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Abstract The frequent and volatile unavailabil-
ity of volunteer-based Grid computing resources
challenges Grid schedulers to make effective job
placements. The manner in which host resources
become unavailable will have different effects on
different jobs, depending on their runtime and
their ability to be checkpointed or replicated. A
multi-state availability model can help improve
scheduling performance by capturing the various
ways a resource may be available or unavail-
able to the Grid. This paper uses a multi-state
model and analyzes a machine availability trace in
terms of that model. Several prediction techniques
then forecast resource transitions into the model’s
states. We analyze the accuracy of our predic-
tors, which outperform existing approaches. We
also propose and study several classes of sched-
ulers that utilize the predictions, and a method
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for combining scheduling factors. We character-
ize the inherent tradeoff between job makespan
and the number of evictions due to failure, and
demonstrate how our schedulers can navigate this
tradeoff under various scenarios. Lastly, we pro-
pose job replication techniques, which our sched-
ulers utilize to replicate those jobs that are most
likely to fail. Our replication strategies outper-
form others, as measured by improved makespan
and fewer redundant operations. In particular,
we define a new metric for replication efficiency,
and demonstrate that our multi-state availability
predictor can provide information that allows our
schedulers to be more efficient than others that
blindly replicate all jobs or some static percentage
of jobs.
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1 Introduction

The functionality, composition, utilization, and
size of large scale distributed systems continue
to evolve. The largest Grids and testbeds un-
der centralized administrative control—including
TeraGrid [47], EGEE [14], Open Science Grid
(OSG) [18], and PlanetLab [33]—vary consider-
ably in terms of the number of sites and the
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extent of the resources at each. Various peer-to-
peer (P2P) [4] and Public Resource Computing
(PRC) [3] systems allow users to connect and
donate their individual machines, and to admin-
ister their systems themselves. We expect hybrids
of these various Grid models and middleware to
emerge as well [1, 15]. Future Grids will contain
dedicated high performance clusters, individual
less-powerful machines, and even a variety of
alternative devices such as PDAs, sensors, and
instruments. They will run Grid middleware, such
as Condor [27] and Globus [16], that enables a
wide range of policies for contributing resources
to the Grid.

This continued increase in functional hetero-
geneity will make Grid scheduling—mapping jobs
onto available constituent Grid resources—even
more challenging, partly because different re-
sources will exhibit varying unavailability charac-
teristics. For example, laptops may typically be
turned on and off more frequently, and may join
and leave the network more often. Individual
workstation and desktop owners may turn their
machines off at night, or shut down and restart
to install new software more often than a server’s
system administrator might. Even the same kinds
of resources will exhibit different availability char-
acteristics. CS department research clusters may
be readily available to the Grid, whereas a small
cluster from a physics department may not allow
remote Grid jobs to execute unless the cluster
is otherwise idle. Site autonomy has long been
recognized to be an important Grid attribute [24].
In the same vein, even owners of individual re-
sources will exhibit different usage patterns and
implement different policies for how available
they make their machines.

If Grid schedulers do not account for these
important differences, they will make poor map-
ping decisions that will undermine their effective-
ness. Schedulers that know when, why, and how
the resources fail, can be much more effective,
especially if this knowledge is coupled with in-
formation about job characteristics. For example,
long-running jobs that do not implement check-
pointing may require highly available and reliable
host machines. Checkpointable jobs that require
heavyweight checkpoints may prefer resources
that are reclaimed by users, rather than those that

fail, thereby making possible an on demand check-
point. This would be less important for jobs that
produce lightweight checkpoints. Easily replicable
processes without side effects, might do well on
the less powerful and more intermittently avail-
able resources, leaving the other machines for jobs
that really need them (at least under moderate to
high contention for Grid resources).

Therefore, schedulers must effectively predict
the availability of constituent resources. Ignor-
ing resource reliability characteristics can lead
to longer job makespans due to wasted opera-
tions [13]. Even more directly, it can adversely
affect job reliability by favoring faster but less re-
liable resources that cannot complete jobs before
failing or being reclaimed from the Grid by their
owners. Unfortunately, performance and reliabil-
ity vary inversely [13]; favoring one necessarily
undermines the other.

This paper therefore relies on the central mo-
tivating tenet that Grid schedulers must con-
sider both reliability and performance in making
scheduling and replication decisions. We inves-
tigate the effect on both job makespan and the
number of wasted operations due to evictions,
which can occur when a resource executing a job
becomes unavailable. Evictions and wasted oper-
ations are important because of their direct “cost”
within a Grid economy, or simply because they
essentially deny the use of the resource by another
local or Grid job. Our approach to Grid schedul-
ing involves analyzing resource availability history
and predicting future resource (un)availability,
monitoring and considering current load, storing
static resource capability information, and consid-
ering all of these factors when placing jobs.

Sections 3 and 4 describe multi-state availabil-
ity model and briefly examine a resource avail-
ability trace from the University of Notre Dame
in terms of that model to establish the volatil-
ity of the underlying resources. Section 5 ex-
amines several availability prediction techniques
used to forecast the future states of a resource’s
availability. Section 6 investigates using different
approaches to schedule jobs with different char-
acteristics based on those predictions. Section 7
then explores the efficacy of using our availability
predictors in a new way; we examine how helpful
they can be in deciding which jobs to replicate.
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2 Related Work

Related work resides in three broad categories,
namely (i) prediction of resource state (availabil-
ity and load), (ii) Grid scheduling, especially ap-
proaches that consider reliability and availability,
and (iii) job replication. We organize this section
accordingly.

2.1 Prediction

The most notable prediction system for Grids
and networked computers is Network Weather
Service (NWS) [51]. NWS uses a large set of
linear models for host load prediction, and com-
bines them in a mixture-of-experts approach that
chooses the best performing predictor. The RPS
toolkit [12] uses a set of linear host load predic-
tors, including BM(p) (or Sliding Window), which
records and averages the states occupied in the
last N intervals.

In availability prediction, Ren et al. [38–40]
use empirical host CPU utilization and resource
contention traces to develop the only other multi-
state model, prediction technique, and multi-state
prediction based scheduler for resource avail-
ability of which we are aware. Their multi-state
availability model includes five states, three of
which are based on the CPU load level (which
resides in one of three zones); the two other
states indicate memory thrashing and resource
unavailability. For prediction, the authors count
the transitions from available to each state during
the previous N days to produce a Markov chain
for state transition predictions. These transition
counts determine the probability of transitioning
to each state from the available state.

Mickens and Noble [29–31] use variations and
combinations of saturating counters and linear
predictors, including a hybrid approach similar to
NWS’s mixture-of-experts, to predict the likeli-
hood of a host being available for various look
ahead periods. A Saturating Counter predictor in-
creases a resource-specific counter during periods
of availability, and decreases it during unavail-
ability. A History Counter predictor gives each
resource 2N saturating counters, one for each of
the possible availability histories dictated by the
last N availability sampling periods. Predictions

are made by consulting the applicable counter
value associated with the availability exhibited in
the last N sampling periods.

