generations
for the LWSGA, SPEA2, and NSGA-II algorithms
was 200 and 500, and the number of iterations for
PAES was 20000 and 50000. The results are given
in Table 4. This shows that in all cases the LWSGA
algorithm is significantly faster than the other algo-
rithms (and in most cases the quality of the solutions
is better). It is about 6 to 12 times faster than the
SPEA2 algorithm. This is due to the time required
to update the external population and the complex
operations within the algorithm. Because the LWSGA
algorithm does not need to check task dependencies,
it is faster than the NSGA-II algorithm. Further, it is
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Table 3 The mean (γ ) and variance (σγ ) of the convergence metric for (a) small workflows, (b) medium workflows, and (c) large
workflows

LIGO

Tight

LIGO

Medium

LIGO

Relaxed

Montage

Tight

Montage

Medium

Montage

Relaxed

Epigenomics

Tight

Epigenomics

Medium

Epigenomics

Relaxed
Metrics

Size:

Small

0.0340.0240.00960.0230.0180.00790.0260.00660.0026ϒ
LWSGA

0.0000500.0000300.00.00.00.00.0000820.00.0ϒ
0.0420.0480.0340.0250.0250.0220.0450.0150.023ϒ

NSGA-II

0.000330.000110.0000500.0000250.000140.0000460.0000170.0000900.000075ϒ
0.150.0480.0280.0290.0240.0210.0690.0130.0077ϒ

PAES

0.240.000100.0000860.0000850.0000260.0000290.00130.000140.000018ϒ
0.0380.0290.0140.0220.0180.0120.0490.00960.0084ϒ

SPEA2

0.000150.0000300.00.000100.0000470.00.000910.0000700.0ϒ
(a)

LIGO

Tight

LIGO

Medium

LIGO

Relaxed

Montage

Tight

Montage

Medium

Montage

Relaxed

Epigenomics

Tight

Epigenomics

Medium

Epigenomics

Relaxed
Metrics

Size:

Medium

0.0340.0260.0150.0230.0240.0130.0330.0200.011ϒ
LWSGA

0.0000500.0000100.00.0000400.0000110.00.0000370.00.0ϒ
0.0420.0510.0450.0270.0350.0420.0870.0580.051ϒ

NSGA-II

0.000410.000220.0000870.000230.0000750.000120.00180.000240.00014ϒ
0.0400.0440.0310.0250.0530.0310.0320.0500.023ϒ

PAES

0.000160.0000880.0000310.0000100.000100.0000530.0000600.000330.000033ϒ
0.0420.0290.0270.0280.0230.0260.0430.0350.027ϒ

SPEA2

0.000210.0000200.0000140.000140.0000190.0000100.000200.0000280.000017ϒ
(b)

LIGO

Tight

LIGO

Medium

LIGO

Relaxed

Montage

Tight

Montage

Medium

Montage

Relaxed

Epigenomics

Tight

Epigenomics

Medium

Epigenomics

Relaxed
Metrics

Size:

Large

0.0280.02400.0160.0360.0300.0230.0260.0210.015ϒ
LWSGA

0.00.00.00.0000420.0000300.0000300.00.0000120.0ϒ
0.0290.0500.0620.0290.0330.0530.0290.0610.051ϒNSGA-

II
0.000550.000490.000950.000740.000700.000510.000200.000980.00018ϒ
0.0440.0570.0460.0250.0520.0480.0260.0490.044ϒ

PAES

0.0000800.000190.000210.0000590.000150.000240.0000940.000110.00016ϒ
0.0300.0350.0530.0310.0390.0570.0250.0320.048ϒ

SPEA2

0.00.0000470.000110.000140.0000480.0000900.0000530.0000540.000095ϒ
(c)

2 to 8 times faster than the PAES algorithm. Note
that in this paper, the number of PAES iterations is
100 times the number of generations with the other
algorithms. This factor was chosen to obtain good
solutions which are competitive with the other algo-
rithms. The scheduling time in some cases increases
dramatically as the workflow sizes increases. For
example, with small Montage workflows and medium
constraints, the NSGA-II algorithm requires 15 s,
and with the large workflow this increases to
115 s. Thus while the size of the workflow has
increased by a factor of 4, the scheduling time has

increased by a factor of 7. Conversely, with the
LWSGA algorithm the scheduling time increased by
only a factor of 2.5. Changes in the workflow type or
constraints did not have a significant impact on algo-
rithm speed. Further, increasing the workflow size did
not affect the performance of the LWSGA algorithm,
but had a significant impact on the other algorithms.

