
Managing Role-Based Access Control Policies for Grid
Databases in OGSA-DAI Using CAS

Anil L. Pereira & Vineela Muppavarapu & Soon M. Chung

Received: 9 January 2006 /Accepted: 12 October 2006 /Published online: 28 December 2006
Springer Science + Business Media B.V. 2006

Abstract In this paper, we present a role-based
access control method for accessing databases
through the Open Grid Services Architecture – Data
Access and Integration (OGSA-DAI) framework.
OGSA-DAI is an efficient Grid-enabled middleware
implementation of interfaces and services to access
and control data sources and sinks. However, in
OGSA-DAI, access control causes substantial admin-
istration overhead for resource providers in virtual
organizations (VOs) because each of them has to
manage a role-map file containing authorization
information for individual Grid users. To solve this
problem, we used the Community Authorization
Service (CAS) provided by the Globus Toolkit to
support the role-based access control (RBAC) within
OGSA-DAI. CAS uses the Security Assertion Mark-
up Language (SAML). Our method shows that CAS
can support a wide range of security policies using
role-privileges, role hierarchies, and constraints. The
resource providers need to maintain only the mapping
information from VO roles to local database roles and
the local policies in the role-map files, so that the
number of entries in the role-map file is reduced
dramatically. Also, unnecessary authentication, map-
ping and connections can be avoided by denying

invalid requests at the VO level. Thus, our access
control method provides increased manageability for
a large number of users and reduces day-to-day
administration tasks of the resource providers, while
they maintain the ultimate authority over their
resources. Performance analysis shows that our
method adds very little overhead to the existing
security infrastructure of OGSA-DAI.

Key words Open Grid Services Architecture –Data
Access and Integration (OGSA-DAI) . Grid databases .

virtual organization (VO) . Community Authorization
Service (CAS) . role-based access control (RBAC)

1 Introduction

Grid has emerged recently as an integration infra-
structure for sharing and coordinated use of diverse
resources in dynamic, distributed virtual organiza-
tions (VOs) [1–6]. The use of databases in Grids
presents different security needs and access policies
compared with the use of computational resources.
For example, certain applications may be authorized
to access only a certain part of a database during a
specific time interval.

The Data Access and Integration Services Working
Group (DAIS-WG) of the Global Grid Forum (GGF)
is currently establishing the standards for Grid
interface to data resources [7]. The Open Grid

J Grid Computing (2007) 5:65–81
DOI 10.1007/s10723-006-9054-4

A. L. Pereira :V. Muppavarapu : S. M. Chung (*)
Department of Computer Science and Engineering,
Wright State University, Dayton, Ohio 45435, USA
e-mail: soon.chung@wright.edu

Services Architecture – Data Access and Integration
(OGSA-DAI) provides the first implementation for
these emerging standards. Currently, OGSA-DAI
supports role-based access control (RBAC) [8, 9] via
a role-map file that maps individual Grid users to
database roles. In other words, permissions are
associated with roles, and users are made members
of appropriate roles, thereby acquiring the roles’
permissions [10]. In this case, each resource provider
has to maintain a role-map file to authorize access to its
resources. This access control method is not suitable
for VOs, because both users and resources are dynamic
in VOs. Multiple entries in multiple role-map files may
need to be updated if new users are allowed to access
multiple data resources or if the access privileges of
current users change. This puts an unnecessary burden
on the resource providers in managing the role-map
files, especially when both the users and resource
providers belong to multiple VOs. Furthermore, there
are unnecessary overheads on the resource providers
whenever users make invalid requests. This is because
users are authenticated, mapped and connected to the
databases without first verifying their requests against
their access privileges.

In this paper, we describe how the Community
Authorization Service (CAS) provided by the Globus
Toolkit [11] can be used to enhance the security
mechanism in OGSA-DAI. The CAS records user
groups and their permissions on resources, and it
targets access control for computational and file-based
storage resources. But, we demonstrate that the CAS
can also support RBAC for multiple VOs to access
Grid databases within the OGSA-DAI framework. We
extended the RBAC approach supported by OGSA-
DAI to allow users to be assigned memberships on
VO roles, to assign privileges and specify constraints
on those roles, and to allow role hierarchies.

In our method, CAS maintains the security policies
of VOs, grants users’ memberships on VO roles, and
then authorizes them in those roles. The resource
providers need to maintain only the mapping infor-
mation from VO roles to local database roles and the
local policies, thus the number of entries in the role-
map file is reduced dramatically. Our method also
allows the specification of policies at the VO level,
thus if the users do not possess the required
privileges, their access can be denied at the VO level
itself. This eliminates unnecessary authentication,
mapping and connection overheads on the resource

providers. When users join/leave a VO, the resource
providers do not have to bother about individually
adding/removing their information in the role-map
files because the CAS server can just grant/revoke
their memberships on the VO roles. Furthermore, the
resource providers can grant or refuse the access
requests of specific users by maintaining their
authorization information separately in the role-map
files. This enables the resource providers to have the
ultimate authority over their resources.

We have implemented our proposed method and
analyzed its performance. In our implementation,
users obtain CAS credentials based on user creden-
tials. The user credential is formed by an X.509
certificate and the associated public/private keys, and
it is issued by a Certificate Authority (CA) trusted by
all entities in a Grid [12]. The CAS credentials
contain the authorization information for the user in
terms of his/her VO roles. We have extended the
client-side implementation of OGSA-DAI to pass the
CAS credential. The server-side has been extended to
parse the CAS credential to obtain the VO roles. The
server also verifies the capabilities associated with
that VO role against the local policies of the resource
provider and maps it to a local database role. We have
evaluated our solution in terms of the overheads
incurred when security contexts are set up between a
client and a server. This has been done with respect to
the original security mechanism in OGSA-DAI.

The organization of the paper is as follows: Section 2
explains the current authorization mechanism in
OGSA-DAI. In Section 3, we describe CAS. In
Section 4, we present our RBAC method using CAS
in OGSA-DAI. Section 5 describes the implementa-
tion details, and Section 6 describes the results of
performance analysis. Section 7 contains conclusions.

2 OGSA-DAI

OGSA-DAI is an efficient Grid-enabled middleware
implementation of interfaces and services to access
and control data sources and sinks [13]. In order to
expose physical data resources to the Grid, by
extending the interfaces defined by Open Grid
Services Infrastructure (OGSI) [14], OGSA-DAI
introduced the following services [13]: (1) Grid Data
Service Factory (GDSF): represents a data resource,
and exposes its capabilities and metadata. (2) Grid

66 A.L. Pereira, et al.

Data Service (GDS): created by a GDSF and holds
the client session with the data resource. (3) DAI
Service Group Registry (DAISGR): clients can
discover service/data by locating GDSFs registered
with a DAISGR.

