
J Grid Computing (2010) 8:323–339
DOI 10.1007/s10723-010-9148-x

Experiment Dashboard for Monitoring Computing
Activities of the LHC Virtual Organizations

Julia Andreeva · Max Boehm · Benjamin Gaidioz · Edward Karavakis ·
Lukasz Kokoszkiewicz · Elisa Lanciotti · Gerhild Maier · William Ollivier ·
Ricardo Rocha · Pablo Saiz · Irina Sidorova

Received: 24 August 2009 / Accepted: 19 February 2010 / Published online: 28 April 2010
© Springer Science+Business Media B.V. 2010

Abstract The Large Hadron Collider (LHC) is
preparing for data taking at the end of 2009. The
Worldwide LHC Computing Grid (WLCG) pro-
vides data storage and computational resources
for the high energy physics community. Operating
the heterogeneous WLCG infrastructure, which
integrates 140 computing centers in 33 countries
all over the world, is a complicated task. Re-
liable monitoring is one of the crucial compo-
nents of the WLCG for providing the functionality
and performance that is required by the LHC
experiments. The Experiment Dashboard system
provides monitoring of the WLCG infrastructure
from the perspective of the LHC experiments
and covers the complete range of their computing
activities. This work describes the architecture of
the Experiment Dashboard system and its main
monitoring applications and summarizes current

J. Andreeva (B) · B. Gaidioz · E. Karavakis ·
L. Kokoszkiewicz · E. Lanciotti · G. Maier ·
W. Ollivier · R. Rocha · P. Saiz · I. Sidorova
CERN, European Organization for Nuclear Research,
1211 Geneva 23, Switzerland
e-mail: julia.andreeva@cern.ch

M. Boehm
Hewlett-Packard, 65428 , Roselsheim, Germany

E. Karavakis
School of Engineering and Design, Brunel University,
Uxbridge, UB8 3PH, UK

experiences by the LHC experiments, in partic-
ular during service challenges performed on the
WLCG over the last years.

Keywords WLCG · Distributed infrastructure ·
LHC experiments · Monitoring

1 Introduction

Preparation is under way to restart the LHC [1].
The experiments at the LHC are all run by in-
ternational collaborations, bringing together sci-
entists from institutes all over the world. Each
experiment is distinct, characterized by its unique
particle detector. The two large experiments,
ATLAS [2] and CMS [3], are based on general-
purpose detectors designed to investigate the
largest range of physics possible. Two medium-
size experiments, ALICE [4] and LHCb [5], have
specialized detectors for analyzing the LHC colli-
sions in relation to specific phenomena. User com-
munities of the LHC experiments are organized in
the virtual organizations (VOs).

The LHC is estimated to produce about 15
petabytes of data per year. This data has to be dis-
tributed to computing centers all over the world
with a primary copy being stored on tape at
CERN [6]. Seamless access to the LHC data has
to be provided to about 5,000 physicists from 500
scientific institutions. The scale and complexity of

324 J. Andreeva et al.

the task shortly described above requires complex
computing solutions. A distributed, tiered com-
puting model was chosen by the LHC experiments
for the implementation of the LHC data process-
ing task. The LHC experiments use the WLCG
[7] distributed infrastructure for their computing
activities. In order to monitor the computing ac-
tivities of the LHC experiments, several specific
monitoring systems were developed. Most of them
are coupled with the data-management and the
workload-management systems of the LHC VOs,
for example PhEDEx [8], Dirac [9], PanDA [10]
and AliEn [11]. In addition, a generic moni-
toring framework was developed for the LHC
experiments—the Experiment Dashboard. If the
source of the monitoring data is not VO-specific,
the Experiment Dashboard monitoring applica-
tions can be shared by several VOs. Otherwise,
the Experiment Dashboard offers experiment-
specific monitoring solutions for the scope of a
single experiment.

To demonstrate readiness for the LHC data
taking, several computing challenges were run
on the WLCG infrastructure over the last years.
The latest one, Scale Testing for the Experiment
Programme’09 (STEP09) [12], took place in June
2009. The goal of STEP09 was the demonstration
of the full LHC workflow from data taking to user
analysis. The analysis of the results of the STEP09
and of the earlier WLCG computing challenges
proved the key role of the experiment-specific
monitoring systems, including Experiment Dash-
board, in operating the WLCG infrastructure and
in monitoring the computing activities of the LHC
experiments.

The Experiment Dashboard allows to esti-
mate the quality of the infrastructure and to
detect any problems or inefficiencies. Further-
more, it provides the necessary information to
conclude whether the LHC computing tasks are
accomplished.

The WLCG infrastructure is heterogeneous
and combines several middleware flavors: gLite
[13], OSG [14] and ARC [15]. The Experiment
Dashboard project works transparently across all
these different Grid flavors.

The main computing activities of the LHC VOs
are data distribution, job processing, and site com-
missioning. The Experiment Dashboard provides

monitoring covering the various computing activ-
ities mentioned above. In particular, the site com-
missioning aims to improve the quality of every
individual site, therefore ameliorating the overall
quality of the WLCG infrastructure.

The Experiment Dashboard is intensively used
by the LHC community. Taking as an example
the CMS Dashboard server, according to the Web
statistics tool [16], during year 2009 monthly num-
ber of unique visitors increased three times, from
1,300 in the beginning of the year to 3,900 in
autumn. In average 50,000 pages are viewed daily.
The users of the system can be classified into
various roles: managers and coordinators of the
experiment computing projects, site administra-
tors, and LHC physicists running their analysis
tasks on the Grid.

Section 2 shortly describes the related work.
The architecture of the Experiment Dashboard
system and implementation details of the Ex-
periment Dashboard framework are described in
Section 3. Sections 4–6 overview the main moni-
toring applications of the Experiment Dashboard
system. The applications are discussed in the fol-
lowing order: data-management monitoring appli-
cations, applications for the job monitoring, and
applications for the site monitoring and commis-
sioning activity.

Section 7 covers the recent developments,
which focus on high level cross-VO views of the
computing activities of the LHC experiments,
both at the level of a single site and at a global
level.

Close collaboration between the developers of
the Experiment Dashboard and the user commu-
nities is described in Section 8.

In the conclusions we summarize the role of the
Experiment Dashboard monitoring system and
the current experiences of using it by the LHC
community.

2 Related Work

One approach for monitoring Grid infrastruc-
tures, used by systems such as MonALISA [24]
and GridICE [34] is to aggregate and display data
from the local fabrics monitoring of the distrib-
uted clusters. They provide a system-level view

Monitoring Computing Activities of LHC Virtual Organizations 325

of the Grid resources. Monitoring systems such as
GridView [17] and Real Time Monitor [18] obtain
information from the Grid services, for example
from the Logging and Bookkeeping service [19].
Monitoring data provided by the systems men-
tioned above is useful for service providers and
people operating distributed infrastructure, but
does not necessarily cover the needs of the user
communities, since it is missing application-level
information.

