
J Grid Computing (2009) 7:537–554
DOI 10.1007/s10723-009-9126-3

Performance Prediction and Analysis of BOINC Projects:
An Empirical Study with EmBOINC

Trilce Estrada · Michela Taufer ·
David P. Anderson

Received: 21 February 2009 / Accepted: 4 August 2009 / Published online: 19 August 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Middleware systems for volunteer com-
puting convert a set of computers that is large and
diverse (in terms of hardware, software, availabil-
ity, reliability, and trustworthiness) into a unified
computing resource. This involves a number of
scheduling policies and parameters, which have
a large impact on the throughput and other per-
formance metrics. How can we study and refine
these policies? Experimentation in the context of
a working project is problematic, and it is dif-
ficult to accurately model complex middleware
in a conventional simulator. Instead, we use an
approach in which the policies being studied are
“emulated”, using parts of the actual middleware.

This material is based upon work supported by the
National Science Foundation, grant #OCI-0802650,
DAPLDS—a Dynamically Adaptive Protein-Ligand
Docking System based on multi-scale modeling and
grant #OCI-0721124 Middleware for Volunteer
Computing, and by the CONACyT fellowship
#171595.

T. Estrada · M. Taufer (B)
University of Delaware, Newark, DE, USA
e-mail: taufer@udel.edu

T. Estrada
e-mail: estrada@udel.edu

D. P. Anderson
U.C. Berkeley Space Sciences Laboratory,
Berkeley, CA, USA
e-mail: davea@ssl.berkeley.edu

In this paper we describe EmBOINC, an emu-
lator based on the BOINC middleware system.
EmBOINC simulates a population of volunteered
clients (including heterogeneity, churn, availabil-
ity, and reliability) and emulates the BOINC
server components. After describing the design of
EmBOINC and its validation, we present three
case studies in which the impact of different
scheduling policies are quantified in terms of
throughput, latency, and starvation metrics.

Keywords Volunteer Computing ·
Docking@Home · World Community Grid ·
Simulation · Emulation

1 Introduction

Volunteer Computing (VC) is a form of distrib-
uted computing in which computer owners vol-
unteer resources to scientific computing projects.
BOINC is a software platform for volunteer com-
puting [1] that is used by projects in physics,
molecular biology, medicine, chemistry, astron-
omy, climate study, mathematics, and other fields.
BOINC-based projects derive their power from
heterogeneous computing resources with vary-
ing levels of availability and reliability [8]. The
projects vary in terms of job length, sensitivity
to errors, and requirements for result verifica-
tion (such as the number of replicas that are

538 T. Estrada et al.

compared for agreement before being accepted).
In the past five years, the VC community based
on BOINC has grown significantly and currently
there are approximately 50 projects and 580,000
volunteer computers supplying an average of
2.1 PetaFLOPS.

BOINC consists of separate client and server
components, each of which embodies a set of
scheduling policies. The client policies have been
studied elsewhere [3]; here we are concerned
with the server policies. The server component
of BOINC embodies a number of scheduling
policies and parameters that have a large im-
pact on the project throughput and other perfor-
mance metrics. Unfortunately, it is difficult (if not
impossible) to do controlled performance exper-
iments in the context of a large volunteer com-
puting project: there are many factors that cannot
be controlled, and poorly-performing mechanisms
can waste significant amount of resources (and
potentially drive away volunteers). Simulation en-
vironments, on the other hand, make it possible
to explore new policies, optimize parameters, and
test a wide range of hypotheses in a short period
of time without affecting the volunteer base. A
simulation environment can be based on a “pure
simulator” implementing an abstract model of a
system, an “emulator” using all or part of a real
system, or a hybrid approach combining the two.
For a large, complex system like BOINC, pure
simulation is infeasible: it would be difficult to
accurately represent the behavior of a BOINC
server in an abstract model, and to track the fre-
quent modifications to the BOINC software. A
better approach is to use emulation for the portion
of the system under study, and simulation for the
rest of the system.

In this paper we present EmBOINC, a trace-
driven emulator of BOINC projects. EmBOINC
is intended to allow developers to tune existing
server scheduling policies and to accurately pre-
dict the performance of new policies. EmBOINC
uses emulation for the server, and it uses sim-
ulation to represent the heterogeneous, volatile
population of volunteers’ hosts. EmBOINC in-
teracts directly with the actual BOINC server
daemons, triggering the generation, distribution,
collection, and validation of jobs. By using emula-
tion in this way, EmBOINC minimizes the main-

tenance burden caused by the rapid development
of BOINC. At the same time, by plugging directly
into a BOINC server, EmBOINC allows testers
to directly and accurately tune BOINC policies
for different host populations. After describing
the design of EmBOINC and its validation, we
present three case studies in which the impact
of different scheduling and validation policies are
quantified in terms of throughput, latency, and
utilization metrics. This expands upon our previ-
ously reported work [10], in which we presented
preliminary validation results of EmBOINC.

This paper is organized as follows: Section 2
presents a short overview of VC and BOINC.
The EmBOINC framework and its software com-
ponents are described in Section 3. In Section 4
we validate EmBOINC by comparing its perfor-
mance predictions with those of a real BOINC
project. Section 5 presents three case studies in
which the impact of different scheduling poli-
cies, homogeneous redundancy granularity, and
job replication policies are empirically studied.
Section 6 compares EmBOINC with other work.
Section 7 concludes the paper.

2 Volunteer Computing and BOINC

2.1 Volunteer Computing

Volunteer Computing (VC) projects employ
“hosts” (for example desktops, notebooks, and
servers) owned by the general public and con-
nected to the Internet. The computing resources
are highly diverse: the hosts differ by orders
of magnitude in their processor speed, available
RAM, disk space, and network connection speed.
Some hosts connect to the Internet by modem
only every few days, while others are permanently
connected. VC projects typically run applications
with large numbers (as many as millions per day)
of independent, compute-intensive jobs.

2.2 BOINC

BOINC (Berkeley Open Infrastructure for Net-
work Computing) [1] is an open-source system for
volunteer computing. The BOINC model involves
“projects” and “volunteers”. Projects are organi-

Performance Prediction and Analysis of BOINC Projects 539

zations (typically academic research groups) that
need computing power. Projects are independent;
each operates its own BOINC server. Volunteers
participate by running the BOINC client software
on their computers (hosts). Volunteers can “at-
tach” each host to any set of projects, and can
specify the quota of bottleneck resources allo-
cated to each project.

