J Grid Computing (2009) 7:225-246
DOI 10.1007/s10723-009-9118-3

Negotiating SLAs-An Approach for a Generic
Negotiation Framework for WS-Agreement

Sebastian Hudert - Heiko Ludwig - Guido Wirtz

Received: 15 April 2007 / Accepted: 2 April 2009 / Published online: 22 April 2009

© Springer Science + Business Media B.V. 2009

Abstract The current Web Services Agreement
specification draft proposes a simple request-
response protocol for agreement creation only
addressing bilateral offer exchanges. This pa-
per proposes a framework augmenting this WS-
Agreement to enable negotiations according to
a variety of bilateral and multilateral negotiation
protocols. The framework design is based on a
thorough analysis of taxonomies for negotiations
from the literature in order to allow for capturing
a variety of different negotiation models within a
single, WS-Agreement compatible, framework. In
order to provide for the intended flexibility, the
proposed protocol takes a two-stage approach: a
meta-protocol is conducted among interested par-
ties to agree on a common negotiation protocol
first before the real negotiation is carried out in

S. Hudert (<)

Department of Information Systems Management,
University of Bayreuth, Bayreuth, Germany
e-mail: sebastian.hudert@uni-bayreuth.de

H. Ludwig
IBM Research, T. J. Watson Research Center,
Hawthorne, NY, USA

G. Wirtz

Distributed and Mobile Systems Group,
Otto-Friedrich University Bamberg,
Bamberg, Germany

the second step due to the protocol established in
the first step.

Keywords SLA . Negotiation protocols -
WS Agreement

1 Introduction

Managing quality of service (QoS) in loosely-
coupled distributed systems such as computa-
tional Grids cannot rely on traditional, centralised
management. Since parameters of systems in
other domains cannot be manipulated, QoS guar-
antees must be obtained in the form of ser-
vice level agreements (SLAs). SLAs represent
qualitative guarantees placed on service invoca-
tions within a service oriented environment. Ser-
vice consumers benefit from guarantees because
they make non-functional properties of service
predictable, often secured by a penalty. On the
other hand, SLAs enable service providers to
manage their capacity, knowing the expected re-
quirements. By employing SLAs, a robust service
oriented architecture can be realised, even across
company boundaries. To support broad applica-
tion, standards for the structure of agreement doc-
uments as well as a a standard process to establish
and monitor them are required. Such protocols
are particularly important if the agreement cre-
ation is to be executed automatically.

@ Springer

226

S. Hudert et al.

The Web Services Agreement (WS-
Agreement) specification is a standardisation
effort conducted by the Open Grid Forum (OGF)
in order to facilitate creation and monitoring of
SLAs [1]. This standard defines an XML-based
structural definition of SLA documents, a simple
request-response protocol for agreement creation
as well as corresponding interfaces for agreement
creation and monitoring. A WS-Agreement
specifies functional properties and qualitative
service level guarantees in a detailed way as a set
of terms.

However, the proposed agreement creation
process is restricted to a simple request-response
protocol: one party (agreement initiator) creates
an agreement document, possibly based on an
agreement template, and proposes it to the other
party (agreement responder). The agreement re-
sponder evaluates the offered agreement and as-
sesses its resource situation before accepting or
rejecting the offer. This protocol does not enable
advanced negotiation formats involving numerous
parties in different roles such as auctions. En-
abling a variety of negotiation protocols would
result in wider applicability of WS-Agreement for
more demanding allocation problems.

The incorporation of different negotiation pro-
tocols into the agreement creation process of
WS-Agreement poses several problems: First,
such protocols must be integrated seamlessly in
the overall WS-Agreement protocol to enable
subsequent agreement monitoring, as defined in
the WS-Agreement specification. Furthermore,
in an automated negotiation, all participating
components—here referred to as agents—must
be aware of all rules and constraints concerning
the negotiation protocol. Finally, a corresponding
infrastructure of role definitions, interfaces and
methods has to be presented to facilitate the ac-
tual negotiations.

To supply the negotiating agents with the nec-
essary information to participate in the actual
negotiation protocol a fixed, well known set of
negotiation protocol definitions could be speci-
fied. Afterwards, during the actual negotiation
the corresponding protocol description is simply
referenced by all participants. However, this limits
the set of available negotiation protocols to a
predefined, finite set. As this would be a first step

@ Springer

to make the negotiation process more flexible, it
limits the range of protocols permitted to those
foreseen at the time, the standard itself is fixed.

In this paper, we propose an even more generic
approach in which parties in a distributed system
agree on a negotiation mechanism first, then con-
duct the SLA negotiation and then fulfill the SLA.
To this end, we define a meta-language for nego-
tiation protocols. Using such a meta-language a
multitude of specific negotiation protocols can be
defined using a well-defined set of attributes and
parameters. These protocol definitions are made
available to all prospective negotiators before the
actual negotiation to inform them which protocol
has been chosen. Furthermore, we propose an ex-
change protocol to distribute the negotiation defi-
nitions to all prospective negotiators and choose a
negotiation protocol. Finally we propose a generic
negotiation protocol that is able to support all spe-
cific negotiation protocols that can be described
with the presented negotiation attributes by sim-
ply carrying out the formerly established protocol
according to its definition in the document the
participants formerly have agreed on. This can be
done as close to standard as possible, i.e., as an
extension to basic WS-Agreement offers.

The rest of this paper is organized as follows:
Section 2 discusses the negotiation models ana-
lyzed in order to define a flexible framework and
introduces the basic concepts and data structures
used in our framework. These are illustrated by
a simple scenario in Section 3. Afterwards, in
Sections 4 and 5, the underlying philosophy as well
as the interfaces and building blocks offered for
the exchange protocol and the negotiation proto-
col itself are introduced, respectively. Section 7
discusses some related work. We conclude the
paper in Section 8 with a summary as well as some
remarks on future work.

2 Basic Definitions and Data Structures

Before describing the exchange and negotiation
protocols this section will give a short overview
of the basic concepts and data structures used in
the negotiation framework subsequently. In order
to provide a sufficient background to render the
decisions made more transparent, characteristical

A Generic Negotiation Framework for WS-Agreement

227

attributes found in negotiation taxonomies from
the literature are discussed here, too.

2.1 Negotiation Protocol Definition

This framework supports a multitude of different
negotiation protocols, like various auction types
or one-on-one bargaining protocols. Each nego-
tiation protocol that is to be conducted fully au-
tomated has to be exhaustively described. Only
by providing a complete and machine-processable
process description its correct application in au-
tomated distributed systems can be guaranteed.
In order to enable such a protocol description a
set of negotiation attributes has been identified
as the basis for this framework. Employing these
attributes a variety of different negotiation proto-
cols can be specified in terms of a structured pro-
tocol description document. Such documents are
subsequently distributed to all agents involved in
a particular negotiation according to the exchange
protocol described in the next section.

In order to specify a comprehensive set of
negotiation attributes this framework employs ne-
gotiation taxonomies originating in e-commerce
research and economics. These taxonomies
present a set of parameters that allow for detailed
description of specific negotiation protocols. The
most important taxonomies for this paper will
shortly be described in the following.

Alessio R. Lomuscio, Michael Wooldridge and
Nicholas R. Jennings presented a quite compre-
hensive definition of negotiation parameters in
[17]. They emphasize automated negotiations in
electronic commerce (e-commerce) settings. Even
though the scenario definitions and agent concepts
used do not exactly fit the SLA settings our work is
based on, because of the focus on pre-negotiation
phases and high human interaction rates, they
already show some of the issues that arise when
automated negotiations take place. Such problems
are formalisation of negotiations or implemen-
tation of negotiation strategies by agents them-
selves. One aspect, that makes their work very
suitable as a basis for our framework is that the
authors do not only concentrate on auctions, but
on negotiations in general which fits our approach
of creating a data structure for multiple negotia-
tion protocols.