One of the possible ways to evaluate Grid
infrastructure from the perspective of the user
communities is to execute functional tests, which
emulate user activity at the Grid sites, and to
collect and display the results of these tests. This
approach is applied on the Grid infrastructures
including WLCG and TeraGrid [35]. For WLCG
this task is performed by the Service Availability
Monitoring (SAM) [20], for TeraGrid by Inca [35]
monitoring system. Though monitoring of func-
tional tests is rather effective for detecting prob-
lems with the distributed sites and services it can
not substitute monitoring of real user activities.

Most of the existing tools which provide mon-
itoring of real user activities were, as a rule, de-
veloped as a part of the data management and
workload management systems of the LHC ex-
periments (Phedex, Dirac, PanDA). They pro-
vide data transfer and job processing monitoring
including application-level information, namely,
application exit code, name of the data collection,
detailed failure reason, version of the experiment-
specific software. The limitation of these systems
is that they are working in the scope of a single ex-
periment and do not provide common monitoring
solutions which can be shared by several virtual
organizations.

Experiment Dashboard aims to combine
Grid-related monitoring information with the
application-related data and to offer where
possible common monitoring solutions which can
work across several virtual organizations.

3 Experiment Dashboard Framework

The common structure of the Experiment Dash-
board service consists of information collec-
tors, data repositories, normally implemented in

ORACLE databases, and user interfaces. The
Experiment Dashboard uses multiple sources of
information, like:

• Other monitoring systems, like the Imperial
College Real Time Monitor (ICRTM) or the
Service Availability Monitoring (SAM)

• gLite Grid services, such as the Logging and
Bookkeeping service (LB) or CEMon [21]

• Experiment specific distributed services, for
example the ATLAS Data Management ser-
vices or distributed Production Agents for
CMS

• Experiment central databases (like the
PanDA database for ATLAS)

• Experiment client tools for job submission,
like Ganga [22] and CRAB [23]

• Jobs instrumented to report directly to the
Experiment Dashboard

This list is not exhaustive. Information can be
transported from the data sources via various pro-
tocols. In most cases, the Experiment Dashboard
uses asynchronous communication between the
source and the data repository. For several years,
in the absence of a messaging system as a standard
component of the gLite middleware stack, the
MonALISA monitoring system was successfully
used as a messaging system for the Experiment
Dashboard job monitoring applications. Cur-
rently, the Experiment Dashboard is being instru-
mented to use the Messaging System for the Grid
(MSG) [25] for the communication with the infor-
mation sources.

A common framework providing components
for the most usual tasks was established to fulfill
the needs of the dashboard applications being
developed for all experiments. The schema of the
Experiment Dashboard framework is presented in
Fig. 1.

The Experiment Dashboard framework is im-
plemented in Python. The tasks performed on
regular basis are implemented by the Dashboard
agents. The framework provides all the necessary
tools to manage and monitor these “agents”, each
focusing on a specific subset of the required tasks,
such as collection of the input data or computation
of the daily statistics summaries.

To ensure a clear design and maintainability of
the system, the definition of the actual monitoring

326 J. Andreeva et al.

Fig. 1 The experiment
dashboard framework
schema

application queries is decoupled from the inter-
nal implementation of the data repository. Every
monitoring application implemented within the
Experiment Dashboard framework comes with
the implementation of one or more data access
objects (DAO), which represents the “data ac-
cess interface”: a public set of methods for the
update and retrieval of information. Access to
the database is done using a connection pool to
reduce the overhead in creating new connections,
therefore the load on the server is reduced and the
performance increased.

The Experiment Dashboard requests are han-
dled by a system following the Model-View-
Controller (MVC) pattern. They are handled
by the “controller” component, launched by the
apache mod_python extension, which keeps the
association between the requested URLs and
the corresponding “actions”, executing them and
returning the data in the format requested by
the client. All actions will process the request
parameters and execute a set of operations, which
may involve accessing the database via the DAO
layer. When a response is expected, the action will
store it in a python object, which is then trans-
formed into the required format (HTML page,
plain XML, CSV, image) by the “view” compo-
nents. Applying the view to the data is performed
automatically by the controller.

All the Experiment Dashboard information can
be displayed using HTML, so that it can be viewed
in any browser. Moreover, the Experiment Dash-
board framework also provides the functional-
ity to retrieve information in XML (extensible
markup language), CSV (comma separated val-
ues), JSON (javascript object notation) or image
formats. This flexibility allows the system to be
used not only by users but also by other ap-
plications. A set of command line tools is also
available.

The current Web page frontends are based on
XSL style sheet transformations over the XML
output of the HTTP requests. In some cases more
dynamic Web interfaces are available by issuing
asynchronous javascript requests from the client
browser (AJAX), gradually building the Web
page and offering improvements in navigation and
performance.

Recently, support for the Google Web Toolkit
(GWT) was added to the framework. Some of
the applications have started to be migrated to
this new client interface model, which gives great
benefits both for users and developers—compiled
code, easier support for all browsers, out of the
box widgets.

All components are included in an automated
build system based on the Python distutils, with
additional or customized commands enforcing

Monitoring Computing Activities of LHC Virtual Organizations 327

strict development and release procedures. In to-
tal, there are more than fifty modules in the
framework, and fifteen of them being common
modules offering the functionality shared by all
applications.

The modular structure of the Dashboard
framework enables flexible approach for imple-
menting the needs of the customers. For example,
for the CMS production system, Dashboard pro-
vides only implementation of the data repository.
Data retrieved from the Dashboard database in
XML format is presented to the users via user
interface developed by the CMS production team
in the CMS Web-tools framework [26].

Parts of the Dashboard framework are used
by other projects, some unrelated to monitoring,
as is the case with the ATLAS Distributed Data
Management system described below.

4 Experiment Dashboard Monitoring
of the Distributed Data Management System

The Experiment Dashboard provides monitor-
ing applications for several data-management
tasks, namely monitoring of data-transfer for the
ALICE experiment, monitoring of the ATLAS
Distributed Data Management (DDM) system
and monitoring of the file transfer service (FTS)
[27]. The last one is currently under development.

This section describes in detail the ATLAS
DDM Dashboard as an example of the data-
management monitoring applications.

4.1 Introduction to ATLAS DDM

The ATLAS DDM Dashboard plays a central role
in ATLAS computing operations. It is widely used
by the people taking computing shifts. ATLAS
DDM monitoring serves about 1,000 unique visi-
tors per month and up to 250,000 pages are viewed
daily.

Matchmaking between computing tasks and
available resources in ATLAS is done based on
the location of the data and requires data prox-
imity for resources to be considered eligible. The
ATLAS DDM system is responsible for data
placement on resources, and rapid export of data
sets is important to ensure full utilization. This

makes DDM a complex component with high
availability requirements, and it therefore benefits
from having a comprehensive monitoring system.