4.4 Penalty Mechanisms

To determine the effects of the penalty mechanisms
on the quality of the solutions, the LWSGA algorithm
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LWSGA NSGA-II PAES SPEA2
Relaxed (K=0.2) Medium (K=0.5) Tight (K=0.8)

Epigenomics Epigenomics Epigenomics

Montage Montage Montage

LIGO LIGO LIGO

(a) Small Workflows
Relaxed (K=0.2) Medium (K=0.5) Tight (K=0.8)

Epigenomics Epigenomics Epigenomics

Fig. 12 The proposed stability metric for different workflows and constraints, (a) small workflows, (b) medium workflows, and (a)
large workflows
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Montage Montage Montage

LIGO LIGO LIGO

(b) Medium Workflows

Relaxed (K=0.2) Medium (K=0.5) Tight (K=0.8)
Epigenomics Epigenomics Epigenomics

Montage Montage Montage

LIGO LIGO LIGO

(c) Large Workflows

Fig. 12 (continued)
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Table 4 Workflow execution times (a-1), (a-2), and (a-3) for 200 generations (20000 iterations for PAES); (b-1), (b-2), and (b-3) for
500 generations (50000 iterations for PAES)

NSGA-II 15.80 15.92 17.25 14.61 14.79 16.05 18.17 20.70 21.14
PAES 71.98 66.43 70.74 55.81 58.81 54.34 59.11 67.75 66.46

SPEA2 108.1 106.1 105.4 105.8 105.5 104.7 111.0 110.7 109.0
(a-1) Small Workflow and 200 Generations (20000 for PAES)

Epigenomics
Relaxed

Epigenomics
Medium

Epigenomics
Tight

Montage
Relaxed

Montage
Medium

Montage
Tight

LIGO
Relaxed

LIGO
Medium

LIGO
Tight

LWSGA 14.29 14.75 15.24 17.00 17.19 17.68 14.80 15.47 16.15
NSGA-II 28.59 32.81 33.13 33.93 35.05 38.07 33.37 34.81 36.68

PAES 86.60 82.45 77.34 82.40 80.17 76.22 84.16 85.03 78.22
SPEA2 134.3 133.0 132.5 142.9 143.2 143.6 138.9 137.2 141.7

(a-2) Medium Workflow and 200 Generations (20000 for PAES)

Epigenomics
Relaxed

Epigenomics
Medium

Epigenomics
Tight

Montage
Relaxed

Montage
Medium

Montage
Tight

LIGO
Relaxed

LIGO
Medium

LIGO
Tight

LWSGA 21.94 23.18 22.62 26.78 27.05 28.09 21.99 22.39 22.56
NSGA-II 97.79 106.5 104.5 106.9 115.5 118.2 100.3 104.1 106.8

PAES 175.2 177.7 172.0 184.0 185.1 182.6 173.8 173.2 171.4
SPEA2 256.6 256.3 260.8 279.0 282.3 283.2 259.2 262.7 260.5

(a-3) Large Workflow and 200 Generations (20000 for PAES)

Epigenomics
Relaxed

Epigenomics
Medium

Epigenomics
Tight

Montage
Relaxed

Montage
Medium

Montage
Tight

LIGO
Relaxed

LIGO
Medium

LIGO
Tight

LWSGA 29.36 29.39 30.99 29.05 30.09 31.00 31.22 32.39 33.44
NSGA-II 35.28 37.61 39.39 35.69 39.38 39.54 42.63 46.24 48.04

PAES 179.9 181.4 179.4 160.4 163.1 161.0 197.4 198.5 200.1
SPEA2 277.8 278.2 280.2 264.0 265.4 265.8 296.3 298.4 298.2

(b-1) Small Workflow and 500 Generations (50000 for PAES)

