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Abstract In this paper, we leverage the previous
work on the SHIWA bundling format and expand
on this specification in order to facilitate workflow
execution within a multi-workflow environment.
We introduce a scalable and robust execution
pool environment that supports workflows con-
sisting of sub-workflows built upon a multitude
of different workflow engines and environments,
and also provide a common workflow represen-
tation for seamless connectivity through serial-
ization to workflow bundles. We also present
a meta-workflow scenario based upon this sys-
tem. Workflow bundles employ the lightweight
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Open Archives Initiative Object Reuse and Ex-
change (ORE) Web-based standard, to provide
a common format for representing and sharing
workflows and the associated metadata required
for their execution. This generalized bundling ap-
proach is already available within five workflow
engines and has proven a useful environment for
inter-workflow experimentation. The execution
pool facilitates federated access to multiple dis-
tributed computing infrastructures supported by
the underlying workflow engines subscribed to
the pool. Workflow bundles are exposed using
the eXtensible Messaging and Presence Protocol
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(XMPP), which provides the necessary commu-
nication backbone to enable multiple workflow
engine agents to asynchronously publish and sub-
scribe to bundles in meta-workflow pipelines.
We present experiments showing the scalability
and robustness of the pool execution approach
with results showing that overheads remain con-
trolled for up to 150 workflow agents, and that
agent failures have very limited impact. We then
demonstrate the applicability of our architecture
by describing how a Java-based music analysis
workflow can be distributed within such a multi-
workflow environment consisting of the Triana
and MOTEUR workflow engines.

Keywords Scientific workflows ·
Distributed computing infrastructure ·
Grid computing · Cloud computing ·
Interoperability · Data modelling

1 Introduction

Workflows provide a structured means of de-
scribing complex functional execution and data
pipelines for a scientific experiment and hence
expose the underlying scientific processes for en-
abling the reproducibility of results. They allow
the specification of the scientific process as sub-
elements of a task, each of which can be inde-
pendently developed, validated, refined and com-
posed for different configurations [1]. By allow-
ing a user to formalize the data processing for
execution and collection/visualization of results
in an automated fashion, workflows provide the
infrastructure for modeling the scientific process
as a whole.

There are a wide array of popular workflow
systems available for researchers to design, test
and run large-scale scientific workflows [2–10].
These workflow systems are often tailored to
a specific set of scientific domains such as as-
trophysics or bioinformatics, or they may be
bound to specific regional infrastructures, and so
a workflow researcher may only ever be exposed
to a small range of workflow systems. In the
case of large-scale or multi-disciplinary research
it may be desirable to exploit multiple workflow
environments. This will only be practical when

the benefits of running tasks on more special-
ized workflow systems outweigh the overhead of
developing specialized sub-workflows, and when
data transfer between multiple workflow environ-
ments can be minimized. It may also be the case
that workflows developed in previous research
may be able to form part of newly developed
workflow experiments. Reusability and modular-
ity therefore become important concepts when
developing large-scale workflows.

This work is motivated by the coarse-grained
requirements of the SHIWA project which aims
to leverage existing workflow solutions and enable
cross-workflow and inter-workflow federative ex-
ploitation of Distributed Computing Infrastruc-
ture (DCI) resources by applying both a coarse-
and fine-grained strategy [11]. In our previous
work within the SHIWA project, we described the
method of modeling a scientific workflow exper-
iment by referencing its constituent components
using the Object Reuse and Exchange (ORE)
standard [12], developed by the Open Archives
Initiative (OAI), to expose them using a single
aggregated Web resource known as a SHIWA
Bundle [13]—which facilitates Course Grained In-
teroperability (CGI) between workflow engines
by allowing workflows to be treated as black
boxes. We proposed that a formalization of encap-
sulating a workflow that also allows the capturing
of the scientific research techniques, tools doc-
umentation and methods, could help the repro-
ducibility and validation of research methods in
the eScience community. Such a model would not
only increase efficiency in supporting larger scale
research via the development of meta-workflows,
but also encourage reuse and the sharing of tools,
methods and processes thus lowering the learning
barrier for scientists who would like to take ad-
vantage of a DCI environment. However, for such
sharing to take place, users would benefit from
using the familiar Web environment for sharing
and using concepts that they are acquainted with,
without having to understand the complexities of
the multiple different workflow systems currently
in use on today’s DCIs.

The main contribution of this current paper is
to present and demonstrate the use of a CGI pool,
which enables the automatic execution of the
SHIWA bundle technology so that pipelines of
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workflows connecting several different workflow
engines can be achieved within one environment.
We describe the updates we made to the SHIWA
Bundle concept that were required in order to
facilitate workflow execution within the multi-
workflow environment of the pool and demon-
strate this approach by running an experiment
that connected a Triana workflow engine running
a workflow on TrianaCloud with multiple MO-
TEUR sub-workflows running on the European
Grid Infrastructure (EGI).

A multi-workflow environment is a collection
of execution services that provides support for
workflows potentially implemented in a variety
of different languages that may need to run on
multiple different engines or DCIs. Through the
use of SHIWA Bundles, engine interfaces can be
made uniform, providing a single input/output for-
mat for the execution system, but the environment
still has to be able to select a proper engine to
execute a workflow expressed in a given language.
Adding a new language implies reconfiguring the
environment, which may be time consuming. In
addition, linking a list of endpoints to a list of lan-
guages is failure-prone due to the dependence of
the service to end points located within different
institutions, and with different capabilities. With-
out any further precaution, the environment may
well overwhelm a particular engine due to exces-
sive submission, or lose time in trying to contact
engines that no longer exist.

The CGI pool is a coarse-grained execution
pool that is capable of asynchronously commu-
nicating bundles using XMPP [14, 15] between
different workflow execution engines. We re-
port on the implementation and integration in
MOTEUR and Triana of CGI pool support.
Through the pool workflow engines can conve-
niently discover a workflow, execute it, and then
publish it back into the execution pool for exe-
cution by another workflow engine. In this fash-
ion, meta-workflow pipelines can be built across
different workflow engines. An advantage of this
approach is that the workflow execution service
is distributed to a number of agents that can be
dynamically started and tuned to the workload,
making the service scalable and robust to agent
failures. In addition, this meta-workflow approach
provides a single workflow bundling format for

representing workflows and their components via
a single SHIWA bundle. This effectively reduces
the meta-workflow solution from a many-to-many
problem to a many-to-one and a one-to-many
problem, where each workflow engine is only re-
quired to understand bundles in order to interop-
erate in this coarse-grained model and plug into
the execution pool.

After showing the pool’s reliability and scala-
bility, we demonstrate the usefulness of the bun-
dle and execution pool approach by distribut-
ing the execution of this application in multiple
workflow environments: the Triana workflow en-
gine running on TrianaCloud and MOTEUR run-
ning on the European Grid Infrastructure (EGI).
We use Triana as a master workflow engine which
is capable of publishing bundles to the CGI pool
backbone. The Triana and MOTEUR pool agents
get the bundle from the execution pool to execute
on their native environments. The final objec-
tive is to reduce the total execution time of the
complete dataset.

The paper is organized as follows. The next sec-
tion describes related work on this topic. Section 3
introduces the first contribution to the workflow
community, SHIWA Bundles; the overall design
of the SHIWA bundle ORE schema and the asso-
ciated Resource Description Framework (RDF)1

vocabulary used to describe workflow artefacts
and their associated data and metadata. It also
discusses how the bundling mechanism fits into
the overall vision for workflow interoperability
and reuse. In Section 4 we introduce the execu-
tion pool which provides a flexible, robust and
scalable means of distributing bundles for execu-
tion. Section 5 presents our integration of SHIWA
bundles and pools into the MOTEUR and Triana
workflow systems. Section 6 presents experiments
demonstrating the scalability and robustness of
the pool. Finally we have Section 7, providing a
use-case experiment that describes and tests two
means of running bundles through the European
Grid Infrastructure and through a local cloud.

