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Abstract The Cloud phenomenon brings along the
cost-saving benefit of dynamic scaling. As a result,
the question of efficient resource scaling arises.
Prediction is necessary as the virtual resources
that Cloud computing uses have a setup time that
is not negligible. We propose an approach to the
problem of workload prediction based on identi-
fying similar past occurrences of the current short-
term workload history. We present in detail the
Cloud client resource auto-scaling algorithm that
uses the above approach to help when scaling
decisions are made, as well as experimental results
by using real-world Cloud client application traces.
We also present an overall evaluation of this ap-
proach, its potential and usefulness for enabling
efficient auto-scaling of Cloud user resources.

Keywords Cloud computing · Auto-scaling ·
Workload prediction

1 Introduction

The evolution of IT software services in the direc-
tion of Cloud Computing took a step forward in

E. Caron · F. Desprez · A. Muresan (B)
LIP Laboratory,
UMR CNRS—ENS Lyon—INRIA—UCB,
University of Lyon, Lyon 5668, France
e-mail: adrian.muresan@ens-lyon.fr

the efficient use of hardware resources through vir-
tualization. In classical Grids or service oriented
platforms, users receive a static amount of hard-
ware resources that they make use of. In contrast
to this, the Cloud approach consists in offering on-
demand virtualized resources to its users. Because
virtual resources can be added or removed at any
time during the lifetime of the application hosted
on a Cloud, the possibility of dynamic scaling
arises. Even more, dynamic application resource
scaling can be easily automated either at Cloud
provider level or at Cloud client level through the
use of the Cloud provider’s APIs.

To take full advantage of the benefits of dy-
namic application resource scaling, a Cloud client
(user or middleware) needs to be able to make
accurate decisions on when to scale the applica-
tion resources up and down to achieve good per-
formance. These scaling decisions are influenced
by several aspects as for example virtual resource
setup time or the migration of existing processes
to free resources, but resource usage has the big-
gest impact on the decision.

The idea of self-similarity in web traffic is not
new [4]. Based on this, a new Cloud client appli-
cation resource auto-scaling strategy can be elabo-
rated. By identifying resource usage patterns that
have occurred in the past and have a high sim-
ilarity to the present resource usage pattern, a
decision can be made as to the necessity and/or
direction of scaling for the present situation. The
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current work presents an approach to the resource
usage prediction problem based on identifying
past resource usage patterns that are similar to the
present use of the system. We present an efficient
algorithm for identifying the patterns by using an
approximate matching approach.

In Fig. 1 we have a generic Cloud system usage
model to have a top-level view on the role of the
prediction model. As part of a Cloud client’s re-
source management module, the prediction mod-
ule uses the Client’s resource usage history to
try and make an intelligent guess on short-term
resource demands. This alone does not constitute
the Client’s scaling decision as there are a number
of other relevant factors that should be taken into
consideration like the migration of currently run-
ning tasks from virtual resources that need to be
terminated. In our current work, we are focusing
only on resource usage prediction. The impact
that other factors have on the scaling decisions of
a Cloud client is an interesting topic of research,
yet it is beyond the scope of our current work.
The main contribution of the current work is the
elaboration of a resource usage prediction algo-
rithm based on pattern matching with the goal of
aiding Cloud clients in making automatic applica-
tion resource scaling decisions.

The rest of this article is organized as follows.
Next section presents in more details the context
and motivation of our work. In Section 3 contains
an overview of existing approach given in the
literature. Then, Section 4 presents our algorithm
and its key design principles. Finally, before a con-
clusion and a description of future work, Section 5
presents our experimental results using actual
Cloud traces.

Fig. 1 The role of the prediction component in a generic
model of a Cloud system usage scenario

2 Context: the Case for Auto-scaling

In order to understand the motivation of the cur-
rent work it is important to point out modern ap-
proach related to resource provisioning.

In the last few years there has been an ever
increasing movement towards dynamic resource
provisioning. Recent technical innovations have
made this possible by defining abstractions for
resources that are disconnected from the phys-
ical resources they represent. Resource abstrac-
tions are represented by virtualized resources.
These virtualized resources have characteristics
that are, to some degree, independent from
their physical counterparts, the most important
of which is their dynamic nature. It is this that
opens the door to changing on-the-fly the amount
of resources that a platform uses, i.e. dynamic
provisioning.

The dynamic provisioning paradigm is inherent
in what are currently called Cloud providers under
the name of elastic computing. From a client point
of view, the elastic computing paradigm can be
used by any Cloud client whose programming
model exhorts resource usage fluctuations. In this
category one can find most types of web appli-
cations/services that have a fluctuating number
of users over time, like news providers, email
providers, multiplayer online games and in gen-
eral any application that uses a fluctuating number
of resources over time. What does not fit in this
category are applications that have a minimum
user interaction. Consider the execution of a sin-
gle long-running computation-intensive task. In
this situation the number of needed resources is
typically known from the beginning of the execu-
tion and does not require re-adjustments over the
running time of the task.

When a Cloud client achieves a more efficient
use of his resources through dynamic provision-
ing, he saves expenses. It is the cost reduction that
drives Cloud clients towards automatic strategies
for scaling the number of resources up or down
depending on the platform usage and current
demands.