Pietrobon and Orlando [34] use regressive
analysis of past job executions to predict whether
a job will succeed. Nurmi et al. [32] model ma-
chine availability using Condor traces and an
Internet host availability dataset, attempt to fit
Weibull, hyper-exponential, and Pareto models
to the availability duration data, and evaluate
them in terms of “goodness-of-fit” tests. They
then provide confidence interval predictions for
availability durations based on model-fitting [10].
Similarly, Kang and Grimshaw filter periodic fail-
ures out of resource availability traces and then
apply statistical models to the remaining avail-
ability data [19]. Finally, several machine learning
techniques use categorical time-series data to pre-
dict rare target events by mining event sets that
frequently precede them [43, 48, 49].

2.2 Scheduling

Most Grid scheduling research attempts to de-
crease job makespan or to increase throughput.
For example, Kondo et al. [21] explore schedul-
ing in a volunteer computing environment. Braun
et al. [7] explore eleven heuristics for mapping
tasks onto a heterogeneous system, including min-
min, max-min, genetic algorithms and opportunis-
tic load balancing. Cardinale and Casanova [8]
use queue length feedback to schedule divisi-
ble load jobs with minimal job turnaround time.
GrADS [11] uses performance predictions from
NWS, along with a resource speed metric, to help
reduce execution time.

Fewer projects focus on scheduling for reliabil-
ity. Kartik and Murphy [20] calculate the optimal
set of processor assignments based on expected
node failure rates, to maximize the chance of task
completion. Qin et al. [35] investigate a greedy
approach for scheduling task graphs onto a het-
erogeneous system to reduce reliability cost and to
maximize the chance of completion without fail-
ure. Similarly, Srinivasan and Jha [46] use a greedy
approach to maximize reliability when scheduling
task graphs onto a distributed system.

Unfortunately, scheduling only for reliability
undermines makespan, and scheduling only on the
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fastest or least loaded machines can be detrimen-
tal due to the performance ramifications of fail-
ures. Dogan and Ozguner [13] develop a greedy
scheduling approach that ranks resources in terms
of execution speed and failure rate, weighing per-
formance and reliability in different ways. Their
work does not use failure predictions, and assumes
that each synthetic resource follows a Poisson
failure probability with no load variation, and that
failed machines never restart. We remove all of
these assumptions in our work, and utilize avail-
ability and load traces from real resources. Amin
et al. [2] use an objective function to maximize
reliability while still meeting a real time dead-
line. They search a scheduling table for a set of
homogenous non-dedicated processors to execute
tandem real-time tasks. These authors also as-
sume a constant failure rate per processor.

Some distributed scheduling techniques use
availability prediction to allocate tasks. Kondo
et al. [22] examine behavior on the previous week-
day to improve the chances of picking a host that
will remain available long enough to complete a
task’s operations. Ren et al. [39] also examine
scheduling jobs with their Ren N-day predictor.
The Ren MTTF scheduler first calculates each re-
source’s mean time to failure (MTT Fi) by adding
the probabilities of exiting available for time t, as t
goes from 0 to infinity. It then calculates resource
i’s effective task length (ET Li) as:

ET Li = MTT Fi · CRi · (1 − Li)

CRi is resource i’s clock rate and Li is its
predicted average CPU load. It then selects the
resource with the smallest ETL from the resources
with MTTF values that are larger than the ETL. If
no such resources exist, it selects the resource with
the minimum job completion time, considering
failures. Our work is most similar to Ren et al.’s,
and differs in the following ways: (i) we consider
how and why a resource may become unavailable,
and attempt to exploit varying consequences of
different kinds of unavailability, (ii) we sched-
ule checkpointable and non-checkpointable jobs
differently, to improve overall performance, and
(iii) we explicitly analyze and schedule for the
tradeoff between performance and reliability.

2.3 Replication

Replication and checkpoint-restart are widely
studied techniques for improving fault tolerance
and performance. Data replication makes and dis-
tributes copies of files in distributed file sharing
systems or data Grids [23, 37]. These techniques
strive to give users and jobs more efficient ac-
cess to data by moving it closer, and to miti-
gate the effects of failure. Some work considers
replica location when scheduling tasks. Santos-
neto et al. [44] schedule data-intensive jobs, and
introduce Storage Affinity, a heuristic scheduling
algorithm that exploits a data reuse pattern to
consider data transfer costs and ultimately reduce
job makespan.

Task replication makes copies of jobs, again for
both fault tolerance and performance. Li et al. [25]
strive to increase throughput and decrease Grid
job execution time, by determining the optimal
number of task replicas for a simulated and
dynamic resource environment. Their analytical
model determines the minimum number of repli-
cas needed to achieve a certain task completion
probability at a specified time. They compare dy-
namic rescheduling with replication, and extend
the replication technique to include a N-out-of-M
scheduling strategy for Monte Carlo applications.
Similarly, Litke et al. [26] present a task replica-
tion scheme for a mobile Grid environment. They
model resources according to a Weibull reliability
function, and estimate the number of task replicas
needed for certain levels of fault tolerance. The
authors use a knapsack formulation for schedul-
ing, to maximize system utilization and profit, and
evaluate their approach through simulation.

Silva et al. [45] investigate scheduling inde-
pendent tasks in a heterogeneous computational
Grid environment, without host speed, load, and
job size information; the authors use replication
to cope with dynamic resource unavailability.
Workqueue with Replication (WQR) first sched-
ules all incoming jobs, then uses the remaining
resources for replicas. The authors use simula-
tion to compare WQR with various maximum
amounts of replicas (1x, 2x, 3x, etc), to Dynamic
FPLTF [28] and Sufferage [9] through simulation.
Angalano et al. [5] later extend this work with
a technique called WQR Fault Tolerant (WQR
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FT), which adds checkpointing to the algorithm,
since in WQR a failed task is abandoned and
never restarted, WQR FT adds automatic task
restart to keep the number of replicas of each task
above a certain threshold. Tasks may use periodic
checkpoints upon restart. Fujimoto et al. [17] de-
velop RR, a dynamic scheduling algorithm for in-
dependent coarse grained tasks; RR defines a ring
of tasks that is scanned in round robin order to
place new tasks and replicas. The authors compare
their technique with five others, concluding that
RR performed next to the best without knowledge
of resource speed or load, even when compared
with techniques that utilize such information.

Others investigate the relationship between
checkpoint-restart and replication. Weissman [50]
develops performance models for quantitatively
comparing the separate use of the two techniques
in a Grid environment. Similarly, Ramakrishnan
et al. [36] compare checkpoint-restart and task
replication by first analytically determining the
costs of each strategy and then provide a frame-
work that enables plug and play of resource be-
havior to study the effects of each fault tolerant
technique under various parameters.