Figure 1 shows how clients can access data
resources using OGSA-DAI. The client first contacts
the DAISGR and gets information about the regis-
tered GDSFs. The client then contacts the desired
GDSF and makes a request for the creation of a GDS.
Once the GDS is created, it authorizes the client and
establishes a JDBC connection to the underlying
database. The client can then submit queries on the
database and retrieve results. The client authorization
process is discussed in detail in Section 2.1.

2.1 RBAC and Current Authorization Mechanism
in OGSA-DAI

User authorization is one of the most challenging
issues in Grid computing. Current authorization
mechanisms cannot address all the issues that arise
in dynamic Grid environments which often encom-
pass multiple organizations, each with its own
security policy [15]. RBAC shows clear advantages
over traditional discretionary and mandatory access
control models in such environments, because it
allows the uniform representation of diverse security
policies and ensures that no security violations occur
during inter-domain access [15].

Furthermore, RBAC is distinguished by its inher-
ent support for the Principle of Least Privilege [16].
The Principle of Least Privilege requires that a user be

given no more privileges than necessary to perform a
job [8]. It can be easily enforced by first identifying the
roles in an organization correctly and then assigning
only those privileges to each role that allow the role
members to perform their tasks. Hence, some Grid
authorization mechanisms have adopted the RBAC
model. With our method, users can request a particular
role among those they are entitled to and, hence, gain
the specific permissions tied with that role.

The current security infrastructure of OGSA-DAI
uses a role-map file for authorizing a Grid user’s
request. The role-map file contains the information for
mapping a Grid user credential to a username and a
password that are used to connect to a database at a
particular authorization level. Multiple entries in
multiple role-map files may need to be updated if
new Grid users are allowed to access multiple data
resources or if the access privileges of current users
change. Thus, managing the entries in a role-map file
is difficult. With these considerations in mind, we
propose an efficient access control mechanism for
Grid database services in OGSA-DAI.

3 Community Authorization Service (CAS)

We enhanced the existing implementation of OGSA-
DAI to use the Community Authorization Service
(CAS) provided in the Globus Toolkit. CAS provides
a scalable mechanism for specifying and enforcing
complex and dynamic policies that govern resource
usage within Grids. It allows resource providers to
delegate some of the authority for maintaining fine-
grain access control policies to communities, while
still maintaining the ultimate authority over their
resources [17].

The following is the sequential process of a Grid
user obtaining a CAS credential for accessing a
resource. As shown in Fig. 2, a user generates a
certificate (Cu) by making a request to a Certificate
Authority (CA) which is trusted by all the entities
within the Grid, i.e., all users and resources. If a user
needs to gain access to a resource, the user generates a
proxy credential (Cup) which is signed by his/her user
certificate (Cu). This generated proxy credential’s
lifetime will be less than the lifetime of the user
certificate. The lifetime of a proxy credential gener-
ated using the Globus Toolkit is 12 hours. In order to
use a CAS credential, the user makes a request to the

4. JDBC
connection based
on the mapping
in the role-map
file

2. Request
for creation
of a GDS

<<Exposes>>

3. Creates a
GDS

Client

Grid Data
Service Factory

Grid Data
Service

 DB

5. Queries and
results submitted
and received using
XML documents

DAISGR

1. Client
gets the
information
about the
GDSFs
registered

Fig. 1 Accessing a data resource through OGSA-DAI

Managing role-based access control policies for Grid databases in OGSA-DAI using CAS 67

CAS server to initiate a CAS proxy based on the
user’s proxy credential. The CAS server authenticates
the user and obtains the user’s capability details
present in the CAS database. The CAS server then
creates a CAS proxy credential (Cucasp) which
contains the CAS policy assertions to represent the
user’s capabilities and restrictions as an extension to the
existing user proxy credential (Cup). The CAS proxy
credential is presented to the resource provider. The
resource provider verifies the validity of the CAS proxy
credential and then parses the CAS policy assertions to
obtain the restrictions imposed by the CAS server. Thus,
the CAS credential facilitates the mapping of the user to a
local user account, and the capabilities and restrictions
determine the operations the user is allowed to perform.

Due to the CAS system design and RBAC, our
method provides scalability in terms of the number of
users and VOs. CAS reduces the number of necessary

trust relationships from C×P to C+P, when there are
C consumers and P providers. Each consumer needs
to be known and trusted by the CAS server, but not
by each provider. Similarly, each provider needs to be
known and trusted by the CAS server, but not by each
consumer [17]. A single CAS server can support the
authorization for multiple VOs. Also, it has been
shown that the cost of administering RBAC is propor-
tional to U+P per role, while the cost of associating
users directly with permissions is proportional to U×P,
where U is the number of individuals in a role and P is
the number of permissions required by the role [19, 20].

However, in terms of the actual number of access
requests on resources, using a single CAS server may
not be quite scalable. A single CAS server can be a
bottleneck if a large number of users attempt to access
it at the same time, and it can be a single point of
failure. A possible solution for these problems

Creation
of CAS
proxy

Cu

Cup

 Ccas

Cucasp

Long-lived
credential

Temporary
credential

User’s Proxy
credential

User’s
credential

User’s CAS
Proxy
credential

CAS Server
credential

CAS Server

Cucasp
Capability
details for user

CAS
Database

Cup

Ccas

User

Creation
of user
proxy

R
equest C

A
signature Si

gn
 U

se
r

C
re

de
nt

ia
l

Certificate
Authority

(CA)

Cu

Host Computer

User Proxy

Cup

Cucasp

CAS Proxy

Fig. 2 User’s normal proxy
credential and CAS proxy
credential creation

68 A.L. Pereira, et al.

depends on how frequently the community policies
change. If the community policies do not change
frequently, a single master server can be maintained to
accept the changes and then routinely replicate the
policies to one or more read-only slave servers. If the
community policies change frequently, multiple peer
servers can be used. All the servers update the policies,
so that the failure of any one server will not lead to a
loss of functionality [17]. However, when policies are
changing dynamically, the complete centralization of
policies can achieve better consistency. Also, in the
case that a user credential is compromised, revocation
is easier when a single CAS server is used because the
user needs to be removed only from that server [17].

4 RBAC with CAS in OGSA-DAI

In a VO with a large number of users, we could think
of several groups of users, each with different levels
of access (roles). A role has certain privileges
associated with it. When a VO role is mapped to a
local role, it will acquire the access rights associated
with the local role, such as the right to perform the
database operation SELECT on specific tables of a
database during certain time intervals. For mapping,
the resource provider can obtain the VO role through
the user’s CAS credential. AVO role can be assigned
to any number of users. When users join/leave the
VO, the resource providers do not have to bother
about individually adding/removing them from the
role-map files because the CAS server could just
grant/revoke their membership from the existing VO
roles. Moreover, if roles and privileges do not change
often, the resource provider does not need to update
its role-map file frequently.

