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Abstract This paper argues that the technology
of Grid computing has not yet been adopted in
commercial settings due to the lack of viable busi-
ness models. While in academia Grid technology
has already been taken up, the sharing approach
among non for-profit organizations is not suitable
for enterprises. In this paper, the idea of a Grid
market is taken up to overcome this Grid adop-
tion gap. We propose a framework for building
up a Grid market and identifies the associated
economic and technical challenges. Based on this
framework, we identify a catalogue of possible
market mechanisms which offer a promising fit to
the Grid environment’s characteristics and which
may thus help to carry the idea of Grid markets
from theory to practice.

D. Neumann (B) · J. Stößer · C. Weinhardt
Chair for Information Systems,
Albert-Ludwigs-Universität Freiburg,
Platz der Alten Synagoge, 79085 Freiburg, Germany
e-mail: dirk.neumann@vwl.uni-freiburg.de

J. Stößer
e-mail: stoesser@iism.uni-karlsruhe.de

C. Weinhardt
e-mail: weinhardt@iism.uni-karlsruhe.de

J. Nimis
FZI Forschungszentrum Informatik,
Haid-und-Neu-Str. 10, 76131 Karlsruhe, Germany
e-mail: nimis@fzi.de

Keywords Dynamic pricing · Electronic
markets · Grid computing

1 Introduction

Grid computing denotes a computing model that
distributes processing across an administratively
and geographically dispersed infrastructure [11].
By connecting many heterogeneous computing
resources, virtual computer architectures are cre-
ated, increasing the utilization of otherwise idle
resources. Originally, Grid computing comes from
the area of high performance computing where
users needed an easy access to massive processing
and storage resources. Consequently, the Grid
has primarily been used as a capable middleware
layer by researchers. In subsequent times, the
Grid evolved beyond accessibility towards “coor-
dinated resource sharing and problem solving in
dynamic, multi-institutional virtual organizations”
[10]. This newly developing view on Grids can be
interpreted as a very high-level business model:
users of different administrative units share their
resources to perform computationally demanding
tasks [43].

In academia, this business model has trans-
formed the community into several virtual or-
ganizations (e.g. Alice, Atlas, CMS, LHCb),
which facilitate resource sharing among its mem-
bers. This business model seems to work well for
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academia where resource sharing is prevalent be-
tween those members who contribute resources
to the Grid. One of the most prominent activ-
ities in academia is the EGEE II project be-
ing funded by the European Commission. EGEE
brings together researchers from over 27 coun-
tries with the common aim of developing a ser-
vice Grid infrastructure which is suited for any
scientific research especially where the time and
resources needed for running the applications
are considered impractical when using traditional
IT infrastructures (e.g. weather forecasts, protein
folding, etc). With a funding of over 30 million
e, the established EGEE Grid comprises over
20,000 CPUs and 5 Petabytes of storage which
are available to scientists 24 × 7. In total, EGEE
serves 20,000 concurrent jobs on average. For en-
terprises, this sharing model has not made it into
practice. This is not surprising as administrative
barriers–even within companies – are too difficult
to overcome to make the sharing approach work.
The free-riding problem, implying that members
participate in the Grid without contributing [1],
coupled with security issues strongly argue against
the sharing approach. As such, it is not surprising
that the vast potential of Grid computing has not
yet been exploited – despite the fact that techni-
cal advancements with respect to sensitive issues
(such as security and Quality of Service manage-
ment) have occurred. Nonetheless, even conserv-
ative estimates project that Grids may lower total
IT costs by 30% [22]. This leads up to the expec-
tation expressed in the report “Grid Computing:
A Vertical Market Perspective 2005–2010”, which
estimates an increase of worldwide Grid spend-
ing from $714.9 million in 2005 to approximately
$19.2 billion in 2010 [2].

The adoption of Grid Computing by commer-
cial companies has been slow due to the lack
viable business models embedded in chargeable
Grid services. There is deficit of mechanisms that
enable users to discover, negotiate, and pay for
the use of Grid services. According to one of the
leading Grid research institutes, The451Group,
the application of resource trading and allocation
models is one of the crucial success factors for
establishing commercial Grids [9]. Attaching fair
prices to the Grid services in a market-like fashion
assures, on the one hand, that resources are only

invoked when needed, and, on the other hand,
that idle resources are contributed to the Grid.

Complying with the proposition of
The451Group, Sun Microsystems has adopted
the idea of trading resources within their utility
computing initiative, believing that companies
will eventually stop maintaining their own in-
frastructure and instead buy computing power
via a Grid. To put weight on this idea, Sun is
currently establishing network.com,1 an electronic
market-place for trading resources. Sun started
out offering a fixed price for computing services of
$1 per CPU hour. Amazon is currently launching
comparable efforts with Amazon Elastic Compute
Cloud (Amazon EC2)2 and Amazon Simple
Storage Service (Amazon S3).3 Like Sun, Amazon
is also offering processing power and storage for a
fixed price, but the prices also depend on the con-
sumed bandwidth. Almost every large computer
hardware manufacturer like HP or Intel has al-
ready worked on or at least pondered the options
for Grid markets (cf. [19]). Currently, electronic
marketplaces for Grid computing have not yet
taken off [34].

This paper attempts to explain why Grid mar-
ket initiatives have failed so far even in the
conception phase of the development. The ex-
planation mainly focuses on the object that is
being traded on Grid markets. As a result of this
analysis, it is discovered that not only one single
Grid market is necessary but a set or catalogue
of different marketplaces satisfying the needs of
different market segments. This paper provides a
framework towards such a catalogue of market
mechanisms. As such, this paper provides guid-
ance for potential Grid market operators (e.g.
Telecom companies such as France Telecom for
Mobile Grids [23], or hardware vendors such as
Sun for Computational and Data Grids) in the
choice of the market mechanisms that are needed
to gear up Grid computing for enterprises.

The remainder of this paper is structured as
follows. Section 2 describes why markets work
well in Grid environments. Section 3 defines the

1http://www.network.com/, 12.11.2007.
2http://aws.amazon.com/ec2, 09.11.2007.
3http://aws.amazon.com/s3, 09.11.2007.

http://www.network.com/
http://aws.amazon.com/ec2
http://aws.amazon.com/s3
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technical challenges of Grid markets, whereas
Section 4 focuses on the associated economic
challenges. As a result of Section 4, a two-tiered
economic market structure with two classes of
markets is proposed as a viable solution for com-
mercial Grids. Section 5 discusses the use of dif-
ferent market mechanisms within this two-tiered
market structure and shows which mechanisms
are most adequate for which kind of application.
Section 6 concludes the paper with a summary and
points to future work.

2 Markets for the Grid

2.1 Why Markets

Markets seem to be adequate for commercial
Grids, as they offer a business model which
charges upon Grid usage. As a side-effect, mar-
kets have the ability to improve the resource allo-
cation. Today’s resource management systems in
Grids have recognized the need of expressing val-
ues by including user priority, weighted propor-
tional sharing, and service level agreements that
set upper and lower bounds on the resources avail-
able to each user or group [13, 21, 25]. Maximizing
the utility (i.e. the sum of the users’ valuations),
however, is only possible if the resource manager
knows the attached valuations, meaning the exact
relative weights at any point of time. Knowing
the valuations at any time is a very demanding
requirement, as users typically have no incentive
to report decreases in their valuation, because
they loose priority and correspondingly value by
not getting their computation completed.

Hence, value-oriented approaches are not suf-
ficient per-se to achieve an efficient solution. Only
if all participants are willing to report their pri-
orities and values honestly, these algorithms (e.g.
Proportional Share [19]) will work well. This is
where Grid markets enter the discussion. Markets
have the ability to set the right incentives for
users to reveal their true valuation as well as for
resource owners to provide those resources that
are scarcest in the Grid. With the introduction
of prices, incentives will be given to the users to
substitute the scarce resource, say the number of
CPUs, with less scare resource, say memory. For

Fig. 1 Fixed pricing [20]

instance, a fixed pricing scheme which requests
10 e for one CPU and 1 e for memory, sets
incentives to reduce the number of used CPUs in
favor of the cheaper memory.