When a BOINC client is attached to a project,
it periodically issues a scheduler request to the
project’s server. The request message includes
a description of the host and its current work-
load (jobs queued and in progress), descriptions
of newly-completed jobs, and a request for new
jobs. The reply message may contain a set of new
jobs. Multiple jobs may be returned; this reduces
the rate of scheduler requests and accommodates
clients that are disconnected from the Internet
for long periods. BOINC provides the option of
using job replication to address issues like ma-
licious attacks, hardware malfunctions, and soft-
ware modifications that affect the reliability of
results. Replicas of jobs (also called job instances)
are distributed to hosts. When finished, the hosts
send their results to the project server. The project
server classifies results as valid or invalid based on
their agreement with other instances.

A BOINC server is centered around a rela-
tional database, whose tables correspond to the
abstractions of the BOINC’s computing model,
such as platforms, applications, application ver-
sions, jobs, and job instances. BOINC daemons
are in charge of generating new jobs (work gen-
erator); periodically replenishing a shared mem-
ory cache with job instances from the database
(feeder); changing the status of jobs and job in-
stances in the database (transitioner); validating
results (validator); handling validated results (as-
similator) and removing the files associated with
completed jobs (file-deleter).

The BOINC server software embodies many
sophisticated scheduling policies. For example,
there are a number of criteria for job assign-
ment [2], based on host and job diversity (for
example size of the job and speed of the host
relative to an estimated statistical distribution,
disk and memory requirements for the job to
be completed, homogeneous redundancy [23]
and host error rate). A scoring-based scheduling

policy uses a linear combination of these terms
to select the best set of jobs that can be assigned
to a given host. Projects can adjust the weights
of these terms, or they can replace the scoring
function entirely. The benefits of these terms and
the different scoring functions can be quantified
with an emulator such as EmBOINC.

2.3 BOINC Projects

In this paper we consider two BOINC projects
and their traces collected over time. The projects
are: the IBM World Community Grid1 and the
Docking@Home2 project.

World Community Grid (WCG) is an initia-
tive supported by IBM that makes VC comput-
ing available to not-for-profit organizations. WCG
currently supports several simultaneous applica-
tions. In our work we consider two of these
applications, FightAIDS@Home and Human
Proteome Folding Phase II. FightAIDS@Home
searches for drugs to disable HIV-1 Protease.
The two major objectives of Human Proteome
Folding Phase II are: to obtain higher resolution
structures for specific human proteins and
pathogen proteins, and to further explore the
limits of protein structure prediction.

Docking@Home (D@H) is a BOINC project at
the University of Delaware. By searching the large
space of potential ligand conformations, D@H
reduces the time and cost needed to design new
drugs by several orders of magnitude. In this
search, the protein and ligand can have different
size and flexibility and their characteristics can
have large impact on job duration.

3 Methodology

To analyze and predict performance of BOINC pro-
jects, we implemented and used EmBOINC (Em-
ulator of BOINC Projects) [10]. EmBOINC is a
trace-driven, hybrid emulator that models hetero-
geneous hosts and their interaction with a BOINC
server. EmBOINC combines the accuracy of using

1http://worldcommunitygrid.org
2http://docking.cis.udel.edu

http://worldcommunitygrid.org
http://docking.cis.udel.edu

540 T. Estrada et al.

part of an existing system (in this case the BOINC
server) with the efficiency of simulating a very
large number of hosts interacting with the server.

BOINC clients communicate with servers using
HTTP. In particular, they periodically issue a Web
RPC to the projects scheduler. In this RPC, the
request message contains a list of completed jobs
and a request for more jobs; the reply message
contains a list of new jobs. We used this RPC
mechanism as the interface between the two parts
of EmBOINC: the client simulator sends a series
of RPCs to the server emulator. For efficiency, we
execute the scheduler locally rather than create a
connection for each request.

3.1 Emulator Framework

A BOINC server consists of a relational database
and several programs that communicate through
the database and shared memory. One of these
programs is the scheduler, which is run by the web
server as a CGI program. The others are daemons,
which perform tasks such as job generation, vali-
dation, retry of timed-out jobs, cleanup of files and
database, and so on. These daemons are driven
by the passage of time; for example, the retry
generator wakes up every 5 seconds and checks
for jobs that should have been completed by the

current time. The server part of EmBOINC uses
the same set of processes as a real BOINC server,
including the database server. To enable faster-
than-real-time simulation, we made two changes
to the server code. First, we changed the scheduler
so that it can handle a sequence of RPC requests
as described above. Second, we added a virtual
time mechanism to the BOINC daemons; instead
of sleeping for a time interval, they wait for a
signal, then read the current simulated time from
a file. Both of these changes are in the BOINC
source code, conditionally compiled. Thus Em-
BOINC can always be used to study the latest
version of BOINC.

Figure 1 shows the server and client interaction
in a BOINC system (Fig. 1a) and the changes
to the system in EmBOINC (Fig. 1b). First, we
replace the BOINC clients with a simulated popu-
lation of hosts (see Section 3.2). Second, we intro-
duce signals to control the daemons. Finally, we
extend the BOINC interface to access information
on the simulated project.

3.2 Simulation Component

EmBOINC uses simulation to model the popu-
lation of volunteer hosts. The behavior of these
hosts is managed by a discrete event simula-

CGI

PHP
Project

adminis-
trative
tools

CURL

Upload

BOINC DB

BOINC
client

Result
files

Reply

Request

BOINC
daemons

Project
Adminis

trator

Download

Shared
Memory

Internet

Feeder

A
 P

 A
 C

 H
 E

(a) BOINC server and client

CGI

A
 P

 A
 C

 H
 E

BOINC DB

Simulated
hosts

population
Reply

Request BOINC
daemons

Project
Adminis

trator

Shared
Memory

Internet PHP
Project

adminis-
trative
tools

PHP
Emulator
adminis-
trative
tools

Signals

Feeder

(b) BOINC server + EmBOINC

Fig. 1 BOINC platform with and without EmBOINC (a, b)

Performance Prediction and Analysis of BOINC Projects 541

tor (DES). Discrete event simulators consist of
events and entities [11, 13, 20, 21]. Entities trigger
events [13]. EmBOINC entities are: Init Entity,
EmBOINC DES Controller, Host Generator, Sim-
ulated Host, Job Generator, and Simulated User.
Simulated hosts and simulated users are also re-
ferred to as hosts and users respectively. Entities
are characterized by attributes and are stored in a
priority queue. The priority queue orders entities
based on their next activation time. Each entity
is associated with one or more events. Events
are actions triggered by the associated entity at
a certain point in time that cause changes in the
simulated state and modifies the priority queue.