4.1 Drawbacks of the Existing Approach
for RBAC with CAS

A proposed approach for supporting RBAC with CAS
is the use of rights associated with a role to access
role-specific resources [21]. The role of a user is
presented in a hierarchical form. For example, Alpha/
admin indicates the administrator role of a virtual
organization Alpha. Alpha could be the name of a
project undertaken by collaborating organizations. In
VOs, users may be assigned specific tasks, and there
may be constraints related to the execution of those
tasks. For example, a user may have access to data
only during certain days of the week. One of the key
aspects of RBAC is that it allows the specification of
constraints on roles [9]. However, the approach
proposed in [21] does not address this aspect of
RBAC. Another drawback is that for a user to act in
multiple roles, multiple CAS proxy certificates have
to be created.

Most systems do not enforce the Principle of Least
Privilege [24]. An application must be delegated only
those privileges required for completing a certain set
of tasks, otherwise the application should be totally
trusted to do no more than required. In Grids, this is
even more critical since software can be regularly
downloaded from remote sites. In addition to the
possibility of downloading malicious software such as
Viruses, Trojans, Worms, and so on, we cannot expect
software to work exactly as specified because of bugs
or malicious intent. Any software with certain extra
privileges has the potential to cause severe damage to
computer systems and data. When the method
proposed in [21] is used in CAS, the Principle of
Least Privilege is not always enforced. Users autho-
rized to act in a role may be granted some privileges

user2 user1

read member

userGroup1

ftp://localhost/tmp
/fileA.txt

Alpha/
programmer

Fig. 3 userGroup1 with a role Alpha/programmer and read
access to ftp://localhost/tmp/fileA.txt

 read
write member

user3 user1

userGroup2

ftp://localhost/tmp
/fileA.txt

Alpha/
supervisor

Fig. 4 userGroup2 with a role Alpha/supervisor and read/write
access to ftp://localhost/tmp/fileA.txt

Managing role-based access control policies for Grid databases in OGSA-DAI using CAS 69

ftp://localhost/tmp/fileA.txt
http://ftp://localhost/tmp/fileA.txt

in addition to those assigned to that role. This is
because both roles and privileges are set up in the
same way. In particular, a role is considered as a
resource, and a user group is given the “member” right
on a role, in the same way that a user group is given the
“read” right on a resource such as a file. With the
current implementation of CAS, a user belonging to
multiple groups can request and be authorized any
combination of roles and privileges from one or more
of those groups at the same time.

The following example illustrates this problem. The
VO Alpha may have a policy in which programmers
are allowed only read access to a particular file while
supervisors are allowed read/write access. To imple-
ment this policy based on the method proposed in [21],
two roles, “Alpha/programmer” and “Alpha/supervi-
sor,” can be created as shown in Figs. 3 and 4. The
“Alpha/programmer” role can be assigned the “read”
right on“ftp://localhost/tmp/fileA.txt,” and the “Alpha/
supervisor” role can be assigned the “read” and
“write” rights on “ftp://localhost/tmp/fileA.txt.” As
users of userGroup1 are given the “member” right on
the role “Alpha/programmer,” they can acquire the
“read” right on “ftp://localhost/tmp/fileA.txt.”
Similarly, as users of userGroup2 are given the
“member” right on the role “Alpha/supervisor,” they
can acquire the “read” and “write” rights on “ftp://
localhost/tmp/fileA.txt.” If a user “user1” is in both
userGroup1 and userGroup2, and makes a request to
act in the “Alpha/programmer” role with the “read”
and “write” rights on “ftp://localhost/tmp/fileA.txt,”
CAS will authorize the request because “user1” is a
member of both user groups. This authorization

decision clearly violates the VO policy in terms of
the Principle of Least Privilege, since a programmer is
granted write access to a file while he/she is allowed
only read access to it. If there is an application that
analyzes data for programmers, it must be delegated
only the read access to the file. Delegating the write
access to the application can potentially result in an
alteration of the file.

A possible refinement to this method is distributing
the VO policies to the resource providers while
keeping only the assignment of users to the VO roles
within CAS. This method is applicable if roles and
privileges do not change often and VOs have a long
lifespan. CAS is not used to associate the privileges
with roles to access role-specific resources. Instead,
the VO role is mapped to a local role, and the
assignment of fine-grain privileges to the local role is
the responsibility of the resource provider. The fine-
grain privileges associated with the local role can be
negotiated between the VO and the resource provider.

A user can delegate a subset of his/her authorized
VO roles to certain applications and services. In this
case, the privileges associated with the delegated VO
roles are the privileges associated with the
corresponding local roles. As shown in Fig. 5, after
a negotiation with a VO, a resource provider could
decide to map the “Alpha/supervisor” role to a local
“Supervisor” role that allows the function updateIn-
ventory() to be performed on a database (DB1).
Another resource provider could decide to map the
same VO role to a local “Employee” role that allows
the function viewInventory() to be performed on
another database (DB2). This method enforces the

viewInventory()

updateInventory()

member

user2 user1

userGroup1

Alpha/supervisor

Employee

DB2

Local Roles

VO Role

Supervisor

DB1

Fig. 5 Distributing VO
policies to the resource
providers

70 A.L. Pereira, et al.

http://ftp://localhost/tmp/fileA.txt
http://ftp://localhost/tmp/fileA.txt.
http://ftp://localhost/tmp/fileA.txt.
http://ftp://localhost/tmp/fileA.txt.
http://ftp://localhost/tmp/fileA.txt.
http://ftp://localhost/tmp/fileA.txt

Principle of Least Privilege since a user can receive no
more privileges for a VO role other than those tied with
the corresponding local roles. However, a VO does not
have the flexibility to update its policy without contact-
ing the resource providers because they control the
assignment of privileges to the local roles.

4.2 Our Proposed Method for RBAC Using CAS

Specification of policies at the VO level allows
authorization decisions to be made based on the
user’s request and VO policies. In case the user does
not possess the required privileges, the access can be
denied at the VO level itself without involving the
resource providers. This eliminates authentication,
mapping and connection overheads on the resource
providers in case the request is not valid.

Our proposed method is implemented using a
newer version of CAS which supports SAML [18].
Participating organizations within VOs may have
different security models. So, it is important for these
models to interoperate at different levels of trust, and
SAML can be used to uniformly express the autho-
rization assertions between different security domains.