1http://www.w3.org/RDF/

http://www.w3.org/RDF/
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2 Background and Related Work

Recently, workflow interoperability has gained
popularity within the distributed computing com-
munity, and so the SHIWA project was under-
taken with the aim of achieving interoperabil-
ity between workflow systems at various levels.
SHIWA acknowledges that different levels of in-
teroperability suit different systems, and that im-
posing one set of standards and structures is not
the most appropriate approach of leveraging a sys-
tem’s capabilities. SHIWA defines two modes of
interoperability: coarse-grained (CGI) and fine-
grained (FGI). Coarse-grained interoperability
makes use of third-party workflow engines as
“black boxes” by embedding specific functionality
supplied by a workflow into another [16]. The
fine-grained approach allows the same workflow
to be moved between different distributed com-
puting infrastructures by translating workflow lan-
guages from one workflow engine to another
through the use of the common Intermediate
Workflow Representation Language (IWIR) lan-
guage which is implemented by ASKALON [3],
MOTEUR, P-Grade [5], Pegasus [6] and Triana,
as part of the SHIWA project [17].

The Workflow Management Coalition (WfMC)
[18] was the first to comprehensively address work-
flow interoperability within the business com-
munity, defining various standards including the
Workflow Standard-Interoperability Abstract Spec-
ification. In this specification, different strategies
can be used to achieve workflow interoperabil-
ity: (1) Direct Interaction, through the use of a
common API; (2) Message Passing, by exchanging
information and sending packets of data messages
through a communication network; (3) Bridging
Strategy, by applying a bridging mechanism us-
ing a gateway technique to move data and tasks
between systems via protocol converters; and
(4) Shared Data Store, by transferring data and
tasks between workflow Systems using a shared
database.

A related approach, which was a precursor to
our ORE work, was developed within the OMII-
UK WHIP project [19]. The WHIP project fo-
cused on creating a desktop launcher application
for different workflow engines by using an OS
mapping of the WHIP file extension and MIME

type for launching within a Portal, which is in
contrast to the SHIWA Desktop plug-in model
that provides a uniform interface to the Portal.
However, the means by which data was shared be-
tween the desktop application and the Web server
was through a WHIP bundle. WHIP bundles, like
SHIWA bundles, were modeled in conformance
with the ORE, but they differed in approach by
binding to the Atom feed format for dissemina-
tion of such aggregations.

Another currently running project WF4Ever [20]
is also focused at achieving interoperability. The
authors in [21] also favour the ORE approach,
arguing that publishing linked data does not
meet the requirements of reuse because validation
and reproducibility of scientific results requires
multiple sources of information, such as prove-
nance, quality, credit, attribution and methods.
Although the authors call such ORE aggregations
“Research Objects” for sharing and publishing
workflows, the structure is compatible in essence
with our bundle concept and on-going discussions
are taking place in order to align this effort made
through the myExperiment project and our work.
myExperiment [22] is a Web 2.0-oriented inter-
face for sharing scientific workflows, inspired by
social networking sites. Users can upload arbitrary
files or logically group resources into “packs”.
It has also been used to expose WHIP bundles.
The myExperiment team is currently working on
an ORE implementation for sharing of research
objects.

Pegasus [6] supports large-scale workflows on
Grid resources and is usually integrated into a por-
tal environment using Web forms, e.g. in the Tele-
science project [23]. Pegasus has used WHIP bun-
dles for bundling workflow descriptions, inputs,
outputs and DCI characteristics to implement a
pipeline-centric provenance model applied to use
cases from the astronomy community [24]. This
supports the use of an ORE-bundling approach.

P-GRADE [25] is designed to work using Web-
start and has a custom integration within its por-
tal, which can enable the creation, execution and
monitoring of workflows. However, it provides
no means to expose and share workflows with
users of other workflow engines. Service-based
workflows, such as Triana, Kepler and Taverna,
have sophisticated front end user interfaces for
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interaction with users for the design and/or exe-
cution of workflows. To date, Taverna and Triana
have supported the use of ORE through WHIP
bundles. For Kepler, the Hydrant project2 pro-
vides a web-based portal for uploading and shar-
ing workflows, but this is specific to Kepler.

Other related work in this context includes the
VLE-WFBus project [26], where a number of
different workflow systems are made interoper-
able through a run-time infrastructure. Each of
the workflow systems connected by a workflow
bus is wrapped and treated as a sub-workflow.
The role of the workflow bus is to propagate
information about the data objects to the cor-
rect sub-workflows, schedule the sub-workflows,
and interface to the execution environment. VLE
therefore adopts a message passing or bridging
strategy in order to achieve workflow interop-
erability. Another related effort with respect to
message passing is the SWIF system [27], which
employs the use of WS-Notification to provide
asynchronous communication channels between
distributed workflow systems.

3 Workflow Bundles: Design and Architecture

Since the coarse-grained approach is concerned
with atomic execution of workflows running in
their own individual environments, the fundamen-
tal research issue is how to address the commu-
nication and sharing of data between different
workflow engines. To this end, the concept of a
SHIWA bundle emerged, which forms the basis
of the work reported here. The SHIWA workflow
bundle is defined as a compound object that
contains all information pertaining to a scien-
tist’s experiment—the engine-specific workflow
definition, at a minimum, along with potentially
the input data, output data from previous runs,
executable dependencies of the workflow, prove-
nance data, documentation, research output and
references to other web artifacts, such as related
work.

To address language independence, aggrega-
tion and standardization criteria, it is modeled

2http://code.google.com/p/hydrant-kepler/

using the Object Reuse and Exchange (ORE)
Internet standard ORE has an RDF vocabulary
for describing aggregations of Web resources.
ORE uses a Resource Map resource to model
collections of related resources; this collection is
known as an Aggregation within ORE. In terms
of SHIWA bundles, these aggregations are the
maps of resources that define the compound ob-
jects that represent a workflow experiment (see
Section 3.2).

The choice of a bundle format using ORE
for modeling compound objects is not arbitrary.
A number of design considerations and require-
ments are met through the use of ORE:

– Integration with the Web Architecture. Using
ORE makes all referenced resources available
at URL endpoints, thus creating a transpar-
ent resource map. This means aggregations
can be accessed via a wide variety of agents.
Typically HTTP URLs are used for resources,
meaning that resources can be accessed from
any device that supports HTTP. This makes it
very easy for users to retrieve, view, share and
edit their aggregations using web-based tools
that they are used to using. Large files or data
files may be available at GSI FTP endpoints
which has less ubiquitous support. However,
these are not typically user-facing resources;
rather, these would be execution files needed
by eScience middleware.

– Aggregating resources in a single file is useful
for publishing, archiving and handling situa-
tions where URLs cannot be assumed to be
persistent. A self-contained bundle provides
local locations for resources that do not have
a public URL, that is, the URL is local to
the bundle itself. Once a SHIWA bundle is
published to a server environment, it is typ-
ically ‘unpacked’, making resources available
that were previously not addressable by gen-
erating public URLs for those resources in the
bundle that were referenced relative to the
bundle itself. The bundle concept also allows
resources to be ‘repacked’ for archiving, or de-
ployment into a firewall-restricted execution
environment.