A list of events associated with EmBOINC
entities is shown in Table 1. In the table, entities
are in bold; an event is denoted by a number; a
group of events is enclosed in parenthesis; a group
of events that may or may not occur depending
on the entity state is enclosed by brackets; a star
denotes an event or group of events occurring zero
or more times; and a plus sign denotes an event or
group of events occurring one or more times. The

Table 1 Table of events triggered by entities

EmBOINC Init Job Generator
1 Set next time 5 Read traces
2 Get entity’s time 6 Read job
3 Enqueue 7 Make job
4 Terminate
EmBOINC DES controller Host generator
5 Read configuration 5 Read traces
6 Read traces of users 6 Read host
7 Read user 7 Make host
8 Make user
9 Update simulated time Simulated host
10 Pop entity from queue 5 Write request
11 Execute entity 6 Send request
12 Call transitioner 7 Parse reply
13 Call feeder 8 Get job
14 Call validator 9 Get job instance
15 Call assimilator 10 Execute job instance
16 Wait for signal 11 List current job load
17 Continue simulation 12 Calculate requested job
Sequence of events
EmBOINC DES controller:
5,6, (7, 8)+, 9, ((10, 9, 11, [12, 13])+, 12,13,14,15,16,17)+, 4
Work generator: (2, 5, (6, 7)+, 1, 3)+, 4
Host generator: 2, 5, (6, 7)+, 4
Simulated host: ((2, (10, 12)∗, 11, 5, 6, 7, (8, 9)∗)∗, 1, 3)+, 4

Notation: * 0 or more, + 1 or more, () group, [] optional

entity Simulated User is a passive entity and does
not trigger any event therefore is excluded from
the table.

Because we are using a DES, the time at which
the events take place is no longer the wall-clock
time but a simulated time. The DES generates the
simulated time that is propagated to the BOINC
server through messages. The server’s daemons
synchronize with the new time after EmBOINC
wakes them up with signals.

3.3 EmBOINC Settings

Among its several features, BOINC has an ad-
ministrative interface that project administrators
use to access the BOINC database, add or remove
platforms, or check the status of the jobs (for ex-
ample how many jobs are unsent or in progress, or
successfully/unsuccessfully completed, are valid,
or invalid). This interface has been extended to
allow EmBOINC to easily monitor and control
projects.

As in actual BOINC projects, EmBOINC sup-
ports different applications running simultane-
ously. Applications can share the simulated hosts
partially or completely. For every application, the
associated hosts can have different levels of het-
erogeneity, errors, availability, and reliability. The
configuration of an EmBOINC simulation has
three parts:

A. The type and number of hosts participating in
the project (host modeling).

B. The length, type, number, and other features
of jobs generated by each application in the
project (job characterization).

C. The BOINC server configuration (BOINC
settings).

As shown in Fig. 2, we can predict and analyze
different scenarios by changing one or more of
these components.

A. Host modeling: EmBOINC models a dy-
namic population of hosts and their at-
tributes. This model can be based on a real
BOINC database, extracting and storing use-
ful information in traces. As shown in Fig. 3
there is a 1-to-1 relationship between a simu-
lated host and a real host in a database. For

542 T. Estrada et al.

Host modeling

Data and information flow in EmBOINC

EmBOINC BOINC
Settings

Job
characterization

Simulation (DB)
Performance metrics:

Throughput
Latency

Starvation

BOINC

Fig. 2 EmBOINC parameterization

each host, its constant attributes are obtained
directly from the BOINC database. Constant
attributes include OS, memory, processor
speed, available disk space, and bandwidth.
Probabilistic attributes are estimated statisti-
cally from the host history in the database.
These attributes include the error rate and
valid rate (uniform probabilities that a host
produces an error or a invalid result). Prob-
abilistic attributes also include parameters to
model the probability density function (pdf)
of the host connection interval. This interval
represents the time between two consecutive
connections and can be modeled either with
a normal distribution (see Eq. 1), where μ is

Frequency of connection
AvailabilitySimulated host k

Characterization of simulated hosts using
attributes information obtained from real hosts

Error rate (probability of errors)
Valid rate (probability of valids)

0 … t … 1

Continuous distributions

Discrete distributions

Traces

Real host k

Attributes
OS, Processor, FLOPS, RAM

Fig. 3 Statistical host modeling

the mean and σ is the standard deviation),
or with a Weibull distribution (see Eq. 2).
where α is a shape parameter and β is a scale
parameter).

pdf (x; μ, σ) = e−
(

(x−μ)2

2σ2

)

σ
√

2�
(1)

pdf (x; α, β) =
(

α

β

)(
x
β

)α−1

e−(x/β)α (2)

The EmBOINC user can select which distri-
bution to use. In this paper, we selected the
Weibull distribution because it is supported
by work of Wolski et al. [25] and our previous
work [9], in which we modeled hosts for Pre-
dictor@Home and WCG BOINC projects.

B. Job characterization: EmBOINC allows the
user to specify heterogeneous or homoge-
neous workloads for each application. Jobs
can have different length, number of replicas,
quorum (number of results needed for the
validation), sensitivity (impact of operating
system and architecture on the results of two
instances of the same job), and available plat-
forms, for example 32 or 64 bits, GPU or
CPU, or specific operating system. Job char-
acterization can be extracted from a BOINC
database or can be specified by the user.

C. BOINC settings: EmBOINC uses the
BOINC settings such as the size of the job
cache, homogeneous redundancy level, maxi-
mum number of job instances assigned per
request, and the selection of the scheduling
policy.

3.4 Performance Metrics

EmBOINC measures the following types of per-
formance metrics:

– Throughput-based metrics include project
throughput (rate of valid jobs for the project
as a whole) and application throughput (rate
of valid jobs per application).