The CAS server contains policy statements that
specify who (which user or group) has the permission,
which resource or resource group the permission is
granted on, and what permission is granted [17]. The
permission is denoted by a service type and an action.
The action describes the operation (e.g., read, write or
execute program), and the service type defines the
namespace in which the action is defined (e.g., file).
Different resource providers may recognize different
service types, but all resource providers that recognize
the same service type should have the same interpre-
tation of that service type’s actions [17].

To support RBAC using CAS, we define the role
as a new service type, and each role name in the form
of “[VOName{,SubgroupName}][,RN=rolename]”1

as an action. Roles can be specified for any subgroup
within a VO. For example, “Alpha,RN=Manager”
indicates the Manager role for the Alpha VO, whereas
“Alpha,Data,RN=Manager” indicates the Manager
role for the Data subgroup of the Alpha VO.

For each role name, we can specify the actions
(privileges and constraints) and some junior roles.
Resources represented in the form, “URI{.Subcompo-
nent}” are associated with usergroups in the CAS
database. Thus, fine-grain authorization for resources
can be allowed, where access control can be specified not
only for the entire resource (e.g. database) but also for the
subcomponents of a resource (e.g. table). For example,
“http://130.108.17.176:8080/ogsa/services/ogsadai/
SecureGridDataServiceFactory.Employee” indicates the
Employee table in the database represented by the
specified URI. This permits the members of a usergroup
to access a resource in a specific role. We propose new
service types and actions to assign privileges on roles,
and to specify timing constraints as described in the
following subsections. With these proposed ideas,
privileges can be specified at fine-grain levels.

4.2.1 Specifying Privileges and Timing Constraints
on VO Roles

To assign privileges on a role, we define the role name
as a service type and each privilege in the form of
“privilege:operation” as an action. This allows the
specification of a privilege in terms of the operation
permitted for a specific role. For example, the role
name “Alpha,RN=Manager” could have “privilege:
select” as a privilege to execute the SELECT opera-
tion. Obviously, not only the basic database operations,
but also complex operations, such as transactions and
stored procedures, can be assigned as privileges.

To specify a timing constraint on a role, we define
the role name as a service type and the timing
constraint in the following form as an action:

“timing_constraint:[local/GMT] [Date#Day#Time]
{;Date#Day#Time}” where

& Date can be “[FromDate-ToDate]{,FromDate-
ToDate}”

& Day can be “[FromDay-ToDay]{,FromDay-
ToDay}” or “[Day]{,Day}”

& Time can be “[FromTime-ToTime]{,FromTime-
ToTime}”

For example, the role name “Alpha,RN=Manager”
could have “timing_constraint:GMT#10.01.2005–
07.30.2006#Mon–Fri#1:00–5:00,17:00–21:00,” indi-
cating that the user can act in that role only within the
time intervals 1:00–5:00 and 17:00–21:00 GMT from
Monday to Friday during 10.01.2005–07.30.2006.

1 The curly brackets {} indicate zero or more occurrences of
their content and the square brackets [] indicate only one
occurrence of their content.

Managing role-based access control policies for Grid databases in OGSA-DAI using CAS 71

http://130.108.17.176:8080/ogsa/services/ogsadai/SecureGridDataServiceFactory.Employee
http://130.108.17.176:8080/ogsa/services/ogsadai/SecureGridDataServiceFactory.Employee

4.2.2 Specifying Role Hierarchies

A role hierarchy defines a seniority relation between
roles, whereby senior roles automatically acquire the
permissions of the junior roles. In the role hierarchy
diagrams [22], senior roles are placed at the top of the
junior roles.

According to the NIST standard for RBAC [22],
there are two types of role hierarchies: limited
hierarchy and general hierarchy. In the limited
hierarchy, each senior role cannot have more than
one junior role. On the other hand, in the general
hierarchy, each senior role can have multiple junior
roles. However, in both types, a junior role can
have multiple senior roles. Examples of a limited
hierarchy and a general hierarchy are illustrated in
Figs. 6 and 7, respectively.

The selection of the type of role hierarchy is made
by the VO. To specify a role hierarchy, we define
each senior role name as a service type and each
junior role name in the form of “junior_role:
[VOName{,SubgroupName}][,RN=rolename]” as an
action. For example, in Fig. 7, the senior role name
“Alpha,RN=Manager” has “junior_role:Alpha,RN=
Supervisor” and “junior_role:Alpha,RN=Programmer”
as junior role names, and thereby inherits their
privileges.

The constraints on a junior role are also inherited
by a senior role [22]. In our method, the timing
constraint specified on a senior role would override
those on the junior roles. If a timing constraint is not
specified on a senior role, then it inherits the timing
constraints of its junior roles. However, there should
be no conflicts between the timing constraints on the
junior roles. If such conflicts exist, then the concept of
limited inheritance [9] can be used. With limited
inheritance, a senior role can inherit only a subset of
privileges of a junior role.

The following example illustrates the concept of
limited inheritance. As shown in the hierarchy of
Fig. 7, the Manager role is senior to both the

Supervisor and Programmer roles. Managers can be
prevented from inheriting specific privileges of the
Supervisor role by defining a new role Supervisor’ as
shown in Fig. 8. Only those specific privileges not to
be inherited by the Manager role can be assigned to
the Supervisor’ role and the rest of the original set of
privileges can be retained by the Supervisor role. The
Supervisor’ role can inherit the privileges from the
Supervisor role, thus acquires the entire set of privileges
originally held by the Supervisor role. The Manager
role can then inherit the privileges of the Supervisor
role but not the privileges of the Supervisor’ role.
Similarly, by creating the Programmer’ role, the
Manager role can be prevented from inheriting specific
privileges originally held by the Programmer role.

To deal with conflicting constraints on junior roles,
some modifications to the approach illustrated above
are required. If conflicting timing constraints exist on
the Supervisor and Programmer roles shown in Fig. 7,
then new timing constraints with no conflicts can be
specified on those roles while each retains the entire
set of its privileges. The Manager role can then inherit
the privileges and new constraints on the Supervisor
and Programmer roles. The original timing constraints
of the Supervisor and Programmer roles can be
specified on the Supervisor’ and Programmer’ roles,
respectively. These timing constraints will then
override the new constraints specified on the Super-
visor and Programmer roles. The Supervisor’ and
Programmer’ roles are not assigned any privileges
and can inherit all the privileges from the Supervisor
and Programmer roles, respectively. Thus the Supervi-
sor’ and Programmer’ roles possess the set of timing
constraints and privileges originally associated with
the Supervisor and Programmer roles, respectively.
While the original information of the Supervisor and
Programmer roles is retained, the Manager role can still

Supervisor

Employee

Programmer

Fig. 6 An example of limited role hierarchy

Manager

Supervisor

Employee

Programmer Secretary

Fig. 7 An example of general role hierarchy

72 A.L. Pereira, et al.

inherit their privileges without any conflicts due to the
newly specified timing constraints.