The main problem with dynamic provisioning
is the fact that new resources are not obtained
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instantaneously, they have a start-up time that
is not negligible. In essence, the Cloud client
has two possibilities of addressing this problem if
on-demand provisioning is applied: either delay
handling client requests until resources become
available or simply drop client requests. In either
case, the quality of service of the Cloud client
is reduced significantly. To address this problem,
current strategies use a predictive approach in
hopes of getting an insight into future platform
usage and, as a consequence, being able to make
scaling decisions ahead of time, compensating for
the resource start-up time.

3 Related Work

There are currently two main approaches to facili-
tate the auto-scaling decisions of Cloud clients as a
result of resource usage. The first approach treats
the past server usage as a predictable sequence
and constructs a mathematical model around it.
As a result, the next value of the request sequence
is obtained by evaluating the obtained model at
the next time point. In other words, a predic-
tion model is built by considering past resource
usage. The second approach is a reactive one,
based on the current server load and auto-scaling
rules that are set up by a human operator (usu-
ally a Cloud client). This approach has been of-
ten referred to as the “Elasticity rules” approach
or the Service Level Agreement (or “SLA”)
approach [6].

In [11], a description and comparison of three
different auto-scaling algorithms is given: Auto-
Regression of order 1 (AR1), Linear Regression,
and the Rightscale algorithm. The AR1 algorithm
belongs to the first category of auto-scaling al-
gorithms. Its approach consists in using a finite
history window and identifying appropriate para-
meters so that a recurring sequence can be ob-
tained and therefore used to calculate the next
values. The parameters obtained are adapted as
the window slides along the time axis. The Linear
Regression algorithm belongs to the first cate-
gory and calculates a polynomial approximation
of the history of requests. The predicted value is

then obtained by evaluating the polynomial at a
higher point along the time axis. The Rightscale
algorithm belongs to the second category, be-
ing a version of threshold-based auto-scaling. Its
approach consists in using a democratic voting
system based on the current server load. Each
virtual machine owned by the Cloud client has
a vote based on its current load level and two
thresholds: low threshold that corresponds to a
“scale down” vote (with a default value of 30%
system usage) and a high threshold that cor-
responds to a “scale up” vote (with a default
value of 85% system usage). The votes are col-
lected by a central machine and the majority
decides the scaling decision for the whole plat-
form. The three algorithms have been put side-by-
side and compared by a metric proposed in the
same article. Their performance is considerably
high.

A more complex form of SLA-based dynamic
provisioning can be described by using elastic-
ity rules that dictate what part of the Cloud
client needs to scale, in which direction and by
how much. In [6], we find such an example with
threshold-based rules. This is done by means of
an extension to the OVF (Open Virtualization
Format), an interoperable, platform and vendor
neutral, open format that is used to describe VAs
(Virtual Applications). VAs are preconfigured
software stacks consisting of one or several Vir-
tual Machines with the purpose of offering self-
contained services. The OVF document is actually
an XML document containing the description of
the OVF package. The elasticity rules come as an
extension of this document. They have three com-
ponents: an associated name, a trigger condition
based on the defined key performance indicators
and an associated action that represents the imple-
mentation of the rule in the form of instantiating
new components of the VA or removing existing
component instances. Like the Rightscale algo-
rithm, this approach is also a reactive one. Scal-
ability rules have the benefits of combining the
high performance of threshold-based algorithms
such as Rightscale with tune-ability and therefore
have been widely used in practice in commercial
Clouds.
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The ideas of workload prediction and workload
modeling are by no means new, in fact they have
been active areas or research in the field of Grid
computing.

In [15], a Decentralized Online Clustering mo-
del is described and proposed for automatic work-
load provisioning for enterprise Grids and Clouds
and addresses their distributed nature. In this ap-
proach a workload prediction algorithm is used
and integrated into the system to model the ap-
plication dynamics. More specifically, a quadratic
response surface model is used.

A non-linear model for Grid workload predic-
tion can be found in [5]. The authors propose a
prediction model as a series of finite known func-
tional components, usually taken from the sig-
moid function class, with unknown coefficients.
The coefficients are determined by using using the
least square approximation method on a training
set. The training set can be split into a training
partition and an evaluation partition. This way an
early stop strategy can be applied to avoid data
over-fitting. Their model has been tested on a 3D
image rendering set of tasks based on the Blue
Moon Rendering Tool. The error of their predic-
tion is less than 14% with an average of 7.5%.

In [14], we find a real-time resource provisioning
system for massive multiplayer online games based
on a predictive usage model. The application is
dynamically provisioned on a Grid environment.
The authors propose a predictive model based
on neural networks as this approach has more
predictive power than simpler approaches like
exponential smoothing, yet is faster in terms of
runtime than more complex approaches like auto-
regressive models, integrated models or moving
average models. The neural network is prepared
with two offline phases that include gathering
of training samples and using them to train the
neural network. As results of experimentation,
the neural network approach has prover to have
a greater accuracy when compared to the other
tested prediction methods: average, moving aver-
age, last value and exponential smoothing. The
obtained prediction error during the experiments
has a maximum value of 33% and a minimum
value of 4.94%.