– Latency-based metrics include distribution la-
tency (average time from the job generation
to the job instance distribution), in-progress
latency (average time from job distribution to
the reporting of the completed job), execution

Performance Prediction and Analysis of BOINC Projects 543

Table 2 Characterization
of the traces used in the
validation

Project Length Number Mean and Std Error Number
in days of hosts size of jobs (FLOPS) rate of jobs

FightAIDS 18 61460 μ = 5.2e13, σ = 1.6e12 < 5% 600129
H.P. Folding II 18 122632 μ = 4.6e13, σ = 1.1e12 < 5% 118567

latency (average time the job is executed on
the host), and validation latency (average time
from the result collection to its validation).

– Starvation-based metrics measure the capabil-
ity of the BOINC server to keep the volunteer
hosts busy. Host starvation can occur when:
(1) no work is available; (2) the host lacks
sufficient resources (such as memory and disk)
to handle any jobs in the servers cache (3)
all jobs in the servers cache are committed to
a homogeneous redundancy class other than
that of the host.

EmBOINC collects the performance metrics
during and at the end of the simulation. Final eval-
uations are stored in log files and can be accessed
through the EmBOINC interface. These metrics
are also used in the rest of this paper for validation
and prediction of BOINC projects.

4 Validating EmBOINC Accuracy

To validate the accuracy of EmBOINC, we used
traces from two World Community Grid3 applica-
tions: FightAIDS@Home and Human Proteome
Folding II. FightAIDS@Home represents a typi-
cal BOINC application in terms of the number of
replicas, or instances per job, and the quorum: the
average number of replicas and quorum are 3 in-
stances per job. Human Proteome Folding II uses
a higher level of replication: up to 19 instances per
job, and quorum: up to 14 instances.

Traces were used to describe the simulated
hosts and their statistical behavior, as well as
the workload characterization of the project. The
traces were taken from October 11 to October 29,
2008. During this period the two applications were
running in parallel with more than 120,000 active
hosts, 46,000 users, and 1,500,000 jobs.

3http://www.worldcommunitygrid.org

Table 2 summarizes the main features of the
traces in terms of length (number of days), size
of the host community (number of hosts), job
size (FLOPS), host error rates, and number of
jobs per traces. Figure 4 shows the distribution
of operating systems (OS) and processor vendors
for the traces used. As shown in the figure, a
large majority of computers participating in World
Community Grid are Windows/Intel.

We validated EmBOINC in terms of through-
put-based metrics (jobs distributed and collected)
and latency-based metrics (distribution and in-
progress latency). A validation in terms of starva-
tion was not feasible because BOINC servers do
not store this information in their database and
therefore this data is not available for comparison.

With reference to the throughput-based met-
rics, we first compared the cumulative number of
job instances distributed and collected per day in
EmBOINC simulations versus the same data from
the WCG applications. Figure 5a and b compare
the cumulative number of EmBOINC simulations
versus FightAIDS@Home. Figure 6a and b com-
pare the same cumulative values for the second
application, Human Proteome Folding II. As we
can see in Figs. 5 and 6, EmBOINC can track and
closely follow both the changes in number of jobs
distributed per day and jobs collected per day. A
comparison in terms of total throughput at the end

Darwin Intel
Darwin Macintosh

Linux AMD
Linux Intel

Windows AMD

Windows Intel

Darwin Intel

Darwin Macintosh

Linux AMD

Linux Intel

Windows AMD

Windows Intel

Fig. 4 Characterization of WCG hosts

http://www.worldcommunitygrid.org

544 T. Estrada et al.

(a) Cumulative job instance distribution (b) Cumulative job result collection

Fig. 5 Job instance distribution and collection for WCG and EmBOINC in FightAIDS@Home (a, b)

of the 19 days is presented in Table 3. In the table,
job instances are classified by: total instances gen-
erated (Total), instances in progress (In-progress),
and instances completed (Over). The instances
that are completed can be categorized as suc-
cessfully completed without error (Success), com-
pleted with error (Error), and timed-out (Timed-
out). The successfully completed instances can
be categorized as valid (Valid), invalid (Invalid),
and still waiting for validation (Pending). Overall,
the table shows that the EmBOINC and WCG
throughput agree fairly closely.

With reference to the latency-based metrics,
Figs. 7 and 8 show the comparison of the distri-

bution and in-progress latencies for World Com-
munity Grid versus EmBOINC simulations. In
particular, Fig. 7a compares the distribution la-
tency and Fig. 7b compares the in-progress latency
of FightAIDS@Home and EmBOINC. Figure 8a
and b compare the same latencies for Human
Proteome Folding II. The box plot data graphics
consist of seven different pieces of information.
The whiskers on the bottom extend from the 10th
percentile (bottom decile) and top 90th percentile
(top decile). Outliers are placed at the end of
the top decile whiskers (outliers caps). The top,
bottom, and line through the middle of the box
correspond to the 75th percentile (top), 25th per-

(a) Cumulative job instance distribution (b) Cumulative job result collection

Fig. 6 Job instance distribution and collection for WCG and EmBOINC in Human Proteome Folding II (a, b)

Performance Prediction and Analysis of BOINC Projects 545

Table 3 Total throughput values in WCG and EmBOINC
simulations

Job state FAIDS@Home H.Prot. Folding II
WCG EmBOINC WCG EmBOINC

Total 64119 67091 1462602 1491921
In-progress 27032 31404 174381 244185
Over 37087 35687 1288221 1247736
Success 26165 23409 1215593 1181694
Valid 25206 22590 1200421 1167482
Invalid 78 92 14978 14021
Pending 630 479 14 22
Error 1775 1986 57988 53534
Timed-out 9141 10273 14594 12411

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D
ay

s

 WCG
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D
ay

s

EmBOINC

(a) Distribution latency

0

5

10

15

D
ay

s

 WCG
0

5

10

15

D
ay

s

EmBOINC

(b) In-progress latency

Fig. 7 Latency comparisons for WCG and EmBOINC in
FightAIDS@Home (a, b)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D
ay

s

 WCG
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D
ay

s

EmBOINC

(a) Distribution latency

0

5

10

15

D
ay

s

 WCG
0

5

10

15

D
ay

s

EmBOINC

(b) In-progress latency

Fig. 8 Latency comparisons for WCG and EmBOINC in
Human Proteome Folding II (a, b)

centile (bottom), and 50th percentile (middle). A
square is used to indicate the arithmetic mean.
Box plot charts are used in the rest of this paper
to effectively display statistical information.