The ATLAS DDM system is composed of
different components which interact with each
other to perform the different bookkeeping and
data movement tasks. The catalogs take care of
the bookkeeping, while the site services try to an-
swer the different user requests to spread existing
data among the different sites.

With the expected amount of data being in the
order of several petabytes per year, and the file
sizes varying from the controlled production data
(bigger and thus less files) to the more chaotic user
analysis results (typically higher number of files),
having collections of files greatly reduces the di-
mension of the bookkeeping task and improves
performance as the dataset is also used as the unit
of data movement. And being simply an abstrac-
tion over the physical data stored in individual
files, datasets are also dynamic, as users can add
or remove files from the collection, creating new
versions of the same dataset.

4.2 Architecture of Dashboard DDM

The Dashboard DDM is composed of two main
sets of components: the Web application and all
the actions available through its HTTP based in-
terface, and the agents, each taking care of a
specific task. All of them use a single backend
database, where all data concerning the monitor-
ing of DDM and Grid fabric components is stored.

The application’s most visible use is of course
the access to the data using a Web browser.

XHTML is the default output format for any
query resulting in response data, though other
formats are available as mentioned above. The
available functionality via the Web interface is
depicted in Fig. 2.

The second part of the application is the infor-
mation collection from the DDM system. It relies
on a messaging system pattern, where different
messages are delivered to pre-defined queues or
topics. Currently HTTP is used in production
for the delivery of the messages, but any other
messaging backend supported by the Dashboard
framework can be used, like MonALISA or Java
Message Service (JMS).

328 J. Andreeva et al.

Fig. 2 Web application flow. Users navigate from Activity or Clouds (groups of sites) overview pages down to individual
file event pages

The main reason of using HTTP for delivering
these messages is the reduced number of external
dependencies on the client. The only disadvan-
tage of this option is the lack of reliability in the
message delivery. This is a feature that does not
exist natively in the HTTP protocol, so a client
side layer with persistent storage had to be de-
veloped for cases where the endpoint is down or
unreachable. Several modern messaging systems
provide this functionality both at the client and
broker levels.

Besides the collection of dataset and file trans-
fer information from the site services, there are
individual agents performing different tasks in the
DDM Dashboard. They cover tasks like collect-
ing service status and availability from the Site
Availability Monitor (SAM) service, monitoring
the available space in the storage elements, gen-
erating statistics regarding site and site data link
performance—throughput, number of files and
datasets moved, average dataset and file comple-
tion time, dataset and file time in queue, etc., and
errors during both transfer and registration, gen-
erating and sending alarms to system operators.
This information is gathered by doing periodic
queries to the database.

4.3 Performance

Due to the amount of data being collected, a
detailed design of the backend database was re-
quired. Moreover, the Web application endpoint
was also taken into account, not really due to
heavy data querying but due to it also being used

to collect the different messages coming from the
DDM system.

4.3.1 Backend Database

Rough figures used when designing the system
indicated half a million datasets being created per
year, each having 10 to 10,000 files. With around
80 storage areas at the time (both disk and tape)
it was easy to calculate a worst case scenario and
from these numbers it was decided to rely on the
Oracle database service supported by the CERN
IT (Information Technology) department—
eliminating the need for the setup and support of
a non-trivial database infrastructure.

The most impressive number comes not from
the datasets or files, but from the individual file
transfer state reports, which evolve over time.
This is of course temporary data, useful for real
time debugging but less useful once information
becomes old and statistics have been gathered.
Even so, the period of time where this information
is kept should be made as big as possible. Oracle
partitioning [37] was especially important for the
file state history table, but is also used in both
datasets and files tables.

4.3.2 Web Frontend

Choosing HTTP as the messaging protocol means
that a server receiving messages from a different
site service instances is hit very hard and should
be highly optimized. Monitoring the system has
shown peaks of up to 90 requests per second,

Monitoring Computing Activities of LHC Virtual Organizations 329

with five requests per second in normal operation.
Considering that most of these (90%) are bulk
requests, the load on the service is very high. The
choice was to use the Apache Web Server, which
provides the required performance.

5 LHC Job Processing and the Experiment
Dashboard Applications for Job Monitoring

The LHC job processing activity can be split in
two categories: processing raw data and large-
scale Monte-Carlo production, and user analy-
sis. The main difference between the mentioned
categories is that the first one is a large scale,
well-organized activity, performed in a coordi-
nated way by a group of experts, while the sec-
ond one is chaotic data processing by members
of the huge distributed physics community. Users
running physics analysis do not necessarily have
enough knowledge about the Grid and profound
expertise in computing in general. With the restart
of the LHC, a considerable increase of analysis
users is expected. Clearly, for both categories of
job processing, complete and reliable monitoring
is a necessary condition for the success.

The organization of the workload management
systems of the LHC experiments differs from one
experiment to another. While in the case of AL-
ICE and LHCb the job processing is organized via
a central queue, in the case of ATLAS and CMS
the job submission instances are distributed and
there is no central point of control as in ALICE or
LHCb. Therefore, the job monitoring for ATLAS
and CMS is a more complicated task and it is
not necessarily coupled to a specific workload
management system. The Experiment Dashboard
provides several job monitoring solutions for var-
ious use cases, namely the generic job monitoring
applications, monitoring for ATLAS and CMS
production systems, and applications focused on
the needs of the analysis users. The generic job
monitoring, which is provided for all LHC exper-
iments, is described in more detail in Section 5.1.
This application is generic and was used outside
the LHC community by the VLEMED virtual
organization [36]. Since the distributed analysis
is currently one of the main challenges for the
LHC computing, several new applications were

built recently on top of the generic job monitor-
ing, mainly for monitoring of the analysis jobs.
Section 5.2 gives a closer look at the CMS Task
Monitoring as an example of the job monitoring
applications for user analysis.

5.1 Experiment Dashboard Generic Job
Monitoring Application

The overall success of the job processing depends
on the performance and stability of the Grid
services involved in the jobs processing and on
the services and software which are experiment-
specific. Currently, the LHC experiments are us-
ing several different Grid middleware platforms
and therefore a variety of Grid services. Regard-
less of the middleware platform, access from the
running jobs to the input data as well as saving
output files to the remote storage are currently
the main reasons for job failures. Stability and
performance of the Grid services, like the stor-
age element (SE), storage resource management
(SRM) and various transport protocols, are the
most critical issues for the quality of the data
processing. Furthermore, the success of the user
application depends as well on the experiment-
specific software distribution at the site, the data
management system of the experiment and the
access to the alignment and calibration data of the
experiment known as “conditions data”. These
components can have a different implementation
for each experiment and they have a very strong
impact on the overall success rate of the user jobs.
The Dashboard Generic Job Monitoring Appli-
cation tracks the Grid status of the jobs and the
status of the jobs from the application point of
view. For the Grid status of the jobs, the Experi-
ment Dashboard used the Grid related systems as
an information source. In the past, the Relational
Grid Monitoring Architecture (RGMA) [28] and
the Imperial College Real Time Monitor were
used as information sources for Grid job status
changes. Unfortunately, none of the mentioned
systems provided complete and reliable data. The
current development aimed to improve the situ-
ation of publishing the job status changes by the
Grid services involved in the job processing, which
is described in Section 5.1.2. To compensate the
lack of information from the Grid-related sources,

330 J. Andreeva et al.

the job submission tools of the ATLAS and CMS
experiments were instrumented to report job sta-
tus changes to the Experiment Dashboard system.
Every time when the job submission tools query
the status of the jobs from the Grid services, the
status is reported to the Experiment Dashboard.
The jobs themselves are instrumented for the run-
time reporting of their progress at the worker
nodes. The information flow of the generic job
monitoring application is described in the next
section.