A fixed pricing scheme, however, is not enough
to achieve an efficient allocation: Suppose the
fixed price of a resource provider as shown in
Fig. 1 (cf. [20]). Demand changes over time as de-
picted by the parabola; without loss of generality
the costs of supplying resources are assumed to
be zero. If demand is below the fixed price (left
end of the graph), no resource will be requested.
This is because the value for the resource, repre-
sented by the demand curve, is below the price.
As a consequence, there is a loss of utility which
is shown by the area below the demand curve.
In the middle part of the graph there could be
more buyers willing to pay the fixed price, as their
demand exceeds the price. If the seller allocates
the resource efficiently to the user who values
the resource most, there will be unrealized profit
for the seller. This is indicated by the hatched
gray area which refers to the difference between
the demand curve and the fixed price. Obviously,
market mechanisms work well in scheduling [26].

2.2 Case Study

In this section, we demonstrate the usefulness
of market mechanisms in Grids compared to
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technical schedulers by referring to a special in-
stance. The example is instructive as it shows how
markets work in general.

2.2.1 The Setting

In this case study we consider a Grid environment
with a number of individual agents, which are
assumed to act rationally in the sense that they
strive for maximizing their individual benefit from
participating in the Grid. Agents submit computa-
tional jobs to the Grid, where a job j is specified
by the “type” t j = (r j, pj, w j). The job’s release
date is denoted by r j ∈ R+, the job’s processing
time by pj ∈ R+, and the agent’s cost of waiting
for one additional unit of time until the job is
finished (its “weight”) by w j ∈ R+. The quasi-
linear utility function of agent j is defined to be
u j(C j, π j) = −w jC j − π j, where C j ∈ R+, C j ≥ pj,
marks j’s completion time and π j ∈ R+ is j’s pay-
ment [12]. When requesting resources for the exe-
cution of job j, the agent may strategically choose
to submit the request t̃ j = (r̃ j, p̃ j, w̃ j) �= t j to the
Grid. In the following, we consider a decentralized
setting where the actions of job j do not only con-
sist of reporting its type t̃ j, but also of subsequently
choosing a machine at which to queue. We will
henceforth denote agent j’s action by s j, and we
will also write u j(s, t) for agent j’s utility given the
strategy vector s = (s1, . . . , sn) and the true types
t = (t1, . . . , tn). The Grid infrastructure consists of
m identical, parallel machines M = {1, . . . , m}.

2.2.2 The Mechanism

For this setting, we propose the use of the De-
centralized Local Greedy Mechanism (DLGM)
[12]. The mechanism aims at minimizing the total
weighted completion time

∑
w jC j across all jobs.

DLGM comprises the following three steps:

Step 1 – Job submission: At release date r̃ j,
j reports w̃ j and p̃ j to every machine
m ∈ M.

Step 2 – Real-time planning: Based on this in-
formation, the machines perform real-
time planning based on a local scheduling
policy. The most frequently used policy
follows the “weighted shortest processing

time first” principle [36]. Accordingly,
jobs are assigned a priority value which
depends on their ratio of reported weight
and processing time: Job j has a higher
priority value than k ⇔ w̃ j

p̃ j
≥ w̃k

p̃k
. Then j

is scheduled before job k in the waiting
queue. Depending on the current local
waiting queue which resulted from the
previous strategies s− j of all other jobs,
and j’s report t̃ j, machine i reports the
tentative completion time Ĉ j(i | s− j, t̃ j) to
agent j. Formally: Let H( j ) be set of jobs
with a higher priority than j and L( j )
the set of jobs with a lower priority than
j. We write j → i if job j is assigned
to machine i. Without loss of generality,
jobs are indexed in order of their release
dates (i.e. j < k ⇒ r̃ j ≤ r̃k). Finally, let
bi(l) be the remaining processing time of
the currently running job on machine i at
time l and let S j denote the point in time
when job j is started to be executed. Then
Ĉ j(i | s− j, t̃ j) can be determined as

Ĉ j
(
i | s− j, t̃ j

) = r̃ j + bi
(
r̃ j

)

+
∑

j∈H( j ),k→i,k< j,Sk≥r̃ j

p̃k+ p̃j,

i.e. Ĉ j
(
i | s− j, t̃ j

)
consists of j’s own run-

time plus the runtime of the job which is
currently being executed on machine i (if
any) and the aggregated runtimes of the
jobs which would be queuing in front of
job j.
Furthermore, the mechanism computes a
tentative payment π̂ j

(
i | s− j, t̃ j

)
according

to the prominent Vickrey principle. Job
j has to compensate all jobs which are
currently waiting at machine i and which
are delayed due to j being assigned to i
for their additional waiting cost, i.e.

π̂ j
(
i | s− j, t̃ j

) = p̃ j

∑

k∈L( j ),k→i,k< j,Sk≥r̃ j

w̃k.

These values are only tentative as
later arriving jobs might displace job j.
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Consequently, the tentative utility of job
j at machine i at time r̃ j is

û j
(
i | s− j, t̃ j

) = −w jĈ j
(
i | s− j, t̃ j

)

−π̂ j
(
i | s− j, t̃ j

)
.

Step 3 – Machine selection: Upon receiving in-
formation about its tentative completion
time and required payment from the ma-
chines, the agent makes a binding deci-
sion to queue at a machine i, and pays
π̂ j

(
i | s− j, t̃ j

)
to the delayed jobs.

2.2.3 Data Generation

Our aim is to simulate rational agents with learn-
ing capabilities, which may strategically misreport
about w j based on their past behavior and pay-
offs. We will refer to these strategies as “rational
response strategies”.

In order to compare the DLGM with a tech-
nical scheduler, we ran six settings. To increase
the competition in the market, across the course
of these settings, we successively increased the
Poisson-based arrival rate of jobs from λ = 0.2
to λ = 1 as listed in Table 1, which also specifies
the random choices of the processing times and
weights. Each job sequence was then fed into
both the DLGM mechanism with agents playing
myopic best response strategies (i.e. agents do
not remember the outcomes of earlier market
interactions but are somewhat “myopic” in that
only consider the current situation). In addition
we check whether the DLGM outperforms a tech-
nical scheduler in terms of efficiency and incentive
compatibility.

For simplification, we assume that agents can
only misreport about their weight w j. This is not
too far-fetched, one central result of Heydenreich
et al. [12] is that myopic best response agents then
truthfully report w̃ j = w j.

To model the learning capabilities of the agents
for the rational response strategy, we chose a rein-
forcement learning-based approach with a greedy
selection policy [15]. This approach com-prises the
following two phases:

– Exploration phase: In this phase, the agents
simultaneously explore the strategy space and
heuristically try to learn the expected payoffs
of various strategies to finally decide on an
expectedly optimal strategy. Within this ex-
ploration phase, we perform 25 runs of the
market. In each run k, every agent j reports w̃k

j
and pj to the market at time r j and, upon hav-
ing received the feedback about its tentative
completion time and payment from each ma-
chine, selects the machine i which maximizes
its tentative utility û j

(
i | s− j, t̃ j

)
, where w̃k

j is an
integer which is randomly drawn from the uni-
form distribution with support [0, 2w j] in or-
der to model both the under- and overstating
of weights. Subsequent to each run k, agent
j determines its actual ex-post utility (i.e. its
“reward”) uk

j

((
s̃ j, s− j

)
, t

)
for round k. After

all 25 runs, agent j greedily determines its
best strategy s∗

j as s∗
j = argmaxkuk

j

((
s̃ j, s− j

)
, t

)
.

Since the strategy space of agent j consists of
strategically reporting w̃ j only, we can simplify
this to the greedy optimal strategy being the
report of w̃∗

j which yielded the maximum ex-
post utility across all 25 runs.