– While SHIWA currently uses the XML seri-
alization of RDF, various serializations exist

http://code.google.com/p/hydrant-kepler/
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including N3, Turtle and RDFa. Furthermore,
ORE has a binding to the Atom Syndication
Format.3 This flexibility of exchange format
means compound objects can be integrated
with a wide variety of systems, for example as
web pages through the combination of HTML
5 and RDFa.

– ORE supports evolution of existing aggrega-
tions by simply adding a new URL to a re-
source map. This provides a very simple way
for users to work with their existing aggrega-
tions and develop them over time.

3.1 SHIWA Properties

The use-cases addressed by the SHIWA bundle
include human publication, search and sharing
of workflow artifacts, as well as execution of
workflows in a variety of environments. While
the aim is to introduce as few as possible new
RDF terms, some of the requirements of the use-
cases are not covered by existing vocabularies.
Bundles employ widely used RDF vocabularies,
such as the Dublin Core (DC)4 metadata elements
that broadly describe resources and Friend Of
A Friend (FOAF)5 elements that describe hu-
man entities. Beyond this, we employ the Sim-
ple Knowledge Organization System (SKOS),6

which provides a means of creating thesaurus-
like collections of SKOS Concepts without resort-
ing to defining new, and hence less interopera-
ble, vocabularies. SKOS is used to model those
elements that are specific to workflows and the
requirements of the bundles’ metadata. Some of
the SHIWA properties are addressed within this
paper; the remaining SHIWA properties were
defined in SHIWA Deliverable D5.2.7

3.2 SHIWA Aggregations

The SHIWA bundle has a directory based struc-
ture, which is managed by one or more Re-

3http://www.toolsietf.org/html/rfc4287
4http://www.dublincore.org/
5http://www.foaf-project.org/
6http://www.w3.org/TR/skos-reference/
7http://www.shiwa-workflow.eu/documents/10753/626f809c-
7853-40ce-a3b2-eb41a29a9ecd

source Maps. While the structure of a SHIWA
bundle is only constrained by the presence of
a resourceMap.rdf file in the root directory of
the bundle, the SHIWA software implementation
makes use of certain conventions in organising the
files within a bundle. These help in the interpreta-
tion of the structure of the artefact contained in
the bundle. The aggregation’s RDF description is
defined in a metatdata.rdf file at the root of the
bundle. Aggregations of resources, each described
by its own Resource Map, are organised within
their own directories. There will always be one
root Resource Map within the bundle that acts as
the entry point of the bundle. The Resource Map
metadata file and supporting file structure will be
found in the root directory of the bundle. All files
of sub-resource maps are stored in sub-directories,
with the UUID value of the sub-aggregation as the
directory title.

Figure 1 illustrates the physical composition
of an aggregation, along with the relationships
between the files which is maintained by the re-
source map. Each file referenced by an Aggrega-
tion’s Resource Map is described using an ORE
Aggregated Resource, which allows the purpose
and status of each file to be described in further
detail by the metadata in the resource map meta-
data. The aggregated resources in the resource
map are broken into three sub-types:

– The Primary Resource is the metadata file that
describes the main properties of the aggre-
gation. The resource map uses the RDF tag
ore:describes to identify this resource.

– Secondary Resources are the primary re-
sources of child aggregations, which there-
fore are described by their own resource map.
These are identifiable as they declare they are
described by a different resource map using
ore:describedBy.

– The Tertiary files present within an aggre-
gation contain the concrete data related to
the aggregation. Within the resource map, the
tertiary resources will declare the type of file
they are using rdf:type:

shiwa:def inition The definition file is the main
implementation file of a concrete task.

shiwa:dataf ile Data files are the input and
output data associated with mapping

http://www.toolsietf.org/html/rfc4287
http://www.dublincore.org/
http://www.foaf-project.org/
http://www.w3.org/TR/skos-reference/
http://www.shiwa-workf/low.eu/documents/10753/626f809c-7853-40ce-a3b2-eb41a29a9ecd
http://www.shiwa-workf/low.eu/documents/10753/626f809c-7853-40ce-a3b2-eb41a29a9ecd
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Fig. 1 Anatomy of an aggregation in a SHIWA bundle

concepts. These files are referenced within
the primary resource of a data, environment
or execution mapping.

shiwa:bundlef ile Any other tertiary files are
defaulted to the bundlefile tag. These files
may be supporting documents relating to
a task or mapping such as readme files,
related publications or screen shots.

In terms of the physical structure within an
aggregation, the primary resource file and the
tertiary file structure that belong to a specific ag-
gregation will be located in the same directory as
the resource map whilst any secondary resources
(and their subsequent file structure) are located in
individual subdirectories.

3.3 Aggregation Types

There are five types of aggregation used to rep-
resent common metadata structures required to
model workflows and their composite tasks. These
can be organized in a multitude of ways that
represent workflows and workflow components in

different states within the life-cycle of workflow
development and execution. Each one of these
elements is represented within a bundle via its
own resource map and supporting file structure
as described above. In a bundle, each aggregation
will have a UUID associated with it to allow
cross referencing between aggregations within the
metadata. Figure 2 illustrates the relationships
between aggregations, with I representing input
ports, O output ports and D dependencies. We
describe each of these aggregation types in the
following paragraphs.

Concrete Tasks represent computational tasks.
These can be individual tasks within a workflow,
or a workflow in its entirety. They will contain all
the executable data required to run the task, as
well as highlighting any dependencies on external
systems and environments the task has. The input
and output of the task will be described using
a task signature (Section 3.4). There is a CGI
specific extension of the Concrete Task aggrega-
tion found inside the bundling API (Section 5.1),
the Workflow Implementation, which allows the
Concrete Task to be enhanced with more CGI
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Fig. 2 Bundle metadata
structures and their
interactions

specific properties. The Workflow Implementa-
tion is used for bundles found within the CGI pool
(see Section 3.5).

Abstract Tasks are used to aggregate together
tasks of the same function and signature in or-
der to facilitate interoperability. An abstract task
is environment independent, allowing develop-
ers to design workflows that are not constrained
to a specific operating system or workflow
environment.

Data Mappings are sets of data that can be
applied to a particular task. Data is mapped to
the input ports and output ports identified in
the workflow’s signature using the shiwa:reference
concept. This data can make the task immediately
executable, or may only fill in some of the data
required to execute the task. Data mappings sup-
port validation of workflow bundles via test input
data and expected results data. They also support
workflow reuse—for example, through defining
workflow parameters suitable for particular types
of experiments.

Environment Mappings describe things such
as virtual organizations or middleware required
by the workflow to execute properly. This is
important, not just for programmatic selection
of workflows, but also for users to understand
whether they will be able to execute the workflow
themselves, given their own profile and VO mem-
berships. These are mapped to the dependencies
exposed by a Concrete Task.

Execution Mappings hold the output data pro-
duced by a concrete task after it has been run.
These map only to the output ports of a task’s
signature (unlike a Data Mapping).

3.4 Task Signature

A task signature is generated from the metadata
and provides an interface that distinguishes a con-
crete task instance in terms of its task type, the
data it receives, and the data it outputs. These are
derived from the tasktype concept as well as the
definition of the inport and outport elements of
the task. The aim of the signature is to enable pro-
grammatic grouping and discrimination between
tasks to allow runtime selection and embedding of
task and workflow bundles into other workflows.

Along with the name of the task artifact, the el-
ements that make up the task signature can be di-
rectly mapped to the IWIR atomic task definition
enabling a smooth adoption and integration be-
tween FGI and CGI tasks represented in both
bundles and IWIR graphs.