5.1.1 Information Flow of the Generic Job
Monitoring Application

Similar to the common Dashboard structure, de-
scribed in Section 3, the job monitoring system
consists of the central repository for the monitor-
ing data (Oracle database), collectors, and a Web
server that renders the information in HTML,
XML, CSV, or as images.

The main principles of the Dashboard job mon-
itoring design are:

• to enable non-intrusive monitoring, which
must not have any negative impact on the job
processing itself,

• to avoid direct queries to the information
sources and to establish asynchronous com-
munication between the information sources
and the data repository, whenever possible.

When the development of the job monitoring ap-
plication started, the gLite middleware did not
provide any messaging system, so the Experiment
Dashboard uses the MonALISA monitoring as
a messaging system. The job submission tools of
the experiments and the jobs themselves are in-
strumented to report needed information to the
MonALISA server via the apmon library, which
uses the UDP protocol. Reporting is implemented
in a lightweight way, not creating any monitoring
overhead or any dependency between the report-
ing of job status information and job processing
itself. The situation when a UDP packet cannot be
sent does not prevent the job being executed. Sta-
tistics collected over 5 years show that the propor-
tion of lost UDP packets has never exceeded 5%,
and is normally at the level of 2–3%. This level of
reliability is acceptable for the monitoring needs.

Every few minutes the Dashboard collectors
query the MonALISA server and store job moni-
toring data in the Dashboard Oracle database. All
information received by the MonALISA server is
logged. If for any reason the database is not avail-
able, monitoring data is not lost. As soon as the
database comes online, the Dashboard collector
consumes information from the log file and stores
it in the database.

The data related to the same job and coming
from several sources is correlated via a unique
Grid identifier of the job.

Following the outcome of the work of the
WLCG monitoring working groups, the existing
open source solutions of messaging systems were
evaluated. As a result of this evaluation, Apache
ActiveMQ [25] was proposed to be used for the
Messaging System for the Grids (MSG). Cur-
rently, the Dashboard job monitoring application
is instrumented to using MSG in addition to the
MonALISA messaging.

The job status shown by the Experiment Dash-
board is close to the real-time status. The maxi-
mum latency is 5 min, which corresponds to the
interval between the sequential runs of the Dash-
board collectors.

5.1.2 Instrumentation of the Grid Services
for Publishing Job Status Information

As it was mentioned above, information about job
status changes provided by Grid-related sources is
currently not complete and covers only a subset of
jobs. This has a bad impact on the trustworthiness
of the Dashboard data. Though some job submis-
sion tools are instrumented to report job status
changes at the point when they query Grid-related
sources, this query is done on user request. For
example, when a user never requests the status
of his jobs and the jobs were aborted, there is
no way for the Dashboard to be informed about
the abortion of the jobs. As a result, they can
stay in “running” or “pending” status, unless being
turned into ‘terminated’ status with ‘unknown’
exit code by a so-called timeout Dashboard pro-
cedure. To overcome this limitation, the ongoing
development aims to instrument the Grid services
involved in the job processing to publish job status
changes to the MSG. Dashboard collectors con-

Monitoring Computing Activities of LHC Virtual Organizations 331

sume information from the MSG and store it in
the central repository of the job monitoring data.
The services which need to be instrumented and
the concrete implementation depend of the way
the jobs are submitted to the Grid.

In case the jobs are submitted via the gLite
Workload Management System (WMS) the LB
service keeps full track of the job processing. The
LB provides the notification mechanism which al-
lows to subscribe to the job status changes events
and to be notified as soon as events matching
the conditions specified by the user happen. A
new component “LB Harvester” was developed
in order to register at several LB servers and to
maintain the active notification registration for
each one. The output module of the harvester
formats the job status message according to the
MSG schema and publishes it into MSG.

Jobs submitted to Condor-G [29], do not use
the WMS service and correspondingly do not
leave a trace in the LB. The job status changes
publisher component was developed in collabora-
tion of Condor and the Dashboard teams. Condor
developers have added a job logs parsing func-
tionality to the Condor standard libraries. The
publisher of the job status changes reads new
events from standard Condor event logs, filters
events in question, extracts essential attributes
and publishes them to MSG. The publisher is run
in the Condor scheduler as a Condor job. In this
case, Condor itself takes care of publishing status
changes.

5.1.3 Scalability and Performance

Taking as an example the CMS Dashboard Job
Monitoring, the system keeps track of all jobs sub-
mitted by the CMS user community. One hundred
thousand to 250,000 jobs are submitted daily and
up to 30,000 jobs are running in parallel. A single
MonALISA server which receives job status up-
date messages can handle up to 3,000 updates per
second. The Dashboard collector groups together
messages related to the status of a particular job
and performs updates of the database. Scaling up
of the Dashboard job monitoring system can be
achieved by increasing of the number of MonAL-
ISA servers and Dashboard collector instances.
Currently, CMS is using 3 MonALISA servers.

The actual update rate of the job status informa-
tion in the database is 100–200 job status updates
per second.

As was mentioned in the Section 3, current
development aims to adapt the MSG system as
a transport mechanism for the Dashboard job
monitoring application. The MSG provides a re-
liable and scalable message bus for communica-
tion between information source and information
consumer. The core component of the system is
a message broker which routes information from
sources to consumers. A network of intercon-
nected message brokers ensures redundancy and
scalability. Recent testing of the new job monitor-
ing information flow using MSG confirmed that
adapting this technology will allow for increased
reliability and performance of data delivery from
the information source to the Dashboard job mon-
itoring repository.

The interactive user interface described in
Section 5.1.4 shows the real-time situation regard-
ing job processing in the scope of a single virtual
organization. This interface uses raw information
from the job monitoring database instance. Tun-
ing of the database configuration and of the SQL
queries and partitioning of the job monitoring
schema provide sufficient performance of the In-
teractive User interface (2–4 s per request) under
the condition that information is requested about
recent jobs, submitted over last 48 h.