Table 4 shows a quantitative comparison of the
distribution and in-progress latencies in WCG and
EmBOINC. For a medium-size host community
such as that of FightAIDS@Home, EmBOINC
can capture both the distribution latency, with an
error in the mean of 1.4 hours, and the in-progress
latency, with an error in the mean of 18 hours
(24%). With larger host communities such as that
of Human Proteome Folding II, EmBOINC is still
able to capture the distribution latency with an

546 T. Estrada et al.

Table 4 Mean and
standard deviation of
distribution and
in-progress latencies for
WCG and EmBOINC

Comparison Dist. latency (hrs) In-prog. latency (hrs)
Mean Std Mean Std

FightAIDS@Home—WCG 5.52 7.44 93.96 80.35
FightAIDS@Home—EmBOINC 6.96 8.64 75.44 78.72
H. Prot. Folding II—WCG 12.09 6.96 45.12 52.08
H. Prot. Folding II—EmBOINC 12.48 8.16 30.96 49.68

error in the mean of 0.4 hours (15 minutes), but
with a slightly higher error for the in-progress
latency, with an error in the mean of 15 hours
(34%). The size and heterogeneity of the host
community, as well as the randomness associated
with volunteer computing, are the causes of the
higher variability for in-progress latencies.

5 Using EmBOINC: Three Case Studies

BOINC embodies many policies related to the
generation, assignment, and validation of jobs.
EmBOINC enables the systematic study of such
policies. It allows us to predict the performance
of new or existing policies, either in the context
of a typical existing project or in a hypothetical
extreme condition such as highly unreliable or
unavailable hosts, extremely large or small jobs,
or the presence of many malicious attackers. We
now present three case studies illustrating the
use of EmBOINC. These studies are based on
the Docking@Home project, described briefly in
Section 2.3. The Docking@Home database was
used to generate the simulated hosts and their sta-
tistical behavior. The workload characterization
was built synthetically by EmBOINC using the
parameters in Table 5. Figure 9 shows the distri-
bution of OSs and processor vendors for hosts in
this project.

5.1 Case Study I: Comparison of Job
Assignment Policies

A BOINC server’s job assignment policy deter-
mines the number and type of job instances that
are assigned to given host in response to a request

for a given number of CPU seconds. We compare
the following policies:

– Policy 0. This policy enumerates jobs from
the server’s queue, and assigns them to the
requesting host until (based on estimated run-
time) the CPU time request has been satisfied.
It assigns a job only if the host has sufficient
disk space and memory, and only if it is pro-
jected to complete the job by its deadline.

– Policy 1. This policy is based on Policy 0, but
modifies the requested CPU time X as follows:
if the host has a recent average credit higher
than a certain threshold, then X is increased by
10%; if the error rate of the host is higher than
30%, X is changed in direct proportion to the
host availability (fraction of time that the host
is on and active) and in inverse proportion to
the host error rate.

– Policy 2. This policy assigns short jobs to slow
hosts and longer jobs to fast hosts.

– Policy 3. This policy is based on Policy 0, but
modifies the requested CPU time X as follows:
if the host has a recent average credit higher
than a certain threshold, X is increased by
10%; if the error rate of the host is higher than
5%, X is reduced by half.

We studied the impact of these scheduling poli-
cies on the performance metrics. Figure 10a shows
the total throughput of the policies. Figure 10b
and c show the statistical variation of job instances
distributed and collected per day (the higher the
better). The distribution and in-progress latencies
are shown in Fig. 10d and e respectively (the

Table 5 Main features of
the traces used in the
predictions

Project Length Number Mean and Std size Error rate Number
in days of hosts of jobs (FLOPS) of jobs

D@H 25 4396 μ = 1.8e13, σ = 3.1e13 10%, 30%, 60% 89052

Performance Prediction and Analysis of BOINC Projects 547

Linux AMD

Linux Intel

Windows AMD

Windows Intel

Linux AMD

Linux Intel

Windows AMD

Windows Intel

Fig. 9 Characterization of Docking@Home hosts

lower the better). Figure 10f shows the starvation
rates (the lower the better). Overall, we can see
that Policy 1 outperforms Policy 0 with higher
throughput, lower distribution latency, and sim-
ilar in-progress latency and starvation. The poor
performance of Policies 2 and 3 is due to the less
lenient approach used in assigning job instances
to hosts. In Policy 2 the starvation rate is the
highest (Fig. 10f) meaning that the server rejects
more host’s requests. Also, the poor selection of
hosts results in more timed-out results (Fig. 10a).
In Policy 3, only those hosts that are highly reli-
able and available get the amount of work they
request; other hosts get only half the work re-
quested. This results in fewer jobs distributed and
a larger number of unsent jobs on the server
(Fig. 10a).

5.2 Case Study II: Comparison of Varying
Homogeneous Redundancy Granularity

The result of a given job may vary when it is
executed on hosts with different OSs and archi-
tectures [23]. BOINC’s homogeneous redundancy
(HR) mechanism assigns instances of a job to
hosts in the same “numerical equivalence class”.
The notion of numerical equivalence depends on
the application and how it is compiled. BOINC
provides three pre-defined equivalence relations,
or “granularities”:

– HR0 (none): Instances of a given job are as-
signed to hosts with no regard to their operat-
ing system and architecture.

– HR1 (coarse): Instances of a given job are
assigned only to hosts with the same operating
system.

– HR2 (fine): Instances of a given job are sent
only to hosts with the same operating system
and architecture.

We studied the trade-offs when different granu-
larities of HR are applied to an application whose
output depends on both operating system and
architecture. Figure 11a shows the total through-
put of the policies. Figure 11b and c show the
statistical variation of job instances distributed
and collected per day (the higher the better). The
distribution and in-progress latencies are shown in
Fig. 11d and e respectively (the lower the better).
Figure 11f shows the starvation rates (the lower
the better).