– Exploitation phase: In this phase, the agents
try to “exploit” the information which they ob-
tained in the previous exploration phase. Us-
ing a greedy selection policy, agent j assumes
that, since the report of w̃∗

j maximized its ex-
post utility given its true weight w j in the past,

reporting a fraction of
w̃∗

j

w j
for the weights of all

subsequent jobs will also maximize its future
payoff. In order to examine this strategy, we
also ran the exploitation phase for 25 rounds.

Table 1 Simulation
settings Setting S1 S2 S3 S4 S5 S6

Arrival time λ of the r̃ j 0.2 0.5 0.6 0.7 0.8 1
Poisson-based release dates
Processing time p j Lognormal distribution with mean 9 and variance 3
Weights w j Normal distribution with mean 9 and variance 3
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In each round, we generated one job per agent
based on the same distributions as in the ex-
ploration phase as specified in Table 1.

2.2.4 Results

Essentially, the mechanism aims at maximizing
total utility of the system, which is expressed as
minimizing total weighted completion time of all
jobs, where the wait defines the opportunity costs
of a job incurred by waiting another time unit. The
Grid user submits his request to all machines by
specifying the release date of the job comprising
of its estimated processing time and the weight
specifying how expensive it is to delay the job by
an additional time unit. The machines compute
the tentative completion time of the job on the
basis of the reported weight and the payments
the job has to make in order to compensate all
jobs that are delayed due to the priority of this
job. These compensation payments are necessary
in order to prevent the users from overstating
their weight. The machines report the tentative
completion time and payments back to the user
who chooses the best available machine.

This mechanism is benchmarked against a
naive First-in-First-out technical scheduler. As an
evaluation methodology an agent-based simula-
tion with learning agents is used to define the

strategies of the job requesters. It is also tested
whether the requesters reports weights different
from their true weights.

The simulation checks five different settings
with varying demand situations, ranging from ex-
cessive supply of resources to excessive demand
for resources (Table 2). In the learning phase,
the job requesters explore the strategy space and
learn how to set up their strategy, which boils
down to reporting the weight. In the subsequent
exploitation phase, several rounds are played with
those learned strategies.

The simulation turns out that, when com-
petition is low, technical schedulers achieve as
good welfare (i.e. total weighted completion time)
as market mechanism does. However, with in-
creasing utilization, technical schedulers are start-
ing to perform worse than market mechanisms.
When competition is high, first in, first out gen-
erates about 13% higher overall waiting costs
than DLGM with agents playing rational response
strategies. This result is rather straightforward,
as technical schedulers do not account for the
relative urgency of jobs. When utilization is low,
however, the welfare loss incurred by technical
schedulers is insignificant. In addition the revenue
gained by users is not supported, as the resources
are all equal by assumption. Thus, markets can-
not unfold their full potential, as their favorable
effects of better scheduling are neglected.

Table 2 Simulation results

Metric Mechanism \ Setting S1 S2 S3 S4 S5 S6

Utilization All mechanisms 38% 77% 91% 100% 100% 100%
Welfare FIFO −916,634 −1,993,694 −2,676,904 −3,633,538 −5,046,646 −8,784,801

DLGM with myopic −916,701 −2,001,682 −2,650,274 −3,340,492 −4,370,345 −7,042,589
best response

DLGM with learning −916,717 −2,001,787 −2,663,577 −3,485,629 −4,676,194 −7,802,760
agents

Positive DLGM with myopic 1% 7% 16% 18% 23% 34%
compensations best response

DLGM with learning 1% 8% 18% 20% 35% 36%
agents

Lateness DLGM with myopic 0.002 0.073 1.13 8.72 20.73 58.99
best response

DLGM with learning 0.002 0.106 1.198 8.659 19.982 58.79
agents

FIFO first in, first out



A framework for commercial grids—challenges 331

This impact of better scheduling is coupled
with the participation effect markets exert. As
contribution is compensated, enterprises have an
incentive to provide idle resource to the Grid. We
are not aware of any numerical estimates on the
magnitude of this effect, but it is generally thought
to be high.

3 Technical Challenges of Grid Markets

Summarizing the discussion above, markets can
play a crucial role for commercial Grids as they
set the right incentives for contributing resources
without over-consumption. In addition, markets
improve the scheduling decision over pure tech-
nical schedulers. On the other hand, the use of
markets need to be integrated with state-of-the-
art Grid middleware—otherwise the concept will
remain purely theoretic. In this section we present
a generic system model for Grid markets to allow

for a well-founded discussion of the technical chal-
lenges Grid markets raise.

Figure 2 introduces the layered logical architec-
ture of the system model in terms of its functional
entities, their responsibilities and their dependen-
cies. The boxes represent functional entities and
the arrows indicate dependencies between them,
where an arrow from an entity A to an entity B
means that entity A depends on entity B, i.e. that
A receives input from B or uses B’s services.

Layer 4: Grid Applications and Resources Layer
4 comprises the Grid applications as demand,
the provided resources as supply and the cor-
responding users, i.e. the Grid application users
and the resource providers. The resource provider
makes use of the so-called intelligent tools of
layer 3 to model the business strategies and the
offered resources. On the consumer side either
the user of the Grid application or the Grid ap-
plication itself will autonomously use the intel-
ligent tools to model the application’s resource

Fig. 2 Layered
architecture for Grid
markets
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requirements based on the user’s economic prefer-
ences. If an application is decomposed into several
aggregated services, it is the application’s task
to realize a service deployment coherent to the
allocations made on the market.

Layer 3: Intelligent Tools For an easy access to
the Grid market, both the users and the resource
providers must be supported by a set of intelligent
tools.

– Demand modeling: The user needs to be
equipped with a tool to specify the techni-
cal requirements of his Grid application, i.e.
the properties of the resources. In case the
requirements are specified in terms of aggre-
gated services, demand modeling also assumes
the task of decomposing a request into its
constituent services.

– Preference modeling: This component facili-
tates the description of the user’s economic
preferences that will determine his bidding
strategies on the market, e.g. the user can
define the maximal amount he is willing to pay
or if he prefers cheap over reliable resources.

– Bid generation: The bid generation denotes
the component that generates and places the
bids on the market on behalf of the user. For
this purpose the bid generator retrieves the
user preferences, the technical requirements
and the current state of the Grid market and
forms the bid or bid series accordingly.

– Supply modeling: The supply modeling com-
ponent is the provider’s correspondent of
the user’s demand modeling component. This
component allows the providers to specify
the technical properties of the resources con-
tributed to the Grid (e.g. a Beowulf cluster).

– Business modeling: Analogously to the con-
sumer preference modeling, the providers
need to specify their business models to gener-
ate adequate offers. For example, one part of
the description could be a pricing model that
specifies if the users have to pay for booked
time-slots or for the actual usage.

– Offer generation: The offers are derived from
the technical supply descriptions and the busi-
ness model of the respective provider via
the offer generation component. As an au-
tonomous agent, the offer generation compo-

nent continuously observes the Grid market
and places and updates offers.

Layer 2: Open Grid Market The second layer
is headlined Open Grid Market, as it accounts
for the economic matchmaking (i.e. which re-
quest is allocated to what resource, when and for
what price?). Accordingly, it provides the neces-
sary functionality along the economic matching
process, starting from the secure access to the
Grid market over the actual allocation to the sub-
sequent billing and payment.

– Security management: The security manage-
ment component serves as entry point for a
single sign-on mechanism and is responsible
for a tamper-proof identity management for
the consumers, the suppliers and the con-
stituent components of the Grid market.

– Trading management: The actual matchmak-
ing process that assigns bids to suitable offers
is executed by the trading management. As
a first step, the trading management matches
the technical descriptions of the request (re-
ceived from the bid generation component)
to the technical descriptions of the offered
resources (received from the offer generation
component). This corresponds to the com-
mon task of service discovery and takes into
account a potential hierarchical decomposi-
tion of the request. In the second phase the
trading management orchestrates the bidding
process between the users and the providers
following the protocol of the employed mar-
ket mechanism. If the bidding process fin-
ishes successfully, the pairs of corresponding
bids and offers are submitted to the contract
management.