3 Availability Model

Resources in non-dedicated Grids oscillate be-
tween being available and unavailable to the Grid.
When and how they do so depends on the failure
characteristics of the machines, the policies of
resource owners, the scheduling policies and
mechanism of the Grid middleware, and the char-
acteristics of the Grid’s offered job load. This sec-
tion identifies five availability states, and several
job characteristics that could influence their ability
to tolerate resource faults. We focus our discus-
sion and analysis on Condor [27], but the results
translate to any system with Condor’s basic prop-
erties of (i) non-dedicated distributed resource
sharing, and (ii) a mechanism that allows resource
owners to dictate when and how their machines
are used by the Grid.

Condor [27] harnesses idle resources from clus-
ters, organizations, and even multi-institutional
Grid environments (via flocking and compati-
bility with Globus [16]) by integrating resource

management, monitoring, scheduling, and job
queuing components. Condor can automatically
create process checkpoints for migration. Condor
manages non-dedicated resources, and allows in-
dividual owners to set their own policies for how
and when they are utilized, as described below.
Default policies dictate the behavior of resources
in the absence of customized user policies, and
attempt to minimize Condor’s disturbance of local
users and processes.

By default, Condor starts jobs only on re-
sources that have been idle for 15 min, that are
not running another Condor job, and whose local
load is less than 30%. Running jobs remain subject
to Condor’s policies. If the keyboard is touched or
if CPU load from local processes exceeds 50% for
2 min, Condor halts the process but leaves it in
memory, suspended (if its image size is less than
10 MB). Condor resumes suspended jobs after
5 min of idle time, and when local CPU load falls
below 30%. If a job is suspended for longer than
10 min or if its image exceeds 10 MB, Condor gives
it 10 min to gracefully vacate, and then terminates
it. Condor may also evict a job for a higher priority
job, or if Condor itself is shut down.

Condor defaults dictate that jobs whose check-
points exceed 60 MB checkpoint every 6 h; those
with larger images checkpoint every 12 h. By
default, Condor delivers checkpoints back to the
machine that submits the job.

3.1 Unavailability Types

Condor’s mechanism suggests a model that en-
compasses the following five availability states,
depicted in Fig. 1:

– Available: An Available machine is currently
running with network connectivity, more than
15 min of idle time, and a local CPU load of
less than the CPU threshold. It may or may
not be running a Condor job.

– User Present: A resource transitions to this
state if the keyboard or mouse is touched,
indicating that the machine has a local user.

– CPU Threshold Exceeded: A machine enters
this state if the local CPU load increases above
some owner-defined threshold, due to new or
currently running jobs.



484 B. Rood, M.J. Lewis

Fig. 1 Multi-state availability model: each resource resides
in and transitions between five availability state, depending
on the local use, reliability, and owner-controlled sharing
policy of the machine

– Job Eviction or Graceful Shutdown: If the re-
source remains in the User Present or CPU
Threshold Exceeded states for too long (for
example for more than 15 min), if the job is
evicted for any other reason, or if the machine
is shut down, the resource transitions to the
Job Eviction state.

– Unavailable: Finally, if a machine fails or be-
comes unreachable, it directly transitions to
Unavailable.

These states differentiate the types of unavail-
ability. If a job is running or suspended, and enters
the Job Eviction state, we call this a graceful tran-
sition to the Unavailable state; a transition directly
to Unavailable is ungraceful. This model is moti-
vated by Condor’s mechanism, but can reflect the
policies that resource owners apply. For example,
if an owner allows Condor jobs even when the
user is present, the machine never enters the User
Present state. Increasing local CPU threshold de-
creases the time spent in the CPU Threshold
Exceeded state, assuming similar usage patterns.
The model can also reflect the resource’s job rank
and suspension policy by showing when jobs are
evicted directly without first being suspended.

3.2 Grid Application Diversity

Grid jobs vary in their ability to tolerate faults. A
checkpointable job need not be restarted from the
beginning if its host resource transitions gracefully
to Unavailable. Another important factor is job
runtime; Grid jobs may complete in a few seconds,
or require many hours or even days [6]. Longer

jobs will experience more faults, increasing the
importance of their varied ability to deal with
them.

Grid resources will have different characteris-
tics in terms of how long they stay in each avail-
ability state, how often they transition between
the states, and which states they transition to.
Different jobs will behave differently on different
resources. If a standard universe job is suspended
and then eventually gracefully evicted, it could
checkpoint and resume on another machine. An
ungraceful transition requires using the most re-
cent periodic checkpoint. A job that is not check-
pointable must restart from the beginning, even
when gracefully evicted.

The point is that job characteristics, including
checkpointability and expected runtime, can in-
fluence the effectiveness of scheduling those jobs
on resources that behave differently according to
their transitions between the availability states
identified in Section 3.1.

4 Trace Analysis

We accessed, organized, and analyzed data in the
first 4 months of our 6 month Condor resource
pool trace at the University of Notre Dame in
early 2007. The trace consists of time-stamped
CPU load (as a percentage) and idle time (in
seconds). Condor records these measurements ap-
proximately every 16 min, and makes them avail-
able via the condor status command. Idle times of
zero imply user presence, and the absence of data
indicates that the machine was down.

The data recorded by Condor precludes de-
termining whether the Job Eviction or Graceful
Shutdown state was entered, because intentional
shutdown and machine failure appear the same
in the data. Since unavailability is relatively un-
common and irregular, we conservatively assume
that all transitions to unavailability are ungraceful.
Also, we only consider a machine to be in the user
state after the user has been present for 5 min; this
policy filters out short unavailability intervals that
lead to job suspension, not graceful eviction. We
consider a machine to be in the CPU Threshold
Exceeded state if its local (i.e. non-Condor) load
is above 50%. Otherwise, a machine that is online



Grid Resource Availability 485

with no user present and CPU load below 50%
is considered Available. This includes machines
currently running Condor jobs, which are clearly
available for use by the Grid. On SMP machines,
we follow Condor’s approach of treating each
processor as a separate resource. Our goal is to
identify both the volatility of the underlying re-
sources and any patterns of behavior in terms of
availability states.

Here we examine the pool of machines as a
whole, to enable conclusions about their aggre-
gate behavior. Figure 2 depicts the number of
machines in each availability state over time. Gaps
in the data indicate brief intervals between the
4 months’ data. The data shows a diurnal pattern;
availability peaks at night, and recesses during the
day, but rarely below 300 available machines. This
indicates workday usage patterns and a policy of
leaving machines turned on overnight, exhibited
by the diurnal User Present pattern. The num-
ber of machines that occupy the CPU Threshold
Exceeded state is less reflective of daily patterns.
Local load appears to be less predictable than
user presence, and the number of unavailable
machines also does not exhibit obvious patterns.