The EMPEROR Grid meta-scheduler [1] uses
prediction for estimating a host’s load and mem-
ory usage and in consequence to have an estima-
tion of the running time of a task. The prediction
approach is based on time series analysis tech-
niques. They have used different prediction
models including Auto-Regression (AR), Auto-
Regressive Integrated Moving Average (ARIMA)
and Auto-Regressive Fractionally Integrated
Moving Averages (ARFIMA). Their experiments
yield that AR and ARFIMA have the best results,
depending on the dynamic characteristic of the
load traces that are being predicted.

Another prediction approach that uses semi-
Markov Process model for estimating resource
availability in a Fine-Grained Cycle Sharing sys-
tem (FGCS) can be found in [16]. Their approach
uses resource monitoring on each physical ma-
chine and in practice has proved to have more
accurate and faster results than time series ap-
proaches. Statistical information is used to deter-
mine the parameters of the semi-Markov Process
model.

The Network Weather Service (NWS) [19] is
a distributed, generalized system with the goal
of offering short-term predictions for network
and computational resources based on historical
performance. For forecasting, a time series ap-
proach is used with different prediction models.
An adaptive approach is used to determine the
best prediction model for each measure that is
being predicted. Experiments have shown that the
predictive performance of the NWS system are at
least as good as the predictive performance of the
state of the art [18]. The forecast performance of
the NWS has been improved when using a support
vector machine approach, by using support vector
regression [13]. This approach uses a supervised
learning technique and its performance are more
pronounced when the depth of the prediction set
increases.

Prediction has also played a role in generating
synthetic workloads of Grid platforms. In [9], we
find a fine-detailed study on the topic of Grid
performance evaluation by using synthetic work-
loads obtained from the modeling of Grid work-
loads. The work describes performance metrics
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useful to evaluate Grid environments. These are
composed of traditional performance metrics that
are time, resource or system related and Grid-
specific related to workload completion or fail-
ure metrics. The paper continues by describing
the specifics of Grid workload modeling. These
include user group modeling that underlines the
importance of taking into consideration statistics
for all jobs on one hand and statistics for each user
in particular on the other hand, based on his (or
her) past actions. The paper also describes sub-
mission patterns that arise in Grid environments
and enumerate some of the current approaches
of modeling them that include combining Poisson
distributions for daily patterns or by using a
polynomial function of degree eight. The authors
argue that these pattern modeling approaches
may not hold as they are indifferent to work-
load inter-dependency. The authors continue by
presenting the GrenchMark synthetic Grid work-
load generation, execution and analysis frame-
work [7]. They also present extension suggestions
to the framework that would make the frame-
work be a better tool for workload generation and
analysis.

In [8], we find an integration effort of a Grid
application development toolkit named Ibis [17],
a Grid co-scheduler named Koala [12] and the
GrenchMark [7] synthetic Grid workload gen-
erator with the purpose of providing an end-to-
end workload generation and testing framework.
The authors argue about the benefits that ex-
perimental testing of Grid systems has over an
analytical or simulated test model. The authors
also argue in favor of using synthetic Grid work-
loads over real Grid workloads or benchmarking
approaches. Next the authors describe their inte-
gration proposal of building applications with the
Ibis toolkit, generating and submitting synthetic
workloads with GrenchMark, and then schedul-
ing them with Koala so that the results can be
analyzed with GrenchMark again. As result of
experimentation they concluded that workloads
generated in GrenchMark can cover a wide range
of run characteristics.

A shortcoming of existing reactive approaches
is the fact that they are blind relative to the trend

of the workload they are predicting as they do
not consider the recent workload states for their
results. In contrast, predictive approaches do con-
sider trend, but the presented approaches that
are using mathematical models do not consider
arbitrarily-repetitive self-similarities. It is this mo-
tivation that led us to the current work.

4 String Matching Based Scaling Algorithm

4.1 The String Matching Concept

The usage of a Cloud client can sometimes have
a repetitive behavior. This can be caused by the
similarities between tasks that the Cloud client is
running or the repetitive nature of human behav-
ior. Given the self-similar nature of web traffic,
it follows that current usage patterns of online
services have a probability of having already oc-
curred in the past in a very similar form. Therefore
we can infer what the system usage will be for
a Cloud client by examining its past usage and
extracting similar usages.

The pattern strategy has two inputs: a set of past
Cloud client usage traces and the present usage
pattern that consists of the last usage measures
of the Cloud client. Cloud clients working in the
same application domain have a higher similarity
in resource usages. Due to this similarity it follows
that the most relevant historic resource usage data
that can be used comes from Cloud clients work-
ing in the same application domain. Therefore it
would make sense to isolate historical data based
on application domains before usage.

The present usage pattern of the Cloud client
is used to identify a number of patterns in the
historical set that are close to the present pattern
itself. Identified patterns should not be dependent
on their scale, just on the relation between the ele-
ments of the identified pattern and the pattern we
are looking for. The resulting closest patterns will
be interpolated by using a weighted interpolation
(the found pattern that is closest to the present
pattern will have a greater weight) and will have
as result an approximation of the values that will
follow after the present pattern. In essence, the
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usage of the Cloud client is predicted by finding
similar usage patterns in the past or in other usage
traces.

The problem of finding a pattern inside an
array of data that is very similar to a given pat-
tern is close to the problem of string matching.
The approximate string matching problem has
been widely studied especially in its relation to
bio-informatics problems, yet it is considerably
different from the problem we are addressing.