Peter Wurman, Michael Wellman and William
Walsh defined a set of auction parameters
while developing an internet-based “platform for
price-based negotiation—the Michigan Internet
AuctionBot” [36]. This system was designed to
serve as an auction server for humans as well as
software agents and only focused on one nego-
tiated issue: the price. Therefore unfortunately
only one-dimensional auctions were supported.
The same authors extended their taxonomy to
also cover multidimensional auctions in a follow-
up, much more comprehensive paper [37]. Here,
they do not only cover auction protocols and
their parameters as a necessary byproduct of the
development of an internet auction server as be-
fore, but focus especially on the different possible
auction protocols and respective parameters. This
approach allows for a much more comprehen-
sive examination of the auction design space. The
second improvement regarding our work is the
already mentioned incorporation of multidimen-
sional auctions. Since in a SLA environment the
involved parties will mostly negotiate more than
one desired aspect of a service, multidimensional
auctions will be much more suitable than tradi-
tional auction protocols which allow to negotiate
only the price.

The next taxonomy used in this work was
proposed by Claudio Bartolini, Chris Preist and
Nicholas R. Jennings. It has been developed in
the context of their specification of a framework
for automated negotiation in multi-agents systems
(MAS) [4]. Thus, the authors focus on executable
specifications for MAS. They concentrate on mes-
sage formats used and activities conducted by
software agents which represents a very technical
and practical approach to negotiation research.
Their work contributes to this framework as it
assumes similar conditions as in automated SLA
negotiations between software agents like those
supported with our work.

The most detailed taxonomy used was pub-
lished by Michael Strobel and Christof Weinhardt
[34]. It represents the most comprehensive cate-
gorisation and description of electronic negotia-
tions found so far. In contrast to Wurman et al.,
Strobel and Weinhardt aim for a more generic
understanding of negotiations than just claim-
ing negotiation design is essentially equivalent to

@ Springer

228

S. Hudert et al.

auction design [37]. They regard auctions as one
particular (sub)class of negotiations; this point
of view was adopted in our work. The authors
also do not stress software agent characteristics
such as agent strategy or computational complex-
ity like Lomuscio et al. do, because they con-
sider “the degree of automation (...) as orthogonal
to the classification criteria in [their] taxonomy”
[34]. Thus the negotiation taxonomy presented by
Strobel and Weinhardt aims to describe and clas-
sify a multitude of negotiation protocols in a very
generic, yet comprehensive way without stressing
technology-related issues.

To ensure a solid foundation for our frame-
work, the taxonomies discussed so far were inte-
grated and consolidated in order to derive a set
of attributes and corresponding domains that are
especially suitable for SLA negotiation settings.
Such scenarios inherently exhibit distinct charac-
teristics, leading to distinct requirements for our
framework:

— SLAs normally comprise more than just
one attribute, therefore an SLA negotia-
tion framework must focus on combinatorial
negotiations.

— Each service referenced individually and
therefore defines an individual item. Hence
multi-unit negotiations focussing on homoge-
nous goods to be traded are not appropriate in
SLA negotiation settings.

— An SLA always governs one or more ser-
vice invocations done by a service consumer.
The service is offered by the service provider.
Therefore SLA negotiations primarily focus
on these two roles in a negotiation.

— In order to guarantee integrity of the negotia-
tion a common concept in negotiation theory
is a trusted third party governing the nego-
tiation process. This is also appropriate for
SLA environments in which service consumers
and providers can utilise such a central service
for discovery of potential negotiation partners
as well as a infra-structural node used in the
negotiation process itself.

— A special requirement posed on this frame-
work is the need for fully automated negoti-
ations. Negotiation protocol descriptions used
in such fully automated scenarios must con-

@ Springer

form to a very strict structure and must be
syntactically processable by software agents.

We consolidated the negotiation taxonomies
found in the literature with respect to the above
requirements; the result of which will be shortly
sketched in the following. Due to its complexity a
comprehensive description of our taxonomy along
with the derived data model is outside of the scope
of this paper. However, such a detailed definition
can be found in [14], comprising the taxonomy of
negotiation parameters, a respective data model
(formalised as an Entity Relationship Diagram
[7], as well as an Extensible Markup Language
based representation of this data model for seam-
less integration with the WS-Agreement speci-
fication. We identified the following high level
attribute categories:

General Negotiation Process
Negotiation Context
Negotiated Issues

Offer Submission

Offer Allocation
Information Processing

AN o

The General Negotiation Process attributes ab-
stractly define the overall negotiation process.
This includes for example the starting and ter-
mination rules for a negotiation, the number of
rounds or whether or not the negotiation pro-
tocol is rewarding protocol compliance or pun-
ishing protocol violation (employing reputation
concepts).

The Negotiation Context groups attributes con-
cerning the agent-related aspects of a negotiation.
This includes for example the definition of roles
and the admission rules for each role. In terms
of negotiation theory this category defines the
negotiation’s configuration.

The attributes making up the Negotiated Is-
sues category define the values of the SLA to
be negotiated. This category therefore defines for
example. which attributes of a service are subject
to the negotiation, or if the negotiators are al-
lowed to extend the set of negotiated attributes
of a service, for example to request an additional
quality guarantee.

Offer Submission parameters govern the bid-
ding process. Rules concerning the submission of

A Generic Negotiation Framework for WS-Agreement

229

bids or the relation between bids are specified with
these attributes defining which roles are allowed
to post bids, under which conditions a bid can be
posted or whether a valid bid has to fulfill some
constraint. This is used in English Auctions for
example to restrict bids to be superior to the last
valid bid.

The Offer Allocation category attributes gov-
ern the matching process of a negotiation,
more precisely the agreement formation in SLA
scenarios.

The accessible information concerning the cur-
rent status of the negotiation, past offers from par-
ticipating agents and the permission to access this
data is handled with Information Processing at-
tributes. This category therefore defines whether
agents can react on other agents’ actions by defin-
ing what information can be accessed by which
agent, allowing to define sealed-bid or open-cry
negotiations respectively.

We defined all attributes to exhibit one of three
possible value domains:

1. A given data type, such as Integer or Boolean.

2. An explicitly defined value domain, such as an
enumeration of possible values.

3. Unrestricted, meaning that any given rule-
based language can be used for expressing
the respective attribute value. This way com-
plex attributes, such as offer submission re-
strictions, can benefit from the flexibility and
power of external languages, such as e. g. Jess
[12].

Based on these attributes a multitude of 1:1 and
1:n negotiation protocols can be defined as de-
tailed as is necessary for automated execution.

2.2 Negotiation Types and Instances

For understanding our approach, the distinction
between negotiation types and instances is es-
sential. Analogously to types and instances in
object-oriented programming languages, negotia-
tion types describe general classes of negotiations
and define their common attributes and elements.
A negotiation instance, in contrast, stands for one
particular negotiation process of some type that
can be unambiguously referenced. For example,
a negotiation type may define, that there is one

agent involved not allowed to post offers himself,
whereas on the other side n agents can participate
by posting offers, in which every offer has to beat
the last posted offer by some amount and so on.
This roughly describes some type of auction. One
instance of this negotiation type therefore repre-
sents one particular auction process.

Regarding their content, negotiation type and
negotiation instance documents differ slightly.
The main difference is that a negotiation type
does not contain an identifier that is used to refer
to a given negotiation process; such an identifier
identifies a particular negotiation instance and is
therefore only present in the respective instance
description. The majority of the attributes iden-
tified in the previous section, however, have to
be initialized when defining a negotiation type
for they describe types of negotiations and not
individual negotiation processes.

There are only three exceptions; three attri-
butes do not necessarily have to be defined in a
negotiation type document: the start and the ter-
mination and the agents involved in a negotiation
instance.

The start and the termination of a negotiation
can be set in the negotiation type or in the nego-
tiation instance document according to the same
rule. Both attributes can be defined as assertions
over time or as arbitrary constraint expressions
not concerning some time values. A negotiation’s
starting rule can for example define the nego-
tiation to start at August 28th 2008 at 11:00pm
(Central European Time). This would be a time-
based assertion. On the other hand a negotiation
can be defined to start whenever the trusted third
party governing the negotiation sends a respective
message to / invokes a corresponding method on
the participants; this being a constraint expression
not concerning some time values. If a negotiation
start or termination is specified in terms of time
points, this has to be done in the negotiation
instance document since such time points are in-
herently different for each instance. When defined
as a constraint expression over other parameters it
has the starting and termination rules are defined
in the negotiation type since those rules apply to
all negotiations of this type equally.