– Contract management: The contract manage-
ment transforms the pairs of bids and offers
into mutually agreed contracts. One important
part of these contracts are the service level
agreements (SLAs) which define the agreed
terms of usage of the resources and the pric-
ing. After stating the contract the contract
management initiates the SLA enforcement.

– SLA enforcement and billing: The enforce-
ment of the SLAs triggers the job submission,
keeps track of the resource usage, compares it
to the SLA and at the end initiates the billing
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and clearing according to the comparison
results.

– Economically Enhanced Resource Manage-
ment (EERM): The EERM provides a stan-
dardized interface to the resource providing
Grid middleware (e.g. Globus Toolkit GT4
or Sun Grid Engine). Comparable with a
wrapper, the EERM isolates its clients from
middleware specific issues and to enhance
and complement its functionality with market
relevant features. The EERM’s main duties
include:

• Resource fabric management: Standard-
ized interfaces to create instances of re-
sources and later make use of them from
the application.

• Resource management: The resource
management aims at the satisfaction of the
SLA. It also notifies users and providers
of variations and additionally coordinates
independent resources to allow for co-
allocation in case this is not directly
provided by the fabrics.

• Resource monitoring: The resource mon-
itoring subcomponent monitors the state
of the resources in terms of its technical
parameters and reports them to the SLA
enforcement.

– Payment: Once the SLA enforcement and
billing component has determined the degree
of SLA fulfilment and associated payments,
the payment component is invoked. The pay-
ment component offers a unified interface to
commercial payment services such as PayPal.

Layer 1: Core Market Services Standard Grid mid-
dleware does not provide all the infrastructure
services necessary for the Open Grid Market.
Layer 1 extends the standard Grid middleware by
basic infrastructure services:

– Trusted market exchange service: All com-
munication among market participants (users,
providers and services of the Open Grid Mar-
ket layer) is mediated by the trusted market
exchange service, which assures that informa-
tion is routed to the appropriate party in a
secure and reliable way. Routing is performed

by applying rules on content and also from the
context of the communication (for instance,
existing negotiations).

– Logging: All transactions executed on the
market must be registered in a secure log for
auditing purposes (for instance, to avoid the
repudiation of contracts).

– Market directory: The market directory is
a market-aware extension to the common-
place service registries in standard Grid mid-
dleware. The directory contains all currently
available resource offers with their technical
and economic information and thus provides
information about the current market situa-
tion as input to the bid and offer generation
and to the trading management components.

– Market information: The market information
service allows participants to publish informa-
tion and to gather information (e.g. prices,
resource usage levels) from other participants.
Participants can query the service or subscribe
to certain topics.

The implementation of the system model
sketched above raises some serious technical chal-
lenges that have to be addressed to allow for the
vision of an open market for Grid resources. The
challenges that are summarized in Table 3 concern
market-based Grid research in general, i.e. the
technologies and tools used to implement the Grid
market.4

4 Economic Challenges of Grid Markets

In this section, we will derive the economic chal-
lenges associated with building a generic Grid
marketplace. We will present a market structure
which is centered around the object which is to be
traded on the Grid market.

From Market Engineering, it is known that
the design of markets ultimately depends on
the characteristics of the objects that are being
traded over the market. For Grid computing, we

4A first prototype has been implemented (cf. [37]).



334 D. Neumann et al.

Table 3 Technical
challenges for Grid
markets

Challenge Description

Composition of The dynamic composition of applications from resources
applications that have to be acquired on a market is a specialization of

the general problem to compose applications out of existing
services. A promising approach to address this issue is the
use of semantic technologies—in Grid computing usually
denoted as the Semantic Grid.

Standards and The rapid development of current Grid and web service
stability standards leads to permanent changes in the technologies

and tools that have to build the basis of the Grid market.
This lack of stability in underlying systems makes it hard
to mature the Grid market components over time.

SLA formulation Current research has identified more than 600 possible
and enforcement parameters for SLAs from a business

perspective. Obviously, it is very complex to negotiate SLAs
with such a large numbers of dimensions and to enforce
them during execution. Thus, the relevant parameters have
to be identified to allow for an appropriate expressiveness
of SLAs and to restrict the complexity of its technical
management at the same time.

Economic awareness Current resource fabrics’ and Grid middleware’s resources
of resources are not aware that they are situated in an economic environment,

for example they do not know that they have a
certain price or that there malfunction implies financial
compensation. Thus, resources need extensions to cope with
their economic nature and especially to inform clients of
their economic as well as technical state.

Transparency For a good acceptance of Grid markets – besides economic
factors – it is also necessary that the developed technology
can be used as transparently as possible. The required
changes in the existing systems must not be too invasive
and the users must not be bothered with too many additional
time-consuming tasks. While the users tasks – at least to
some extent – can be supported by intelligent agents and
wizards, virtualization seems to be a promising remedy against
technical complexity.

distinguish three classes of Grid resources based
on the level of functionality and the mode of
deployment, which depends on how the EERM
processes the application:

– Physical resources can be CPUs, memory, sen-
sors, other hardware and software or even
aggregated resources such as clusters (e.g. a
Condor or MOSIX cluster). From a technical
point of view, resources are simple to describe
as there exists only a finite set of resources.
For instance, a resource may be defined by the
operating system (e.g. Linux OS), the number
of CPUs (e.g. 4 * x86 CPU), memory (e.g.

128MB RAM) etc. The GLUE schema5 pro-
vides a standardized vocabulary for describ-
ing computing elements. The standardization
of resources offers an easy way to uniquely
describe them. This in turn alleviates resource
discovery as matchmaking is straightforward.

– Raw services are resource-near services that
access resources via standardized interfaces.
Examples comprise storage Web services and
virtualization middleware. Raw services also
comprise application services which could

5http://forge.ogf.org/sf/projects/glue-wg, 09.11.2007.

http://forge.ogf.org/sf/projects/glue-wg
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potentially be standardized as expressive de-
scription languages such as Job Submission
Description Language6 or Resource Specifica-
tion Language7 exist.

– Non-standardized application services are
complex application services (or simply com-
plex services in the remainder), which are so
diverse that they cannot reasonably be stan-
dardized, e.g. services which perform data
consolidation and aggregation or statistical
analyses. For the description of complex ap-
plication services domain-dependent ontolo-
gies can be used, if existent. Nonetheless, the
indefinite search space tremendously exacer-
bates service description and likewise service
discovery of complex services.

Designing one Grid market for all kinds of re-
sources, from physical resources such as process-
ing power, memory and storage running on native
platforms to sophisticated virtual resources or
services, bundling and enriching such physical re-
sources, seems inappropriate due to both techni-
cal and economic factors.

– Technical factors: From the technical perspec-
tive, differences in the monitoring and de-
ployment of services and resources exist, such
that it is very difficult to devise a generic sys-
tem for the EERM that allows the trading all
kinds of resources and services. Even worse,
different deployment mechanisms embedded
by the EERM impose different requirements
on the market mechanism. Physical resources–
either accessed directly or as raw services
via standardized interfaces – are application-
independent in the sense that the applica-
tion is fully transferred to and deployed on
the physical resources (given that these re-
sources match the application’s technical re-
quirements), but the resources are somewhat
generic and can be used for a wide range of ap-
plications. Complex services on the other hand
offer more specific functionality and can only
be used by a limited number of applications.

6http://forge.ogf.org/sf/projects/jsdl-wg/, 09.11.2007.
7http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.
html/, 09.11.2007.

The interface (input and output, e.g. data for-
mat and accuracy) of the services needs to
exactly match the needs of the calling appli-
cations, and complex services are therefore
application-dependent.