4.2.3 Authorization Decision Statement
in the CAS Credential

Once the roles and their privileges and constraints are
specified in the CAS database as described above, a

SAML authorization decision statement is included in
the CAS credential. An example of the SAML
authorization decision statement is shown in Fig. 9,
and its components, denoted by (1)–(4), are explained
as follows:

(1) specifies the time period during which the
authorization decision is valid.

(2) specifies the URI of the resource on which the
permissions are granted.

(3) specifies the identity of the user to whom the
permissions are granted.

(4) specifies what permissions are granted.

The user identified by the Subject in (3) is
authorized in the role “Alpha,RN=Manager” with
the privilege to execute the UPDATE operation on the
resource specified in (2). Also, “Alpha,RN=Manager”
inherits, from its junior role “Alpha,RN=Supervisor,”

<Assertion xmlns="urn:oasis:names:tc:SAML:1.0:assertion"
AssertionID="8b53a37e-3116-44e2-a499-67e2d0fe49f1"
IssueInstant="2005-12-02T19:58:23Z"
Issuer="O=Grid,OU=GlobusTest,OU=simpleCA-
motive.cs.wright.edu,CN=Globus Simple CA" MajorVersion="1"
MinorVersion="0">

<Conditions NotBefore="2005-12-02T19:58:23Z" NotOnOrAfter=
"2005-12-02T21:20:53Z"></Conditions>

<AuthorizationDecisionStatement Decision="permit"
Resource="http://130.108.17.176:8080/ogsa/services/ogsadai/
SecureGridDataServiceFactory.Employee">

<Subject> /O=Grid/OU=GlobusTest/OU=simpleCA-
motive.cs.wright.edu/OU=cs.wright.edu/CN=Vineela Muppavarapu
</Subject>
……..
<Action Namespace="role">Alpha,RN=Manager</Action>
<Action Namespace="Alpha,RN=Manager">privilege:
update</Action>
<Action Namespace ="Alpha,RN=Manager">junior_role:
Alpha,RN=Supervisor</Action>

<Action Namespace="Alpha,RN=Supervisor" >privilege:
select</Action>
<Action Namespace="Alpha,RN=Supervisor">timing_constraint:
gmt#10.01.2005-07.30.2006#MON-FRI#19:00-5:00</Action>

</AuthorizationDecisionStatement>
……..

(2)

(3)

(4)

(1)

Fig. 9 SAML authorization
decision statement
issued by CAS

Manager

Supervisor

Employee

Programmer Secretary

Supervisor Programmer

Fig. 8 Limited inheritance

Managing role-based access control policies for Grid databases in OGSA-DAI using CAS 73

the privilege to execute the SELECT operation on the
same resource with the specified timing constraint
“gmt#10.01.2005–07.30.2006#MON–FRI#19:00–
5:00.” The timing constraint specifies the duration for
which the user can access the resource in the
authorized role. This authorization decision is valid
for the time period specified in (1).

4.2.4 Enforcement of VO Policies

In our method, the decision to map a VO role to a
local role lies in the hands of the resource provider.
The assignment of privileges to the local role and
specifying timing constraints on it will also be the
responsibility of the resource provider.

For example, as shown in Fig. 10, a resource
provider can decide to map the ER,RN=Physician
role, where ER could be an Emergency Team that
forms a VO across several hospitals, to a local role
that allows the SELECT and UPDATE operations to
be performed between 19:00 and 5:00 GMT, Monday
through Friday during 10.01.2005–07.30.2006 (say,
only for those patients affected by a natural disaster).
This timing constraint could be enforced by a
database trigger, which executes an action automati-
cally on the occurrence of a predefined event. The
privileges and constraints associated with the local
role can be negotiated between the VO and the
resource provider. Alternatively, if local privileges
and constraints have been fixed already, they can be
made known to the VO or advertised through the
service data of the Grid Data Service Factory (GDSF).
The GDSF service data provides information about
the underlying data resource, such as the database
schema and the activities permitted.

The VO can restrict the policies further by
specifying a subset of the privileges associated with
the local role and/or specifying tighter constraints. For
example, applications invoked by users in a Junior
Physician VO role may be allowed to perform
SELECT and UPDATE operations only between
21:00 and 5:00 GMT, instead of between 19:00 and
5:00 GMT. This scheme allows the VO to change
privileges and constraints without involving the
resource provider. However, these changes have to
be enforced at the VO level. For example, the user’s
query and the current time can be examined in order
to check the conformance with those changes. In this
way, the resource provider does not have to create

new local roles in addition to existing ones because
both the original and restricted VO roles can be
mapped to the same local role.

Furthermore, the resource provider can enforce
more restrictions in addition to those imposed by the
VO policy; for example, restricting the access
privilege of particular users based on their institution-
al affiliation. For this purpose, the resource provider
can maintain a separate list of users and deny their
access by checking the Grid identity present in the
CAS assertion. This enables the resource provider to
have the ultimate authority over its resources.

5 Implementation Details

CAS has a backend database for storing information
about users, resources and associated privileges. The
VO members are granted user credentials signed by a
Certificate Authority (CA). CAS issues a certificate to

GMT#10.01.2005-07.30.2006#MON-FRI#19:00-5:00

user2 user1

SELECT, UPDATE

membership

userGroup1

ER,RN=Physician

Local
Physician

Local Role

VO Role

SELECT, UPDATE

Trigger for enforcing timing constraint

Fig. 10 Specifying VO roles using CAS

74 A.L. Pereira, et al.

authorize users based on their requested role, their user
credentials and the role membership information in the
CAS database. The CAS database administrator can
delegate the right to grant/revoke memberships on
roles to other users, and those users can exercise that
right only within the user groups to which they belong.

CAS provides a set of APIs for managing fine-
grain access policies for resources in a VO [17]. The
Service API of CAS provides an administrative
interface for managing the user groups and associated
privileges. This API supports the user’s role assign-
ments in our method. CAS also provides a Client API
through which users can obtain a signed SAML
assertion and present it to the resource provider for
authorization. The OGSA-DAI client program uses
the Java Generic Security Services API (GSSAPI) to
delegate the CAS credential to a Grid Data Service
(GDS).