One definition for the approximate string
matching problem is the following. Given a text
string T = t0t1...tn and a pattern P = p0 p1...pm

find a substring of consecutive characters from T
call it Ti, j that has the smallest edit (or Leven-
shtein) distance as possible [2].

The edit distance is defined as the number of
simple string operations (insert, delete, replace
and sometimes exchange) that need to be per-
formed on the identified text substring to have
equality to the pattern. The operations can have
the same or different weights, depending on the
problem needs. The identified match can have any
length because of the possible insert and delete
operations.

For the problem that we are addressing, the
edit distance cannot be applied as we are not
comparing string character values, but floating
point values. We are interested in identifying sub-
arrays of the same, or very close, length and
whose floating point absolute value difference
is as close as possible to zero. An insertion
into or deletion from the identified sub-array
would have a great impact on the floating-point
difference.

We shall now describe the problem of string
matching and its relation to the problem that the
current work addresses, as well as our proposal
for the approximate variant that is relevant to our
problem.

4.2 The String Matching Algorithm

There are several solutions to the string matching
problem. We have chosen the Knuth-Morris-Pratt
(abbreviated KMP) algorithm as its performance
are good (as described in [3]).

Despite the great similarities, our own pattern
matching problem has some particularities of its
own:

1. an approximate matching is needed since the
odds of finding an identical pattern to the one
we are looking for are considerably low;

2. matches which are too dissimilar either on
small intervals or as a whole need to be dis-
carded;

3. when comparing the pattern to the matching
data, scale also needs to be taken into con-
sideration. To be more exact, the scale of the
pattern and the scale of the possible match
should not affect the comparison, therefore it
needs to be scale-independent.

4. The resulting matches are interpolated having
different weights on the final result, based on
their similarity to the identified pattern.

In order to do an approximate matching, the
original KMP algorithm needs to be changed in
the content of both functions, therefore they need
to be modified accordingly.

Two types of approximation errors are used for
the matching:

1. an instant error which dictates the amount by
which the current match is allowed to differ
from the pattern by comparing in smallest
possible units. In our pseudo-code, this is re-
turned by the Distance() function.

2. a cumulative error that characterizes the
amount by which the current match is allowed
to differ from the pattern as a whole. This
is basically a sum of the instant errors of
the whole matching and is returned by the
CumulativeDistance() function in our pseudo-
code.

The distance between the pattern we are try-
ing to match and a candidate pattern should be
computed in a scale-independent manner by first
normalizing the two pattern values to a common
scale. To decrease floating point approximation
errors, one can choose a distance computation
that does not use divisions and therefore calculat-
ing only on integer values.
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As an example consider that the pattern is an
array containing the values: 20 , 38 , 21 and the
candidate match contains the values: 42 , 81 , 39 .
In this form we cannot compare the two patterns.
A first idea would be to normalize both arrays
to a floating point [0..1] interval and then com-
pare. Working with floating point numbers can be
avoided by working with big integer numbers. To
reach a common scale we simply multiply each
array by the scale of the other. For the scale
of each array we can simply consider the first
element. As a result, the pattern array is multi-
plied by the scale of the candidate (this is 42)
and the candidate is multiplied by the scale of
the pattern (which is 20). In this new situation,
comparing two components of each array is done
simply by subtraction. The instant error is used
here to assure that there are no two components
that differ two much (in percentage) from the two
arrays.

Once the comparison is done, the identified
candidate is stored along with its total distance
from the pattern. This facilitates the signifi-
cance of the result, as the candidate that is closest
to the pattern has a higher weight in final result.

The pseudo-code for computing the instant er-
ror is illustrated Algorithm 1 in the Distance()
function.

Algorithm 1 Distance(PatternElement, PatternScale,
DataElement, DataScale)

return
PatternElement × DataScale
- DataElement × PatternScale

The cumulative error is obtained by summing
up the instant errors from all the elements of the
pattern and candidate. This is illustrated in the
CumulativeDistance() function.

4.3 KMP Modification

The prefix calculation function is changed as
described in Algorithm 3. The scales of the two
components compared are represented by the first

Algorithm 2 CumulativeDistance(P, T, DataOffset)

1: patternScale ← P[0]
2: dataScale ← T[DataOffset]
3: length ← length(P)
4: distance ← 0
5: for index ← 0 to length do
6: distance ← distance + | dataScale × P[index] −

patternScale × T[index + DataOffset] |
7: end for
8: return distance

value of each component. This is arguable, but
in practice we have achieved good results with
this approach. In the function, scaleK represents
the scale of the prefix and scaleQ represents the
scale of the post-fix of the pattern. The Distance()
function returns an appreciation of the distance
between two different pattern instances, each hav-
ing a different scale which is passed as parameter.
The comparisons on lines 9 and 14 guarantees
that the current instant distance does not differ
by more then the acceptable error (in percentage)
from the actual pattern that we are matching.

Algorithm 3 Calculate-prefix-approx(P, ACCEPT_
INST_ERR)

1: m ← length(P)
2: π [0] ← −1
3: k ← -1
4: scaleK = P[0]
5: scaleQ = P[1]
6: for q ← 1 to m − 1 do
7: dist ← Distance(P[k+1], scaleK, P[q], scaleQ)
8: maxDistance ← ACCEPT_INST_ERR ×

scaleQ × P[k+1]
9: while k > −1 and dist > maxDistance do

10: k ← π [k]
11: dist ← Distance(P[k+1], scaleK, P[q],

scaleQ)
12: scaleQ = P[q − (k+1)]
13: end while
14: if dist ≤ ACCEPT_INST_ERR × scaleQ ×

P[k+1] then
15: k ← k+1
16: end if
17: π [q] ← k
18: end for
19: return π
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In the comparison on line 14, the scaleQ term
represents the scale of the data. It is needed in
order to bring the pattern to the same scale as the
data.