Epigenomics
Relaxed

Epigenomics
Medium

Epigenomics
Tight

Montage
Relaxed

Montage
Medium

Montage
Tight

LIGO
Relaxed

LIGO
Medium

LIGO
Tight

LWSGA 36.26 36.74 37.28 40.58 43.67 44.40 37.17 38.04 40.88
NSGA-II 68.58 71.56 76.69 87.25 86.76 91.32 75.57 81.49 83.95

PAES 228.6 226.1 215.7 202.0 200.6 204.0 229.6 301.2 229.0
SPEA2 343.6 348.3 350.2 353.9 353.3 355.7 341.9 342.3 344.7

(b-2) Medium Workflow and 500 Generations (50000 for PAES)

Epigenomics
Relaxed

Epigenomics
Medium

Epigenomics
Tight

Montage
Relaxed

Montage
Medium

Montage
Tight

LIGO
Relaxed

LIGO
Medium

LIGO
Tight

LWSGA 53.46 54.83 55.79 66.88 67.25 69.56 54.33 55.00 57.46
NSGA-II 219.7 232.0 243.7 269.3 282.4 283.2 223.7 238.1 269.4

PAES 446.2 450.4 447.8 485.6 489.4 490.1 455.8 455.8 459.3
SPEA2 654.5 660.3 662.3 663.7 666.1 664.2 617.6 617.0 617.6

(b-3) Large Workflow and 500 Generations (50000 for PAES)

Epigenomics
Relaxed

Epigenomics
Medium

Epigenomics
Tight

Montage
Relaxed

Montage
Medium

Montage
Tight

LIGO
Relaxed

LIGO
Medium

LIGO
Tight

LWSGA 13.51 11.68 12.18 11.37 12.29 12.43 12.30 13.23 13.14

was implemented using two different mechanisms.
The first is the method given in Section 3.3, denoted
LWSGA*, and the second is the method in [30],
denoted LWSGA#. The method in [30] penalizes all

solutions that do not meet the budget or deadline
constraints so the degree of violation is not considered.
Thus useful solutions that result in feasible solu-
tions in later generations are unlikely to survive. The
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Fig. 13 The effects of penalty mechanisms on the quality and diversity of the workflow solutions

performance with the two penalty mechanisms for
each of the workflows is presented in Fig. 13. Both α

and ω were set to 0.1. This shows that for the Epige-
nomics and LIGO workflows, the LWSGA* solutions
are considerably better than those with LWSGA#.
This is because the LWSGA* solutions have better
diversity in the solution space, in particular solutions
near the constraint boundaries which can be impor-
tant. Conversely, LWSGA# has no solutions near the
boundaries so the solution space is not as diverse. With
the Montage workflows, the solutions obtained are
very similar. In general, the proposed penalty mech-
anism improves algorithm performance by increasing
the quality of the solutions and their diversity in the
solution space.

4.5 Discussion

Results were obtained for three workflows with dif-
ferent structures and sizes, and four metrics were
employed to evaluate the algorithms. The hyper-
volume indicator, IH , confirms that the proposed
method has good coverage of the solution space, while
the other methods have less diverse on this space.
Further, the epsilon indicator, Iε+, and scheduling
time results show that the proposed method increases
the quality of the solutions, and significantly reduces
the scheduling time. The convergence metric, γ ,
shows the potential of the proposed method to con-
verge to non-dominated solutions, while the stabil-
ity metric, Ŝ, indicates fast convergence to a stable
solution. Overall, the proposed algorithm is more effi-
cient and provides better solutions than the other
methods.

5 Conclusion

In this paper, a new technique was presented for
scheduling workflows in a grid environment based on
a multi-objective genetic algorithm. This technique
takes into account user requirements to create a set of
solutions for workflow scheduling. Due to the inherent
heterogeneity in a grid environment and the compe-
tition between users for resources, it is important to
generate these solutions quickly. To achieve this goal,
workflows were divided into levels and chromosomes
in the genetic algorithm structured according to these
levels. This eliminates the need to check task depen-
dencies as the solutions generated will be feasible. In
addition, a new fitness function was proposed to have
a good diversity of solutions. The proposed method
was compared with several well-known algorithms
using a number of metrics. The results obtained show
that this method has excellent speed and efficiency.

Future work will include developing a dynamic
layering model and an adaptive fitness function to
improve the performance of the algorithm. The pro-
posed algorithm can also be adapted to support cloud
computing systems.
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