As expected, the stricter the HR level, the
more starvation is experienced (Fig. 11f). On the
other hand, a more lenient HR results in a higher
rate of invalid results (Fig. 11a). In addition, the
project administrator must decide how to grant
credit for those job instances that are not valid be-
cause of improper assignment. Outliers for HR1
and HR2 in Fig. 11d represent those instances
that are assigned to rare machines (for example
Linux/AMD): these instances tend to spend more
time in the shared memory buffer, congesting this
buffer and causing further distribution delays for
the other instances (Fig. 11d).

5.3 Case Study III: Replication Levels
and Error Rates

In the context of volunteer computing, jobs fail
a nonzero fraction of the time. This fraction de-
pends on both the host population (some hosts
may have intermittent hardware failures) and on
the application. To deal with high error rates we
can consider replicating each job on more hosts.
In the third case study we considered three repli-
cation levels (2, 3, and 4), and three different
error rates (10%, 30%, and 60%). In all nine
cases we use the same quorum of two: the server
requires only two job instances for validation, but
generates and distributes up to four instances.
Figure 12a shows the total throughput for the
nine scenarios. Figure 12b and c show the number
of valid jobs and the number of job instances
generated at the end of the EmBOINC simu-

548 T. Estrada et al.

Fig. 10 Case study I:
comparison of job
assignment policies (a–f)

Unsent InProg Over Success Valid Invalid Pending Error Timeout
0

0.5

1

1.5

2

2.5
x 10

5

N
um

be
r

of
 jo

b
in

st
an

ce
s

Policy 0
Policy 1
Policy 2
Policy 3

(a) Total throughput

Policy 0 Policy 1 Policy 2 Policy 3
0

200

400

600

800

1000

1200

1400

1600

(b) Job instance distribution per hour

Policy 0 Policy 1 Policy 2 Policy 3
0

200

400

600

800

1000

1200

1400

1600

(c) Job instance collection per hour

Policy 0 Policy 1 Policy 2 Policy 3
0

2

4

6

8

10

12

14

16

(d) Distribution latency (days)

Policy 0 Policy 1 Policy 2 Policy 3
0

0.5

1

1.5

2

2.5

3

(e) In-progress latency (days)

Policy 0 Policy 1 Policy 2 Policy 3
0

10

20

30

40

50

(f) Percentage of starvation

lations respectively. Figure 12d and e show the
distribution and in progress latencies for the nine
scenarios.

These results show that increasing replication
does not compensate for a growing error rate. As
shown in Fig. 12a and b, even with the higher rate

Performance Prediction and Analysis of BOINC Projects 549

Fig. 11 Case study II:
comparison of varying
homogeneous
redundancy granularity
(a–f)

Unsent InProg Over Success Valid Invalid Pending Error Timeout
0

0.5

1

1.5

2

2.5

3
x 10

5

N
um

be
r

of
 jo

b
in

st
an

ce
s

HR0
HR1
HR2

(a) Total throughput

HR0 HR1 HR2
0

200

400

600

800

1000

1200

1400

1600

(b) Job instance distribution per hour

HR0 HR1 HR2
0

200

400

600

800

1000

1200

1400

1600

(c) Job instance collection per hour

HR0 HR1 HR2
0

2

4

6

8

10

12

14

16

(d) Distribution latency (days)

HR0 HR1 HR2
0

0.5

1

1.5

2

2.5

3

(e) In-progress latency (days)

HR0 HR1 HR2
0

10

20

30

40

50

(f) Percentage of starvation

550 T. Estrada et al.

Fig. 12 Case study III:
replication levels and
error rates (a–e)

Unsent InProg Over Success Valid Invalid Pending Error Timeout
0

0.5

1

1.5

2

2.5
x 10

5

N
um

be
r

of
 jo

b
in

st
an

ce
s

R2 10%
R3 10%
R4 10%
R2 30%
R3 30%
R4 30%
R2 60%
R3 60%
R4 60%

(a) Total throughput

R2 10% R3 10% R4 10% R2 30% R3 30% R4 30% R2 60% R3 60% R4 60%
0

2

4

6

8
x 10

4

N
um

be
r

of
 v

al
id

 jo
bs

(b) Job instance distribution per hour

R2 10% R3 10% R4 10% R2 30% R3 30% R4 30% R2 60% R3 60% R4 60%
0

1

2

3

4

5
x 10

5

N
um

be
r

of
 jo

b
in

st
an

ce
s

(c) Job instance collection per hour

R2 10% R3 10% R4 10%
0

2

4

6

8

10

12

14

16

(d) Distribution latency (days)

R2 10% R3 10% R4 10%
0

0.5

1

1.5

2

2.5

3

(e) In-progress latency (days)

of 60%, the number of valid results decreases as
the replication factor increases. We can observe in
Fig. 12c a significant increase in job instances and

the associated increase of storage requirements.
The BOINC server is using more storage for a
longer time because, as showed in Fig. 12d, the

Performance Prediction and Analysis of BOINC Projects 551

distribution latency grows linearly with the num-
ber of replicas. One cause of higher latency is
that BOINC does not distribute instances of the
same job to the same host, or to hosts belonging
to the same user. Hence indiscriminate replication
result in a significant waste of computing power.
A solution to this problem could be the use of
selective replication as proposed in [2].

6 Related Work

In this section we discuss previous work in the
modeling and simulation of grid and volunteer
computing systems.

6.1 Modeling Grid and VC Projects

Important work has been done to predict distribu-
tion and execution times on grid and desktop grid
computing systems. Predictions of distribution la-
tencies are presented in [7] where the authors use
statistical techniques to predict job queue times in
a space-sharing parallel machine with the First-
Come-First-Served scheduling policy. In [4, 18,
19], Wolski et al. estimate the time jobs wait in
queues by using a non-parametric method and
quantiles to define upper time bounds. The pre-
diction of execution times is presented in [22]
and [14]. In [22] the authors characterize and
predict job execution times with templates derived
from execution times of other similar applications.
In [14] statistical methods are used to estimate
the job execution time (modeled as a random
variable) in heterogeneous environments (a large
distributed network of heterogeneous machines)
supported by an kNN algorithm.