The involved agents are not specified in a ne-
gotiation type document because the creation of

@ Springer

230

S. Hudert et al.

a negotiation type should be independent from
the actual negotiation process, within which the
negotiators take part. Not having to know all
agents when defining a negotiation type highly
increases flexibility as it allows for definition of
generic negotiation type documents that can be
stored a some repository server. Such a document
would already define all the negotiation protocol’s
attributes, except for the involved participants.

These negotiating agents regularly change over
time and therefore would almost never be exactly
the same for two instances of a given negotiation
type. Hence having to state the set of potential
negotiators in the negotiation type would prevent
our framework from being able to define such
independent type documents that are flexibly in-
stantiated when needed.

During the exchange protocol described in the
next sections other agents subsequently join this
negotiation and have to be incorporated into the
data structure representing the actual negotiation
instance subsequently.

In order to supply the negotiating agents
with the required information about negotiation
types and instances, two Extensible Markup Lan-
guage (XML) document descriptions (formalised
as XML-Schema documents) are used within the
exchange and negotiation protocols as described
in the next sections.

A detailed description of the XML-Schema
documents as well as two extensive examples
of these schema documents (an auction and a
one-on-one bargaining protocol) can be found at
[14].

2.3 Abstract Architecture of Negotiation
Documents

The main negotiation object is a WS-Agreement
template with its corresponding creation con-
straints as defined in the current WS-Agreement
specification [3]. Since this framework augments
the current specification with possibilities to nego-
tiate over a WS-Agreement this fundamental data
structure is adopted for the (partial) definition
of some service(s) to be negotiated. The creation
constraints as part of this template are also used
in this approach to give syntactical restrictions

@ Springer

on the elements still to be initialised or to be
altered during the negotiation. A WS-Agreement
template, some negotiation is defined upon, can
uniquely be referenced by the templateID, unique
for a given template at a distinct endpoint, and
optionally the EPR for the service offering this
template.

The negotiation type document refers to the
WS-Agreement template the negotiation is de-
fined upon and specifies the negotiation attributes
as given by our taxonomy. Given its content the
negotiation type document defines which terms of
a WS-Agreement can be negotiated and how to
do so.

A concrete negotiation is represented by a
negotiation instance document. This document
refers to the negotiation’s type, its participants,
specifies a unique identifier and optionally starting
and/or termination rules as already stated above.

Finally, the result of the complete negotiation
protocol is a valid WS-Agreement document sat-
isfying the creation constraints as defined in the
initial WS-Agreement template referenced in the
negotiation type document.

2.4 Involved Roles

In order to define the different parties involved
in a negotiation process as well as their expected
behavior, three distinct roles are used in our
framework, namely Negotiation Participant, Ne-
gotiation Coordinator and Information Service.
Since this framework is employed in service ori-
ented environments each of these roles offers
some functionality as a service to the other agents
involved in the negotiation.

A Negotiation Participant represents an agent
participating in the initial exchange protocol
(used to distribute the negotiation documents to
the prospective negotiators) and the negotiation
process itself. In terms of service oriented environ-
ments the service consumers and providers make
up such Negotiation Participants.

The Negotiation Coordinator is a logically
centralised instance which handles admission of
agents to a given negotiation as well as (re-)
distribution of the negotiation documents to the
prospective negotiators.

A Generic Negotiation Framework for WS-Agreement

231

The information distribution during the actual
negotiation is governed by the Information Ser-
vice. This service offers information about the
current status of a negotiation (for example the
currently highest bid) or about the offer history
to the requesting agents.

The basic guidelines, data structures and roles
presented here, will be made more concrete in the
next sections by giving an example scenario for the
exchange and negotiation protocols.

Fig.1 Scenario—
example auction

Agent A - Consumer:

Agent B - Provider:

3 Example Scenario

The following scenario provides a typical appli-
cation of our framework (see Fig. 1): In a given
Grid system the individual nodes offer services to
each other. Each of these services can be offered
at different quality levels which have to be defined
for each service invocation. Such service quality
assertions are expressed as SLAs, using the WS-
Agreement standard. In order to allow for flexible

Agent C - Provider: Agent D - Provider:

Exchange
Protocol
finished
1: placeOffer('80ms')
2: placeOffer('70ms’)
3: getStatus()
4: <negotiation status>
S: placeOffer('65ms')
6: placeOffer('60ms")
ongoing
bidding
process
end of
negotiation

7: rejectAgreement()

8: rejectAgreement()

9: acceptAgreement()

@ Springer

232

S. Hudert et al.

negotiations of SLAs, each Grid node is associ-
ated with a software agent or some similar in-
telligent service used for the negotiation process,
that is offering the needed negotiation interfaces
as proposed by our approach. In our scenario
Grid service A (represented by software agent
A) requests some service which is offered from
several nodes in the Grid, for example a currency
service offering methods to convert currency ex-
change rates and to query historical exchange
rates analogously to a stock exchange chart. Agent
A furthermore knows that this service is offered
by several other nodes in the Grid, although at
different service quality levels.

In our scenario, service A uses the currency
service within more complex Grid based work

Table 1 Auction type description for usage scenario

flows ultimately generating financial reports to
its customers, service A potentially submits a big
batch of currency conversions during a given time
span. Hence response time is considered to be
the most important quality parameter in our sce-
nario; a preferably small response time of the
currency service is desired. For this purpose agent
A decides to conduct an auction-like protocol to
negotiate the final SLA. In this auction the only
parameter to be negotiated is the response time of
the currency service. The agent bidding the low-
est guaranteedResponseTime wins the auction,
starting off at a response time of 100 ms which
is the maximum agent A can accept. A typical
interaction stemming from this setting is shown in
Fig. 1.

<negotiation
xsi:schemaLocation="
<negotiationTypelD >
currencyServiceAuctionType
</negotiationTypelD >
<wsAgreementTemplate>
<endpoint>
http ://www.service A .com/currency
</endpoint>
<templateID >
currencyServiceTemplate
</templateID>
</wsAgreementTemplate >

NegotiationType . xsd’>

<!—— start and termination is set in the negotiation instance document ——>

<role roleName="serviceProvider" permissionToPostOffers="true">
<admissionRestriction admissionRestrictionForm="open"/>

</role >

<role roleName="serviceConsumer" permissionToPostOffers="false">

<maximumNumberOfAgents>
1
</maximumNumberOfAgents>

<admissionRestriction admissionRestrictionForm="open"/>

</role >

<negotiatedIssues >
<guaranteeTerms extendable="false">

<guaranteeTermID domain="xsd:integer" values="single">

guaranteedResponseTime
</guaranteeTermID>
</guaranteeTerms>
</negotiatedIssues >
<attributeRestriction >
<attribute >
guaranteedResponseTime
</attribute >
<restriction >
<threshold >
<upperBound>
100
</upperBound>
</threshold>
</restriction >
</attributeRestriction >

</negotiation >

@ Springer

A Generic Negotiation Framework for WS-Agreement

233

For this purpose agent A creates a WS-
Agreement template document according to the
current specification draft [3]. This document
states the expiration of the resulting agreement,
the currency service’s functionality in the ser-
vice description terms as well as the response
time as a service property term to be used in
the service quality assertion. In the service qual-
ity terms 100 ms is set for the guarantee
ResponseTime parameter, stating the upper
bound for this attribute in the subsequent
negotiation.

After having defined the template document,
agent A creates a protocol description as pro-
posed in this framework. This protocol description

Table 2 Auction instance description for scenario

<NegotiationInstance
xsi:schemaLocation="...
xsd">
<negotiationID >
currencyService Auction
</negotiationID >
<negotiationType >
<referencedNegotiationType >
<endpoint>
http ://www.serviceA .com/currency
</endpoint>
<negotiationTypelID >
currencyServiceAuctionType
</negotiationTypelD >
</referencedNegotiationType >
</negotiationType >
<start>
2006—09-30T13:30:00
</start>
<termination>
2006—09-30T23:30:00
</termination >
<agent>
<role >
serviceConsumer
</role>
<agentEPR>
http ://www.service A .com/currency
</agentEPR>
</agent>
<agent>
<role >
coordinator
</role>
<agentEPR>
http ://www.service A .com/currency
</agentEPR>
</agent>
<agent>
<role >
informationService
</role>
<agentEPR>
http ://www.serviceA .com/currency
</agentEPR>
</agent>
</NegotiationInstance >

NegotiationInstance .

references the template document just created (by
stating the endpoint reference where agent A of-
fers its services and the template’s ID) to provide
the prospective negotiators with the link to the
template and therefore to the syntactical restric-
tions of the SLA to be derived. Furthermore it
states that only one agent is allowed to join on
the consumer side of the SLA, which will be agent
A itself, and possibly n different agents can join
the negotiation as providers. The only issue to be
negotiated is the guaranteedResponseTime as
already stated.