The matching algorithm is changed as de-
scribed in Algorithm 4. Compared to the original
KMP algorithm, the main difference is the use of
the instant and cumulative distances as a mean
of filtering out potential matches that are too
different either on small time intervals or as a
whole.

On lines 10 and 16 we guarantee that the in-
stant distance between the identified candidate
and the pattern is no more than what the ac-

Algorithm 4 KMP-approx(T, P, ACCEPT_INST_
ERR, ACCEPT_CUMUL_ERR)

1: n ← length(T)
2: m ← length(P)
3: π ← Calculate-prefix(P)
4: q ← −1
5: scaleP = P[0]
6: scaleT = T[0]
7: for i ← 0 to n − 1 do
8: dist ← Distance(P[q+1], scaleP, T[i], scaleT)
9: maxDist ← ACCEPT_INST_ERR × scaleT ×

P[q+1]
10: while q > −1 and dist > maxDist do
11: dist ← Distance(P[q+1], scaleP, T[i], scaleT)
12: q ← π [q]
13: scaleT = T[i − (q+1)]
14: maxDist ← ACCEPT_INST_ERR × scaleT ×

P[q+1]
15: end while
16: if dist ≤ maxDist then
17: q ← q+1
18: end if
19: if q = m−1 then
20: dist ← CumulativeDistance(P, T, i − m + 1)
21: maxDist ← ACCEPT_CUMUL_ERR × pat-

ternSum × scaleT
22: if dist ≤ maxDist then
23: StoreSolution(dist / scaleT, i − m + 1)
24: end if
25: q ← π [q]
26: scaleP = P[q+1]
27: scaleT = T[i − (q+1)]
28: end if
29: end for

ceptable error permits. In order to guarantee a
correct comparison, the pattern term needs to be
scaled to the same size as the data, hence the
scaleT term is used in the comparison. Filtering by
cumulative distance is done in lines 20 to 24. The
CumulativeDistance() function returns a sum of
instant distances for every instant of the two com-
pared arrays. The running time of this function is
�(m) where m is the length of the arrays, which in
our case is always equal to the length of P. Line
22 of the algorithm assures that the cumulative
distance of the candidate does not differ more
than is accepted by the cumulative error from the
pattern itself. The pattern itself is represented by
the patternSum term in the comparison. This is
a sum of all the terms in the pattern and should
be calculated only once, at the beginning of the
algorithm. The pattern sum needs to be brought
to the same scale as the candidate sequence and
therefore the scaleT term is used. Filtering by
an acceptable cumulative error that is smaller or
equal to the acceptable instant error is useless.
This conclusion is trivial when taking into consid-
eration that the cumulative error is a sum of all the
instant errors.

The use of the cumulative error changes the
running time of the matching algorithm to �(n ×
m) in the worst case, where n is the length of the
string to match against and m is the length of the
input pattern.

4.4 Interpolating the Found Values

Once approximate matches have been found, the
problem of obtaining a relevant result from those
matches is raised. Each match should have a con-
tribution to the final result that is proportional
to its relative distance to the pattern with respect
to the other identified patterns. This corresponds
to a weighted sum of the identified matches,
where weights are calculated by considering the
distance of the current match to the pattern and
to the rest of the matches.

Once the weights are calculated, the inter-
polation is performed between the following L
elements after each approximate match. The re-
sult is a predicted sequence of length L.



Pattern Matching Based Forecast of Non-periodic Repetitive Behavior for Cloud Clients 57

4.5 Algorithm Parameters

The algorithm accepts a number of parameters
used for fine-tuning in accordance to each use-
case. These parameters are:

• The maximum number of matches (called
closest neighbors) to take into consideration
(denoted K).

• The length of the predicted sequence (de-
noted L).

• The acceptable instant error representing the
amount by which the identified sequence is al-
lowed to differ on the smallest possible inter-
val lengths from the pattern we are looking for.

• The acceptable cumulative error which rep-
resents the amount by which the identified
sequence is allowed to differ as a whole from
the pattern we are looking for.

• The input set of data representing the data-
base of past requests.

• The input pattern representing a sequence
with the last period of requests received.

The first parameter is not independent of the
others. It is actually influenced considerably by
the acceptable errors. The correlation is strong
and can be expressed very easy: the larger the
acceptable error, the more matches the algorithm
identifies, but the more irrelevant they will be.

Calculating the Acceptable Errors The value of
the acceptable errors can be calculated based on
the maximum number of neighbors that we wish
to find. The approach for this is to use a binary
search to zone in on the appropriate values for the
acceptable errors.

By using the binary search approach, we have
obtained values that have proved to be good in
practice. We have used a lower bound of 20% of
K for a minimum of identified neighbors and 90%
of K as the upper bound for maximum number of
identified neighbors.