We configured CAS to incorporate the proposed
RBAC method as described before and modified the
OGSA-DAI implementation to make use of the CAS
credentials. The modifications are made at both client-
side and server-side. The client is modified to
delegate the CAS credential instead of the user proxy
credential. The server is modified to recognize the
CAS credential delegated by the client and to obtain
the VO role from it using the GSSAPI libraries. The

modified server also verifies the privileges and
constraints associated with the VO role against the
local policy, and performs the mapping based on that
role via the role-map file. The role-map file has been
extended to include the mapping from a VO role to a
database username and a password. Also included in
it are the local policy details as shown in Fig. 11. The
role-map file can also include a list of users for whom
access would be denied based on their Grid identity.

In order to use a CAS credential, the user initiates a
CAS proxy by making a request to the CAS server
based on the user’s proxy credential. The CAS server
authenticates the user and issues policy assertions
based on the user’s capabilities present in the CAS
database.

As shown in Fig. 12, once the user has obtained
the CAS credential with the requested assertions, the
user can contact the desired GDSF to create a GDS.
The GDS gets the CAS credential delegated by the
user, and verifies the capabilities against its local
policy present in the role-map file. The GDS also
checks if any specified timing constraint is violated.

Figure 13 depicts a typical user session using the
command-line tools provided by the Globus Toolkit,
CAS and OGSA-DAI, which shows the initiations of
the user proxy and the CAS proxy. We have modified
the OGSA-DAI client to accept the CAS credential

<?xml version="1.0" encoding="UTF-8" ?>

<!-- (c) International Business Machines Corporation, 2002 - 2004. -->
<!-- (c) University of Edinburgh, 2002 - 2004. -->
<!-- See OGSA-DAI-Licence.txt for licencing information. -->
<DatabaseRoles>

<Database name="jdbc:mysql://130.108.17.176/ogsadai">
<User dn="No Certificate Provided" userid="ogsadai" password="ogsadai" />
<User dn="/O=Grid/OU=GlobusTest/OU=simpleCA-
motive.cs.wright.edu/OU=cs.wright.edu/CN=Vineela Muppavarapu"
userid="ogsadai" password="ogsadai" />

<User dn=ER,RN=Physician" userid="username" password="password" />

<Role Name="ER,RN=Physician">
<Action Namespace="role">privilege:select </Action>
<Action Namespace="role">privilege:update</Action>
<Action Namespace="role"> timing_constraint:GMT#10.01.2005-
07.30.2006#MON-FRI#19:00-5:00</Action>

</Role>
</Database>

</DatabaseRoles>

Fig. 11 Modified role-map
file

Managing role-based access control policies for Grid databases in OGSA-DAI using CAS 75

and the desired VO role specified as shown in Fig. 13.
Based on the VO role of the user, a JDBC connection
is established between the GDS and the database
exposed by the GDSF. If no role is provided in the
CAS credential, then the user’s identity is used for
mapping. The client can submit queries to the GDS
and obtain the results in XML documents.

In our implementation, the GDS checks the local
policy in the role-map file against the policy assertion in
the CAS credential only before connecting the client to
the database. After a CAS credential is issued, if a set of
privileges is deleted from a VO role on the CAS server
and/or the timing constraints on the role are changed,

then the credentials have to be expired before the new
policy takes effect on the resources. We have not
implemented mechanisms to revoke current credentials
containing old policy assertions. However, if the same
set of privileges deleted from the VO role is also deleted
from each of the corresponding local roles, or the same
changes to the timing constraints are made, then the
access to the resources can be restricted immediately
based on the new policy. The resource providers can use
the local database management systems (DBMSs) to
update the privileges on the local database roles and
modify the triggers to accommodate the new timing
constraints. The changes in the local policy information
also have to be made in the role-map files. Since the
privileges and timing constraints on the local data-
base roles are enforced by the local DBMS itself, they
will come into effect immediately. If the client submits
a query, but the query fails due to the new policy, then
the client can be notified via an error message. The
client can request new credentials and then restart the
application.

If a VO role is updated independently of the
corresponding local roles after the credentials are
issued, one way to restrict the access immediately is
to have the CAS server notify the GDSFs of the
updates. This information can be passed on to
the GDSs and cached by the GDSFs for up to the
maximum lifetime of the credential. Any credential
issued before the notification and containing an
authorized VO role, which has been updated on the
CAS server, can then be rejected. If a connection to

5. JDBC
connection based
on the capability
provided in the
CAS credential

3. Request
for creation
of a GDS

<<Exposes>>

1. Client
makes
assertions to
CAS and
receives
capability as
in Figure 4

4. Creates a
GDS

Client

CAS
Server

Grid Data
Service Factory

Grid Data
Service DB

6. Queries and
results submitted
and received using
XML documentsDAISGR

2. Gets the
information
about the
GDSFs
registered

Fig. 12 Accessing a data resource through OGSA-DAI using a
CAS credential

Fig. 13 User session acces-
sing a GDS using CAS.

#Initiate a User Proxy
% grid-proxy-init
Your identity: /O=Grid/OU=GlobusTest/OU=simpleCA-
motive.cs.wright.edu/OU=cs.wright.edu/CN=Vineela Muppavarapu
Enter GRID pass phrase for this identity:
Creating proxy... Done
Your proxy is valid until: Fri Dec 2 21:20:53 2005

#Initiate a CAS Proxy
%cas-proxy-init -c
http://localhost:8080/ogsa/services/base/cas/CASService -t tag

#Contacting a specific GDSF using CAS capabilities
%java uk.org.ogsadai.client.Client -mls -role ER,RN=Physician -t tag -factory
http://130.108.17.176:8080/ogsa/services/ogsadai/SecureGridDataService
Factory examples/GDSPerform/JDBC/query/select1Row.xml

76 A.L. Pereira, et al.

the resource has been already established based on
that role, then it should be discontinued.

If the local policy is changed to deny the access of
a particular Grid user after that user has already been
connected to the resource, then this new policy is not
enforced because the role-map file is not rechecked.
One possible solution to enforce the new local policy
immediately is to notify the GDS every time the local
policy information in the role-map file is updated, so
that the user identity and policy assertion in the CAS
credential can be checked against the local policy
information.

With our method, a user who wants to perform the
tasks associated with multiple roles does not need to
generate multiple CAS proxies. The user can just
delegate a single CAS credential containing all those
roles. For example, a user may want to read from one
database in one role and write to another database in
another role. In this case, a single CAS credential
containing both roles can be delegated, and then the
user can be authorized by each resource provider with
respect to the corresponding role.