Resource availability is modeled with statistical
distributions in [12, 17, 25, 26]. In [12], Hein et al.
model unreliable hosts with a Weibull distribu-
tion. In [25], Wolski et al. model resource capabil-
ities, dynamic behavior, availability, failure, and
connectivity for grid and global computing sys-
tems with Weibull and hyper exponential distribu-
tions. This work is extended by the authors in [26].
Two- and three-stage hyperexponentials are used
to model machine availability in [17] when data
shows up-and-down trends. To the best of our
knowledge, no past work addresses modeling of

distribution latencies and in-progress latencies for
VC projects.

6.2 Grid Simulators

The performance of grid applications has been
studied in the past using grid simulators such as
SimGrid [5] and DGSchedSim [6] or emulators
such as MicroGrid [27] and MobiNet [16].

SimGrid [5] is a simulation framework for eval-
uating cluster, grid, and P2P algorithms. There
are important differences between SimGrid and
EmBOINC in terms of goals and scope. SimGrid
focuses on studying the behavior of resources
(for example CPU, disk space, and network) in
grid systems accurately. To achieve the high ac-
curacy, SimGrid emulates applications at the cost
of reducing its capability to simulate very large
environments. DGSchedSim [6] is a trace driven
simulator that can be used to evaluate schedul-
ing algorithms of applications executed in het-
erogeneous desktop grid systems. The main goal
of DGSchedSim is to evaluate turnaround time
of jobs. Similarly to EmBOINC represents work
load based on traces collected from real environ-
ments. However, the size of the scenarios that can
be simulated in DGSchedSim are several orders
of magnitude smaller than what can be simulated
with EmBOINC.

Emulators such as MicroGrid [27] and Mobi-
Net [16] focus mainly on emulating the network
in Grid environments. They usually inject traffic
or capture signals into real LANs or wireless net-
works to reproduce the network behavior in de-
tail, but do not model the behavior of applications
and their jobs.

In general, grid simulators and emulators do
not capture the characteristics of BOINC projects
since they are not tailored to capture the higher
levels of volatility, heterogeneity, and error rates
in volunteer computing.

6.3 BOINC Simulators

There are three main BOINC simulators: The
BOINC client emulator, SimBOINC, and SimBA.
The BOINC client emulator [15] uses the BOINC
client code; its goal is to study and replicate the
way in which job instances are scheduled and

552 T. Estrada et al.

Table 6 Comparison of
BOINC simulators

EmBOINC SimBA BOINC client SimGrid
emulator

Server scheduler Emulation Simulation – Simulation
Work generation Emulation Simulation – Simulation
Work collection Emulation Simulation – Emulation
Work validation Emulation Simulation – –
Number of hosts > 100000 < 50000 1 Few 10 000
Host scheduler – – Emulation Emulation
Host execution Traces+statistics Traces+statistics Simulation Emulation
Host connection Traces+statistics Traces+statistics Emulation Simulation
Host availability Traces+statistics Traces Simulation Emulation
Host reliability Traces+statistics Traces – –
Number of jobs > 2millions < 1million N > 1million
Workload Traces Input Settings Settings
Size of jobs Traces Input Settings Settings
Replication factor Traces Traces – –
Number of users > 20000 – – –
Reliability of users Traces – – –
Number of apps N 1 N N

executed inside a single BOINC client. It is not
able to model or study server scheduling policies.
SimBOINC4 simulates desktop grids and volun-
teer computing systems. This simulator is based
on the SimGrid toolkit and uses traces obtained
from real BOINC clients. Currently this project
has been put on hold and does not include recent
major changes in BOINC. SimBA [24] simulates
the BOINC server scheduler and its interaction
with a host population. Like EmBOINC, it sim-
ulates the generation and distribution of jobs that
are executed in a highly volatile, heterogeneous,
and distributed VC environment. It also simulates
the collection and validation of completed jobs.
SimBA uses traces from existing BOINC projects.
Unlike EmBOINC, the BOINC server logic is
represented abstractly in SimBA’s discrete event
simulator. This has the disadvantages mentioned
earlier: if may not model the server logic accu-
rately, and it is difficult to track the frequent
changes to the server code. In comparison, Em-
BOINC is more robust, accurate, easy to use, and
easy to maintain.

Table 6 compares the features available in Em-
BOINC, SimBA, SimBOINC, and SimGrid. If a
feature is marked with a dash, then that feature is
not simulated or is not available. The table also
shows when a feature is simulated or emulated,

4http://simboinc.gforge.inria.fr/

and when a feature is characterized by values
from traces, modeled statistically, or set explicitly
through input values.

7 Conclusions

In this paper we presented EmBOINC, a tool
for studying server scheduling policies in BOINC-
based volunteer computing projects. EmBOINC
uses a hybrid approach in which the part of the
system under study (the server) is emulated, while
the remainder of the system (the volunteer host
population) is simulated.

EmBOINC is easy to install and to use. The
selection of host population and parameters, and
the analysis of results, can be done through simple
Web interfaces. Equally important, EmBOINC is
self-maintaining: EmBOINC is integrated directly
into BOINC code and can be used with the latest
version of the BOINC server software. Its integra-
tion in BOINC makes EmBOINC convenient for
testing and tuning: every policy tested or tuned
with EmBOINC works unchanged with BOINC.
The comparison of EmBOINC-generated results
with BOINC traces shows its accuracy in predict-
ing the behavior of the real projects.

We have demonstrated the use of EmBOINC
to study questions such as: Given an application,
what scheduling policy, homogeneous redundancy

http://simboinc.gforge.inria.fr/

Performance Prediction and Analysis of BOINC Projects 553

granularity, and replication level are best? Given a
set of jobs and hosts, what throughput and latency
can scientists expect?

EmBOINC is freely available upon request to
the authors.

Acknowledgements The authors thank Kevin Reed
(IBM) for the World Community Grid traces and the
BOINC community for their time, dedication, and com-
puter resources.

Open Access This article is distributed under the terms
of the Creative Commons Attribution Noncommercial Li-
cense which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original
author(s) and source are credited.