Calculating the Appropriate Pattern Length The
length of the pattern that represents the last traces
of server usage has a great impact on the results of
the algorithm. Finding the appropriate length is a

problem on its own as we have a trade-off between
patterns of big lengths that yield a small number of
similar candidates, that might be to small in order
to be usable, and patterns of small lengths, that
find more candidates but they tend to be more
irrelevant to our current situation.

We have taken two approaches to this problem.
The first approach is to find the most lengths of
the most frequent repetitive patterns and use the
same length as input to the prediction algorithm.

We have the following constructive approach
to identifying the length of the most frequent
repetitive patterns:

1. find all similar patterns of length 2 in the
historic data

2. take all similar patterns of length 2 and try
to match the next element too. This yields all
similar patterns of length 3.
...

3. take all patterns of length n and try to match
the next element too. This yields all similar
patterns of length n + 1.

The result is that the number of identified simi-
lar patterns decreases as the length of the patterns
increases:

count[n + 1] ≤ count[n] ≤ ... ≤ count[3]
≤ count[2]

The conclusion is that the most frequent pat-
terns are of the ones with length 2. In practice,
using a pattern length of 2 would prove to be too
short to be considered a valid pattern. It follows
that the predicted values would be “polluted” by
too many identified patterns that have no connec-
tion to the current usage pattern. This means a bad
prediction capability.

We need to have a better way for choosing
the pattern length, that would give more relevant
results and avoid pollution as much as possible.

The length of the pattern should be influenced
by the time it takes to service a request on the
server. We then have the following possibilities:

• Median/average

◦ Representative of most of the requests
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• Minimum

◦ A large pattern cannot match against a
smaller pattern that’s half different

◦ A small pattern can match against a large
pattern that’s half different

◦ The minimum is very probably close to 0
(testing experiments)

◦ A close minimum can be selected (ex. 5–
10% from the bottom)

Our experimentation shows that a pattern
length that is a minimum or even median of the
time it takes to service a request is unusable. In
practice we have used the average of the request
service time and have obtained good results.

5 Experimental Results

To validate our model we have used real-world
traces from one Cloud client platform. In all our
experiments, we have used a time unit of 100 s
as a discrete step. The predicted traces represent
the total number of CPUs used by different jobs
running in parallel in the time unit of 100 s. We
have focused only on CPU usage as the informa-
tion of memory usage was not available. Never-
theless, should the information of memory usage
be available our approach can also be applied for
its prediction.

5.1 Data Sources

We have tested our auto-scaling approach with
traces from several Cloud client applications:
seven applications deployed on an IBM Cloud
platform and another application deployed on
Amazon EC2. Each of the applications have its
own usage particularities, with main differences in
the frequency and amplitudes of changes in their
overall usages.

Animoto1 is a Cloud client application that spe-
cializes in automatically-orchestrated videos start-
ing from user-generated content. Their platform

1http://animoto.com

usage represents oscillations as per user activity. A
plot of number of virtual CPUs over a time period
of about 4 months, with time slices of 100 s can be
found in Fig. 3d.

IBM Cloud Application Traces that we have
used represent seven different applications. They
feature a high volatility in use and a relatively low
number of concurrent running jobs. Plots of the
platform usage traces for all seven Cloud applica-
tion can be found in Figs. 2 and 3.

5.2 Analyzing the Data Sources

We need to have a better way to choose the
pattern length, that would give more relevant re-
sults and avoid pollution as much as possible. The
length of the pattern should be influenced by the
time it takes to service a request on the server.

By analyzing the data sources from Animoto
and the IBM platform we have obtained the run-
ning time in seconds of each job with the results
given in Table 1. The conclusions here are that,
for all practical purposes, a pattern length that is
a minimum or even a median of the time it takes
for a job to be run, is unusable when dealing with
servers that have a similar usage to the Cloud
applications described above. In practice we have
used the average of the request service time and
have obtained good results.

5.3 Experiment Setup

All the experiments use the server traces with the
same form of input data as described above with
time units of 100 s, and resource usage value con-
sisting of the total number of CPUs used across
the 100 s A pattern length of 100 time units has
been used for all the experiments (this is 100 ×
100 s—approximately 2.7 h of server time) and
predictions are made for one time unit, this is
100 s, which is a little over 1 min 30 s.

The results are displayed under the form of
a set of standard metrics that include minimum,
maximum, median, and average percentage and
value difference between the prediction and the
actual value.

A second set of metrics has also been used
that allows the comparison to other existing auto-

http://animoto.com
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(a) IBM Application 1 (b) IBM Application 2

(c) IBM Application 3 (d) IBM Application 4

Fig. 2 Plot of number of virtual CPUs used versus time for the first four Cloud application traces

scaling algorithms. This metric was proposed and
used by UCSB to compare the performance of
three existing auto-scaling algorithms [11]: AR1,
Linear Regression and the Rightscale democratic
voting algorithm.

In practice, of particular interest is availability
when it comes to service providers. A bad scaling
up decision results in wasted money for the service
provider. A bad scaling down decision results in
dropping client requests and as a result a poor
quality of service. There is a clear trade-off be-
tween the two and service providers usually prefer
to favor the latter and as a result have a higher
availability, but more wasted money.

We have also measured the average running
time necessary for calculating one prediction. This
has an impact on the practical usefulness of the
prediction since it needs to be subtracted from
the prediction time—which is 100 s—to calculate
the effective prediction time.