Table 1 shows some excerpts of the XML rep-
resentation of the negotiation type definition
as just described Section 2.3: besides referenc-
ing an WS-Agreement template, two roles, i.e.
serviceProvider and serviceConsumer
are introduced as well as the guaranteed
ResponseTime issue to be negotiated with a
restrictive upper bound.

In contrast to the negotiation type definition,
Table 2 presents some aspects of an negotiation
instance that references this auction type: con-
crete start and end dates are given as well as the
agents involved.

4 Exchange Protocol

Our framework supports the complete process of
agreement creation. As depicted in Fig. 2, this cre-
ation process is divided into three distinct phases:
first the initially created negotiation protocol de-
finition has to be distributed to all prospective
negotiators. This process is described with the ex-
change protocol as defined in this section. Subse-
quently the actual negotiation process takes place,
according to the rules defined and distributed in
the previous phase. Such a generic negotiation
protocol is presented in the next section. Finally,
in the agreement acceptance phase one offered
agreement is accepted by one of the participants

Agreement Creation Process

Exchange
Protocol

Exchange
Protecol

Exchange
Protocol

Fig. 2 Agreement creation process

@ Springer

234

S. Hudert et al.

to conclude the negotiation. Alternatively, there
may be no acceptable offer and the negotiation is
terminated by rejecting all offers.

Although not actually part of the exchange
or the negotiation protocol the overall process
consists of one additional phase: the creation of
the negotiation protocol description, which takes
place before the other three stages of agreement
creation. During this phase a negotiation protocol
instance is created which defines the rules for the
following WS-Agreement negotiation.

Since the approach for conduction negotiations
is intended for a Web Services setting, the ex-
change protocol will not focus on exchanged mes-
sages primarily, but on the provided services and
respective methods and method sequences to be
invoked subsequently.

The methods needed for the different nego-
tiation steps within the protocol are structured
in interfaces according to the different roles as
already outlined in the previous section. Using
these roles and respective interface methods, a
range of different scenarios within the exchange
process can be realised.

4.1 Interfaces for the Roles Involved

In order to conduct a negotiation, the involved
agents are assumed to have agreed upon a par-
ticular negotiation instance. Such an instance is
uniquely described with an negotiation instance
document, a data structure containing a unique
identifier for this instance, a reference to the
negotiation type, the list of participating agents
and optionally time-based start and termination
parameters. This follows the instantiation concept
presented in Section 2. Every time an agent joins
an already instantiated negotiation, the data struc-
ture is updated, by adding this agent to the role
it adopts, and redistributed to all participants of
the negotiation that are already known. At the
end of the meta data exchange process thus every
involved agent is aware of the start and termi-
nation of the negotiation, its type and the agents
currently involved. This very general protocol de-
scription already shows which of the roles already
introduced are involved in the exchange process:
a centralised Negotiation Coordinator interacting
with two or more Negotiation Participants.

@ Springer

In the following, we discuss the interface func-
tionality of both roles involved in a bit more detail.
A complete description of all interfaces involv-
ing the corresponding WSDL documents can be
found in [14].

Since the Negotiation Coordinator provides ne-
gotiation protocol descriptions and handles the
admission of participating agents to a given nego-
tiation, the corresponding interface offers a set of
query methods for participants that are used for
requesting available negotiation type and instance
documents.

1. getAllNegotiationTypes()/getAllNegotiation
TypesForTemplate(. . .)

2. getCurrentNegotiations()/getCurrent
NegotiationsForTemplate(. . .)

Thus, very general queries (requesting avail-
able negotiation types) are possible as well as
queries concerning negotiations currently active.
The second dimension, indicated by ‘...ForTem-
plate’, allows for querying negotiation documents
for a particular WS Agreement template the ne-
gotiation is defined upon.

Besides simply asking to join an already run-
ning process, an agent may actively propose a
negotiation instance to a coordinating agent.

1. joinNegotiation(negotiationlD, agentEPR,
‘credentials’)

2. proposeNegotiation(NegotiationInstance-
document)

3. publishNegotiation(NegotiationInstance-
document)

4. publishNegotiationToReceipients(. . .,
[receipients])

Publishing a negotiation differs from the pro-
poseNegotiation()-method in that it is not assumed
that the coordinator used for publishing also is to
act as Negotiation Coordinator of the respective
negotiation. It only offers this negotiation instance
for look-up purposes while the actual admission
and information (re)distribution tasks are con-
ducted by the actual coordinating agent, probably
the one publishing the negotiation instance. This
method can be used to implement systems of dis-
tributed look-up servers.

The publishNegotiationToReceipients()-meth-
od is more specific as the agents that should be

A Generic Negotiation Framework for WS-Agreement

235

actively notified of this negotiation are explicitly
named. In the more generic method the pub-
lishing agent cannot specify to which agents the
negotiation should be published or whether this
negotiation should be published push-style with
the proposeNegotiation()-method at all.

Processing admission of agents at one logical
centralised coordinator service eases the integra-
tion of reputation or security related external sys-
tems involved in the admission process. This way
most of the consistency problems arising when
operating distributed systems can be solved in
a centralised way. All agents joining a negotia-
tion do so by invoking the corresponding method
on the central coordinator service which handles
the whole admission process. Another coordina-
tor task is therefore to notify the participating
agents when others have joined by posting the
updated negotiation instance document to them as
described above.

The second role needed in the exchange pro-
tocol is the one of a regular participant. This role
is adopted by all agents actively participating in
a negotiation, i.e., by service providers as well as
consumers. All these agents have to offer some
methods to enable negotiations.

The Negotiation Participant role, however, is
present in both, the exchange and the negotiation
protocol. In order to describe the offered methods
in a consistent way, the methods used for the ex-
change protocol are described here while the ones
used in the actual negotiation will be sketched in
the context of the negotiation protocol (see next
section).

As described in the context of the coordinator
already, the coordinator needs a handle to provide
participants with up-to-date information about a
negotiation. This is used when new agents have
joined the negotiation and the updated instance
document has to be promoted to all Negotiation
Participants.

1. updateNegotiation(NegotiationInstance-
document)

2. proposeNegotiation(NegotiationInstance-
document)

3. acceptNegotiation(negotiationlD)

On the other hand, it should be possible for a
Negotiation Coordinator to propose a negotiation

instance to a (potential) Negotiation Participant,
as already described. As opposed to the corre-
sponding method of the Negotiation Coordinator
interface, this method proposes a negotiation to
agents to act as regular participants in the result-
ing negotiation.

The acceptNegotiation()-method is offered as
a counterpart for the proposeNegotiation-method
to support asynchronous communication. When a
negotiation is proposed to a Negotiation Coordi-
nator this agent can decide whether to coordinate
this negotiation or not. If it decides to do so, it
invokes the acceptNegotiation()-method, if not a
timeout in the proposing agent occurs showing
this agent that the desired Negotiation Coordi-
nator will not govern the proposed negotiation.
The proposing agent can subsequently propose
this negotiation to another known coordinating
service.

4.2 Protocol Components

Although only providing two distinct roles, the
exchange protocol provides a broad support for
different exchange processes. A multitude of pos-
sible protocols can be constructed from only three
basic logical protocol components: request for and
proposal of negotiation data as well as their medi-
ated exchange. During the first two of which one
agent acts as a coordinator and a participant and
the last of which marks the situation where an
independent Negotiation Coordinator is present.

4.2.1 Request for Negotiation Documents

This step describes the process of one agent re-
questing negotiation type or instance documents
from the respective Negotiation Coordinator.
The corresponding request-methods are defined
in the Negotiation Coordinator interface (see
Section 4.1) for the coordinating agent stores and
(re)distributes this information.

The distinction between types and instances
allows agents to request actually instantiated ne-
gotiations, that are already running or that are
about to start, as well as supported negotiation
types in general. After requesting general types an
agent can propose a concrete instance of a specific

@ Springer

236

S. Hudert et al.

type to the coordinator agent in order to trigger
the instantiation of a new negotiation.