The job monitoring database instance for the
CMS experiment contains information for more
than 40 million jobs per year. In order to provide
sufficient performance for accessing job monitor-
ing information for time ranges longer than 48 h,
raw monitoring data is aggregated in summary
tables with hourly, daily and monthly granularity.
This task is performed by Oracle scheduled jobs.
Depending on the requested time range, the his-
torical interface described in Section 5.1.4 queries
information in the corresponding summary table.

5.1.4 Job Monitoring User Interfaces

The standard job monitoring application provides
two types of user interfaces. First, the so called
“interactive user interface”, which enables very
flexible access to recent monitoring data and
shows the job processing for a given VO at run-

332 J. Andreeva et al.

time. The interactive UI contains the distribu-
tion of active jobs and jobs terminated during a
selected time window by their status. Jobs can
be sorted by various attributes, for example, the
type of activity (production, analysis, test, etc.),
site or computing element where they are being
processed, job submission tool, input dataset, soft-
ware version and many others. The information is
presented in a bar plot and in a table. A user can
navigate to a page with very detailed information
about a particular job, for example, the exit code
and exit reason, important time stamps of process-
ing the job, number of processed events, etc.

Second, the “historical interface”, which shows
job statistics distributed over time. The historical
view allows following the evolution of the nu-
meric metrics such as the number of jobs running
in parallel, CPU and wall clock consumption or
success rate. The historical view is useful for un-
derstanding how the job efficiency behaves over
time, how resources are shared between different
activities, and how various job failures fluctuate as
a function of time.

5.2 Job Monitoring for User Analysis

Distributed analysis on the WLCG infrastructure
is currently one of the main challenges of the
LHC computing. As it was already mentioned
earlier, transparent access to the LHC data has
to be provided for more than 5,000 scientists all
over the world. Analysis users do not necessarily
have expertise in Grid computing. The number of
active LHC users is steadily growing. According
to the Dashboard statistics since the beginning of
2008 more than 1,000 distinct users of the CMS
VO were running analysis jobs on the WLCG
infrastructure. 100–200 distinct CMS users submit
their analysis jobs to the WLCG daily. The sig-
nificant streamlining of operations and the sim-
plification of end-users’ interaction with the Grid
are required for effective organization of the LHC
user analysis. Simple, user-friendly, reliable moni-
toring of the analysis jobs is one of the key compo-
nents of the operations of the distributed analysis.
Such monitoring is required not only for the physi-
cists running analysis jobs but also for the analy-
sis support teams. In case of CMS, most of the
analysis users interact with the Grid via the CMS

Remote Analysis Builder (CRAB). User analysis
jobs can be submitted either directly to the WLCG
infrastructure or via the CRAB analysis server,
which operates on behalf of the user. In the first
case, the support team does not have access to the
log files of the users’ job or to the CRAB working
directory which keeps track of the task generation.
To understand the reason of the problem of a
particular user’s task, the support team needs a
monitoring system capable of providing complete
information about the task processing.

To serve the needs of the analysis commu-
nity and of the analysis support team, the Dash-
board Task Monitoring [30] application has been
developed on top of the CMS job monitoring
repository.

The application provides a comprehensive
view of the task processing. It demonstrates the
progress of the task and assists in detecting of
the eventual problems and in providing debugging
information.

The Task Monitoring information includes the
job status of individual jobs in the task, their distri-
bution by site and over time, the reason of failure,
the number of processed events and the resubmis-
sion history. According to the feedback of the user
community the tool provides intuitive navigation.
Monitoring information is updated every 5 min.

The application offers a wide variety of graphi-
cal plots that visually assist the user to understand
the status of the task.

The development was user-driven with physi-
cists invited to test the prototype in order to
assemble further requirements and identify any
weaknesses of the application. The monitoring
tool has become popular among the CMS users.
According to our Web statistics, more than one
hundred distinct analysis users are using it for
their everyday work.

One of the important improvements foreseen
for the Task Monitoring application is failure di-
agnostics for both Grid and application failures.
The ideal situation would be to reach to a point
where the user does not have to open the log file
to search for what went wrong, but rather find
all necessary information within the monitoring
tool. A development effort is ongoing to improve
the failure diagnostics reported to the Dashboard
from the CRAB job wrapper.

Monitoring Computing Activities of LHC Virtual Organizations 333

Another attempt to improve the understanding
of the underlying failure reasons of the user jobs
is described in the next section.

5.3 Quick Analysis of Error Sources

Some of the monitoring tools described in this sec-
tion deliver information about failing Grid jobs,
including exit codes, and provide a possible failure
reason. However, the exit codes do not always in-
dicate the Grid component which hosts the actual
fault responsible for the erroneous behavior of
Grid jobs. Instead, a more sophisticated method-
ology is required to locate problematic Grid
components. In this context, we define a Grid
component as an entity involved in the execution
of a job, such as Grid service, used software, a
software version, a dataset name and , and the
user submitting the job. Within the Experiment
Dashboard a tool called QAOES (Quick Analysis
Of Error Sources) was developed. Logically the
system consists of two steps: the first aims to
detect potential problems on a Grid infrastructure
automatically and the second provides previously

collected human expertise about possible solu-
tions to the detected problems. The information
is merged and then presented in a Web interface,
depicted in Fig. 3

5.3.1 Expert System and Association Rule Mining

Based on the list of possible problems, we collect
human expert knowledge about the underlying
problem diagnose and a possible solution. The ex-
pert system consists of a knowledge base keeping
all the information in rule-based format and an
inference engine, which consults the knowledge
base to search for and retrieve rules matching
the generated potential problems. This work is
in progress. The rules implemented so far are
covering relatively simple use cases.

We applied a data mining technique called as-
sociation rule mining to previously collected job
monitoring data. This approach reveals hidden
information about Grid elements’ behavior by
taking dependencies between the characteristics
of failing Grid jobs into account. To generate the
Association Rules we use the a priori algorithm

Fig. 3 The quick analysis of error sources Web interface shows one problem and one suggestion to solve the problem which
is retrieved from the expert system

334 J. Andreeva et al.

[31]. The output of this step is a list of associ-
ated Grid components which cause a certain exit
code, together with quality measures (support,
confidence). For example:

{
SITE = A, SOFTWARE_VERSION = 5

}

→ ERROR = 7
[
s = 1.1%, c = 80%

]

This process is executed every hour with job mon-
itoring data of the past 6 h.

6 Site Monitoring

Currently the WLCG infrastructure includes
more than 140 sites and the number of sites is still
increasing. Operating such a large scale heteroge-
neous infrastructure requires stable and reliable
behavior of the distributed services and the sites
hosting these services. The LHC VOs need to
extensively test all relevant aspects of the Grid
site, such as the ability to efficiently use the net-
work to transfer data, the functionality of all site
services relevant to a given VO and the capability
to sustain the VO workflows.