6 Performance Analysis

The existing implementation of the OGSA-DAI client
has been modified to delegate a CAS credential, and
the server has been modified to obtain the user’s
capabilities present in the CAS credential. The over-
heads incurred with our implementation are compared
with those of the existing implementation of OGSA-
DAI, which does not use the CAS credential. OGSA-
DAI Release 4.0 was deployed on a Jakarta Tomcat
5.0.27/Globus Toolkit 3.2.1 (GT3) stack running on a
Linux machine with a 2.6 GHz Intel Pentium IV
processor and 1 GB of RAM. The littleblackbook
MySQL database table distributed with OGSA-DAI
was used as a test database, and it contains
10,000 tuples. The perform document consisting of
a request for a single tuple was used for the purpose
of analysis.

6.1 Profiling Details

A Java method System.currentTimeMillis() is used to
get the current system time in milliseconds. Also, for
the server-side analysis, the Apache Log4j logger,

which logs time to a log file in milliseconds, is used.
For more accuracy, the tomcat container was shut-
down and restarted before each client request in order
to minimize the caching effects within GT3 and
OGSA-DAI [23]. The main changes from the original
configuration are the way the mapping is done at the
server-side and how the credential is delegated at the
client-side. So, only the security aspects of the client
and the server are profiled and analyzed. The
following types of Grid Data Services (GDSs) are
used in the analysis as in [23]:

1) Signature: GDS enforcing GSI Secure Conversa-
tion with Signature. This enforces message
integrity being established between the client
and the server.

2) Encryption: GDS enforcing GSI Secure Conver-
sation with Encryption. This enforces message
privacy being established.

3) None: GDS which does not enforce any security.
The GDS does not provide a secure conversation.

6.2 Client-Side Security

A call is made to each of the above GDSs with and
without using a CAS proxy credential. In case of
using a CAS proxy credential, an additional overhead
for its creation is incurred. In the performance
analysis, we do not show this overhead because it is
incurred only once before the client contacts the
GDSs. Thereafter, the client can submit any number
of queries before the CAS proxy credential expires.
The lifetime of the CAS proxy credential is equal to
the time remaining for the expiration of the user proxy
credential, which can last up to 12 hours. The time
taken for the creation of the CAS proxy credential
depends on several factors such as network bandwidth
and workload of the CAS server. In our system, the
average time taken for the creation of a CAS proxy
credential is around 600 ms.

The findServiceData method of a GDSF returns the
information about its corresponding data resource.
Three consecutive calls to findServiceData are re-
quired: the first call returns the database schema, the
second returns the activities permitted, and the third
returns the product type (for example, the type of
DBMS). The perform method of a GDS takes the
perform document, which contains the query, and
returns the results to the client.

Managing role-based access control policies for Grid databases in OGSA-DAI using CAS 77

GSI Secure Conversation requires a security
context to be established between the client and the
server. The overheads incurred in setting up this
security context are analyzed based on the following:

1. Calls made for creating a credential object from
the proxy credential.

2. Calls to the findServiceData and perform
methods.

The corresponding times are shown in Fig. 14, and
as observed, the time for creating the credential object
is almost the same regardless of the security enforced
by the GDS. In case of None, there is no such
overhead as the credentials are not used. The first call
to the findServiceData takes longer than the subse-
quent calls because it includes the initialization of the
GDS regardless of the security type used. Figure 15
clearly shows the times taken for the subsequent calls

to the findServiceData and the perform methods. The
times recorded in the case of using a CAS proxy
credential and those without using a CAS proxy
credential are almost the same. The reason is because
all the security functions on the client-side remain
unchanged except for the use of a CAS proxy
credential instead of a user proxy credential.

6.3 Server-Side Security

The analysis made on the server-side is based on the
following:

1. The client credentials accessed using the GT3
infrastructure.

2. Extracting the VO role or Grid identity from the
credential. If the VO role is extracted, its
capabilities are compared against the local policy.

Fig. 14 Client-side
security

0

100

200

300

400

500

600

Signature
with CAS

Signature
without
CAS

Encryption
with CAS

Encryption
without

CAS

None with
CAS

None
without

CAS

T
im

e
(m

s)

Perform

FindServiceData3

FindServiceData2

Fig. 15 Obtaining service
data and query
execution

78 A.L. Pereira, et al.

3. Mapping a user to a database username and a
password, and creating a JDBC connection.

4. The perform operation.

As shown in Fig. 16, the time for the credential
extraction, which includes policy comparison, is very
small compared to the time for executing the perform
operation. The time for executing the perform
operation remains constant for all the GDSs. The
perform operation is done only after the credential
extraction process is completed; and as a result, its
execution time is not affected by the type of credential
used. The credential extraction times are shown more
clearly in Fig. 17, and we can see that the credential
extraction takes more time when a CAS proxy
credential is used for contacting a GDS that enforces
the secure conversation. An overhead is incurred

because of the time taken for obtaining the user
identity and the policy assertion from the CAS
credential and then comparing it against the local
policy in the role-map file. However, this overhead is
in the order of a few milliseconds and is insignificant
compared to the overall time taken for performing the
client’s query. When a CAS proxy credential is not
used, the user proxy credential is used instead, and
then the credential extraction involves obtaining only
the user identity. In case of contacting a nonsecure
GDS, since credentials are not used, there are no
overheads incurred for credential extraction.

Figure 18 shows that there is a constant overhead
for mapping a user to a database username and a
password and then subsequently setting up the
database connection. The processes of mapping and
connection are done after the credential extraction

0

50

100

150

Signature
with CAS

Signature
without

CAS

Encryption
with CAS

Encryption
without

CAS

None with
CAS

None
without

CAS

T
im

e
(m

s)

Credential Extraction

Perform

Fig. 16 Server-side
security

0

0.5

1

1.5

2

Signature
with CAS

Signature
without

CAS

Encryption
with CAS

Encryption
without

CAS

None with
CAS

None
without

CAS

T
im

e
(m

s)

Credential Extraction

Fig. 17 Security overheads
on the server-side

Managing role-based access control policies for Grid databases in OGSA-DAI using CAS 79

process is completed; and as a result, their execution
times are not affected by the type of credential used.
If there are a large number of entries in the role-map
file, the mapping would still not take much time
because a hash table is used to store those entries.

In summary, on the client-side, our method incurs
small overheads in the security setup as additional
steps are involved for requesting and using the CAS
credential. However, as seen from the performance
results, the time taken for the individual OGSA-DAI
method calls are the same whether a CAS credential is
used for authorization or not. This is because all the
security functions remain unchanged, except for the
use of a CAS proxy credential instead of a user proxy
credential. On the server-side, the additional over-
heads incurred in our credential extraction process are
very small compared to the time taken for executing
the client’s queries. These overheads in setting up the
security context are insignificant when we consider
the benefits of our method, such as scalability in
managing VO policies and reduced administration
overheads for resource providers.