The metric proposed by UCSB is influenced
by platform availability and cost by the following
formula:
(

Alog
)α

C
− γ C

Alog
+ β (1)

where: A represents the availability of the plat-
form and is defined as follows:

A = #serviced_requests
#of _requests

(2)

Alog represents the availability in logarithmic
scale and is defined as:

Alog = −log
(
1 + δa − A

)
, δa < 1 (3)

and C represents the cost and is defined as:

C = #CPU
hours × 0.10

(4)
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(a) IBM Application 5 (b) IBM Application 6

(c) IBM Application 7 (d) The Animoto platform

Fig. 3 Plot of number of virtual CPUs used versus time for the last four Cloud application traces

The constants α, β, γ and δa have been chosen
through experimentation.

We have used two versions of the metric pro-
posed by the UCSB team: an instant score where
we considered resource cost as being charged per
fraction of an hour, although this is not the case in
current Cloud providers and a second score where
we take the maximum prediction over the course
of an hour and use that as static provisioning for
the whole hour.

In our experimentation we have considered
as reference for time and cost comparisons, the
m1.small virtual machine instance type avail-
able in on the Amazon EC2 platform.

5.4 Results

We have done self-prediction test in which a re-
source trace is used as historic data to predict

Table 1 Job length statistics for the data sources

App1 App2 App3 App4 App5 App6 App7 Animoto

Avg 13,045 3,746 4,437 4,556 4,734 5,971 7,623 1,296
Min 6 3 4 4 4 6 6 4
Median 10,221 2,865 3,491 3,703 3,844 4,228 6,083 283
Max 129,725 128,999 450,247 534,525 35,185 431,125 46,931 22,452

Values represent time in seconds based on the running time of the recorded jobs
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Table 2 Results of self-prediction experiments with traces from the eight data sources: the seven IBM Cloud applications
and Animoto

Metric App1 App2 App3 App4 App5 App6 App7 Animoto

Min prediction error (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max prediction error (%) 1.04E8 1.05E8 8.78E7 5.47E7 9.3E7 1.18E8 7.74E7 100.0
Med prediction error (%) 100.0 100.0 100.0 41.58 74.7 100.0 16.8 2.69
Avg prediction error (%) 65.8E3 76.5E3 84.7E3 42E3 90.5E3 20.3E4 44.4E4 5.42
UCSB metric (max per hour) 49.6 49.06 48.91 49.19 47.83 48.81 48.46 −1.39
UCSB metric (instant) 49.5 48.92 48.69 48.86 47.52 48.64 47.81 −18.38
Runtime per instance (ms) 94.19 147.5 40.51 66.51 147.82 30.2 44.2 186.625

The experiments have been done across time slices of 100 s. The last three columns represent comparative results for other
algorithms—RightScale, auto-regression of order 1 and linear regression

itself, ignoring exact matches. The results can be
seen in Table 2.

For the sake of comparison we can consider
results of evaluating three other algorithms ob-
tained in [11]. These values are taken from
experimentation against a randomly generated us-
age pattern and feature the variants of all three
algorithms that implement the Smartkill strategy,
thus making them more effective. Only measures
of the UCSB metric (instant) were available with
the following values:

– RightScale: 11.11
– Autoregression of order 1: 17.3
– Linear Regression: 10.8

It is worth noting that there is a considerable
difference between the results obtained by us-
ing the first seven Cloud applications and the
Animoto Cloud application. The error of the pre-
diction results of the former are a lot higher, with
median values ranging from 16.8 to 100.0%, when
compared to the latter that has average median
errors of 2.69%. It is also worth noting that the
results obtained by using the UCSB metric are
exactly the opposite, with good results for the
first seven applications and weaker results when
using the Animoto traces. The large difference
between the obtained results is caused by the
large difference between the number of concur-
rent users that the applications have: the first
seven application have a relatively low number of
concurrent users whereas the Animoto platform
has a larger number.

The fact that percentage prediction error for
the first seven applications is high is caused by
the relatively low number of concurrent users

which translates into a low number of CPUs used
per application. In combination with the high
volatility of the platform, this yields small value
differences between the actual and predicted us-
age and high percentage differences between
the two.

When compared to other approaches, we have
obtained both better and worst results, depending
on the volatility of the platform usage and on
the algorithm parameters. The first seven Cloud
applications from the IBM platform have a higher
volatility than the Animoto platform, at the gran-
ularity level on which the algorithm works. This
leads us to believe that the algorithm can yield
better results in practice if its parameters are
calibrated accordingly. Of most importance are
the pattern length and the statistical relevance of
the domain of the historic data with respect to
the domain of the platform whose usage is being
predicted.

The time necessary for computing one predic-
tion instance has proved in practice to be low

Table 3 The prediction error obtained for various lengths
of historic data and pattern lengths for the Animoto
platform

Pattern length Data length (%)

100.0 50.0 25.0 12.5

1,000 7.2 8.7 7.5 9.3
500 6.9 7.9 8.6 10.0
100 2.6 2.7 2.8 2.7
50 2.4 2.5 2.4 2.4
25 1.9 2.1 2.1 2.2
12 1.2 1.4 1.5 1.6
2 >100 >100 >100 >100
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Table 4 Total virtual machine allocation wait time by using on-demand provisioning and our predictive approach for the
eight Cloud applications

Metric (s) On-demand App1 App2 App3 App4 App5 App6 App7 Animoto

Min 69 0 0 0 0 0 0 0 0
Avg 82 0 0 0 0 0 0 0 0
Max 126 26.094 26.147 26.04 26.066 26.147 26.03 26.044 26.186

Experiments consist of predicting one platform’s usage with the platform’s own traces as historic data, across time slices of
100 s

relative to the prediction time, between 30 and
147 ms.