The applications described in this section aim
to provide a straight forward way for monitoring
of the Grid sites from the perspective of a VO.

6.1 Dashboard Site Availability Application
Based on the Results of SAM Tests

The service availability monitoring (SAM) is a
framework that allows the periodic execution of
tests. These tests are setup in all the sites partic-
ipating in the WLCG to verify the status of the
Grid services. In addition to the tests defined by
the WLCG operators, each VO can define a set of
VO-specific tests that are performed at the sites
used by a given VO.

The Dashboard Site Availability application
based on the results of SAM tests was originally
developed following a request from the CMS ex-
periment. Later on, other experiments found it
useful and the application was redesigned to be
generic and usable by any experiment using the
SAM framework for site evaluation.

The application enables a possibility for the VO
to define their own site availability definitions,
taking into account a given set of tests and
services. In this context, VO-specific availability
measures the capability of sites to provide certain
functionalities. They can be related to a particular
service, or set of services or a particular workflow.
A single VO can introduce several availability
definitions.

To introduce a new availability, the VO needs
to define the set of service types to be taken into
account for availability calculation (for example:
computing element) and the set of tests which are
critical for each given service type.

The results of the tests are stored in the SAM
database. The stored Oracle procedures calculate
the availability based on the test results. The
Dashboard SAM Web portal displays the results
of these tests and the calculated availability.

Two different views are provided: one to check
the latest test for a given service; the second one is
to evaluate how a site or a service evolves over
time. Figure 4 presents the monthly site avail-
ability for all sites supporting CMS during three
different time periods: January 2008, January 2009
and July 2009. There has been an enormous im-
provement both in the number (doubled from 28
to 56) and in the quality provided by the sites. As
demonstrated in Fig. 4 in the beginning of 2008
18 best sites out of 28 showed monthly availability
between 60% and 80%, while in summer of 2009
availability of 47 sites out of 56 was higher than
80%.

The Dashboard SAM Web portal is extensively
used by the CMS VO for the site commissioning
activity[32], which results in steady improvement
of the state of the sites used by the CMS VO.
Similar to other Dashboard applications, informa-
tion from the Dashboard SAM Site availability
application can also be retrieved in XML format.
This format is used for importing data to the site
local fabric monitoring systems.

6.2 Site Status Board

The site status board (SSB) provides a monitor-
ing framework where the monitored metrics can
be dynamically (re)defined by the user commu-

Monitoring Computing Activities of LHC Virtual Organizations 335

Fig. 4 shows monthly availability of the sites used by CMS. Every bar corresponds to a particular site, availability is in the
range 0–100%. Green color corresponds to high availability, red one to the low availability

nity. SSB was designed to allow flexibility for the
users in terms of defining the monitored metrics,
their criticality or in configuring the users’ views.
Adding a new metric or an alternative view is
straight forward and is being performed via a
provided Web interface. The SSB is a generic
application and can be used by any VO.

Initially, the SSB was developed for the CMS
VO, for people who take computing shifts. The
goal of the computing shifts is to follow up the
CMS computing activities on the distributed in-
frastructure and to take actions in case of eventual
problems. The display for the computing shifts
provides the status of all the sites via single page
with clear indication of any problem of any na-
ture. Sometimes it might not be evident which
information has to be taken into account to con-
clude whether a site is performing well from the
perspective of the VO. Multiple iterations are
required to define the set of important metrics.
Therefore, the SSB was designed to be flexible
and allow integration of new metrics.

At the moment, the application is used by all
four LHC VOs.

Currently, CMS uses the SSB for several
purposes:

• Computing shifts: For each site, the SSB dis-
plays the status of the services, efficiency of

the job processing for production and analysis,
current number of jobs, status of the data
transfers, information about downtimes, and
links to open issues of the site

• Site commissioning: This activity observes the
efficiency of test jobs submitted to the sites
and the status of the transfer links. CMS has
a well-defined procedure that sites have to
follow in order to be commissioned and be
able to participate in the computing activities
of the experiment

• Space monitoring: Displays the amount of oc-
cupied and free storage space at the different
sites

Like many other Dashboard applications, the SSB
has three components: collectors that gather infor-
mation, a data repository, and a Web portal that
displays the results. The collectors can fetch each
metric from a different source. Moreover, each
metric can define its own refresh rate.

VO administrators manage the metrics via
a X509-authenticated Web interface. They can
define which metrics are critical for each of the
different activities. For visualization purposes the
metrics can be grouped in a flexible way and var-
ious alternative views are enabled based on this
grouping.

336 J. Andreeva et al.

7 Integration of the VO-Specific Monitoring
Systems

The VO-specific monitoring systems work in the
scope of a single experiment. Very often different
activities of a VO are monitored by different sys-
tems. There is no tool providing an overall view of
the VO computing activities. On the other hand, a
high-level cross-VO view is also missing.

This problem becomes more visible with the
growing scale of activities of the LHC VOs on
the WLCG infrastructure and with the intensive,
simultaneous use of the WLCG resources by all
LHC VOs. Moreover, the site administrators of
sites serving several LHC VOs complained that
it is not convenient to navigate to multiple VO-
specific monitoring systems in order to understand
whether their site is responding well to the needs
of all LHC experiments.

The recent development aims to integrate the
existing VO-specific monitoring systems and to
provide a high-level view combining metrics from
each of them. In this section we describe an ex-
ample of such an application built on top of the
VO-specific monitoring systems.

7.1 Siteview

The Siteview application is based on the Exper-
iment Dashboard Framework and the GridMap
[33] visualization system.

The GridMap application was developed in
collaboration of CERN and the HP Company.
GridMap enables appropriate visualization for the
distributed systems. The GridMap image repre-
sents a map consisting of groups of cells. Each
cell can correspond to a single monitored instance
or to a group of instances organized in a hierar-
chical structure. The color of the cell represents
the status of a single instance or of the group of
instances. The size of the cell can be defined by
some important numeric monitoring metrics. With
a mouse click on a cell, it turns into a sub-map
showing all instances of the corresponding group.
There is a good match between the capability of
the GridMap to present the status of the compli-
cated hierarchical structures and the requirements

for the visualization of the distributed WLCG
infrastructure.

The Siteview integrates data from multiple
monitoring systems of the four LHC experiments,
namely the MonALISA repository of ALICE,
Dashboard for ATLAS DDM, ATLAS ProdSys
Dashboard, PhEDEx, CMS Dashboard and
Dirac. The repository of the common monitoring
metrics is implemented in Oracle. The application
provides not only a snapshot view but also the
historical distribution of the common metrics. The
purpose of the tool is to propagate information
about the status of the most important VO activ-
ities at a site and to provide a single entry point
for a transparent navigation of the VO-specific
monitoring information to the site administrators.
The Siteview map publishes the pre-cooked links
to the relevant information, so that even a person
not familiar with the monitoring system displayed
the primary information source, can easily find
corresponding data. The VO-specific monitoring
systems publish monitoring data in CSV format
via the http protocol. Data is consumed by the
Dashboard collectors and stored in the Oracle
database. The UI based on GridMap visualization
runs on top of the metric repository. The Siteview
uses the same database structure as the SSB appli-
cation described in Section 6.2 The Siteview col-
lectors were implemented following the example
of the collectors of the SSB application. Thanks to
this, all the features implemented for the SSB are
immediately available for the Siteview.