– Economic factors: These alternative ways of
deployment and dependencies give rise to dis-
tinctively different requirements for poten-
tial markets. From an economic perspective,
application-independent markets (i.e. markets
for physical resources and raw services) are
promising for automation via an organized
electronic market. There are standardized
items for sale that potentially attract many
buyers and sellers. Complex, application-
dependent services have a disadvantage as
demand is highly specialized and distributed
across niche markets such that only few po-
tential buyers and sellers are interested in the
same or a related service. But overall, demand
for complex services is huge as most of the
potential users are interested in getting their
services executed, no matter how many phys-
ical resources will be needed. From the eco-
nomic perspective, market mechanisms need
to achieve the standard objectives in mech-
anism design listed in Table 4. As pointed
out above, trading resources and complex ser-
vices imposes totally different requirements
on the market. While resources are more or
less a commodity for which auction mecha-
nisms seem to work well, complex services are
inherently non-standardized making auction-
like mechanisms inapplicable.

From this brief discussion, it can be stated that
a one-size-fits-all market mechanism for Grids is
infeasible. Instead, due to their heterogeneous
properties, Grids can be divided into two different
types of markets, application-independent markets
and application-dependent markets, spanning out
a “two tiered Grid market structure”8 (cf. Fig. 3).
It should be noted that we can use the same
Grid market system model. But we need different
instances of the components. In the forefront, the
trading management component needs to imple-

8We use the term “market structure” to denote the config-
uration of marketplaces.

http://forge.ogf.org/sf/projects/jsdl-wg/
http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html/
http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html/
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Table 4 Economic
objectives Objective Description

Allocative Allocative efficiency is the overall goal of market mechanisms
efficiency for Grid resource allocation. A mechanism is said to be allocatively

efficient if it maximizes the utility across all participating users
(welfare or overall “happiness”), i.e. the sum over the valuations
of all winning resource requesters less the sum over the reservation
prices of all winning resource providers.

Budget-balance Budget balance is basically one out of two feasibility constraints.
A mechanism is budget-balanced if it does not need to be subsidized
by outside payments. The payments coming from the resource
requesters cover the payments made to the resource providers.

Individual Individual rationality is the second feasibility constraint.
rationality Individual rationality loosely translates into participation constraint.

A mechanism is individually rational if users cannot suffer any loss in
utility from participating in the mechanism, i.e. it is individually
rational to participate.

Computational Due to the potentially large number of resource and service
tractability requests and offers, the complexity of the underlying allocation

problem and the need for immediacy of the allocation decision, the
Grid mechanisms needs to be computed in polynomial runtime in the
size of its input, i.e. the number of resource requests and offers.

Truthfulness Truthfulness means that it is a (weakly) dominant strategy for users to
reveal their true valuations to the mechanism. Truthfulness is a
desirable feature since it tremendously simplifies the strategy space
of the users; there is no need to reason about the bidding strategies
(even the strategies of the other market participants), reducing
the bidding problem to a preference elicitation problem.

Fig. 3 Two-tiered
economic market
structure
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ment a different market mechanism that supports
the respective market. In the following, those two
classes of markets are analyzed in terms of their
requirements on the market mechanisms.

4.1 Application-independent Markets

On the market for physical resources and raw
services, low-level resources are traded such as
processing power, memory, and storage. Demand
in the application-independent market is gener-
ated by complex services that need resources
to be executed. This setting in the application-
independent market poses special requirements
on the used market mechanism [33]:

– Multi-attributes: Physical resources, either de-
ployed as raw service or as resource, have
quality attributes such as speed of the CPU,
the operating platform or bandwidth. Thus
the mechanism needs to cope with multi-
attributes.

– Bids on bundles: Generally, users require a
combination of resources to execute a job (e.g.
CPU and memory). If the mechanism does not
account for bids on bundles, the user is facing
the risk of obtaining only one leg of this bun-
dle without the other (the so called “exposure
risk”). The market mechanism thus needs to
support requests for bundles of resources.

– Time attributes: When raw services are traded,
the market mechanism needs to take time
attributes into account. The requesters need
to specify their demand, so that the market
mechanism can efficiently schedule the job
requests according to availability of resources
and to the price. This differs from trading
resources, where the market mechanism exe-
cutes jobs upon availability.

– Co-allocation: Capacity-demanding Grid ap-
plications usually require the simultaneous
allocation of several homogenous service in-
stances from different providers. For example,
a large-scale simulation may require several
computation services to be completed at one
time. This situation with the simultaneous
allocation of multiple homogenous services
is called co-allocation. A mechanism for the

service market has to enable co-allocations
and provide functionality to control it.

– Coupling: For some applications, it may be
logical to couple multiple raw services of a
bundle in order to guarantee that these are
allocated from the same seller and – more
importantly – will be executed on the same
machine.

– Resource isolation: Security and performance
considerations lead to the requirement of re-
source isolation. In fact, it can only be assured
that an application satisfies a given quality-of-
service (QoS) or security level, respectively in
case the resources on which the application is
executed are committed only to one party.

– Online mechanism: The allocation of the
mechanism needs to be made within seconds.
The mechanism thus needs to be a lightweight
mechanism that requires little computation
time. Being an online mechanisms is crucial
because in the case of a decrease in the per-
formance of an application, new resources
need to be found and scheduled for immediate
execution.

– Split-proofness: The mechanism needs to be
split-proof in the sense that users cannot im-
prove their priority by splitting jobs into more
parts. Consequently, split-proofness can be in-
terpreted as a fairness criterion as small jobs
do not get preferred over large jobs.

– Merge-proofness: Likewise, the mechanism
needs to assure that users do not have advan-
tages through the merger of jobs, i.e. that large
jobs do not get preferred over small jobs.

4.2 Application-dependent Markets

On the application-dependent market, applica-
tions demand the execution of their constituting
complex services. Along the lines of the two-tiered
market structure, complex services can be decom-
posed into smaller raw services that can in turn
be translated into resources that are necessary for
executing them. E.g., some complex application
service might require a basic XML Transformer
service which in turn needs processing power,
memory, storage etc. Buyers in such a market
request a complex service—the provider of this
service, the service integrator, is responsible for
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obtaining the required raw services and physical
resources in turn on the application-independent
market, thus hiding parts of the Grid’s complexity
from the buyer. Such a hierarchical shading of
complexity seems to be an appropriate approach
since service requesters typically have no infor-
mation about how much resources the complex
service will consume (e.g. [8]).

The requirements on market mechanisms
for application-dependent markets are different
than for application-independent markets. Com-
plex services are rarely used by two different
companies—installing competition in application-
dependent markets hence does not make sense.
Here the difficulty rather stems from having to
find a counterpart that is exactly offering the ca-
pabilities to execute the application. The market
mechanism is more search-oriented such as bilat-
eral or multi-lateral negotiation protocols, giving
rise to the following requirements:

– Multi-attributes: Complex services have qual-
ity attributes defining the QoS of the service.
Thus the mechanism needs to cope with multi-
attributes.

– Workflow support: To support complex appli-
cations, distributed resources such as compu-
tational devices, data, and applications need
to be orchestrated while managing the appli-
cation workflow operations within Grid en-
vironments. The market-mechanism needs to
account for this during design time and run
time of the workflow. This imposes extreme
difficulties on the market mechanism, as the
operations need to be performed in the de-
fined manner opening up lots of exposure
risks: if one single task in the workflow fails,
the complex services cannot be orchestrated.
Thus the market mechanism needs to account
for this problem in a rather quick manner.

– Scalability: Scalability considers how the prop-
erties of a protocol change, as the size of a
system (i.e. the participants in the Grid) in-
creases. The market mechanism needs to be
scalable per se in order to be applicable.

– Co-allocation: Capacity-demanding Grid ap-
plications usually require the simultaneous
allocation of several homogenous service in-
stances from different providers. For example,

a large-scale simulation may require several
computation services to be completed at one
time. This situation where simultaneous al-
location of multiple homogenous services is
called co-allocation. A mechanism for the ser-
vice market has to enable co-allocations and
provide functionality to control it.