There are several possible ways to request ne-
gotiation data. An agent may, for example, query
all negotiation types supported by the respective
Negotiation Coordinator using the getAlINegotia-
tionTypes()-method. This allows the Negotiation
Coordinator to generally define the supported
negotiation protocols without instantiating one
particular negotiation. The coordinator agent can
thus wait until other agents have requested the
types that are available and propose a particular
type to be instantiated.

On the other hand, agents may query already
instantiated negotiations with the getCurrent
Negotiations(). As a result to such a query for ne-
gotiation instances, the Negotiation Coordinator
returns a list of negotiation instance documents
describing the currently available negotiation
instances.

Analogously to requesting all available nego-
tiation types or instances agents may also query
only types and instances defined for a given WS-

Fig. 3 Process of
requesting available
negotiation types
and instantiating

a negotiation

Participant:

1: getAlNegotiationTypes()

Agreement template, identified with an endpoint
reference (EPR) referencing the service offering
the template and a templateID identifying the
particular template within the set of available
ones at this endpoint. Hence this method provides
agents with a means to inspect all possible negoti-
ation types available for some service they already
know.

If only the possible negotiation types or cur-
rent negotiations are to be queried, the exchange
protocol only consists of one method invocation
and respective return parameters. If one of the re-
turned negotiation types or instances is appealing
for the requesting agent and it wishes to take part
in the respective negotiation, the involved agents
have to conduct an additional step:

In case of the request for negotiation types an
agent can identify a negotiation type it wishes to
instantiate and propose the created instance to
the coordinator by invoking the proposeNegotia-
tion()-method.

If a negotiation is proposed to the Negotiation
Coordinator, the proposing agent is supposed to

Coordinator:

general inquiry or
inquiry related to
template possible

«return»

2: getAlNegotiationTypes()

list of available
negotiation types

3: proposeNegotiation(Negotiationlnstance)

4: acceptNegotiation(negotiationID)

@ Springer

A Generic Negotiation Framework for WS-Agreement

237

act as coordinator during the respective negotia-
tion. Because the participant proposing this ne-
gotiation instance has to know whether it was
accepted or not, the acceptNegotiation()-method
is used to inform asynchronously (much like a
callback) about the coordinator’s decision. Asyn-
chronous communication was considered useful
here because this concept allows a (potential)
coordinating agent to check its current resource
situation before accepting a request.

In the process visualized in Fig. 3, the Ne-
gotiation Coordinator is proposed a negotiation
instance document. It subsequently checks its re-
source situation for deciding whether to accept
such a negotiation or not. The diagram depicts
the situation where the Negotiation Coordinator
accepts. The proposing agent can join this negoti-
ation instance by invoking the joinNegotiation()-
method afterwards.

Fig. 4 Requesting
available negotiation
instances and joining of
the requesting agent

Participant:

If an agent wants to join an already instanti-
ated negotiation (queried before), the proposeNe-
gotiation()-step is omitted. The agent requests
the currently available negotiation instances first,
chooses an appropriate one and invokes the join-
Negotiation()-method on the coordinator after-
wards. This situation and the resulting steps are
shown in Fig. 4.

4.2.2 Proposal of Negotiation Documents

This step represents the process of actively
proposing some instance document to a prospec-
tive participant or coordinator. When proposed
to a coordinator this agent is set as Negotiation
Coordinator in the instance document. This way
negotiations can either be proposed to agents
simply taking part in or to some agent coordinat-
ing the subsequent bidding process. The protocol

Coordinator:

1: getCurrentMegotiations()

«returns

2: getCurrentMegotiations()

list of currently
instantiated
negotiations

3: joinNegotiation(negotiationID, EPR, Credentials)

wreturns

4: joinNegotiation{negotiationID, EPR, Credentials)

updated
negotiation
instance
docurment

@ Springer

238

S. Hudert et al.

component regularly follows a request for negoti-
ation types in order to propose the newly created
instance to the coordinating agent. The details
complement the process of querying information
and are carried out by the interface methods al-
ready discussed in Section 4.1.

4.2.3 Mediated Exchange Processes

This third building block offers publish/subscribe
functionality to the participants. Agents can pub-
lish negotiation instances at some Negotiation
Coordinator to make it available to a larger com-
munity of prospective negotiation participants.
As already discussed, a Negotiation Coordi-
nator does not have to join the negotiation as
a service provider or consumer, but may act as
a third party only responsible for administrative
tasks. This concept enables the specification of
centralised look-up servers only distributing ne-
gotiation data without taking part in any of these

Agent A: Coordinator:

1: proposeMegotiation{NegotiationInstance)

1.1: acceptNegotiation{NegotiationInstance)

negotiations. These coordinators hence act as me-
diating third parties within the exchange protocol.

To enable publish/subscribe-like functionality
agents should be able to publish negotiation in-
stances to such look-up servers to promote their
desired negotiation protocol. On the other hand
agents requesting available protocols should be
able to query these submitted protocols and
search for appropriate ones.

For this purpose the Negotiation Coordina-
tor offers the publishNegotiation() method. This
method allows for publication of instantiated ne-
gotiations at some coordinating service. The other
agents requesting the available protocols again
query these by invoking the already introduced
request-methods. As described before, the Ne-
gotiation Coordinator can also actively suggest
negotiation instances to other agents using the
proposeNegotiation()-method.

The diagram in Fig. 5 shows an exchange
process where an agent A proposes a negotia-
tion instance to the coordinator that proposes

Agent B: Agent C:

1.2: proposeNegotiation(NegotiationInstance)

1.3: proposeMNegotiation{NegotiationInstance)

1.4: joinNegotiation{negotiationID, EPR, Credentials)

1.5: <<returns> joinNegotiation

updated
Negotiation

Instance
Document

Fig. 5 Mediated exchange process

@ Springer

A Generic Negotiation Framework for WS-Agreement

239

this negotiation to two different agents B and C
of which only agent B joins. Of course, this is
just a fragment of the complete exchange process
because certainly the coordinator would propose
this negotiation to much more other agents and
also other agents would request this document
respectively.

By combining these three basic protocol com-
ponents as building blocks, a multitude of dif-
ferent exchange processes can be specified, all
resulting in distributing the information, needed
to participate in a particular negotiation, to all
prospective participants.

5 Negotiation Protocol

After supplying all negotiation participants with
the negotiation type and instance documents the
actual negotiation can start. The protocol govern-
ing this process is described in this section. Using
this protocol the different negotiation types that
can be specified with the presented data structure
can be executed.

In general, we describe every negotiation as
a bidding process. Each party involved in a ne-
gotiation offers an agreement to the other party
concerning the issues subject to the negotiation
that is currently acceptable for them. Then the
other party assesses the offered agreement and
generates a counter-offer, accepts the offer or
rejects it and terminates the negotiation. This way
the two parties involved move from a conflict sit-
uation concerning some (logical) resource(s) to a
consensus represented by the resulting agreement.

Although only two sides (service provider and
consumer) of a negotiation are present, a multi-
tude of different protocols can be defined. These
range from One-on-One Bargaining to various
auction settings, all of which can be defined us-
ing the presented negotiation data structures and
are provided by the documents introduced in
Section 2.2.

Based on these documents the generic negoti-
ation protocol introduced now has to provide the
agents with means to post offers and to promote
the decision made about a concrete offer.

The two roles present within the actual nego-
tiation protocol are the Negotiation Participant

and the Information Service. Analogously to the
exchange protocol presented in Section 4, the ne-
gotiation protocol is defined in terms of roles and
their respective interface methods to be compati-
ble to the target service-oriented environments.

5.1 Protocol Sketch

As the Negotiation Participant represents a reg-
ular participant of a given negotiation process, it
offers the following methods in the context of the
negotiation protocol in addition to the methods
needed for the exchange protocol (see Section
4.1). First of all, a participant has to be able
to place offers in the context of a negotiation.
Such an offer consists of an endpoint reference
(EPR) of the posting agent and a complete WS-
Agreement document representing the offered
SLA.