An example of the Siteview screenshot is shown
in Fig. 5.

The interface shows the map split in four parts.
The first one is for the overall status of the site
from the perspective of the VOs. The second one
is for the job processing, the third and the fourth
ones are for the incoming and outgoing transfers.
Every cell corresponds to a particular VO. On
moving the mouse over a particular cell the frame
shows up. It contains the most important metrics
and the links to the primary information sources.
An example in Fig. 5 shows job processing metrics.
On the click on a particular case the sub-map is
displayed. It shows the distribution by job process-
ing types for the job processing part or by channels
for the transfer parts.

Monitoring Computing Activities of LHC Virtual Organizations 337

Fig. 5 Example of the site view

8 Collaboration with the User Community

As mentioned in the paper, close collaboration
with the user community is essential for the suc-
cess of the monitoring applications.

One of the principles followed during the de-
velopment process of the Dashboard system is to
involve potential users of a given application in
designing the user interface and in validation of
the early prototype. In order to understand the
needs of the Dashboard users, members of the
Dashboard team take part in the LHC computing
shifts, attend computing meetings and conduct
surveys asking for feedback about recent appli-
cations. Moreover, the usage of the Dashboard
applications is monitored via Web statistics tools.

User input is taken into account for defining
the content of the monitoring data collected in the
data repository, the level of its aggregation and
for designing the user interfaces. Depending on
the role of a particular group of users the same
monitoring information should be exposed in a
different way.

Taking as an example information about data
collection used by the analysis jobs, in the Task

monitoring application described in Section 5.2,
the only thing a physicist is interested in know-
ing is which of his actual tasks reads a particu-
lar data collection. Site administrators would like
to monitor how many users/jobs are accessing a
given data collection at their site, for how long,
whether success rate of user jobs correlates with a
particular data collection, etc. . . Computing teams
responsible for data distribution are interested in
understanding whether replication of data collec-
tions is done in an optimal way in order to ensure
load balancing of the analysis jobs between vari-
ous sites. All of these categories of users require
a different presentation of the same monitoring
data, different time ranges for monitoring the data
evolution and various scopes.

User requirements regarding the flexibility
which has to be provided by the monitoring ap-
plication also strongly depend on the category of
users. While the Task monitoring user interface
is rather stable and very few feature requests
were submitted after validation of the applica-
tion by the user community, applications used
for computing operations constantly require quick
changes. Therefore the Site Status Board applica-

338 J. Andreeva et al.

tion which represents a sort of container which can
keep various monitoring metrics and can expose
these metrics in a customized form was developed
for computing operations.

9 Conclusions

The Experiment Dashboard system became an
essential component for the LHC computing op-
erations. The variety of its applications covers the
full range of the LHC computing activities. The
system is being developed in a very close collabo-
ration with the users. As a result, the Experiment
Dashboard manages to respond well to the needs
of the LHC experiments.

The Dashboard team has repeatedly found
generic solutions during the development process
which can be shared by all LHC VOs. Rather of-
ten, the application initially requested by a single
experiment is being adapted to the rest of the
community on the request of other VOs. This,
certainly, allows not only to save on development
effort for the implementation of the new requests,
but facilitates the maintenance and support of
the existing Dashboard applications. Some of the
Dashboard applications , for example, generic job
monitoring was used outside the LHC user com-
munity by VLEMED virtual organization.

The Dashboard framework provides all the
necessary components for the development and
management of the monitoring system and it is be-
ing used by other projects.

A big diversity of the VO-specific monitoring
tools used by the LHC community creates certain
problems. There is no global cross-VO picture of
the LHC activities on the WLCG infrastructure.
To overcome this limitation, the recent develop-
ment effort was focused on integration of the
monitoring data coming from the multiple VO-
specific monitoring systems and on presenting it in
a consistent way. The Dashboard framework and
the GridMap visualization system are used for this
purpose.

The future evolution of the Experiment Dash-
board is driven by the needs of the LHC
experiments, applying where possible common
solutions.

Acknowledgements The authors would like to stress that
Dashboard development is the result of collaboration with
many colleagues in other projects and development teams
like MonALISA, SAM, Ganga, Condor-g, LB and with
the colleagues in the LHC experiments, in particular de-
velopers of the workload and data management systems
and members of the VO computing projects and task-force
teams. The authors would like to express their gratitude to
all those people for the fruitful collaboration. They would
like to thank LHC physicists providing feedback regarding
user analysis monitoring tools. Special thank to Stefano
Belforte and Andrea Sciaba for valuable contributions and
useful feedback.

This work is co-funded by the European Commission
through the EGEE-III project (www.eu-egee.org), con-
tract number INFSO-RI-222667, and the results produced
made use of the EGEE Grid infrastructure.

References

1. Evans, L., Bryant, P. (eds): LHC machine. J. Instr.
3:S08001. doi:10.1088/1748-0221/3/08/S08001 (2008)

2. The ATLAS Computing Group: ATLAS computing
technical design report. ATLAS-TDR-017, CERN-
LHCC-2005-022 (2005)

3. The CMS Computing Group: CMS computing techni-
cal design report. CMS-TDR-007, CERN-LHCC-2005-
023 (2005)

4. The ALICE Computing Group: ALICE comput-
ing technical design report. CMS-TDR-012, CERN-
LHCC-2005-020 (2005)

5. The LHCb Computing Group: LHCb computing tech-
nical design report. CMS-TDR-0011, CERN-LHCC-
2005-019 (2005)

6. European Organization for Nuclear Research, CERN.
http://public.web.cern.ch/public/. Accessed 21 April
2010

7. Shiers, J.: The Worldwide LHC Computing Grid
(worldwide LCG), Computer Physics communications,
vol. 177, issues 1–2, July 2007, pages 219–223, Pro-
ceedings of the Conference on Computational Physics
2006 - CCP (2006)

8. Rehn, J., et al.: PhEDEx high-throughput data trans-
fer management system. In: CHEP06, Conference on
Computing in High Energy and Nuclear Physics Pro-
ceedings, Mumbai, India, (2006)

9. Tsaregorodsev A., et al.: Dirac: A community Grid so-
lution. In: CHEP07, Conference on Computing in High
Energy and Nuclear Physics Proceedings, Victoria, BC,
Canada (2007)