A signature does not model any internal
‘wiring’ of the task or workflow—it merely de-
scribes the task/workflow as a black box. While
this gives a high-level view of the task, it may
not be enough for either a human or software
agent to make decisions about its applicability to
a particular function or environment.
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Fig. 3 Workflow
configuration bundle

3.5 Bundle Configurations Used in the Execution
Pool

SHIWA Bundles may be organized in a variety
of ways as a means of achieving different tasks.
Two types of bundle configuration are involved in
workflow execution with the pool: Workflow Ex-
ecution Bundles and Workflow Result Bundles,
which are illustrated by Figs. 3 and 4 and described
below.

Workf low Execution Bundle. These bundles are
used to initialize workflow executions through
the pool and consist of a Workflow Implemen-
tation and both a Data and an Environment
Mapping. This should provide all the infor-
mation required to start a new workflow exe-
cution, with the onus being on the Workflow
Engine to marshal the data provided in order
to execute.

Workf low Result Bundle. Once a Workflow has
completed running, the results set will be placed
in a new bundle via an Execution Mapping and
sent back to the pool for the original submitter

to retrieve. The original Workflow Implemen-
tation aggregation will also be placed in the
bundle, so that the result data can be associated
with an initial submission.

4 Execution Pool

Workflow execution services usually consist of
a collection of engine endpoints that a meta-
engine may use to submit and monitor workflow
executions. When multiple workflow languages
are considered, the meta-engine has to be ex-
tended to associate endpoints with workflow lan-
guages. Engine interfaces can be made uniform,
for instance using the bundle format described in
Section 3. The meta-engine, however, still has
to select an appropriate engine to execute a
workflow expressed in a given language, and
adding a new language implies reconfiguring the
meta-engine. In addition, linking a list of end-
points to a list of languages is failure-prone due to
the dependence of the meta-engine upon services
hosted in different institutions, and with different

Fig. 4 Workflow result
bundle
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capabilities. Without any further precaution, the
meta-engine may well overwhelm a particular
workflow engine due to excessive submission, or
lose time in trying to contact engines that are out
of service. To tackle these issues, we present here
a pool architecture to execute workflow bundles.
The pool is implemented using SHIWA bundles,
and it is interfaced with MOTEUR and Triana.

4.1 Architecture Description

The pool architecture is shown on Fig. 5, with the
numbered arrows corresponding to the life-cycle
of a successful workflow execution (along with
their message types and properties), and circle-
terminated arrows denoting broadcasts. The sys-
tem has a central pool, to which clients can submit
workflow execution bundles, monitor them and
get results as workflow result bundles. Agents,
also called workflow executors, are distributed
and they can connect to the pool, get execu-
tion bundles, spawn workflow engines through
engine plugins, send status updates to the pool
and clients, and transfer result bundles back to the
pool.

When an agent starts, its embedded engine plu-
gins declare their supported workflow language
so that agents know which bundles they are able
to execute. Engines are (lightly) instrumented to
report bundle statuses to their agent. Workflow
bundle statuses are kept both by the pool and

by the agent, as shown in Fig. 6. When a bundle
is submitted, the pool puts it in status PENDING.
The pool periodically broadcasts a status message
for pending bundles so that new agents are in-
formed. To improve scalability, a single message
containing the statuses of all pending bundles is
sent. A timeout (Tpending) can be set on PENDING
bundles. It expires when no agent is able to take
the bundle—for example, because the workflow
language or any other bundle dependency is not
supported, or because all agents are busy. The
bundle is then put in status KILLED. If bundle re-
quests are made by agents, then the pool selects an
agent, sends the bundle to it, and puts the bundle
in status SENDING. The bundle is then transferred
to the select agent, and put in status SENT, or
FAILED if the transfer fails. A timeout (Tsent) is
started to detect bundles blocked at this stage. If
it expires before the agent sends a RUNNING status
message, then the bundle is put in status KILLED.
Once the bundle is running, the pool waits for
status updates from the agent until the bundle is
FINISHED or FAILED. The connection with the
agent is also periodically checked. In case it is
lost, then the bundle is put in status KILLED after
a timeout. When the agent receives a PENDING
status message, it checks the workflow language
of the bundles concerned, and also the number of
locally active bundles.

If conditions are met for execution, the agent
selects a random bundle, sets the status of the

Fig. 5 Interactions between client, pool, agent, and engine
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Fig. 6 State machines of
workflow bundles. Initial
and terminal states are
figured with circles. T
indicates timeouts

(a) In pool (b) In agent

bundle to WAITING, requests the bundle from the
pool, and starts a timeout (Twaiting) count. If the
timeout expires (e.g. the pool has selected another
agent to run the bundle or the pool did not receive
the request message) then the bundle is deleted.
Otherwise, the bundle is put in status SENDING
until the pool sends a FAILED status message,
or the agent receives the bundle. In the latter
case, the bundle is put in status LAUNCHING and a
workflow engine is spawned. A timeout Tlaunching

is spawned to kill the bundle in case the engine
fails to start. The bundle status is then updated
by the engine until completion or failure. The
agent also kills running bundles when their engine
crashed after timeout Tengine_crashed.

4.2 Pool Properties

This architecture is scalable because several
agents supporting the same workflow engine can
coexist without any special configuration of the
pool. The centralized pool handles concurrency to
ensure that at most one agent will execute any
given bundle. Timeout Twaiting on Fig. 6b guar-
antees that agents will not wait forever in case
of concurrent execution requests. In addition, the
maximal number of active bundles in an agent
is configured in the agent (see first transition
in Fig. 6b), so that some agents may accept a
few executions only while others, e.g. agents de-

ployed on a cluster frontend, could support more.
Therefore the architecture can be customized to
heterogeneous execution infrastructures without
reconfiguring the pool. This architecture is robust
to agent crashes because (i) a crash will impact
only the workflows being run by the agent and
the time of the crash, and (ii) failover agents can
be dynamically started without reconfiguring the
pool.

The pool model is also robust to agent over-
load. In the case where an agent reaches its maxi-
mal capacity, it will stop requesting bundles from
the pool to avoid being overwhelmed. And in
the case of agent downtime, no additional la-
tency is introduced because of submission fail-
ures. Workflow bundles are handled indepen-
dently from their language. Language-specificity
required for the execution lies in the agent plugins
which perform the required conversions between
the bundle and the native workflow format. Simi-
larly, clients are responsible for language-specific
bundling of the input data before executions are
submitted to the pool. Supported workflow lan-
guages are declared by engine plugins to their
agent at start up, so that new workflow lan-
guages can be dynamically supported without any
modification in the pool, client, and agent. Note
that meta-workflows are intrinsically supported
because engines can submit workflows of different
languages to the pool.
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5 Bundling and Pool Integration into MOTEUR
and Triana

In this section, we explain how bundling support
has been integrated into Triana and MOTEUR,
which makes them capable of operating within
the execution pool environment. MOTEUR and
Triana are the first two workflow engines to be
integrated with the CGI pool as they have been
developed and maintained by CNRS and Cardiff
University respectively. There are a number of
tools provided within the bundling toolkit that
facilitate this process, which are discussed first.

5.1 SHIWA Desktop

The SHIWA Desktop software has been devel-
oped in order to create an interface that can be
integrated into workflow systems desktop applica-
tions in order to provide a single common process
for creating and manipulating and publishing bun-
dles to the Web. The underlying element of
this software is a Bundling API called SHIWA
Desktop Data, which enables fine-grained cre-
ation of SHIWA Bundles programmatically. This
is complemented by a Workf lowEngineHandler
interface which individual workflow systems need
to implement to support bundling. Above the
SHIWA Desktop Data API are two user inter-
faces which are intended to be the common means
of bundle creation: a GUI which can integrate
with GUI-based Workflow engines and a Com-
mand Line Interface for workflow engines without
a GUI.