1. placeOffer(agentEPR, WS-Agreement-
document)

2. acceptAgreement(negotiationID,
agreementID)

3. rejectAgreement(negotiationID)

4. startNegotiation(negotiationID)

In order to promote a negotiation’s outcome to
all participants, the accept and reject-methods are
used. In the positive case, the winner of the ne-
gotiation and therefore the agent involved in the
resulting agreement is notified by invoking this
method. Since each agent could be involved in
multiple negotiations, the id of the negotiation
instance is given as a parameter along with the
id of the accepted agreement offer. In case of
disagreement, the rejectAgreement is invoked on
all agents that did not win in the negotiation. As
already sketched a method for starting the actual
negotiation is also defined.

The Information Service role provides access
to information on the current negotiation status
or past offers. Hence the corresponding interface
provides the following methods:

1. getStatus(negotiationID)
2. getPastOffers(negotiationID)/
getPastOffers(negotiationID, agentID)

The getStatus-method is used by all negotia-
tion participants to access the current negotiation

@ Springer

240

S. Hudert et al.

status. This allows, for example, to assess which
offer is currently winning the negotiation and if
necessary to adopt the own offer. It results in a
data structure containing the current negotiation
status, which is denoted by all current offers of all
parties allowed to post offers. Note, however, that
the currently winning bid may of course only be
identified if the offer matching rules of this nego-
tiation are given in the negotiation type document,
otherwise the requesting agent can not anticipate
the current winner.

Fig. 6 Sample auction
process

Agent A - Consumer:

Exchange
Protocol
comple

Start of
Negatiation

The remaining methods let participating agents
access all past offers of a negotiation. This infor-
mation can be used for internal decision making
of the negotiating agents. Such a request may be
restricted to offers posted by as specific agent
denoted by its ID as an additional parameter.

Note: Currently only a polling mechanism is
available for accessing negotiation related infor-
mation. We are currently exploring other con-
cepts of information distribution, such as publish/
subscribe and notification functionality for a more

Agent B - Provider: Agent C - Provider: Agent D - Pravider:

1.1: placeOffer(EPR, WSAgreement)

1.2: placeOffer(EPR, WSAgreement)

1.3: getStatus(negotiationID)

areturms

1.4: getStatus(negotiationiD)

1.5: placeOffer (EPR, WSAgreement)

End of
MNegotiation

@ Springer

1.6: placeOffer (EPR, WSAgreement)

Ongoing process of
submitting offers

1.1: rejectAgreement{negotisiton]D)

1.2: rejectigreement{negotaitionlD)

1.3 acceptAgreement (negotiaitonD, agreementlD)

A Generic Negotiation Framework for WS-Agreement

241

flexible information processing mechanism. The
InformationService would have to be extended by
several methods to allow such a functionality.

5.2 Example Negotiation

In the rest of this section, we will illustrate our
approach by describing an auction combined from
the interfaces just presented Fig. 6:

In this setting agent A acts as service con-
sumer requesting offers from different service
providers. Agents B, C and D represent those
service providers posting offers to agent A.

Under the assumption that the exchange
process is already completed the actual negotia-
tion starts as defined in the corresponding start-
rule. After the negotiation started the bidding
process takes place. Agents B, C and D subse-
quently post offers to agent A. This is depicted in
the diagram by explicitly showing the submission
of offers by each of these agents. As also hinted
in the diagram this bidding process will go on for
some amount of time resulting in much more offer
postings than actually shown in the picture.

Fig. 7 Negotiation
coordinator—internal
states

getCurrentNegotiations()

send list of available
negotiation instances

joinNegotiation()
send
invalid_input_message

Pa—

After the negotiation is terminated its result
is communicated to all participants. In this case
agent D offered the best agreement of all bid-
ding agents and therefore wins this auction. Agent
A subsequently promotes the result to all par-
ticipants by invoking the acceptAgreement()- or
rejectAgreement()-methods, respectively.

As a result of this negotiation agents A and D
engage in an agreement with each other, whereas
agents B and C do not reach an agreement.

Even though this negotiation process only
shows a very simplified auction because of scope
reasons it already sketches how even more com-
plex negotiations can be conducted using the roles
and respective methods defined above.

The diagram in Fig. 6 also depicts the informa-
tion processing component of a negotiation. By
retrieving the negotiation status from the Infor-
mation Service (in this case also offered by agent
A) agent B realises that agent D posted an offer
exceeding its initial offer. If the negotiation would
end at that point agent D would engage in an
agreement with agent A and the other participants
would not reach an agreement. As a reaction to
this agent B creates another, better offer and posts

getAllNegotiationTypesi|
send list of available
negotiation types

proposeNegotiation()<t
<nothing> timeout in proposing agent

+ |

publisht

all coordinated
negotiations finished
publishNegotiation(),
publishNegotiationToReceipients|
), getAllNegotiationTypes() and

getCurrentNegotiations() work
analogously to their pendants in

getAlNegotiationTypes()
ionToR i)

publishNegotiation
update list of
negotiation instances

update list of negotiation instances and
propose this instance to resp. agents

the idle-state.

L

publishNegotiation()

proposeNegotiation()<successful>
update list of negotiation instances and
invoke acceptNegotiation()

proposeNegotiation() is
successful if the Negotiation

Coordinator is able and willing to
coordniate the resp. Negotiation.

<nothing> timeout in proposing agent

tive/coordinating

publishNegotiationToReceipients()

It Negotiation()<un: ful> getCurrentNegotiations()

If the agent is not
joinNegotiation(allowed to join an

update and redistribute negotiation [access_denied_mes|

instance document (new negotiator) ssage is sent.

@ Springer

242

S. Hudert et al.

it to agent A to succeed the formerly winning
offer. However, after an ongoing process of offer
submissions agent D still wins the negotiation in
the process described in this example.

6 State Diagrams of the Involved Roles

In the following the permitted internal states and
state transitions for each of the three roles (Nego-
tiation Coordinator, Negotiation Participant and
InformationService) will be described. This acts
as a theoretical validation of the consistency of
our overall design and provides the first step in
implementing this framework.

6.1 Negotiation Coordinator

Figure 7 depicts the internal states present for the
Negotiation Coordinator role. There do exist only
two states: idle and active/coordinating. A Nego-
tiation Coordinator is only active if it is assigned
to coordinate at least one particular negotiation
instance. Thus a coordinating agent changes its
state from idle to active if a negotiation stating this
agent to be Negotiation Coordinator is proposed
to it and the agent accepts this proposal.

An agent can coordinate more than just one
negotiation. That is why the internal state changes
from active to idle only when all coordinated ne-
gotiation instances have been finished.

Fig. 8 Negotiation
participant—internal
states

acceptAgreement(), rejectAgreement(),
startNegotiation(), placeOffer(), acceptNegotiation()
and updateNegotiation() all do not have any effect
when invoked in the idle-state. All those invocations
are answered with an invalid_input_message.

acceptAgreement(), rejectAgreement(),
startNegotiation(), placeOffer() and
updateNegotiation() all do not have any effect when

proposeNegotiation()<unsucessful>

<nothing> timeout in proposing agent

proposeNegotiation
<successful>
invoke joinNegotiation()|

invoked in the awaitng_negotiation-state. All those
invocations are answered with an
invalid_input_message.

Start a Negotiation
invoke proposeNegotiation()

on a prosp. coordinator

A 4

awaiting_negotiation

<timeout>

proposeNegotiation()
<nothing> timeout
in proposing agent

subscribed

acceptNegotiation(),
placeOffer(),
proposeNegotiation(),
acceptAgreement() and
rejectAgreement all do
not have any effect when

We asume that one
agent can only be

involved in one

negotiation at a time.

acceptNegotiation()

This transition is also

updateNegotiation
update negotiation
instance document

acceptAgreement() /| gxecuted if placeOffer() is
. @‘Mw‘) invoked and the answer to
initiate service usage| thjs js an accept or a reject
In this case the respectve
method is invoked on the
agent having posted the

offer.

invoked in the

negotiating

subscribed-state. All
those invocations are
answered with an
invalid_input_message.

startNegotiation()

This transition is also
executed if another starting

condition that was set in the
negotiation type document
occurs.

placeOffer
contnue
negotiation

Depending on the
negotiation type contnuing
can mean posting a counter-

offer or just waitng for mor

updateNegotiation(), startNegotiation(),
acceptNegotiation() and proposeNegotiation() all do not
change the current state. The former updates the agent’s

offers (e. g. in an auction).

knowledge about the negotiation, the last three are
answered with an invalid_input_message.