The problem with current markets for the Grid
is that they are purely designed as application-
independent markets. For example Sun’s $1 ad-
vertisement campaign aims at selling physical
resources, i.e. CPU hours. This type of market
is, however, by design not relevant for enterprise
customers who have deadlines to meet until when
a job needs to be executed and have no idea
about how many physical resources are required
to meet the deadline. While enterprises typically
have time critical jobs to execute, applications
in academia are less time dependent. As such,
application-independent markets where the re-
sources (being deployed as resources) would be
viable business models – here the users have to
wait until the queued jobs are being executed.
But clearly, the issue of payment for resources
is controversially discussed in academia. In the
future, even for the EGEE Grid billing and
payment will soon become an issue as demand
always exceeds supply. It seems that application-
independent markets will become an adequate
model for academia Grids such as EGEE or
D-Grid.

Grid markets that will be widely accessed by
enterprises need to be of the form of application-
dependent markets where complex services are
offered. For example a manufacturer is interested
in executing a Computer Aided Design applica-
tion and deploying it on a computation intense
platform. This complex service showcases a very
specific service which is likely to be demanded
from a single requester. To accommodate this
complex service, the service must be decomposed
into its constituting raw services and further on
to the physical resource demand. Integrators are
needed to facilitate this decomposition process,
where integrators denote companies that are spe-
cialized in aggregating and disaggregating services
into resources. Specialization stems from expe-
rience allowing the identification of the service
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demand needs by comparing it with similar ser-
vices in the past, where similarity is established
in terms of algorithms, data structures and sizes
etc. Telecommunication companies and hardware
producers seeking to virtualize IT infrastructures
naturally have a strong interest and the compe-
tency to become integrators.

It should be noted that for complex services
that are offered by one designated firm to multiple
customers (e.g. clone ERP such as SAP’s hosted
solution customer relationship management ser-
vice), the concept of software-as-a-service (SaaS)
gains traction. Those complex services are typi-
cally offered by fixed prices and do not require a
Grid market.

5 A Catalogue of Dynamic Pricing Mechanisms

In the previous section, we have motivated
that Grids require not something like a Global
Grid market where all Grid requests and sup-
plies are collected, but a more complex two-
tiered market structure. Figure 3 summarizes
the two-tiered market structure. On application-
independent markets, complex services require
physical resources either plainly deployed or ac-
cessed via service interface. Applications demand
the execution of several complex services on
application-dependent markets. Integrators as-
sume the responsibility of mediating between the
applications being unaware of their resource need
and the resources themselves.

In the following we will set up a taxonomy of
known market mechanisms which supports differ-
ent types of Grid applications. This taxonomy is
conceived to be a roadmap for further Grid mar-
ket developments that help bridging the adoption
gap.

Obviously, the requirements on the market
mechanism stem, firstly, from the definition of
the trading object, which in turn determines how
applications are deployed and, secondly, from
the application mode. Dividing the market struc-
ture into two parts – application-independent and
application-dependent markets – is too simplistic,
as the timing when demand occurs has not yet
been considered. This timing is determined by
the application itself and depends on the task the

application is performing. We use the term appli-
cation mode as a characterization of the process-
ing mode of the application. This encompasses in
particular the workload of the application as well
as the interaction model between applications and
the Grid middleware virtualizing the execution
platform. Depending on the application mode, dif-
ferent requirements upon the market mechanisms
emerge.

– Batch applications are characterized by a
planned execution and expected termination
time. Execution is serial and resource demand
depends on parameters such as the size of the
input data. Essentially, most Grid applications
are batch applications; jobs can be distributed
to nodes that have idle resources. The results
are reported back. Examples are compute-
intense applications like data mining or dis-
tributed search algorithms.

– Interactive applications are those applications
that require services or resources on demand,
depending on the interactions with users. Dif-
ferent than batch applications, with interactive
applications it is not possible to plan execution
and expected termination time far in advance,
so there can be unpredictable peaks of re-
quests occurring within a short time. Examples
for interactive applications are online data
analyses such as what-if scenarios.

– Task-oriented applications are dynamically
composed of single tasks to build more com-
plex tasks. Service demand depends on the
(work-)flow of requests from multiple users.
For example the transaction system of a
bank constitutes a task-oriented application.
From a resource allocation point of view,
task-oriented applications are extremely de-
manding, as the resource demand follows
a workflow of tasks. Exposure problems –
getting one service or resource without the
others – are prevalent. Thus the allocation
mechanism needs to consider the whole set of
tasks as partial allocations can be inefficient.

Most of the market-based approaches relate to
batch applications. Batch applications are com-
parably easy for two main reasons. Firstly, there
is no need to consider a whole workflow with
different resource demands on each echelon of
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the workflow. Secondly, the time to determine
the allocation can be relatively long; immediacy
is not essential. Thus, complex resource allocation
computations can be performed without hamper-
ing the whole application due to latency times
devoted to the calculation of the optimal alloca-
tion. Even worse, most of the practical market-
based Grid prototypes consider only one single
resource type (e.g. CPU only) and thus make
use of standard auctions such as the English or
Dutch auction [30, 42]. For applications other than
pure number crunching, those auction types are
inadequate as more than one object (e.g. memory,
broadband, and operation system) is required at
the same time.

In the following, we will position existing mar-
ket mechanisms within our two-tiered market
structure as well as regards these application
modes.

5.1 Mechanisms for Application-independent
Markets

5.1.1 Batch Applications

As mentioned above, the market mechanisms for
raw services and physical resources depend on
the application mode. In the following we dis-
cuss the mechanisms that are adequate for batch
applications.

– Multi-attribute Combinatorial Auction
(Bapna et al. [4]): In this market mechanism,
multiple requesters and providers can trade
both computing power and memory for a
sequence of time slots. First, Bapna et al.
introduce an exact mechanism for solving the
multi-attribute combinatorial auction prob-
lem. By introducing so-called fairness con-
straints and imposing one common valuation
across all resource providers, they structure
the search space in the underlying combi-
natorial allocation problem as to establish
one common, truthful price per time slot
for all accepted requests. Additionally, this
introduces a linear ordering across all jobs
and time which reduces the complexity of
the allocation problem, which however still
remains NP-hard. To mitigate this computa-

tional complexity, they thus propose a fast,
greedy heuristic at the expense of both truth-
fulness and efficiency. Although the mecha-
nism accounts for quality and time attributes
and enables the simultaneous trading of multi-
ple buyers and sellers, there is no competition
on the sellers’ side as all orders are aggregated
to one virtual bid - this is more appropriate
for Cluster computing, where all resources
are equal and under control of one entity.
Moreover, the mechanism does not take co-
allocation constraints into account.

– Multi-attribute Exchange (Stößer et al. [39]):
In the spirit of the mechanism developed
by Bapna et al. [4], Stößer et al. [39] pro-
pose a heuristic for clearing Grid markets
in order to overcome the computational in-
tractability of exact mechanisms. The heuristic
is designed so as to obtain an approximately
efficient allocation schedule at low compu-
tational cost while accounting for strategic,
self-interested users in a heterogeneous en-
vironment. In contrast to Bapna et al.’s
mechanism, it preserves truthfulness on the
request-side of the market while account-
ing for heterogeneous resource and service
providers under decentralized control. None-
theless, coupling, co-allocation and resource
allocation are currently not supported by this
mechanism.

– Multi-Attribute Combinatorial Exchange
(MACE)-mechanism (Schnizler et al. [33]): In
MACE users are allowed to request and offer
arbitrary bundles of grid services for which
they can specify QoS-attributes and coupling
constraints. MACE implements an exact
mechanism for solving a combinatorial, multi-
attribute scheduling problem. The scheduling
problem in this combinatorial setting is NP-
hard, where complexity dramatically increases
with the number of bids being introduced.
This paper introduces a new pricing scheme
for combinatorial exchanges, the k-pricing
rule. In essence, the k-pricing rule determines
the price such that the resulting surpluses
to the buyers and sellers divide the entire
surplus being accrued by the trade according
to the ration k. The k-pricing rule is budget-
balanced but cannot attain the efficiency
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property. As simulations have shown, the k-
pricing rule introduces an incentive to report
valuations at least approximately truthfully.
For batch applications, where the allocation
can be defined way before the execution time,
MACE appears to be a valid alternative for
operating batch raw service markets.