Rood et al. [41] includes further analysis of the
trace.

5 Multi-State Availability Prediction

A multi-state prediction algorithm takes as input
a resource and a length of time (e.g. the esti-
mated job execution time), and produces a vector
of probabilities. The vector contains one entry
per availability state, and the value in each entry
corresponds to the predicted probability that the
resource will next enter the corresponding state.
One of the entries in the vector corresponds to
the Available state, and therefore contains the
predicted probability that the resource will remain
available throughout the interval. The probabil-
ities of the entries in one vector sum to 100%.
Our particular availability predictor outputs four
probabilities, one each for entering Fig. 1’s User
Present, CPU Threshold Exceeded and Unavail-
able states next, and one for the probability of
completing the interval without leaving the Avail-
able state.

Fig. 2 Machine states
over time: the four plots
show the number of
machines that reside in
each of four different
availability states
(one per plot), across
a 4 month trace
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Since a prediction algorithm examines a re-
source’s historical availability data, the two impor-
tant aspects that differentiate predictors are (i) the
analysis interval, which determines when during
the resource’s history the predictor analyzes and
(ii) the analysis technique, which determines how
the predictor analyzes that interval of availabil-
ity history. We can classify our approaches along
these two dimensions by combining when and how
we analyze.

5.1 Analysis Interval

Previous work [38] advocates examining a re-
source’s behavior during the interval of time that
the job would run, on previous days. A different
approach examines a resource’s most recent activ-
ity immediately preceding the prediction, on the
same day. More specifically, our predictors define
the analysis intervals in two different ways:

– N-Day (or Day): This predictor examines a
resource’s most recent N days of availability
behavior, during the interval being predicted.
For example, if a job requests a 4 h job at 11am
on Friday, a 3-Day predictor will base the
prediction on the behavior that the resource
exhibited between 11am and 2pm, on Tues-
day, Wednesday, and Thursday of the same
week.

– N-Recent (or Recent): This predictor examines
a resource’s most recent N hours of availabil-
ity behavior. Thus, a 3-h predictor that sched-
ules the same job from the example above,
would consider that resource’s behavior from
8am to 11am on Friday.

5.2 Analysis Techniques

Our predictors analyze the intervals using one of
two different analysis techniques:

– A Transitional predictor counts the number
of transitions from the available state, to each
of the other states. For each interval that a
resource was available, we count the number
of times the requested job duration fits within
that interval, and count that as a “transition”
within the available state. We calculate the
probabilities for exiting into each unavailabil-

ity state, and for completing the job success-
fully, by summing each state’s transition count
and dividing each by the total number of
transitions. This predictor may define a non-
continuous analysis interval.

– A Durational predictor calculates the percent-
age of time that the resource resides in each
of the states, and uses that percentage as the
probability that it will transition to that state
next. Predictors of this type will always define
continuous analysis intervals leading up to the
time of the prediction.

5.3 Weighting Scheme

Within the Transitional approach, we investigate
two different weighting schemes for analyzing the
analysis interval.

– Equal Weighting considers all transitions to
have the same influence on a resource’s future
behavior, no matter when they occur within
the analysis interval.

– Time Weighting considers the more recent
transitions more heavily; the closer a transi-
tion is to the time of day at which the predic-
tion occurs, the more influence that transition
will have on the prediction.

– Freshness Weighting favors transitions that
occur most recently. This differs from Time
weighting when more than one day is ana-
lyzed. For example, if a prediction is made
at 4pm, the Time scheme will increase the
weight of transitions that were made close to
4pm on some number of previous days; the
Freshness scheme considers only how long ago
the transition was, not the time of day at which
it occurred.

5.4 Evaluation

We evaluate Section 2’s related work predictors
for comparison. Since linear regression [12] is such
a prevalent method in many disciplines of pre-
diction, we have included both Sliding Window
Single and Sliding Window Multi. Because states
are categorical, they must be converted to numer-
ical values. We utilize the following conventions.
In the single state version of sliding window (SW
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Single), we consider the Available state as 1 and
any other state as 0. In the multi-state version
(SW Multi), we consider the Available state as 1,
User Present as 2, CPU Threshold Exceeded as
3 and Unavailable as 5. We also evaluate counter
based predictors such as those used for resource
availability prediction [30], including Saturating
Counter and History Counter. Just as in [30], we
use a 2 bit saturating counter updated every hour.
The Completion predictor, which always predicts
that the machine will complete the interval in the
available state is used as a baseline comparison.
Finally, we implement Ren’s N-Day multi-state
availability predictor (Ren) [39].

We evaluate our predictors for their accuracy
and focus our investigation on predictors that an-
alyze a resource’s history with the Transitional
analysis technique. We analyze both the N-Day
and the N-Recent approaches to defining the
analysis interval. For our data set, we use the
6 months of availability data from the Notre Dame
trace. Each predictor performs an identical set
of 500,000 predictions on a random resources at
a random time during the 6 month trace. We
define predictor accuracy as the ratio of correct
predictions to the total number of predictions. A
correct prediction is one for which the machine is
predicted to exit on a certain non-available state
and it does, or for which the machine is predicted
to remain available throughout the interval, and
it does.

5.4.1 Prediction Transition Weighting

In this section, we examine the effectiveness of
three transition weighting schemes and their ef-
fect on prediction accuracy. We use a three letter
naming scheme to identify our predictors.

– The first letter indicates the analysis tech-
nique; T stands for Transitional, and D would
stand for Durational (we include result only
for the better-performing Transitional tech-
niques).

– The second letter indicates the method for
defining the analysis interval, as described
above; R stands for N-Recent, D stands for
N-Day.

– The third letter identifies the weighting
scheme; F stands for Freshness, E stands for
Equal, and T stands for Time.

Figure 3 examines the Transitional Recent
hours (TR) predictor configured to analyze the
most recent N hours of availability with all three
weighting schemes (Equal, Freshness and Time of
day). The figure plots predictions between 5 min
and 25 h (other lengths are not examined due to
space constraints).

For all weighting schemes, as the predictor con-
siders more hours, accuracy increases dramatically
at first, then the increases slow down, reach a
maximum, then slowly decrease. The Freshness
(TRF) weighting scheme provides the best per-
formance, reaching the highest accuracy of 77.3%
when examining the past 48 h of behavior. TRF
weights each transition t (W(t)) according to the
following formula:

W(t) = M · (Tt/L)

– M is the “recentness weight” set by the user
(our default is five, which was derived through
empirical results analysis as producing the best
accuracy for this data set; other data sets may
require a different value).
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Fig. 3 Weighting scheme comparison: prediction accu-
racy for three different predictors, each using a different
strategy for weighing the influence of transitions within a
“recent-hours” analysis interval, for various numbers of
hours across the X axis. TRE, TRF, and TRT use Equal,
Freshness, and Time weighting, respectively
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– Tt is the length of time that elapsed from
the beginning of the analysis interval to the
transition t.