10. Nilsson, P.: PanDA system in ATLAS Experiment.
ACAT’08, Italy (2008)

11. Saiz, P., et al.: AliEn—ALICE environment on the
GRID. Nucl. Instrum. Methods A502, 437–440 (2003)

12. http: / /www.hpcwire.com/offthewire/STEP09-
Demonstrates-LHC-Readiness-49631242.html.
Accessed 21 April 2010

http://dx.doi.org/10.1088/1748-0221/3/08/S08001
http://public.web.cern.ch/public/
http://www.hpcwire.com/offthewire/STEP09-Demonstrates-LHC-Readiness-49631242.html
http://www.hpcwire.com/offthewire/STEP09-Demonstrates-LHC-Readiness-49631242.html

Monitoring Computing Activities of LHC Virtual Organizations 339

13. Laure, E., Fisher, S.M., Frohner, A., Grandi, C.,
Kunszt, P., et al.: Programming theGrid with gLite.
Comput. Methods Sci. Technol. 12(1), 33–45 (2006)

14. Pordes, R., et al.: The open science Grid. J. Phys. Conf.
Ser. 78, 012057 (2007)

15. Eerola, P., et al.: Roadmap for the ARC Grid middle-
ware. PARA LNCS 4699 (2006)

16. CMS Dashboard stats. http://lxarda18.cern.ch/awstats/
awstats.pl?config=lxarda18.cern.ch. Accessed 21 April
2010

17. Karmady, R., et al.: GridView: a monitoring and vi-
sualization tool. In: CHEP06, Conference on Comput-
ing in High Energy and Nuclear Physics Proceedings,
Mumbai, India (2006)

18. Martyniak, J., et al.: Real time monitor of Grid job
executions. In: CHEP09, Conference on Computing in
High Energy and Nuclear Physics Proceedings, Prague,
Chech Republic (2009)

19. Ruda, M.: A uniform job monitoring service in multiple
job universes. High Performance Distributed Comput-
ing, Proceedings of the 2007 workshop on Grid moni-
toring Monterey, California USA (2007)

20. Collados, D.: Evolution of SAM in an enhanced model
for monitoring WLCG services. In: CHEP09, Con-
ference on Computing in High Energy and Nuclear
Physics Proceedings, Pargue, Chech Republic (2009)

21. Aiftimiei, C., P, et al.: Using CREAM and CEMON
for job submission and management in the gLite mid-
dleware. In: CHEP09 Conference Proceedings, Pargue,
Chech Republic (2009)

22. Moscicki, J., et al.: Ganga: a tool for computational-
task management and easy access to Grid resources.
Comput. Phys. Commun. arXiv:0902.2685v1

23. Spiga, D., et al.: The CMS remote analysis builder
(CRAB). Lect. Notes Comput. Sci. 4873, 580–586
(2007)

24. Legrand, I., Newman, H., Cirstoiu, C., Grigoras, C.,
Toarta, M., Dobre, C.: MonALISA: an agent based, dy-
namic service system to monitor, controland optimize
Grid based applications. In: Proceedings of Comput-
ing for High Energy Physics, Interlaken, Switzerland
(2004)

25. Casey, J., Rodrigues, D., Schwickerath, U., Silva, R.:
Monitoring the efficiency of user jobs. In: CHEP’09:

17th International Conference on Computing in High
Energy and Nuclear Physics, Prague, Czech Republic
(2009)

26. Metson, S., et al.: CMS offline webtools. In: CHEP’07:
Conference on Computing in High Energy and Nuclear
Physics Procedings, Victoria, BC, Canada (2007)

27. Schulz, M., et al.: Building the WLCG file transfer ser-
vice. In: CHEP07: Conference on Computing in High
Energy and Nuclear Physics Proceedings, Victoria, BC,
Canada (2007)

28. Cooke, W., et al.: The relational Grid monitoring ar-
chitecture: mediating information about Grid. J. Grid
Comput. 2(4), 1–17 (2004)

29. Thain, D., Tannenbaum, T., Livny, M.: Distributed
computing in practice: the condor experience. Concur-
rency Comput. Pract. Ex. 17(2–4), 323–356 (2005)

30. Karavkis, E., et al.: CMS dashboard for monitoring
of the user analysis activities. In: CHEP’09: 17th In-
ternational Conference on Computing in High En-
ergy and Nuclear Physics, Prague, Czech Republic
(2009)

31. Agrawal, R., Srikant, R.: Fast algorithms for mining
association rules in large databases. In: Proceedings of
the 20th International Conference on Very Large Data
Bases, VLDB, Santiago, Chile, 487–499 (1994)

32. Belforte, S., et al.: The commissioning of CMS sites:
improving the site reliability. In: 17th International
Conference on Computing in High Energy and Nuclear
Physics Proceedings, Prague, Czech Republic (2009)

33. GridMap visualization, http://www.isgtw.org/?pid=
1000728. Accessed 21 April 2010

34. Andreozzi, S., et al.: GridICE: a monitoring service for
Grid systems. Future Gener. Comput. Syst. 21(4), 559–
571 (2005)

35. Smallen, S., et al.: User-level Grid monitoring with
Inca 2. In: High Performance Distributed Computing,
Proceedings of the 2007 workshop on Grid monitoring
Monterey, California, USA (2007)

36. Andreeva, J., et al.: The experiment dsahboard for
medical applications. In: 3rd EGEE User Forum,
Clermont-Ferrand, France (2008)

37. Oracle Partitioning. http://www.oracle.com/us/
products/database/options/partitioning/index.htm.
Accessed 21 April 2010

http://lxarda18.cern.ch/awstats/awstats.pl?config=lxarda18.cern.ch
http://lxarda18.cern.ch/awstats/awstats.pl?config=lxarda18.cern.ch
http://arxiv1.library.cornell.edu/abs/0902.2685
http://www.isgtw.org/?pid=1000728
http://www.isgtw.org/?pid=1000728
http://www.oracle.com/us/products/database/options/partitioning/index.htm
http://www.oracle.com/us/products/database/options/partitioning/index.htm

	Experiment Dashboard for Monitoring Computing Activities of the LHC Virtual Organizations
	Abstract
	Introduction
	Related Work
	Experiment Dashboard Framework
	Experiment Dashboard Monitoring of the Distributed Data Management System
	Introduction to ATLAS DDM
	Architecture of Dashboard DDM
	Performance
	Backend Database
	Web Frontend

	LHC Job Processing and the Experiment Dashboard Applications for Job Monitoring
	Experiment Dashboard Generic Job Monitoring Application
	Information Flow of the Generic Job Monitoring Application
	Instrumentation of the Grid Services for Publishing Job Status Information
	Scalability and Performance
	Job Monitoring User Interfaces

	Job Monitoring for User Analysis
	Quick Analysis of Error Sources
	Expert System and Association Rule Mining

	Site Monitoring
	Dashboard Site Availability Application Based on the Results of SAM Tests
	Site Status Board

	Integration of the VO-Specific Monitoring Systems
	Siteview

	Collaboration with the User Community
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