– Combinatorial Scheduling Exchange
(AuYoung et al. [3]): A combinatorial
scheduling exchange can also work for batch
applications, where the language allows the
specification of bundles. AuYoung et al. pro-
pose an exact combinatorial exchange for
computing resources, where the pricing is
based on the approximation of the truthful
VCG prices proposed by Parkes et al. [28].
Exact combinatorial problems require a lot
of computation time and become infeasible
once the problem size is rising. Thus, the
combinatorial scheduling exchange can only
be used for batch applications. The mecha-
nism does not account for co-allocation,
coupling, and resource isolation constraints.

– Augmented Proportional Share (Stoica et al.
[41]): In the initial version the proportional
share mechanism works without time con-
straints. For trading services this is not impos-
sible; Proportional share has been augmented
by time attributes. Depending on the amount
of the bid for certain time slots, the allocation
is done according to the bids. Augmented pro-
portional share is a very straightforward but
very limited mechanism, as only one standard-
ized good can be allocated. Although time
constraints can be managed, all other require-
ments (i.e. multi-attributes, bids on bundles,
co-allocation, coupling, resource isolation) are
not supported.

5.1.2 Interactive Applications

For interactive applications it is impossible to
predict demand for raw services and resources.
Thus, the mechanisms need to allocate contin-
uously. This can be realized by either frequent
call mechanisms, where bids are collected for a
very short time span and cleared right away. This
requires that the mechanism is solvable in few sec-
onds. Alternatively, the mechanism could be an

online mechanism, which allows the real-time job
submission to available resources (e.g. nodes or
clusters). A third way is to introduce a derivative
market to insure against the risk of supernormal
resource demand.

– Fair Share: Essentially, the group of fair share
mechanisms (e.g. example being SHARE
[16]) are technical schedulers and not mar-
ket mechanisms, as resource assignments are
not based on prices bids. We list it here, de-
spite this fact, due to their easy implemen-
tation and importance in practice. Different
to other technical schedulers the idea behind
fair share is equal treatment of all users rather
than focusing on processes. Fair share denotes
a scheduling strategy in which the usage of
a certain resource (either CPUs or number
of nodes in a cluster) is equally distributed
among system users. Such a scheduling mech-
anism is inadequate for Grids as it gives more
resources to users with more processes. Thus,
it is not split-proof, meaning that a user can
indefinitely increase its share by splitting the
processes into several smaller ones.9

Variants of the fair share mechanism have
been introduced that allow the administrator
to partition users into groups and apply the
fair share principle to these groups as well.
The most common way of implementing the
fair share scheduling strategy is to apply a
recursive round-robin strategy. The drawback
of the fair share strategy is that all parameters
are pre-specified and set by the system ad-
ministrator. The buyers have no influence on
the allocation. From an economic perspective
fair share strategy reaches only a very low
level of efficiency; except in the case that all
buyers have the same utility for a share of
the resource. Fair share can be applied to
aggregated resources (e.g. nodes) allowing the
introduction of bundles.

– Proportional Share (Chun and Culler [6], Lai
et al. [19]): In recent years proportional share
schedulers have made their way into practice.
Essentially, each user submits a bid that is

9On the other hand, fair share is merge-proof as no partic-
ipant can gain a higher share by merging processes.
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used to determine the share of the resources
the user is allocated with. The higher the bid,
the higher is the share the users will have to
expect. Proportional share thus epitomizes a
market system in its purest form. Especially
in overload situations, proportional share has
the desirable property of being more flexi-
ble keeping the share of resources constant,
where the resource amount is dwindling down.
There are many variants of proportional share
out. For example, in many Grid systems the
weights attached to users are kept constant,
leaving the share constant without paying at-
tention to the actual demand situation. Pro-
portional share has the desirable property of
being merge-proof but is not split-proof [24].
Typically proportional share is used in associ-
ation with only one resource, ignoring the use
of bundles.

– Pay-as-bid (Sanghavi and Hajek [31]): The
pay-as-bid mechanism proposed by Sanghavi
and Hajek extends the pay-as-bid mechanisms
of Kelly [17] and Johari and Tsitsiklis [14] by
introducing a discriminatory instead of uni-
form pricing. Discriminative prices are de-
signed to remove the effect of uniform prices
where high bidders tend to bid less than
their true valuation to avoid an increase in
the prices per share. In pay-as-bid mecha-
nisms the buyers submit only a single real
value as bids i.e. the willingness-to-pay. These
bids equal the final payment each buyer has
to contribute. The allocation of the good is
generated according to a pre-specified alloca-
tion mechanism. A mechanism that is optimal
for two buyers is presented by Sanghavi and
Hajek in [32]. They show that the proposed
mechanism leads to a unique Nash Equilib-
rium and furthermore is the most efficient
mechanism when pure price bids are being
used. The mechanism reaches a worst case
fractional efficiency of 87.5%. For the exten-
sion for n buyers the worst case efficiency
can no longer be kept upright. Only a lower
bound can be determined for the worst case
efficiency, which is still close to theoretical
maximum (87.03% < efficiency < 87.5%).
Apparently, the mechanism can only guaran-
tee that the outcome is close to the maximum

[32]. The pay-as-bid mechanism exceeds pro-
portional share in terms of efficiency. On the
other hand pay-as-bid does not provide bid on
bundles.

All three mechanisms, however, have the same
drawback, as they can be used in scenarios where
one resource provider serves several consumers.
In all cases there is no competition among the
providers. In case, all resources are under central-
ized control this is unproblematic, but in Grids, it
is the idea to cross administrative boundaries, and
mechanisms are needed which allow for multiple
providers.

– Multi-attribute Combinatorial Auction
Heuristic (Bapna et al. [4]): As for batch
applications, the multi-attribute combinatorial
auction can be used for continuous resource
allocation processes as well. In this case, it
is necessary to rely on the heuristic, since
otherwise the problem is too computation
intensive. Obviously, the same shortcomings
for batch applications also apply for inter-
active ones.

– Multi-attribute Exchange (Stößer et al. [39]):
Again, the multi-attribute exchange mech-
anism can also be applied here, retaining
the shortcomings as for batch applications,
though.

– DLGM (Heydenreich et al. [12], cf.
Section 2.2): All the previous mechanisms
are applicable due to their computational
tractability; however, they still require the
periodical clearing instead of supporting
(near) real-time allocation decisions. To this
end, Heydenreich, Müller et al. [12] propose a
DLGM which aims at maximizing the users’
overall “happiness” by minimizing the sum
of the jobs’ weighted completion times. The
mechanism is taken from the general machine
scheduling domain and extended with a
pricing scheme which guarantees budget-
balance. It does, however, not achieve full
incentive compatibility with respect to jobs
reporting their true characteristics, neither
does it sufficiently account for the inter-
organizational character of Grids. Machines
are assumed to be under centralized control.
Stößer et al. [40] extend the mechanism so
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that those drawbacks in Grid settings are
alleviated.

– Augmented Proportional Share (Stoica et al.
[41]): This mechanism can also be used for
interactive applications, while the same re-
strictions apply as before.