There are five major parts of the Desktop Data
API which are used in CGI and the pool:

RDF Element Objects. A collection of objects rep-
resenting the elements found in the RDF files;
these provide a data structure to the rest of
the API and allow the metadata information to
be serialized to and serialized from their RDF
representation.

SHIWABundle Object. Reads in SHIWA bundles,
converting the metadata into the data structure
mentioned above.

Workf lowController Class. Provides methods for
retrieving aggregations from a SHIWABundle

object; exposing the main aggregations con-
cerned with CGI for simpler retrieval.

DataUtils. Provides functionality for download-
ing bundles from, and uploading bundles
to, remote locations, allowing users to store
workflows on external repositories or deploy
them to external execution pools.

Workf lowEngineHandler Interface. The primary
mechanism for integrating with a workflow en-
gine, allowing ease of publishing and deploy-
ment of workflows.

A full overview of the SHIWA Desktop Data
API can be found in SHIWA Deliverable D5.3.8

A workflow engine handler is an engine-
specific component that understands the internal
operations of an engine and its object models.
The interface is designed to be simple to imple-
ment, and it provides a means of pre-populating
technical metadata, that should not be specified
by a user, directly from the engine environment.
Apart from providing SHIWA Desktop with sim-
ple information such as the workflow engine
name and version, and the workflow language
of the workflow, the handler must also be able
to create a TransferSignature object and return
an InputStream to a serialization of the workflow
definition.

A TransferSignature is a simple container ob-
ject that has a name, and a list of inputs and
outputs. It is also possible to associate data (either
inline or by reference, e.g. URL) with the inputs.
Each input and output has a unique name, a data
type, and optional input data associated with it, as
well as an optional human-readable description.

All these are provided through the interface
and can be adjusted using the SHIWA Desktop
GUI at a later stage. This means generic descrip-
tions could be given by the handler, to be im-
proved upon by the user if required.

The GUI can be run either within a Workflow
Engine’s own GUI or as a stand-alone applica-
tion, and is intended as the main interface of
SHIWA Desktop. The GUI has been integrated
into both Triana and MOTEUR, providing users
with identical interfaces for generating bundles

8http://www.shiwa-workflow.eu/documents/10753/8bc729cf-
34ac-4bfe-bb96-9ce8ebf9f8ca

http://www.shiwa-workf/low.eu/documents/10753/8bc729cf-34ac-4bfe-bb96-9ce8ebf9f8ca
http://www.shiwa-workf/low.eu/documents/10753/8bc729cf-34ac-4bfe-bb96-9ce8ebf9f8ca
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from workflows and publishing and retrieving
bundles to and from remote locations.

5.2 Pool Implementation

Prototype pool, agent, and client implementations
were created in Java. The Extensible Messag-
ing and Presence Protocol (XMPP9) was chosen
for the communication layer due to its ability to
enable communication among distributed peers
with no inbound connectivity. Only the XMPP
server has to have a port open. The smack Java
API10 v3.2.2 was used to handle XMPP opera-
tions. XMPP messages exchanged during the life-
cycle of a workflow are the ones shown in Fig. 5.
The pool has three threads used to receive/process
messages, transfer files, and monitor timeouts
(Tpending, Tsent, and Tagent_lost on Fig. 6a). A local
database is used to store workflow bundle statuses
and bundle file paths (input and output) so that
restarting the pool does not impact active bundles.
The agent also has 3 threads to receive/process
messages, transfer files, and monitor timeouts
(Twaiting, Tlaunching, and Tengine_crashed). Again, a lo-
cal database is used to store bundle statuses and
engine UNIX process identifiers so that restarting
the agent does not impact active bundles.

A Java interface based on the Java Simple Plu-
gin Framework (JSPF11) is provided to write en-
gine plugins. It has two methods: bundle execution
launch and result bundle creation.

5.3 Triana Integration

Once a workflow has been designed in Triana
it can be wrapped in a bundle by sending
the workflow to SHIWA Desktop using the
TrianaEngineHandler, which implements the
WorkflowEngineHandler interface described in
the SHIWA Desktop package. The workflow
file, the workflow’s name, a screenshot produced
by Triana, and a description of the inputs to,
and outputs from, the workflow are sent via
the handler. These descriptions include the port

9http://xmpp.org
10http://www.igniterealtime.org/projects/smack
11http://code.google.com/p/jspf

number and the type of data expected, and this
is used to automatically fill in data within the
SHIWA Desktop panel.

The handler is instantiated with a Triana Task,
which is the TaskGraph object retrieved from the
Triana ApplicationFrame. This Task object con-
tains accessors to all the inports, outports, para-
meters and connectivity options for the workflow,
and, if run from the Triana GUI, will have all the
recent information created by the user.

A SHIWA Desktop task signature is pro-
duced by creating a new SHIWADesktopPanel
object with the TrianaEngineHandler as its argu-
ment. The SHIWADesktopPanel returns a JPanel,
which Triana places in a customized JDialog, and
displays within the SHIWA desktop environment
(Fig. 7). While Triana has the ability to display
numerous TaskGraphs at the same time, it is the
currently selected object which is used. If for any
reason a taskgraph is not available, an appropriate
error is shown.

A pool agent plugin was also developed to exe-
cute Triana workflows submitted to the pool. The
TrianaCloud Broker (Section 5.4.1) is registered
to the pool via a small intermediary application;
the Triana Filter, which implements the engine
plugin interface and passes bundles directly to the
filter.

5.4 Executing Triana in a Cloud Environment

The Triana workflow engine was designed to load
extensions during its initialization. A new exten-
sion has been added that unpacks a bundle and
sets up the runtime environment prior to Triana
being invoked. It attempts to retrieve all files
required for the workflow; either via a download
from a remote URI, or via a reference to files
within the bundle. These are copied into a run-
time folder before Triana itself is invoked, en-
suring runtime efficiency. An attempt to run the
workflow will be made regardless of whether or
not the dependencies are met. In future this state
will be caught, and will fail early, to allow runs
to attempt runs in other environments, potentially
running in parallel to this execution.

This early invocation of bundles means Tri-
ana can now unbundle, execute, and consequently
bundle an entire workflow using command line

http://xmpp.org
http://www.igniterealtime.org/projects/smack
http://code.google.com/p/jspf
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Fig. 7 SHIWA Desktop GUI

parameters. This addition was important to en-
sure the remote execution of the workflow engine
within a cloud environment. The broker, defined
and explained below, is deliberately ignorant of
how Triana executes a workflow, so a worker
running on a cloud node runs the command line
invocation relevant for bundle execution. These
workers, on registration with the broker, have
specified the type of data they are able to accept,
so any information packet forwarded via the bro-
ker to the worker can be executed using the same
launcher.

5.4.1 The Broker

The broker is in charge of distributing the task to
the environment it is working with, and is built
upon the RabbitMQ12 message broker platform,
which is used for passing tasks around the system.
RabbitMQ is an open source message broker-

12http://www.rabbitmq.com/

ing system based upon the AMQP13 messaging
protocol. It provides a mechanism for systems to
pass messages with a high degree of reliability
and scalability. As RabbitMQ does not place any
limitations on the content of these messages, it
is ideal for the Broker to pass any form of data
between listening clients—in this case bundles be-
tween workflow systems.