– L is the total analysis interval length.

In the next section, we focus our analysis on the
TDE and TRF predictors because they have the
highest accuracy (78.3% and 77.3% respectively).

5.4.2 Prediction Accuracy Analysis

This section compares the accuracy of our best
performing predictors, TDE and TRF, to several
existing approaches from the literature, described
in Section 2.1. In particular, we compare our work
with the Saturating and History Counter pre-
dictors [29–31], the Multi-State and Single State
Sliding Window predictors [12], the Ren predic-
tor [38–40], and the Completion predictor (which
simply always predicts that a job will complete in
the requested interval).

Figure 4 depicts predictor accuracy versus pre-
diction length, for predictions up to 120 h. The
Counter-based predictors, Completion predictor,
and Sliding Window predictors perform similarly
to one another, compete well with TRF, TDE and
Ren for predictions up to 20 h, and then sharply
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Fig. 4 Prediction accuracy by prediction duration: the ac-
curacy of a variety of predictors for predicted job durations
up to 120 h

decline, never leveling off. In contrast, the TRF,
TDE, and Ren predictors decrease initially and
then level off; the rate of decrease for Ren is
somewhat larger as the prediction length increases
past 60 h. The Ren predictor initially has lower ac-
curacy, with accuracy decreasing even faster than
the Completion predictor for prediction durations
shorter than 19 h. During these short intervals, the
Ren predictor is up to 5.6% less accurate than the
TDE predictor, and 5.2% less accurate than TRF.

Figure 4 demonstrates that for predictions
shorter than 19 h, TDE is the most accurate, ac-
counting for its 1% increase in accuracy over TRF
for predictions between 5 min and 25 h. However,
TRF becomes the most accurate predictor for
predictions longer than 42 h, reaching an accuracy
increase of 9.8% over Ren and 3.1% over TDE
for predictions of 120 h. This large difference in
accuracy for longer predictions is critical and is
demonstrated in the following section. We focus
our prediction-based scheduling analysis on TRF
because of the improved schedules it produces.
We have found that predictors that perform bet-
ter for long term predictions lead to the best
scheduling results when used with our scheduler,
even when scheduling shorter jobs. As the results
demonstrate in the following section, this explains
why TRF schedules better than both TDE and
Ren. For this reason, we focus on scheduling via
the TRF predictor and exclude TDE from further
scheduling analysis.

6 Prediction-Based Scheduling

This section investigates scheduling jobs with
the aid of resource availability predictions. Sec-
tion 6.1 demonstrates the inherent tradeoff be-
tween scheduling for reliability and scheduling for
performance, and Section 6.2 investigates the rela-
tionship between predictor accuracy and schedul-
ing quality.

We simulate jobs executing on machines in the
Notre Dame trace, each utilizing its own recorded
availability and load measurements. Our simula-
tions create and insert each job at a random time
during the 6 month simulation, such that job injec-
tion is uniformly distributed across the 6 months.
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The simulation assigns each job a duration (i.e.
a number of operations needed for completion)
where the duration is an estimate based on the
execution of the job on an unloaded resource
with an average MIPS speed, where the average is
calculated across all machines in the trace. Appli-
cation durations are uniformly distributed across
different intervals, depending on the test. This
uniform distribution of job insertion times and du-
rations allows us to test the quality of the predictor
and scheduler combination with equal weight for
all prediction durations and prediction start times,
without emphasizing a particular duration or start
time.

The MIPS score, the load on each processor,
and the (un)availability states (included or im-
plied by the trace data) all influence the simulated
running of the jobs. Resources are considered
available if they are running, connected, have no
user present and have a local CPU load below
30%. A resource may only be assigned one task
for execution at a time. During each simulator
tick, the simulator calculates the number of oper-
ations completed by each working resource, and
updates the records for each executing job. If a
resource executing a job leaves the Available state
(as per the trace), effectively evicting the job, the
executing job joins the back of the job queue for
rescheduling. The number of operations that re-
main to be completed for this evicted job depends
on whether the job is checkpointable, and on the
type of eviction, as described in Section 3. Non-
checkpointable jobs that are evicted must restart
from the beginning of their execution, regardless
of the type of eviction. All evicted jobs are added
to the job queue and immediately rescheduled
on an available resource. Once every 3 min, the
simulator repeatedly removes and schedules jobs
from the head of the queue until no more jobs can
be scheduled.

To facilitate prediction-based scheduling, we
define a scheduling algorithm called Prediction
Product Score (PPS) Scheduler. The PPS Sched-
uler scores each available resource and maps
the job at the head of the queue onto the re-
source with the highest score (Ties are broken
arbitrarily.)

We analyze scheduling quality according to av-
erage job makespan and evictions. Makespan is

the time from submission to completion; average
makespan is calculated across all jobs in the simu-
lation. For evictions, the simulator counts the total
number of times that jobs need to be rescheduled
because a resource running a job transitions from
available to one of the unavailable states.

6.1 Reliability Performance Relationship

This section establishes the inherent tradeoff
between scheduling for reliability and for perfor-
mance. Schedulers that favor performance con-
sider the static capability of target machines, along
with current and predicted load conditions, to
decrease makespan. Other schedulers may in-
stead consider the past reliability and behavior of
machines to predict future availability and to in-
crease the number of jobs that complete success-
fully without interruption due to machines failing
or owners reclaiming resources. Schedulers may
consider both factors, but cannot in general opti-
mize simultaneously both for performance-based
metrics like makespan and for reliability-based
metrics like the number of evictions or the number
of operations that must be re-executed due to
eviction (i.e. “operations lost”) [13].

To investigate the tradeoff, we ust the PPS
scheduler and score resources according to the
following expression:

RSi = (1 − W) · Pi[COMPLET E]
+ W · (MI PSi/MI PSmax) · (1 − Li)

– Pi[COMPLET E] is resource i’s predicted
probability of completing the job interval
without failure, according to the TRF predic-
tor,

– MI PSi is the resource’s processor speed,
– MI PSmax is the highest processor speed of all

resources (for normalization), and
– Li is the resource’s current processor load.

Reliability influences completion probabil-
ity Pi[COMPLET E], performance influences
(MI PSi/MI PSmax) · (1 − Li), and the Tradeoff
Weight (W) determines which more heavily influ-
ences the resource’s overall score.
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We simulate executing 6,000 jobs with dura-
tions uniformly distributed between 5 min and
25 h, 25% of which are checkpointable (the re-
maining 75% are non-checkpointable).

Figure 5 illustrates the effect of varying the
Tradeoff Weight and hence the relative influ-
ence of reliability or performance in scheduling.
As performance is considered more prominently,
makespan decreases and the number of evictions
increases. In the middle of the plot, a tradeoff
weight of 0.5 does achieve makespan within 6.7%
of the lowest makespan on the curve, while simul-
taneously coming within 18.1% of the fewest num-
ber of evictions. Nevertheless, the makespan slope
is uniformly negative, and the evictions slope is
uniformly positive.