– Derivative Markets (Kenyon and Cheliotis
[18]; Rasmusson [29]): Whereas the mecha-
nisms introduced before are spot markets be-
ing concerned with the immediate trade of
commodities, derivative markets trade con-
tracts that specify rights or obligations to re-
ceive or deliver payments based on future
events. Derivatives yield two benefits: allow-
ing, firstly, to hedge against risk, and secondly,
to speculate.
It is a well known result from finance that
it is possible to setup a portfolio consisting
of options and the underlying assets that is
both risk-free and self-financing, i.e. the in-
vestor does neither need to add nor remove
capital from the portfolio in order to perform
the hedge [29]. This also enhances capacity
planning, as futures and options generate early
signals about future prices which may help to
better control the system by inducing users to
distribute excess demand over time or provide
incentives for service providers to contribute
to the Grid system [38]. Derivative markets
can be used to price network resources. A
certain fraction of network capacity is rep-
resented by a so called “capacity share”. A
capacity share is traded on a spot-market and
contains the non-expiring right to use the un-
derlying network capacity, i.e. the holder of
a share is guaranteed to be able to use the
corresponding share of the network for an in-
definite period of time. Holders of such a share
who do not need this capacity anymore are
required to sell their share on the spot-market.
By trading options on these capacity shares,
users can hedge against risk: The holder of a
capacity share can hedge against the risk of
not being able to sell this share in the future
by entering into a so called “put option”; A
user who needs the guarantee to be able to
use some network capacity in the future can
reserve this capacity by buying a so called “call
option”. As pointed out above, options cannot

only be used for hedging purposes but also
for speculation (arbitrage) which contributes
liquidity to the market.

5.1.3 Task-oriented Applications

The requirements on market mechanisms that
support task-oriented applications are very de-
manding, as all constituents of the workflow needs
to be allocated – otherwise the application has
no value to the user. Currently, there are only
bargaining protocols available that guides the user
in its search for all components of the workflow.

– Bargaining Protocol (Czajkowski et al. [7]):
The bargaining involves multiple rounds be-
tween the users (e.g., co-allocators) and
providers (e.g., schedulers) until an agreement
is negotiated (e.g. Siddiqui et al. [35]). The
providers post their offers on request to the
user, who can either select among the avail-
able offers or enter re-negotiation by relaxing
some constraints.

5.2 Mechanisms for Application-dependent
Markets

As aforementioned trading complex services is
very demanding, as there are not many providers
and requesters existing. Currently, there is not
much research available that aims at developing
market mechanisms for trading complex services.
Hence, the market mechanisms for batch, interac-
tive and task-oriented applications do not differ
substantially.

5.2.1 Batch Applications

For batch applications there are three different
market mechanisms suitable, where the first one,
MACE, provides a sufficiently rich bidding lan-
guage for supporting complex services. The sec-
ond mechanism is the bargaining protocol, while
the last one refers to take-it-or-leave-it pricing,
where the vendor sets the price and the users
decide whether or not to purchase.

– MACE-mechanism (Schnizler et al. [33]):
Albeit, MACE can represent complex ser-
vices, it does not support workflows. In ad-
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dition, the scalability requirement is not fully
satisfied.

– Bargaining Protocol (Czajkowski et al. [7]):
Essentially, bargaining protocols are the only
mechanisms that can be used for trading com-
plex services.

– SaaS: SaaS refers more to model of soft-
ware delivery where a service provider (e.g.
SAP) offers to requesters applications that
are specifically implemented for one-to-many
hosting. This on-demand software selling is
coupled with fixed take-it-or-leave-it prices.
The risk of peak loads is shifted to the soft-
ware provider. It should be noted that SaaS
applies to somewhat standardized applications
allowing the implementation for one-to-many
hosting.

5.2.2 Interactive Applications

Interactive applications make the design of ad-
equate market mechanisms even more difficult.
Potentially, the following mechanisms could be
used.

– Bargaining Protocol (Czajkowski et al. [7])
– SaaS
– DLGM (Heydenreich et al. [12]): This on-

line scheduling mechanism could also be used
for complex services. The problem with this
mechanism is that it does not support co-
allocation of resources.

5.2.3 Task-oriented Applications

As aforementioned, task-oriented applications
are very demanding due to the exposure risks
involved. Mechanisms that could be used for trad-
ing are bargaining protocols and SaaS. It should
be pointed out that there is currently almost no
research in this field available—a notable example
is the work of Blau et al [5].

– Bargaining Protocol (Czajkowski et al. [7])
– SaaS
– Path Auction (Blau et al. [5]): Blau et al.

propose an auctioning protocol that sup-
ports workflows. Essentially, each service
requester invites different providers of con-
stituting services to the path auction. Every

service provider submits a bid depending on
the invoking service. This way, it is possi-
ble to account for different usage patterns
of the service. The payments are determined
dependent on the prices without this service
provider present. If the price for the complex
application service – calculated as the sum
of payments for the single service – exceeds
the willingness-to-pay, the auction fails. This
is intended to confine the auction prices of the
service requester to his maximum willingness
to pay. In essence, this path auction boils down
to an instance of a Vickrey-Clarke-Groves
mechanism.

6 Summary

This paper argues that the technology of Grid
computing has not yet been adopted by enter-
prises due to the lack of viable business models.
In academia, Grid technology has already been
taken up, but the sharing approach among non
for-profit organizations cannot be transferred to
enterprises. We pick up the idea of a Grid market
to overcome this adoption gap. This idea is not
new by any means, but hitherto all proposals had
been made by computer scientists being unaware
of economic algorithms and models or by econo-
mists being unaware of the technical possibilities.
This paper attempts to derive an economically
sound set of market mechanisms based on a solid
understanding of the technical possibilities.

Section 2 motivated the need for commercial
Grids based on dynamic market mechanisms.

In Section 3, we presented a system model of
the Grid market with its functional components
and dependencies. The implementation of this ar-
chitecture raises several technical challenges, such
as instable “standards” and SLA formulation and
enforcement.

Section 4 analyzed the economic requirements.
The nature of the trading object is closely asso-
ciated with the deployment of software applica-
tions. Deployment as resource or as service has
major ramifications on the trading object and con-
sequently on the requirements on market mech-
anisms. Resources are essentially commodities,
where services can be both standardized com-
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Table 5 Overview of market mechanisms for Grids

Application mode Application-independent markets Application-dependent markets

Batch Multi-attribute Combinatorial Auction [4], MACE [33], Bargaining Protocol [7],
Multi-attribute Exchange [39], MACE [33], SaaS
Combinatorial Scheduling Exchange [3],
Augmented Proportional Share [41]

Interactive Fair Share [16], Proportional Share [6, 19], Bargaining Protocol [7],
Pay-as-Bid [31], Multi-attribute Combinatorial SaaS, DLGM [12]
Auction Heuristic [4], Multi-attribute Exchange [39],
DLGM [12], Augmented Proportional Share [41],
Derivative Markets [18, 29]

Task-oriented Bargaining Protocol [7] Bargaining Protocol [7],
SaaS, Path Auction [5]

modities (i.e. raw services) and non-standardized
unique entities (i.e. complex services).

Based on the subsequent analysis, this pa-
per derived a two-tiered market structure where
the markets on each tier demand for different
market mechanisms. The first tier comprises the
application-independent markets for physical re-
sources (e.g. CPU, memory) that can be accessed
either as resource or as raw service. The second
tier comprises the application-dependent markets
for complex services.

Section 5 showed which mechanisms are suit-
able for what area. Table 5 summarizes the main
contribution of this paper—the identification of
a set of existing market mechanisms that can be
used depending on the application and the respec-
tive tier within the market structure. As shown
in the paper, for some application types adequate
market mechanisms exist, while for others no
mechanisms have been identified yet.

In essence, the results of this paper suggest
several intriguing research avenues:

– Analyze the properties of the proposed mech-
anisms for the respective application mode
classes.

– Compare the efficiency of the market mecha-
nisms attributed to the different classes of the
market mechanism canon.

– Implement the mechanisms and conduct field
studies in order to get real data.

– Develop market mechanisms, where the mar-
ket mechanism canon is mostly silent (e.g.
task-oriented applications).

– Develop sustainable business models for com-
panies that provide market platforms for trad-
ing Grid services or resources.

– Identify the size and the potential revenue of
the single markets of the two-tiered market
structure.

– Identify limits of the use of market mecha-
nisms in Grid.
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