Due to the design of the broker it can run tasks
on any number of different systems, and can do
so simultaneously. The broker is ignorant to the
nature of the task, acting as an intermediary be-
tween whatever system has submitted the task and
the underlying workers. This allows the broker
and workers to be used to distribute any task, not
just Triana based ones (assuming an appropriate
executor is written). To facilitate the distribution
of these tasks, they are accompanied by some
metadata. The metadata contains a routing key
in the format a.b.c... to ensure that the correct

13http://www.amqp.org/

http://www.rabbitmq.com/
http://www.amqp.org/
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Executor is started by the Worker, and only if the
Worker has that executor enabled. An example
would be addition.triana: this could signify that
this task can be run by a Triana executor, which is
capable of running the addition task. If the Triana
executor was able to run all Triana based tasks,
it would listen for *.triana and would pick up the
addition task. Currently, the task data (a bundle in
the case of Triana and this experiment) is passed
around as a byte array within the task object.
When being sent over RabbitMQ, it is converted
into BSON (Binary JSON). Future versions of the
broker will operate differently; with the data being
put into a shared storage area and a URI refer-
ring to the data put into the task. This will help
reduce bandwidth requirements somewhat. The
shared storage will be independent of the broker,
allowing it to be tailored to the deployment being
used.

The broker also contains a receiver. This keeps
track of all the tasks that are sent out, along with
their ID. All returned (completed) tasks go to the
receiver, which then looks up their ID to find the
original task so that it can update it to reflect it is
complete.

5.4.2 The Worker

Like the broker, the worker does not understand
tasks at all. When run, it looks for all the executor
plugins in a plugin folder, and queries them for
appropriate routing keys. Once a list of these keys
is built up, it listens to RabbitMQ using these keys.
When a task arrives, it passes it on to the Executor
responsible for that routing key for the task. When
the Executor finishes, the worker sends the task
and results back to the broker.

5.4.3 The Executor

Executors are plugins for the Worker. In the
Java implementation, they only need to imple-
ment three methods: getRoutingKey, setData, and
executeTask. The first, getRoutingKey, simply re-
turns the routing key so that the worker can re-
ceive tasks from RabbitMQ. The second allows
the Worker to put the task data into the Ex-
ecutor so the executor can access it. The last,
executeTask, does the execution, and returns the

results. The implementation of executeTask de-
pends completely on what it needs to do. It may
simply take an MD5 sum of the task data, perform
some complex analysis, or start another process
to, for example, run a non-Java application with
the data as an input file of some sort. The Triana
Executor just passes the data into Triana (the
data in this case is a bundle file), Triana runs the
workflow in the bundle, then returns a bundle to
the executor.

5.5 MOTEUR Integration

The binding to the MOTEUR workflow engine
follows a similar pattern to the Triana imple-
mentation. MOTEUR has a very simple API
for handling workflow descriptions. A Workf low
object can be read from and written to files
or streams with ease. Therefore the Moteur-
Workf lowEngineHandler has constructors that
take either an in-memory representation of a
Workf low object, or a file object from which a
workflow can be read. The Workf low object also
has methods to retrieve Input and Output objects.
These represent the top level data interfaces to the
workflow that we are interested in.

The MoteurWorkf lowEngineHandler also sup-
ports methods for pre-mapping data to certain
inputs. If any data has been pre-staged through
the handler’s API, then this data is added to
the workflow’s signature and converted to a
configuration by the Desktop component when
parsing the Signature returned to it. Additionally,
all information available in the workflow is cap-
tured into the MoteurWorkf lowEngineHandler
object. Examples of such information include
workflow title, description and version, workflow
authors information and workflow image.

The two most pertinent methods are the
getSignature and getWorkf lowDef inition meth-
ods. These use the MOTEUR workflow API to
extract the relevant information for creating a
coarse-grained description of the workflow, and
allow the SCUFL or Gwendia XML definition to
be read into a bundle file accordingly.

Similarly to Triana, MOTEUR GUI also
supports menus for retrieving and publishing
workflow bundles. When a workflow is designed
or loaded in the MOTEUR GUI, the publish
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menu is enabled to allow user to create the bundle
or upload it to remote repository. All information
available in the MoteurWorkf lowEngineHandler
object is then automatically filled into the SHIWA
Desktop GUI. If there exists an input file, a data
configuration is created. All data items for each
input port of the workflow are mapped to each in-
put port in the data mapping of the bundle. When
a bundle is retrieved, MOTEUR uses the SHIWA
Desktop API to interpret the bundle and extract
the workflow definition and the data mapping and
load them to the MOTEUR GUI.

To submit and monitor workflows using the ex-
ecution pool, MOTEUR provides SHIWAPoolIn-
voker interface that is responsible for invoking
the execution of a bundle. A thread is spawned
to wait for arriving workflow bundle and submit
to the execution pool, using the API provided
by Pool Client described in Section 4. A second
thread is used for monitoring the execution of sub-
mitted workflow bundles. It periodically contacts
the execution pool to get the status of submitted
bundles. When a bundle finishes its execution, the
thread retrieves the output bundle, interprets it
and extracts the relevant information, using the
SHIWA Desktop API.

An engine plugin was also written to execute
MOTEUR workflows submitted to the pool. This
plugin spawns the engine in a new JVM forked
through a system call (step 7 in Fig. 5). A listener
plugin in MOTEUR was developed to send bun-
dle statuses to the agent (steps 8 and 9 in Fig. 5).

6 Experiments and Results on Pool scalability
and Robustness

Two experiments were conducted to demonstrate
the scalability and robustness of the pool archi-
tecture. Version 0.7 of the pool, agent and client
was used to conduct these experiments. Sources
are publicly available online.14

6.1 Deployed Infrastructure

For both experiments, the pool and client were
deployed on different machines, on the same net-

14http://vip.creatis.insa-lyon.fr:9002/projects/cgi-executor

work as the XMPP server. Agents and engines
were deployed on the academic cloud infrastruc-
ture offered by StratusLab.15 We used a Fedo-
raCore 16 x86_64 virtual machine (VM) image
with Java, MySQL, and our agent installed. XMPP
accounts were manually created for agents, and
login/passwords were configured in the deployed
VM instances before the experiments started.
VMs were deployed on the StratusLab site at
Laboratoire de l’Accélérateur Linéaire prior to
the experiments. Timeout values were as follows:
Tsent = 30 s, Tagent_lost = 10 s, Tengine_crashed = 3 s,
and Twaiting = Tlaunching = 5 s. The maximal num-
ber of active workflows per agent was three.
The pool broadcasted status messages for pending
bundles at a frequency increasing linearly with
the number n of pending bundles, with a maximal
value of 5 min.

6.2 Scalability

Scalability was tested both in the number of con-
current workflow bundles (Exp1-a), and in the
number of available agents (Exp1-b). In both
cases, a simple MOTEUR workflow consisting
of a single activity sleeping for 1 min was used.
Bundles were submitted sequentially to the pool.
Three repetitions were done for each number of
bundles. For each repetition we measured the
total submission time and makespan (duration
between the beginning of the submission of the
first bundle and the completion of the last one).

For Exp1-a, the number of deployed agents
was 10, and therefore the maximal achievable
throughput was 30 bundle/min (10 agents are
deployed and each one can have three active
workflows). The number of concurrent workflow
bundles varied from 10 to 150 by steps of 10.

Figure 8 shows the evolution of the makespan
and submission time with respect to the num-
ber of concurrent active bundles. Least-square
regression lines are also plotted. Both submission
time and makespan are close to their regression
line, demonstrating the good scalability of the
system. Variability among repetitions is low. The
submission time is mostly bound by the transfer

15http://stratuslab.org

http://vip.creatis.insa-lyon.fr:9002/projects/cgi-executor
http://stratuslab.org
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Fig. 8 Evaluation of the
pool scalability, w.r.t the
number of concurrent
active bundles
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time of bundles (3.6 KB), which is hampered by
XMPP’s base64 encoding of the transferred files.
The makespan linear regression has an inverse
slope of 27.5 bundle/min, which is close to the
maximum achievable throughput on the deployed
infrastructure. The median makespan for 10 bun-
dles is 1 min 18 s, indicating that the average
latency is 18 s. Among these, 11 s are due to
submission time. The remaining 7 s are due to
data transfers, expiration of Twaiting (5 s) and the
broadcast frequency of pending bundles by the
pool (between 5 s and 6 s in this case).