6.2 Prediction Quality Versus Scheduling Results

This section investigates the effect of predictor
accuracy on scheduler performance. We modify
the PPS Scheduler’s resource scoring expression
as follows:

RSi = MI PSi · (1 − Li) · Pi[COMPLET E]
– Pi[COMPLET E] is resource i’s predicted

probability of completing the job interval
without failure, according to the TRF pre-
dictor,

– MI PSi is the resource’s processor speed, and
– Li is the resource’s current processor load.

This scoring expression incorporates both re-
liability and performance but does not include a
variable tradeoff weight.

We also modified the PPS scheduler to vary the
prediction duration. Previously, the scheduler had
asked the predictor about behavior over a predic-
tion interval that is intended to match job runtime.
However, a prediction for the next N hours may
not necessarily reflect the best information for
scheduling an N hour job. We have previously
investigated the effect of scheduling an N hour job
using predictions made for the next (M · N) hours,
where M is the “interval multiplier.” Our research
developed two “hybrid” multipliers:

– The Comparison Scheduler (Comp or TRF-
Comp) uses M = 3 for jobs less than 28 h, and
M = 0.25 for longer jobs.

– The Performance Scheduler (Perf or TRF-
Perf) ignores reliability on jobs less than 28 h,
instead selecting the fastest, least loaded re-
sources; for longer jobs, it uses M = 0.25.

We compare the two multi-state based sched-
ulers, namely the TRF predictor coupled with the
PPS scheduler, and the Ren MTTF prediction-
based scheduler, with one another (Section 6.2.1)

Fig. 5 Reliability
performance tradeoff:
makespan and evictions
for various tradeoff
weights in the PPS
Scheduler’s resource
ranking formula
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and then against other scheduling techniques
(Section 6.2.2).

6.2.1 Multi-State Prediction Based Scheduling

This section explores our Transitional Recent-
hours Freshness-weighted (TRF) scheduler and
Ren’s MTTF scheduler.

We vary the number of days that Ren’s pre-
dictor uses to make its predictions, while simul-
taneously varying TRF’s interval multiplier for
comparison. These parameters allow each sched-
uler to trade off reliability and performance.
Again, we simulate 6,000 jobs inserted at random
times during the 6 month trace, with durations
uniformly distributed between 5 min and 25 h;
25% of the jobs are checkpointable.

Figure 6 shows the average makespan and num-
ber of evictions obtained and caused by TRF and
Ren MTTF as we vary the interval multiplier for
TRF and the number of days analyzed for Ren
MTTF. Varying each parameter allows that sched-

uler to trade off performance (lower makespan)
for reliability (fewer evictions). In selecting a
point for Ren MTTF on one curve, however, TRF
does better in terms of the other metric. For ex-
ample, for approximately 1,500 evictions, TRF has
average makespan that is 27% lower, and for a
makespan of 13 h, TRF has 52% fewer evictions.

6.2.2 Scheduling Quality Analysis

This section further compares our best perform-
ing scheduling approaches, TRF-Comp and TRF-
Perf, to other scheduling methods. To more
thoroughly understand the characteristics of these
schedulers in a variety of conditions, we perform
tests with a diverse set of job lengths. We report
results for simulating 6,000 jobs, 25% of which
are checkpointable, over the 6 month Notre Dame
trace. The jobs range from 5 min to the job length
indicated on the x-axis.

Figure 7’s top two graphs compare the TRF
schedulers to Ren-MTTF (with four different

Fig. 6 TRF scheduler
vs. Ren MTTF scheduler,
in terms of average
makespan (plots on the
left) and overhead in
terms of evictions (plots
on the right). The top two
plots are for Ren MTTF,
the bottom two for TRF.
The X axis is different for
the two pairs of graphs;
each shows results across
a range of values for the
parameter that allows
that scheduler to trade off
between reliability and
performance
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Fig. 7 Scheduling results
across job lengths:
makespan and evictions
for a variety of
Schedulers across a
range of job lengths
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numbers of days analyzed) and to the History
and Sliding Window prediction-based schedulers.
The graphs plot the percentage difference in both
makespan and the number of evictions, compared
with TRF-Comp. The History and Sliding Win-
dow predictors utilize the Comparison Scheduler
(Comp) as well.

TRF-Comp maintains comparable makespan
as job length increases, peaking at roughly 11%
higher than Sliding Window, History, TRF-Perf
and Ren MTTF-1 for jobs of up to 40 h in
length. For this same length, TRF-Comp achieves
60% fewer evictions than the next most reliable
scheduler, Ren MTTF-1. For all job lengths up
to 40 h, TRF-Comp achieves at least 15% fewer
evictions when compared with the most reliable
scheduler, Ren MTTF-16; average job makespan
simultaneously decreases by 20% (27.3 h versus
32.9 h). TRF-Comp also decreases the number of
evictions by at least 57% compared with all other
schedulers, for jobs up to 6 h long (355 evictions
versus 557). TRF-Perf comes within 1% of the
shortest makespan (Sliding Window) for shorter
lengths, and achieves the shortest makespan for
jobs of 80+ h.

Figure 7’s bottom two graphs compare TRF-
Comp and TRF-Perf with the following non-
prediction-based scheduling approaches:

– Random selects an available resource at ran-
dom,

– CPU Speed selects the resource with the
fastest CPU speed,

– Pseudo Optimal selects the available resource
that will execute the job in the smallest execu-
tion time, without failure, based on omnipo-
tent future knowledge of resource availability.
When all machines would fail before complet-
ing the job, the Pseudo Optimal Scheduler
chooses the fastest available resource in terms
of MIPS speed, and

– S0 considers the speed and load of the re-
source, by multiplying the MIPS score with
one minus the current resource load [42]:
MI PSi · (1 − Li)

For average job makespan, TRF-Comp fol-
lows the non-optimal schedulers and produces the
fewest evictions for all job lengths, by at least
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110%. Elsewhere we report that TRF-Comp also
produces the best results for a variety of loads [42].

7 Replication

Checkpointing and replication are two of the
primary tools for dealing with resource un-
availability. The system cannot generally add
checkpointability; that’s up to the application
programmer. So whereas schedulers can (and
should) take advantage of knowing which jobs
are checkpointable, they cannot pro-actively add
reliability by increasing the checkpointability of
the job mix.

The system can, however, replicate some jobs in
an attempt to deal with possible resource unavail-
ability. Replicating a job can benefit performance
in one of two ways. First, jobs are scheduled onto
resources using imperfect ranking metrics that
may or may not reflect how fast a job will run
on a machine. Therefore, by starting a job to run
simultaneously on more than one resource, the job
makespan is determined by the earliest comple-
tion time among all replicas; this can depend on
unpredictable load and usage patterns. Secondly,
replicated job executions can also help deal with
failure; then when one resource fails, the adverse
effect on the performance of the jobs it runs can be
reduced if others have a chance to complete those
jobs.