We have experimented with various lengths of
the historic data set and of the pattern that is
considered for input. The results with the predic-
tion error in each case can be seen in Table 3.
Although this does not show that the algorithm
yields the best possible results, it does show that
there is a clear tendency for the accuracy of the
prediction to improve as we increase the size of
the historic data and as we find the best pattern
length to take into consideration when predicting.
The results table illustrates results when varying
the pattern length and the length of the historic
data used for prediction. We have varied the his-
toric data from 100%—the full set, to 50, 25 and
12.5% of the set. The pattern length has also been
varied from 1,000 time units to 500, 100, 50, 25, 12
and 2 time units.

To have a better view of the qualitative per-
formance of an allocation system that uses the
current predictive approach, consider the results
in Table 4. The table contains resource alloca-
tion wait times (in seconds) for instances of type
m1.small from Amazon EC2. We have used this
type of virtual machine as it was also the basis
for price calculation in the metric proposed by
UCSB, discussed in the previous paragraphs. The
on-demand times for provisioning represent the
total time needed to obtain a working virtual ma-

chine (the sum of the install and boot time)
for single-instance instantiation and are taken
from [10]. The allocation time delays for the pre-
dictive approach have been obtained from the on-
demand times, by subtracting the prediction depth
and adding the running time of the algorithm
for predicting one time instance. If the obtained
value is less than 0, then 0 is presented. For our
experimentation we have used time slices of 100 s.
It is clear that a predictive approach has a better
performance when it comes to resource allocation
wait time. To increase the performance, a bigger
prediction depth can be used, at the cost of predic-
tion accuracy. In our current experiment we have
used a prediction depth of 1.

To evaluate the approach from a practical point
of view, we have computed monetary differences
between ideal provisioning (on-demand, yet with
zero wait time) and the predictive approach we
are proposing. As base price we have considered
the cost of 1 h on the Amazon EC2 platform for
an instance of type m1.small. This is 0.095 $
per hour in most availability regions. Results can
be seen in Table 5. The actual cost values are
influenced by the length of the trace interval and
as a result it does not make sense to compare cost
values from one platform with cost values from
another. On the other hand, the percentage value
for false positives can be compared for all plat-
forms. The results of the prediction are influenced

Table 5 Total cost estimation for an ideal resource provisioning (on-demand with zero wait time) and the proposed
approach

Metric App1 App2 App3 App4 App5 App6 App7 A w/A

Ideal ($) 1783.01 500.07 1600.40 3892.04 3365.71 616.25 4030.14 392307.06
Scale up false positives ($) 32.85 6.9 25.51 61.68 48.5 15.63 51.3 9765.34
Scale up false positives (%) 1.84 1.38 1.59 1.58 1.44 2.53 1.27 2.48
Scale down false positives ($) 677.27 252.82 461.11 651.28 688.61 281.74 342.5 3733.95
Scale down false positives (%) 37.98 50.55 28.81 16.73 20.45 45.71 8.49 0.95
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by the correlation between the historic resource
usage data and the current resource usage. This
can be seen in all test cases.

The reader will note that in our experiments
we have considered only CPU usage as measure
and prediction target. In a Cloud environment, a
virtual resource usually has more characteristics
associated to it than just CPU power. In particular,
memory usage is one of the most notable charac-
teristics. Our approach can also be used to have
a prediction of the memory usage if the server
traces also contain information about past mem-
ory usage. With predictions for both memory and
CPU usages, the scaling component of the Cloud
client should be able to more accurately decide the
characteristics of the virtual resources that are to
be instantiated or released. The topic of making
a good scaling decision both in direction and in
virtual machine characteristics is an interesting
topic of research, yet it is beyond the scope of the
current work.

6 Conclusions and Future Work

One of the most important benefits of Cloud
Computing is the ability for Cloud clients to adapt
the number of resources used based on their ac-
tual use. This has great implications on cost sav-
ing as resources are not paid for when they are
not used. Dynamic scalability is achieved through
virtualization. The downside of virtualization is
that it has a non-zero setup time that has to be
taken into consideration for an efficient use of
the platform. It follows that an accurate prediction
method would greatly aid a Cloud client in making
its auto-scaling decisions.

In this work, a new resource usage prediction
algorithm is presented. It uses a set of historic
data to identify similar usage patterns to a cur-
rent window of records that occurred in the past.
The algorithm then predicts the system usage by
interpolating what follows after the identified pat-
terns from the historical data. Experiments have
shown that the algorithm has good results when
presented with historic data that has a high rele-
vance to the current platform and the quality of
results can improve by choosing an appropriate
value for the prediction time frame and by in-

creasing the historic data size. The running time
of the algorithm has proved negligible in our ex-
periments, which makes it a good candidate for
practical use.

As future work directions, we will be looking
into ways that a relevant set of historic data can be
composed for a particular application domain as
well as implementing our approach for an actual
Cloud client.
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