For Exp1-b, the number of bundles was 150,
and the number of agents varied from 1 to 10 by

steps of 1. Figure 9 shows the evolution of the
submission time and speed-up w.r.t to the number
of deployed agents. The speed-up is computed
as the ratio between the cumulative workflow
execution time (150 min) and the makespan. As
expected, submission time is quite stable, with a
subtle decrease for 8, 9 and 10 agents. Measured
speed-up values are well approximated by their
regression line, which indicates that overheads re-
main controlled, leading to scalable performance
of the system. The slope of the regression line is
2.21, and the median speed-up for 1 agent is 2.6:
these remain under their optimal values (3) due to
the overheads mentioned before.

Fig. 9 Evaluation of the
pool scalability, w.r.t the
number of available
agents
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Table 1 Robustness of the execution pool to flapping and
crashed agents

Test Flapping Crash

#Killed MkSpn #Killed MkSpn #Killed MkSpn

#1 0 321 0 319 3 454
#2 0 318 0 326 3 385
#3 0 317 0 319 3 454

6.3 Reliability

Reliability of the system against agent faults was
studied in two configurations: flapping and
crash. In both cases, two agents were deployed.
In configuration flapping, robustness against
temporary connection losses of the agent was
tested. One of the agents behaved normally, while
the other disconnected from the pool for 5 s every
10 s. These values were chosen coherently with the
value of Tagent_lost. In configuration crash, both
agents behaved correctly during the first 90 s, and
then one agent was shutdown until the end of the
experiment. The makespan (MkSpn) and number
of killed bundles was measured in both cases, and
in a test configuration where both agents behaved
correctly.

Results are reported in Table 1. As expected,
the pool architecture is totally robust to flapping
agents. In this configuration, no execution was
killed, and the makespan compares to the one ob-
tained in the test configuration. Agent crash only
has limited impact on the system. It only impacts
the executions that were running when the crash
occurred (3 in our case), without any consequence
on the subsequent executions. The makespan in-
creases compared to the test configuration due to
the availability of 1 one agent after the crash.

7 Experiments and Results on Meta-Workflow
Execution

7.1 Experiment Use Case

In this section, we describe the meta-workflow
scenario, which uses distributed DART [28] Mu-
sic Information Retrieval (MIR) workflows to
perform a parameter sweep experiment in order
to discover the optimal parameter settings for

Fig. 10 DART Music Information Retrieval (MIR)
workflow

the sub-harmonic summation pitch detection algo-
rithm. The meta-workflow is a Triana workfllow,
which generates Triana and MOTEUR bundles
containing DART workflows that are then put in
the pool. As depicted in Fig. 10, this application
has three parameters:

– freqpoints_max—Number Of Top Frequency
Points (NTFP) : Vary 1 to 501 in 10 point
intervals (51 in total)

– harmonics_max—Number of Harmonics:
Vary 1–32 (5 Octaves)

– audio_f ile—Audio Input Files: 6 audio files

This parameter sweep experiment creates 9,792
concurrent jobs in total, with 1,632 jobs per audio
input file. Each run results in an output file which
will be downloaded to a local folder. When all
runs finished their execution, the results folder is
zipped.

This application was originally executed on a
Cloud installation at Cardiff University using the
BOINC16 software to distribute it. The execution
time of the total data set is just over thre days (run
on 120 machines with 1 core 1 GB of memory).
In this experiment, we demonstrate the usefulness

16http://boinc.berkely.edu

http://boinc.berkely.edu
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Table 2 Number of concurrent jobs submitted to the in-
frastructure in function of the value of the harmonics_max
parameter

harmonics_max 1 2 5 10

Number of concurrent jobs 153 306 765 1530

of the bundle and execution pool approach by dis-
tributing the execution of this application to two
workflow environments: Triana workflow engine
running on TrianaCloud and MOTEUR running
on the European Grid Infrastructure (EGI). We
use Triana to run the meta-workflow which is
set up to publish the MOTEUR bundles to the
CGI pool backbone and send the Triana bundles
(as the end location was known) directly to Tri-
anaCloud. MOTEUR pool agents retrieved the
bundles from the execution pool to execute on
the EGI. The final objective is to reduce the to-
tal execution time of the complete dataset. Each
environment will therefore run over only three
of the audio files. We have kept the value of
freqpoints_max constant at 501, resulting in 51
intervals. this means we have 153 jobs to run per
harmonics_max value and so we vary the value of
harmonics_max from 1 to 10 in order to test the
performance of the execution environment with
increasing loads. When the harmonics_max value
increases, the number of concurrent jobs submit-
ted to each computing infrastructure increases ac-
cordingly as presented in Table 2.

In the following sections, we analyze the ap-
plication performance on both infrastructures.
We are interested in the total execution time
and we give a discussion to compare these two
infrastructures.

7.2 Distribution Using MOTEUR

MOTEUR is an intrinsically data-parallel work-
flow engine. It enables simultaneous, asynchro-
nous execution of multiple data fragments. It

adopts a nested data array-centric model, where
arrays of data fragments are pushed through the
workflow inputs, flow through the workflow data
links, and cause the workflow activities to be exe-
cuted in parallel, potentially as many times as data
fragments received. To determine the number of
parallel iterations applying to each activity, the
GWENDIA language defined the notion of ac-
tivity input port depth. At depth 0 (default) each
data fragment causes an iteration of the target ac-
tivity to process it. A higher port depth means that
a complete array needs to be received before the
activity can be executed. As many array nesting
levels as the port depth are then collected. This
implements a data synchronization barrier at the
level of activity invocation. Similarly, an executed
activity can either return a single data fragment,
or a structured collection of such fragments in
the form of a nested array, for further paral-
lel processing by subsequent activities. Figure 10
shows a MOTEUR workflow exemplifying both
behaviours. The “params generation” is an array-
producing activity, which outputs deliver com-
plete arrays of data fragments to be processed in-
dependently by subsequent “dart app” and “result
downloading” activities. Conversely, the “result
compressing” activity synchronizes a complete ar-
ray of data fragment results before invocation.
It therefore processes all downloaded results si-
multaneously. The jobs generated by the activities
invoked are distributed on the target Distributed
Computing Infrastructure for concurrent execu-
tion by the core MOTEUR engine using its asyn-
chronous invocation capability.

7.3 Performance Timings for Triana
and MOTEUR

7.3.1 Triana with TrianaCloud

The Triana environment attached to the cloud is
fronted by the Triana broker. When the broker

Table 3 Output from statistics script, based on Triana (Stampede) logging data

Type Succeeded Failed Incomplete Total Retries Total run

Tasks 862 0 0 862 0 862
Jobs 765 0 0 765 0 765
Sub-workflows 32 0 0 32 0 32
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Table 4 Triana (Stampede) cumulative wall time report

Workflow wall time 22 min, 55 s 1,375 s
Cumulative Job Wall 1 day, 2 h 96,944 s

Time (CJWT)
CJWT as seen from 21 h, 16 min 76,616 s

submit side

receives a bundle a new Triana instance is spun
up on the cloud and the bundle is passed to it and
run. Each node generated will require startup and
wind down time, but these startups are performed
in parallel, and so waiting time will be near con-
stant regardless of the number of jobs required. It
would only be through splitting the workload up
into more bundles and subsequent workers, that
waiting time would differ.