Replication does not come without a cost, how-
ever. Within a Grid economy, it is likely that jobs
will need to pay for Grid use on a per job, per
process, or per operation basis. Therefore, repli-
cation can cost extra, assuming redundant jobs are
counted separately (which seems likely). Repli-
cation can also have an adverse indirect effect,
as some of the highest ranked resources could
be used for replicas, leaving only “worse” (by
whatever metric the scheduler uses to rank jobs)
resources for subsequent jobs. We therefore set
out to test the hypothesis that our availability
predictor can help select the right jobs to repli-
cate, and can therefore improve overall average
job makespan, reduce the redundant operations
needed for the same improved makespan, or both.

This section investigates the effect that repli-
cating jobs can have on average job makespan

and the number of extra operations performed
(overhead). We explore three classes of replica-
tion techniques:

– Static techniques (Section 7.1) replicate based
on the characteristics of the job being sched-
uled,

– Prediction-Based techniques (Section 7.2)
consider forecasts about the future availability
and load of resources, and

– Load Adaptive techniques (Section 7.4)
change their behavior based on observed
system load.

All experiments use the PPS Scheduler de-
scribed in Section 6, augmented to support repli-
cation. Upon placing each job, the scheduler uses
the replication policy to determine how many
replicas to make. In this paper, the scheduler
makes 0 or 1 replicas. When a task or its replica
completes, the system terminates other copies,
freeing up the resources executing them. Sched-
ulers whose replication policies require an avail-
ability prediction use the TRF predictor, unless we
specify otherwise.

We analyze scheduling quality according to av-
erage job makespan, extra operations, and repli-
cation efficiency, which is defined and discussed
later. Task lengths are defined in terms of the
number of operations needed to complete them;
extra operations refers to the number of additional
operations that the system performs for a job,
including all “lost” operations due to eviction, and
any operations performed by replicas (or initially
scheduled jobs) that do not ultimately finish be-
cause some other copy of that job finished first.

7.1 Static Replication Techniques

We first explore the effect that replicating jobs
based on checkpointability can have on both extra
operations and on job makespan. We vary the
total number of jobs, using 1K, 14K, 26K, and
40K total jobs over the 6 month trace, in four
separate sets of simulations. This translates to
0.001, 0.13, 0.26, and 0.39 jobs per resource per
day, respectively. We refer to these tests as the
Low, Medium Low, Medium High, and High load
cases. For this test, we execute 6,000 jobs, half of
which are checkpointable.
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Fig. 8 Checkpointability
based replication:
makespan (left) and extra
operations (right) for
a variety of replication
strategies, two of
which are based on
checkpointability of jobs,
across four different load
levels
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Figure 8 includes the following replication
policies:

– 1x: Replicates each job exactly once. If either
the main job or the replica runs on a resource
that becomes unavailable, it is rescheduled but
never re-replicated. Thus, two versions of each
job are always running.

– Non-Ckpt: Replicates only jobs that are not
checkpointable.

– Ckpt: Replicates only jobs that are check-
pointable.1

– 50% Probability: Replicates half of the jobs, at
random.

– No-Rep: Does not make replications

Figure 8 illustrates that under low loads, in-
creasing replicas achieves more makespan im-
provement, a benefit that falls off for higher
loads because replication forces subsequent jobs
to use even less desirable resources. Replicat-
ing only non-checkpointable jobs (Non-Ckpt) im-
proves makespan for all but the highest load test,
and at significantly less cost than 1x replication.
Moreover, replicating the half of the jobs that
are non-checkpointable is better than replicating
half of the jobs at random, which indicates that
using checkpointability for replication policies has
benefit, as expected.

1This replication policy is not based on intuition, but
instead serves as a useful comparison for the Non-Ckpt
policy

7.2 Prediction-Based Replication Techniques

Ideally, schedulers would replicate only those jobs
that are most likely to fail. In deciding whether to
replicate jobs based on predicted resource relia-
bility, we first schedule the jobs on the “best avail-
able” resource. For this work, we select a resource
based on its projected near-future performance
(speed and load) only, and replicate based on the
probability of completing the job on that resource.
The Resource Score is calculated as follows:

RSi = MI PSi · (1 − Li)

MI PSi is the resource’s score and Li is its cur-
rent processor load. We ran a mirrored set of
tests to consider speed and reliability in initial
scheduling, and confirmed that when task replica-
tion is used for reliability, better results stem from
performance-based scheduling.

We propose a method for considering make-
span improvement and overhead within the same
metric, to quantify performance improvement per
replica. We define Replication Efficiency (RE) as:

RE = Makespan Improvement/Replicas per Job

Makespan Improvement is the improvement over
not creating any replicas

Increasing makespan improvement with the
same number of replicas will increase efficiency,
and increasing replicas to get the same makespan
improvement will decrease efficiency. The best
replication strategies will make replicas of the
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“right” jobs, and achieve more improvement for
the same cost (number of replicas).

Replication efficiency allows users to quantify
the tradeoff between reliability and performance.
Frugal users may require high replication effi-
ciency, whereas performance minded users may
care only about makespan improvement. Replica-
tion Efficiency can also be useful to administrators
in choosing which replication policy is most suited
to the goals of their system.

For scheduling, each scheduler maintains a
Replication Score Threshold (RST) that it com-
pares against a resource’s predicted probability
of completion, at the time it considers placing a
job on that resource. An RST-based scheduler
will make a replica of the job if the completion
probability falls below the threshold.

We investigate the following replication strate-
gies:

– RST Scheduler: Replicates all jobs that are
scheduled on resources whose predicted prob-
ability of completion without interruption falls
below the Replication Score Threshold (RST)
with which the scheduler is configured.

– RST & NC & Len: Replicates all non-
checkpointable jobs that are longer than 10 h,
and whose predicted completion probability
falls below the RST.

– 1x: Makes exactly one replica of each job.
– NC & Len: Replicates non-checkpointable

jobs longer than 10 h

We vary the RST value to study its effect
on makespan improvement and replication effi-
ciency. The RST Scheduler configured with an
RST of 100 replicates all jobs scheduled on re-
sources with a predicted completion probability
below 100%. These predictions are made by the
TRF Predictor on the selected resource.

Figure 9 plots Makespan and Replication Effi-
ciency versus Replication Score Threshold (RST)
in the low load case. The left graph of Fig. 9
shows makespan improvement over not replicat-
ing, across a range of RST values. Schedulers
with larger RST values make more replicas. Un-
der low loads, this aggressive replication strat-
egy improves makespan. The 1x strategy achieves
the highest makespan improvement, as it creates
replicas of all jobs. In terms of replication ef-
ficiency, lower RST values perform better, and
the 1x strategy has among the lowest replication
efficiencies. RST &NC &Len’s efficiency outper-
forms NC &Len due to its use of resource avail-
ability predictions. This indicates that the better
the scheduler is at selecting the right jobs to repli-
cate, the higher the achieved efficiency.