@ Springer

A Generic Negotiation Framework for WS-Agreement

243

For all possible method invocations the re-
spective behavior of the agent is described in
Fig. 7. A small detail to be especially men-
tioned is the getCurrentNegotiations()-method.
This method returns all negotiation instances cur-
rently available. In the idle state these instances
can only be those that are being coordinated by
some other agent. This depicts the aforemen-
tioned possibility for distributed lookup servers
for negotiation documents.

6.2 Negotiation Participant

The Negotiation Participant role exposes four dif-
ferent internal states: idle, awaiting_negotiation,
subscribed and negotiating. An agent moves from
the idle state to the awaiting_negotiation state if it
proposes a negotiation instance to a prospective
coordinator. In this state the agent awaits the
decision of the coordinator whether it is willing to
govern the respective negotiation or not.

If the Negotiation Coordinator does not join
the negotiation, a timeout occurs leading the
proposing agent to move to the idle state again.
On the other hand, the Negotiation Participant
moves to the subscribed state if the negotiation
is accepted by the Negotiation Coordinator, i.e.,
the acceptNegotiation()-method is invoked. In the
subscribed state an agent has already joined a ne-
gotiation instance. However this negotiation has
not started yet.

Whenever a starting-condition as stated in the
negotiation type/instance document occurs the ne-
gotiation is started. This leads to changing the
agent’s state to negotiating. After finishing a ne-
gotiation (no matter if reaching or failing to reach
an agreement) the agent moves back to the idle
state.

Note that for reasons of simplicity, it is assumed
in Fig. 8 that an agent may only be involved in one
negotiation at a time.

6.3 Information Service

Figure 9 shows the internal states of the Informa-
tionService role. After starting the negotiation the
agent moves from the idle to the active state. After
terminating the negotiation it returns to the idle
state. Analogously to the Negotiation Participant

getStatus() / getPastOffers()

send invalid_input_message

idle
A

end negotiation

start negotation

active

Which agents are allowed to
access this data and to what
extend is set in the negotiation
type document.

getStatus()
send current
negotiation status

getPastOffers()

send past offers

Fig. 9 Information service—internal states

the transition from idle to active can be triggered
by the occurrence of any starting condition as
stated in the negotiation type/instance document.

7 Related Work

Negotiation protocols and strategies have been
studied for quite an amount of time now. However
such issues are mainly investigated within social
sciences or economics (see for example [13, 20,
27)).

Ubiquitous access to global communication
networks, such as the Internet, and advances in
information technology recently have led to nego-
tiations that are electronically supported and even
fully electronic negotiations. Electronic negotia-
tions are characterised as negotiation processes
employing electronic devices within at least one
of the above mentioned phases [6]. Thus elec-
tronic negotiations and negotiation systems range
from communication structures, only providing
electronic means for transmitting messages, to
negotiation support systems (NSS) assisting the
negotiator in assessing the problem space, formal-
ising his preferences and evaluating bids [16].

Current research is focussing on implementing
fully automated negotiations, conducted by soft-
ware agents [23]. Electronic negotiations based on
interacting software agents are seen as the next

@ Springer

244

S. Hudert et al.

step for automating the negotiation problem as
present in everyday business transactions [24].

SLAs have been discussed in different research
areas, such as Grid Computing, Service Ori-
ented Architectures (SOA) or Information Sys-
tems Management [19, 21, 35]. They represent
a powerful concept for the definition of mutu-
ally agreed upon QoS guarantees and serve as
the main input for electronic service monitoring.
SLAs have become both, a tool for electronic rep-
resentation of legal business contracts and there-
fore acting as an input for policy definition, as
well as a powerful concept for efficient resource
management in distributed software systems [29].
Our aim is to fully automate the SLA Negotiation
Phase for electronic SLAs in order to achieve such
efficient resource management infrastructures for
distributed computing.

Negotiation researchers argue that “[t]here is
no perfect mechanism” (Peter Wurman, 2001) to
negotiation problems, i. e., there is no negotia-
tion protocol suitable for all possibly useful ne-
gotiation scenarios [5, 31, 32]. However, most of
the SLA negotiation frameworks available today,
like, e.g., the approaches described by Chhetri
et al. [9], Pichot et al. [26], Chhetri et al. [8],
Czajkowski et al. [10], Parkin et al. [25] or Mobach
et al. [22], support a single negotiation protocol
only or do not offer a mechanism for distributed
automated decision on what protocol to use [18],
therefore lacking efficiency of the outcomes.

On the other hand, electronic negotiation re-
search already developed some negotiation sys-
tems capable of different protocols; see, for
example, the work of Wurman et al. [36, 37]
and Stroebel [33]. Those systems mainly focus on
human negotiations and therefore lack a struc-
tured discovery and execution process for soft-
ware agents. Such an approach is not applicable
for electronic SLAs due to the complexity of the
negotiations and the sheer volume of SLAs to be
negotiated.

We currently found two approaches allow-
ing for automated, protocol-generic approaches.
Paprzycki et al. [24] only provide a distinct set of
negotiation protocols to the agents, one of which
has to be chosen at design-time. Our framework
allows for very generic and a-priori not restricted
negotiation protocols to be chosen at runtime.

@ Springer

Rolli et al. [28] rely on database queries for defin-
ing their auction rules. This, however, creates a
bottleneck, the database, with all problems a cen-
tralised instance exhibits in distributed systems.
Our framework relies on a peer-based distributed
architecture that is much more robust than a cen-
tralised system.

Regarding other standards, there has been
some work done in recent years. The Founda-
tion for Intelligent Physical Agents (FIPA) pro-
posed a set of negotiation protocol descriptions
for software agents as a standard way for agent
interaction [11]. Our generic negotiation protocol
language enables the definition of but is not lim-
ited to these standard protocols.

The approach of Hung et al. [15] tries to for-
mulate the overall negotiation process including
the negotiation messages, the protocol as well as
the decision making procedures. However, the
authors currently only sketch how their approach
is going to look like, up to now there is no com-
prehensive specification of their language.

Additionally, the OGF currently prepares a
proposal for a negotiation standard for WS Agree-
ment: WSAgreementNegotiation [2]. The authors
are involved in this standardisation process.

Building on the above mentioned research ef-
forts we designed a framework for multi-protocol,
fully automated SLA negotiations based on soft-
ware agents. These agents accompany the service
requestors and providers introducing an abstract
SLA management layer in distributed systems.

8 Conclusion

This paper proposes a negotiation framework for
WS-Agreement, enabling the integration of a va-
riety of negotiation protocols suitable for different
application domains. Negotiation protocols can
be specified in a description language and made
available to parties interested in respective nego-
tiations through a defined exchange process. Exe-
cuting this exchange protocol establishes among
the involved agents, which negotiation protocol
is used.

Subsequently, the protocol is executed to de-
termine the resulting, negotiated WS-Agreement

A Generic Negotiation Framework for WS-Agreement

245

document. After winner determination, accep-
tance and rejection is performed according to the
standard WS-Agreement protocol. With these two
protocols fully automated WS-Agreement negoti-
ations according to a variety of different negoti-
ation protocols can be conducted in Web Service
environments.

Future work focuses on testing a variety of
negotiation protocols, e.g., in the context of other
research projects dealing with service level agree-
ments in Grid environments, such as SORMA
[30], and thus verifying the expressiveness of the
negotiation description language and the capabil-
ities of the exchange protocol.