Execution logging in TrianaCloud is performed
by the Stampede logging system [29, 30], pro-
viding Triana with detailed logging information
as seen in Table 3, where information on the
final state of jobs within the workflow is given.
Stampede also provides us with cumulative wall
times to give an indication of the effectiveness of
distributing the workload across multiple nodes as
shown in Table 4.

The jobs were split between 32 sub-workflows
when submitting the workflow to the cloud, each
of these sub-workflows require three additional
jobs to be created for retrieving the execution
data, starting up the DART workflow and re-
bundling and submitting the results. The submis-
sion workflow is also modeled as a job within
the Stampede logs, and so along with the extra
worker jobs account for the extra jobs found in
Table 3.

Table 5 shows the execution times and cumu-
lative runtimes of several workflow runs. A single
DART job takes roughly a minute to run, and so
it is not surprising to see that the final runtime of
the workflows increase in line with the number
of jobs in a bundle, as the bundles are executed

simultaneously. It must be noted that the jobs are
not evenly distributed between the bundles, jobs
are assigned to a bundle until the bundle is “full”
potentially leading to a single bundle containing a
smaller number of jobs to execute, accounting for
the drop in execution time of the third and fourth
runs.

7.3.2 MOTEUR with EGI

In the MOTEUR environment, all workflow jobs
are submitted to the European Grid Infrastruc-
ture (EGI) through the DIRAC pilot system [31]
thanks to the submission back–end GASW [32].
The execution time of the application is presented
in Table 6. We see that when the number of
jobs submitted to the infrastructure increases, the
execution time also increases.

Indeed, EGI is a production infrastructure with
many users running their applications. Users jobs
therefore are put into a batch system queue
to wait for a computing resource. As shown in
Fig. 11, a timeline diagram for the execution of
153 jobs submitted to the infrastructure, each job
is represented by a line starting with red color
for the waiting time. The time for input and bi-
nary downloading is in yellow; the running time
is represented in green, and result uploading is in
blue. The waiting time increases when the number
of jobs submitted to the infrastructure increases
as presented in Table 6, where the value repre-
sents the average waiting time for each job to
obtain an available computing resource. Such long
waiting times seriously hamper short tasks such
as DART’s. Furthermore, DART is a Java-based
application and the Java runtime environment is
not available on EGI. Users’ jobs therefore have
to install JRE on the fly to be able to execute.
This leads to the fact that jobs have to take time
to download and install JRE.

Table 5 The execution
times of the application
on TrianaCloud in
function of
harmonics_max

harmonics_max Concurrent Execution Waiting Runtime Cumulative
jobs [per time (min) time (min) (min) runtime
bundle] (min)

1 153 [5] 5.92 0.55 6.47 311.72
2 30 [10] 10.02 0.55 10.57 586.17
5 765 [24] 22.36 0.56 22.92 1615.73
10 1530 [49] 41.43 0.55 41.98 3542.30
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Table 6 The total
execution time of the
application on EGI in
function of
harmonics_max

harmonics_max # Concurrent Execution Waiting Runtime
jobs time (min) time (min) (min)

1 153 32.72 10.78 43.5
2 306 83.17 24.99 108.16
5 765 185.27 57.52 242.79
10 1530 301.68 109.98 411.66

Fig. 11 Jobs timeline of
DART application on the
EGI

Comparing to TrianaCloud, the total execution
time of the application on EGI might be longer.
Indeed, on TrianaCloud, computing resources are
dedicated to the user. Users jobs are executed
with very little waiting time. Furthermore, users
have overall control of their computing resources
and can install all necessary software before ex-
ecuting the application, which was not the case
on EGI. It can also be seen that the clustering of
jobs in the TrianaCloud execution greatly speeds
up execution time (by a factor of 10), as the data
need only be downloaded once per bundle as
opposed to being downloaded once per job when
the workflow is run on EGI.

8 Conclusions and Future Work

In this paper, we have updated and expanded on
the SHIWA Bundle format, providing a formal-
ization of the SHIWA aggregation types and the
bundle configurations that can be used in the CGI
pool. This format has been adopted by the EU-
funded SHIWA project as a means of providing

a common input data format interface, both for
sharing workflows and for enabling the automatic
execution of workflows native to that platform
in a coarse-grained fashion. We have explained
that a SHIWA bundle comprises one or more ag-
gregations of resources, each aggregation having
its own Resource Map. A SHIWA-specific core
schema is specified, to support the SHIWA con-
cepts that need to be represented, but these have
been released to the public and we are involved
in on-going discussions with the intention of sta-
bilizing these definitions across different projects.
For example, we are discussing this format with
the Pegasus, myExperiment and Taverna teams,
and plan to reach out to other communities also,
over time. Bundles make it possible for workflows
to be embedded and for the creation of meta-
workflow pipelines connecting one workflow sys-
tem to another. At the highest level, bundles
therefore enable heterogeneous workflow exe-
cution through the creation of meta-workflow
pipelines.

We have described a language-independent
pool model that exploits the portable nature
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of bundles to provide a dynamic and flexible
workflow execution environment. Our execu-
tion pool enables decentralised, fully configurable
workflow execution services and through a set of
interfaces for creating and manipulating bundles,
we have integrated bundles with the Triana and
MOTEUR workflow engines in order to oper-
ate in the pool. The scalability experiments de-
scribed in this paper have shown that the execu-
tion pool was scalable with respect to the number
of workflow bundles and agents, and that it was
robust to flapping agents and agent crashes. We
have used this pool as part of a multi-DCI, multi-
language, meta-workflow execution. We have also
begun to explore the benefits provided by the CGI
pool’s approach to workflow execution both as an
execution environment for workflow experiments.
As a means of comparing the performance of
different workflow environments attached to the
pool against one another in order to determine
the optimal execution environments for a specific
workflow.

We have successfully presented a proof of
concept system where each stage of a meta-
workflow’s execution can be orchestrated by the
CGI pool, but some stages of the experiment
would benefit from refinement through future
work. The Triana meta-workflow was responsible
for passing the meta-worklfow bundles into the
CGI pool. Moteur required a specific input file to
be passed with the Moteur bundle, which Triana
was able to provide. The output files produced
by Moteur were not connected to ports, instead
a single output zip file was added to the bundle,
which Triana was able to retrieve and unzip, but
this meant that the full meta-workflow could not
be completed as the retrieval required extra in-
spection. For a full experiment, a more structured
returned bundle from Moteur would allow passing
on of outputs directly within the meta-workflow,
instead of having to retrieve the output zip from
the bundle through deep bundle inspection. Addi-
tionally an interface within Moteur which creates
the input xml file itself would remove the need
for Triana to send Moteur specific inputs as well
as the general workflow data. This would allow
metrics to be achieved describing the overhead
associated with Triana locating and retrieving out-
put bundles from the pool.

Further experiments could attach other
workflow engines to the pool, for example
ASKALON or WS-PGRADE, which also are
able to read and understand the bundle format.
On top of this, future work should look at
providing researchers with metrics and tools that
aid in the developments of large multi workflow
language workflows, highlighting the best
environments registered to the pool for executing
particular subtasks of the multi workflow. For
bundles, we are investigating the possibility of
making SHIWA bundles interoperable with the
myExperiment ORE format so that SHIWA
bundles can be exported to myExperiment for
dissemination and searching within a social
networked environment. Furthermore, we
would look to integrating the two ORE formats
to provide a true heterogeneous means of
representing workflows and workflow related
research within the DCI community.
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