7.3 Replication Quality Versus Prediction
Accuracy

This section investigates the effect that prediction
accuracy has on the quality of the replication
decisions. We compare the TRF predictor with
the Ren predictor; both use the same replication

Fig. 9 Makespan and
efficiency versus
replication score
threshold under low load,
for four different
replication schedulers
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Fig. 10 TRF vs. Ren
predictor, makespan and
efficiency for a variety of
RST values
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strategy to isolate the effect of accuracy. The Ren
predictor returns only whether or not it believes
the job will complete in the requested interval,
not the probability of doing so. Because the RST
Scheduler depends on a predicted probability, we
cannot use the Ren predictor with it, in the same
way. As discussed previously, though, varying the
number of days that the Ren predictor analyzes
introduces the same tradeoff between makespan
and efficiency as varying the RST of TRF.

Figure 10 plots makespan and replication effi-
ciency versus RST. We plot TRF, Ren 1-day, and
Ren 10-day. We omit other Ren day counts as
they produce consistent intermediate results. TRF
with an RST of 100 achieves the largest makespan
increase among all predictors. TRF with an
RST = 40 produces the highest efficiency. Other
RST values allow the schedule to effectively
navigate the tradeoff between performance and
efficiency.

Fig. 11 Comparison of
prediction-based
schedulers: makespan
improvement, replication
efficiency, and number of
replicas created for four
different schedulers

Low Med_Low Med_High High
- 10

- 5

0

5

10
Makespan vs. Job Load

Job Load

P
er

ce
nt

 M
ak

es
pa

n 
Im

pr
ov

em
en

t
vs

. N
o 

R
ep

lic
at

io
n

Low Med_Low Med_High High
- 10

0

10

20

30

40
Efficiency vs. Job Load

Job Load

E
ffi

ci
en

cy

Low Med_Low Med_High High
0

0.5

1

1.5
Replicas vs. Job Load

Job Load

N
um

be
r 

of
 R

ep
lic

as
 C

re
at

ed
 (

x 
10

4 )

 

 

RST<100&NC&Len
RST<40&NC&Len
20% Probability
No_Rep



Grid Resource Availability 497

7.4 Load Adaptive Replication Techniques

This section investigates the effect that varying
system load has on the performance achieved by
the replication techniques proposed in the previ-
ous section. Figure 11 plots our RST&NC&Len
replication technique with RST values of both
100% and 40% and compares them with not repli-
cating (No-Rep) and with replicating a random
20% of jobs (20% Probability). As load increases,
the makespan improvement and efficiency of all
replication strategies initially increases slightly but
then falls under Med-High and High loads. Under
Low loads, replicas are less likely to interfere with
other resource by taking up the only available
high-quality machines. As load increases, fewer
machines are available; if the system uses them for
replicas, other jobs must wait or run on the very
slowest machines that are the most likely to fail.

In comparing our results to blind (random)
replication, the RST<40&NC&Len technique
creates roughly the same number of replicas as
randomly replicating 20% of jobs. Given the same
number of replicas, the RST technique achieves
a higher makespan improvement and efficiency
across all load levels. This demonstrates that it is
choosing the “right” jobs to replicate when com-
pared with randomly replicating jobs.

Figure 11 also demonstrates that the replica-
tion strategy that provides the highest achiev-
able makespan or efficiency varies based on
the load of the system. In particular, either

RST<40&NC&Len or RST<100&NC&Len pro-
duces the largest makespan improvement. This
suggests a replication strategy that behaves differ-
ently depending on the load.

Three load adaptive replication techniques re-
spond to varying load levels with three different
replication strategies, to achieve different desired
metrics. To determine the current load level, the
schedulers track the number of jobs submitted
to the system in the past day. The load adaptive
replication strategies are Makespan, Efficiency,
and Compromise. They behave as follows:

– Makespan: Maximize average job makespan
across loads

– Low load: 4x - Create 4 replicas of each
job

– Med-Low load: RST<100 - Replicate a job
if the completion probability is less than
100%

– Med-Low load: RST<40 - Replicate a job
if the completion probability is less than
40% and the job is non-checkpointable

– High load: No replication

– Efficiency: Maximize replication efficiency
across loads

– All loads: RST<40&Len&NC - Replicate
a job if the completion probability is less
than 40%, the job is non-checkpointable
and the length is over 10 h

Fig. 12 Load adaptive
replication: three
different schedulers
satisfy different
performance and
efficiency metrics under
four different loads
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– Compromise: Compromise between average
job makespan and efficiency across loads

– Low load: RST<100 - Replicate a job
if the completion probability is less than
100%

– Med-Low load: RST<100 - Replicate a job
if the completion probability is less than
100%

– Med-Low load: RST<40&NC - Repli-
cate a job if the completion probability
is less than 40% and the job is non-
checkpointable

– High load: No replication

Figure 12 compares the three load adaptive
policies across all four load levels. The Makespan
technique produces the largest makespan im-
provement, but with the lowest efficiency (other
than the high load case, when the other strategies
make similar numbers of replicas). The unpre-
dictability of high load cases result in small and
variable makespan increases and varied replica-
tion efficiency. This situation aside, all techniques
do meet their goals. The Efficiency technique
produces the largest efficiency across all but the
high load case, while simultaneously producing
the smallest makespan improvement. The Com-
promise technique produces an average makespan
improvement and replication efficiency across all
loads.

8 Summary

Scheduling in a large scale Grid that comprises
a heterogeneous collection of eclectic resources
requires techniques for dealing with resource fail-
ure and unavailability. Availability predictors can
forecast resource behavior, allowing schedulers
to consider reliability in conjunction with perfor-
mance and load, when placing jobs. This paper
describes and compares several prediction tech-
niques and shows that our predictors result in
the highest achieved accuracy. The paper also
describes schedulers that utilize these availability
predictions to make better placement decisions
for jobs. Our prediction-based scheduling strate-
gies, when compared with traditional and related
work prediction techniques, both reduce average

job makespan and decrease the number of job
evictions. Sometimes, however, simply finding the
“best” resource, even by more sophisticated selec-
tion criteria, is not enough.

Schedulers can replicate jobs to reduce the ef-
fect of failure and to ultimately reduce makespan.
Replication requires additional Grid cycles, which
can have direct cost within a Grid economy, and
indirect cost in tying up attractive resources, espe-
cially under relatively higher loads. This paper de-
scribes techniques that use availability predictions
to influence replication decisions. A strategy that
considers process checkpointability, job length,
and predicted resource reliability does the best job
of using additional replicated operations to reduce
job makespan.
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