References

1. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K.,
Ludwig, H., Nakata, T., Pruyne, J., Rofrano, J., Tuecke,
S., Xu, M.: Web Services Agreement Specification
Draft, Version 09/2005° (2005)

2. Andrieux, A., Czajkowski, K., Dan, A., Keahey,
K., Ludwig, H., Pruyne, J., Rofrano, J., Tuecke, S.,
Xu, M.: Web services agreement negotiation specifi-
cation (WSAgreementNegotiation) (draft). Technical
Report, Open Grid Forum, GRAAP WG (2008)

3. Andrieux, A., Dan, K.C.A., Keahey, K., Ludwig,
H., Nakata, T., Pruyne, J., Rofrano, J., Tuecke, S.,
Xu, M.: Web services agreement specification (WS-
Agreement). Published at the Open Grid Forum
(OGF) Website (2007)

4. Bartolini, C., Preist, C., Jennings, N.R.: A software
framework for automated negotiation. In: Choren, R.,
Garcia, A., Lucena, C., Ramonovsky, A. (eds.) Soft-
ware Engineering for Multi-Agent Systems III: Re-
search Issues and Practical Applications, pp. 213-235.
Springer, New York (2005)

5. Benyoucef, M. Rinderle, S.: Modeling e-negotiation
processes for a service oriented architecture. Group
Decis. Negot. 15(5), 449-467 (2006)

6. Bichler, M., Kersten, G., Strecker, S.: Towards a struc-
tured design of electronic negotiations. Group Decis.
Negot. 12(4), 311-335 (2003)

7. Chen, P.P.-S.: The entity-relationship model—toward a
unified view of data. ACM Trans. Database Syst. Arch.
1(1), 9-36 (1976)

8. Chhetri, M.B., Goh, S., Lin, J., Brzotowski, 1.,
Kowalczyk, R.: Agent-based negotiation of service
level agreements for web service compositions. In: Pro-
ceedings of the Joint Conference of the INFORMS
Section on Group Decision and Negotiation, the
EURO Working Group on Decision and Negotia-
tion Support, and the EURO Working Group on De-
cision Support Systems, GDNS07, Montreal, 14-17
May 2007

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Chhetri, M.B., Lin, J., Goh, S., Zhang, J.Y., Kowalczyk,

R., Yan, J.. A coordinated architecture for the
agent-based service level agreement negotiation ofweb
service composition. In: ASWEC ’06: Proceedings
of the Australian Software Engineering Conference
(ASWEC’06), pp. 90-99. IEEE Computer Society,
Washington, DC (2006)

Czajkowski, K., Foster, 1., Kesselman, C., Sander, V.,
Tuecke, S.: SNAP: a protocol for negotiating ser-
vice level agreements and coordinating resource man-
agement in distributed systems. In: 8th Workshop
on Job Scheduling Strategies for Parallel Processing,
Edinburgh, July 2002

FIPA: FIPA Communicative Act Library Specifica-
tion. FIPA TC Communication (SC00037J) (2002)
Friedman-Hill, E.: Jess: The Java Expert System Shell.
Sandia, Albuquerque (2006)

Gulliver, P.H.: Disputes and Negotiation: A Cross-
Cultural Perspective. Academic, New York (1979)
Hudert, S.: A Proposal for a Web Services Agree-
ment Protocol Framework. Bamberger Beitrdge zur
Wirtschaftsinformatik69, Bamberg University. ISSN
0937-3349 (2007)

Hung, P.CK., Li, H,, Jeng, J.-J.: WS-Negotiation: an
overview of research issues. In: HICSS ’04: Proceed-
ings of the Proceedings of the 37th Annual Hawaii
International Conference on System Sciences (HICSS’
04) - Track 1, p. 10033.2. IEEE Computer Society,
Washington, DC (2004)

Kersten, G.E. Noronha, S.J.: WWW-based negotiation
support: design, implementation, and use. Decis. Sup-
port Syst. 25(2), 135-154 (1999)

Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A
classification scheme for negotiation in electronic com-
merce. Int. J. Group Decis. Negot. 12(1), 31-56
(2003)

Ludwig, A., Braun, P., Kowalczyk, R., Franczyk, B.: A
framework for automated negotiation of service level
agreements in services grids. In: Lecture Notes in Com-
puter Science, Proceedings of the Workshop on Web
Service Choreography and Orchestration for Business
Process Management, 2006, vol. 3812/2006. Springer,
New York (2006)

Ludwig, H., Keller, A., Dan, A., King, R., Franck,
R.: A service level agreement language for dynamic
electronic services. J. Electron. Commer. Res. 3, 43-59
(2003)

McAfee, P., McMillan, J.: Auctions and bidding. J.
Econ. Lit. 25, 699-738 (1987)

Mitchell, B., Mckee, P.: SLAs a key commercial tool.
In: Proceedings of eChallenges e-2005, Ljubljana, 19—
21 October 2005

Mobach, D.G.A., Overeinder, B.J., Brazier, FM.T.,
Dignum, F.P.M.: A two-tiered model of negotiation
based on web service agreements. In: Gleizes, M.P.,
Kaminka, G.A., Nowé, A., Ossowski, S., Tuyls, K.
Verbeeck, K. (eds.) EUMAS, pp. 202-213. Koninklijke
Vlaamse Academie van Belie voor Wetenschappen en
Kunsten, Lelystad (2005)

Nassif, L., Nogueira, J.M., Ahmed, M., Impey, R.,
Karmouch, A.: Agent-based negotiation for resource

@ Springer

246

S. Hudert et al.

24.

25.

26.

27.

28.

29.

30.

allocation in Grid. In: Proceedings of the 3rd Work-
shop on computational Grids and Applications, Sum-
mer Program LNCC (2005)

Paprzycki, M., Abraham, A., Prvanescu, A., Badica, C.:
Implementing agents capable of dynamic negotiations.
In: Petcu, D., Negru, V. (eds.) SYNASC, pp. 369-380.
Mirton, Timisoara (2004)

Parkin, M., Kuo, D., Brooke, J.: A framework & nego-
tiation protocol for service contracts. In: IEEE SCC,
pp. 253-256. IEEE Computer Society, Washington,
DC (2006)

Pichot, A., Wieder, P., Waeldrich, O., Ziegler, W.:
Dynamic SLA-negotiatioan based on WS-agreement.
Technical Report TR-0082, CoreGRID (2007)

Pruitt, D.G.: Negotiation Behavior. Academic, New
York (1981)

Rolli, D., Luckner, S., Gimpel, H., Weinhardt, C.: A
descriptive auction language. J. Electron. Mater. 16(1),
51-62 (2006)

Seidel, J., Waeldrich, O., Ziegler, W., Wieder, P.,
Yahyapour, R.: Using SLA for resource management
and scheduling—a survey. Technical Report TR-0096,
CoreGRID (2007)

SORMA: EU Information society technologies project
SORMA—Self-Organizing ICT Resource Manage-
ment (2007)

@ Springer

31

32.

33.

34.

3s.

36.

37.

Stroebel, M.: Effects of electronic markets on negoti-
ation processes. In: Proceedings of the 8th European
Conference on Information Systems, vol. 1, pp. 445—
452 (2000a)

Stroebel, M.: On auctions as the negotiation paradigm
of electronic markets. EM J. Electron. Mater. 10(1),
39-44 (2000b)

Stroebel, M.: Design of roles and protocols for elec-
tronic negotiations. Electronic Commerce Research 1,
335-353 (2001)

Stroebel, M. Weinhardt, C.: The Montreal taxonomy
for electronic negotiations. J. Group Decis. Negot. 12,
143-164 (2003)

Tosic, V., Pagurek, B., Esfandiari, B., Patel, K., Ma,
W.: Web Service Offerings Language (WSOL) and
Web Service Composition Management (WSCM). In:
Workshop on Object-Oriented Web Services—OOWS
(at OOPSLA 2002), Seattle, November 2002

Wurman, P.R., Wellman, M.P., Walsh, W.E.: The
Michigan internet AuctionBot: a configurable auction
server for human and software agents. In: Second
international conference on autonomous agents,
Minneapolis, 9-13 May 1998

Wurman, P.R., Wellman, M.P., Walsh, W.E.. A
parametrization of the auction design space. Games
Econom. Behav. 35(1-2), 304-338 (2001)

	Negotiating SLAs-An Approach for a Generic Negotiation Framework for WS-Agreement
	Abstract
	Introduction
	Basic Definitions and Data Structures
	Negotiation Protocol Definition
	Negotiation Types and Instances
	Abstract Architecture of Negotiation Documents
	Involved Roles

	Example Scenario
	Exchange Protocol
	Interfaces for the Roles Involved
	Protocol Components
	Request for Negotiation Documents
	Proposal of Negotiation Documents
	Mediated Exchange Processes

	Negotiation Protocol
	Protocol Sketch
	Example Negotiation

	State Diagrams of the Involved Roles
	Negotiation Coordinator
	Negotiation Participant
	Information Service

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