References

1. Anderson, D.P.: BOINC: a system for public-resource
computing and storage. In: Proc. of the 5th IEEE/ACM
International Workshop on Grid Computing (2004)

2. Anderson, D.P., Reed, K.: Celebrating diversity in vol-
unteer computing. In: Proc. of the Hawaii International
Conference on System Sciences (HICSS) (2009)

3. Anderson, D.P., McLeod VII, J.: Local scheduling
for volunteer computing. In: Proc. of the Workshop
on Large-Scale, Volatile Desktop Grids (PCGrid)
(2007)

4. Brevik, J., Nurmi, D.C., Wolski, R.: Predicting bounds
on queuing delay in space-shared computing environ-
ments. In: Proc. of the IEEE International Symposium
on Workload Characterization (2006)

5. Casanova, H., Legrand, A., Quinson, M.: SimGrid: a
generic framework for large-scale distributed exper-
iments. In: Proc. of the 10th International Confer-
ence on Computer Modeling and Simulation (UKSIM)
(2008)

6. Dominguez, P., Marques, P., Silva, L.: DGSchedSim:
a trace-driven simulator to evaluate scheduling algo-
rithms for desktop grid environments. In: Proc. of the
Euromicro Conference on Parallel, Distributed, and
Network-Based Processing (2006)

7. Downey, A.B.: Predicting queue times on space-sha-
ring parallel computers. In: Proc. of the 11th Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS) (1997)

8. Estrada, T., Flores, D., Taufer, M., Teller, P., Kerstens,
A., Anderson, D.P.: The effectiveness of threshold-
based scheduling policies in BOINC projects. In: Proc.
of the 2nd IEEE International Conference in e-Science
and Grid Computing (e-Science) (2006)

9. Estrada, T., Taufer, M., Reed, K.: Modeling job lifes-
pan delays in volunteer computing projects. In: Proc.
of the 9th IEEE International Symposium on Cluster
Computing and Grid (CCGrid) (2009)

10. Estrada, T., Taufer, M., Reed, K., Anderson, D.P.:
EmBOINC: an emulator for performance analysis of
BOINC projects. In: Proc. of the 3rd Workshop on
Desktop Grids and Volunteer Computing Systems
(PCGrid) (2009)

11. Gathmann, F.O.: Python as a discrete event simulation
environment. In: Proc. of the 7th International Python
Conference (1998)

12. Heien, E.M., Fujimoto, N., Hagihara, K.: Computing
low latency batches with unreliable workers in volun-
teer computing environments. In: Proc. of the 22nd
International Parallel and Distributed Processing Sym-
posium (IPDPS) (2008)

13. Ingalls, R.: Introduction to simulation. In: Proc. of the
2002 Winter Simulation Conference (2002)

14. Iverson, M.A., Ozguner, F., Potter, L.: Statistical
prediction of task execution times through analytic
benchmarking for scheduling in a heterogeneous en-
vironment. IEEE Trans. Comput. 48(12) 1374–1379
(1999)

15. Kondo, D., Anderson, D.P., McLeod VII, J.:
Performance evaluation of scheduling policies for vol-
unteer computing. In: Proc. of the 3rd IEEE Inter-
national Conference on e-Science and Grid Computing
(e-Science) (2007)

16. Mahadevan, P., Rodriguez, A., Becker, D., Vahdat,
A.: MobiNet: a scalable emulation infrastructure for
ad hoc and wireless networks. In: Proc. of the Inter-
national Conference on Mobile Systems, Applications
and Services (2005)

17. Mutka, M.W., Livny, M.: Profiling workstations’ avail-
able capacity for remote execution. In: Proc. of the 12th
International Symposium on Computer Performance
Modeling, Measurement and Evaluation (1988)

18. Nurmi, D., Mandal, A., Brevik, J., Koelbel, C.,
Wolski, R., Kennedy, K.: Evaluation of a workflow
scheduler using integrated performance modelling and
batch queue wait time prediction. In: Proc. of the Inter-
national Conference for High Performance Comput-
ing, Networking, Storage, and Analysis (2006)

19. Nurmi, D.C., Brevik, J., Wolski, R.: Qbets: queue
bounds estimation from time series. In: Proc. of the
2007 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems
(2007)

20. Schriber, T.J., Brunner, D.T.: Inside discrete-event
simulation software. In: Proc. of the 2003 Winter Sim-
ulation Conference (2003)

21. Shannon, R.E.: Introduction to the art and science of
simulation. In: Proc. of the 1998 Winter Simulation
Conference (1998)

22. Smith, W., Taylor, V., Foster, I.: Using run-time predic-
tions to estimate queue wait times and improve sched-
uler performance. In: Job Scheduling Strategies for
Parallel Processing, pp. 202–219. Springer, New York
(1999)

23. Taufer, M., Anderson, D.P., Cicotti, P., Brooks III,
C.L.: Homogeneous redundancy: a technique to ensure
integrity of molecular simulation results using public
computing. In: Proc. of the 14th Heterogeneous Com-
puting Workshop (2005)

554 T. Estrada et al.

24. Taufer, M., An, C., Kerstens, A., Brooks III, C.L.: Pre-
dictor@home: a protein structure prediction supercom-
puter based on global computing. IEEE Trans. Parallel
Distrib. Syst. 17(8), 786–796 (2006)

25. Wolski, R., Nurmi, D., Brevik, J., Casanova, H., Chien,
A.: Models and modeling infrastructures for global
computational platforms. In: Proc. of the 22nd Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS) (2005)

26. Wolski, R., Nurmi, D., Brevik, J.: An analysis of avail-
ability distributions in condor. In: Proc. of the 21st
International Parallel and Distributed Processing Sym-
posium (IPDPS) (2007)

27. Xia, H., Dail, H., Casanova, H., Chien, A.: The Mi-
croGrid: using emulation to predict application perfor-
mance in diverse grid network environments. In: Proc.
of the Workshop on Challenges of Large Applications
in Distributed Environments (2004)

	Performance Prediction and Analysis of BOINC Projects: An Empirical Study with EmBOINC
	Abstract
	Introduction
	Volunteer Computing and BOINC
	Volunteer Computing
	BOINC
	BOINC Projects

	Methodology
	Emulator Framework
	Simulation Component
	EmBOINC Settings
	Performance Metrics

	Validating EmBOINC Accuracy
	Using EmBOINC: Three Case Studies
	Case Study I: Comparison of Job Assignment Policies
	Case Study II: Comparison of Varying Homogeneous Redundancy Granularity
	Case Study III: Replication Levels and Error Rates

	Related Work
	Modeling Grid and VC Projects
	Grid Simulators
	BOINC Simulators

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