7 Conclusion

In this paper, we enhanced the role-based access
control (RBAC) mechanism of OGSA-DAI by using
the Community Authorization Service (CAS) so that
users are granted memberships on virtual organization
(VO) roles for Grid database services. The resource
providers need to maintain only the mapping infor-
mation from VO roles to local database roles and the

local policy information; thus, the number of entries
to be managed in the role-map file is reduced
dramatically. The specification of policies at the VO
level eliminates unnecessary authentication, mapping
and connections by denying invalid requests at the
VO level itself. When users join/leave a VO, the
resource providers do not need to add/remove their
information individually in the role-map files because
the CAS server can just grant/revoke their member-
ships on VO roles. Furthermore, the resource pro-
viders can grant or refuse the access requests of
specific users by maintaining their authorization
information separately in the role-map files. This
enables the resource providers to have the ultimate
authority over their resources.

Our performance analysis shows that the proposed
RBAC method using CAS takes very little extra time
to set up the security context between the client and the
server. Our method provides a scalable means of access
control in terms of the manageability of a large number
of users and VOs. It also has an advantage of reducing
the administration overheads of resource providers.

Acknowledgement This research was supported in part by
AFRL.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the Grid:
enabling scalable virtual organizations. Int. J. Supercomput.
Appl. High Perform. Comput. 15(3), 200–222 (2001)

2. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: Grid
services for distributed system integration. IEEE Computer
35(6), 37–46 (2002)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Signature
with CAS

Signature
without

CAS

Encryption
with CAS

Encryption
without

CAS

None with
CAS

None
without

CAS

T
im

e
(m

s)

Connection

Mapping

Fig. 18 Mapping and data-
base connection

80 A.L. Pereira, et al.

3. Camarinha-Matos, L.M., Afsarmanesh, H.: A roadmap for
strategic research on virtual organizations. In: Proceedings
of the 4th IFIP Working Conference on Virtual Enterprises,
Lugano, Switzerland, pp. 33–46 (2003)

4. Arenas, A.E., Djordjevic, I., Dimitrakos, T., Titkov, L.,
et al.: Toward web services profiles for trust and security in
virtual organizations. In: Proceedings of the 6th IFIP
Working Conference on Virtual Enterprises, Valencia,
Spain, pp. 26–28 (2005)

5. Wasson, G., Humphrey, M.: Policy and enforcement in
virtual organizations. In: Proceedings of the 4th Interna-
tional Workshop on Grid Computing, Phoenix, Arizona,
pp. 125–132 (2003)

6. Wasson, G., Humphrey, M.: Towards explicit policy manage-
ment for virtual organizations. In: Proceedings of the 4th IEEE
International Workshop on Policies for Distributed Systems
and Networks, Lake Como, Italy, pp. 173–182 (2003)

7. Malaika, S., Eisenberg, A., Melton, J.: Standards for databases
on the Grid. ACM SIGMOD Record 32(3), 92–100 (2003)

8. Ferraiolo, D., Kuhn, R.: Role-based access control. In:
Proceedings of the 15th National Computer Security
Conference, Baltimore, MD (1992)

9. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.:
Role-based access control models. IEEE Computer 29(2),
38–47 (1996)

10. Ramaswamy, C., Sandhu, R.S.: Role-based access control
features in commercial database management systems. In:
Proceedings of the 21st National Information Systems
Security Conference, Arlington, VA (1998)

11. Foster, I., Kesselman, C.: The Globus Toolkit. In: Foster, I.,
Kesselman, C. (eds.) The Grid: Blueprint for a New
Computing Infrastructure, pp. 259–278. Morgan Kauf-
mann, San Francisco, CA (1999)

12. Butler, R., Welch, V., Engert, D., Foster, I., Tuecke, S.,
Volmer, J., Kesselman, C.: A National-scale authentication
infrastructure. IEEE Computer 33(12), 60–66 (2000)

13. Anjomshoaa, A., Antonioletti, M., Atkinson, M., Baxter,
R., Borley, A., et al.: The design and implementation of
Grid database services in OGSA-DAI. In: Proceedings of
UK e-Science All Hands Meeting, Nottingham, UK (2003)

14. Tuecke, S., Czajkowski, K., Foster, I., Frey, J., Graham, S.,
Kesselman, C., Vanderbilt, P.: Grid Service Specification,

Draft 4. Open Grid Service Infrastructure Working Group,
Global Grid Forum (2002)

15. Joshi, J.B.D., Bhatti, R., Bertino, E., Ghafoor, A.: Access-
control language for multidomain environments. IEEE
Internet Comput. 8(6), 40–50 (2004)

16. Mayfield, T., Roskos, J.E., Welke, S.R., Boone, J.M.:
Integrity in automated information systems. Technical
Report, National Computer Security Center (1991)

17. Pearlman, L., Welch, V., Foster, I., Kesselman, C., Tuecke,
S.: A Community authorization service for group collabora-
tion. In: Proceedings of the 3rd IEEE International Workshop
on Policies for Distributed Systems and Networks (2002)

18. Organization for the Advancement of Structured Informa-
tion Standards (OASIS): Assertions and protocols for the
OASIS Security Assertion Markup Language (SAML)
V1.1. Available via http://www.oasis-open.org/committees/
tc-home.php?wg-abbrev=security (2003)

19. Ferraiolo, D.F., Barkley, J.F., Kuhn, D.R.: A role-based
access control model and reference implementation within
a corporate intranet. ACM Trans. Inf. Syst. Secur. 2(1),
34–64 (1999)

20. Zhang, G., Parasher, M.: Dynamic context-aware access
control for Grid applications. In: Proceedings of the 4th
International Workshop on Grid Computing, pp. 101–108
(2003)

21. Cannon, S., Chan, S., Olson, D., Tull, C., Welch, V.,
Pearlman, L.: Using CAS to manage role-based VO sub-
groups. In: Proceedings of International Conference for
Computing in High Energy and Nuclear Physics (2003)

22. Sandhu, R., Ferraiolo, D.F., Kuhn, D.R.: The NIST model
for role based access control: towards a unified standard.
In: Proceedings of the 5th ACM Workshop on Role Based
Access Control, Berlin, Germany (2000)

23. Jackson, M., Antonioletti, M., Hong, N. C., Hume, A.,
Krause, A., Sugden, T., Westhead, M.: Performance
analysis of the OGSA-DAI software. In: Proceedings of
UK e-Science All Hands Meeting, Nottingham, UK
(2004)

24. Yee, K.: Secure interaction design and the principle of least
authority. In: Proceedings of Workshop on Human–Com-
puter Interaction and Security Systems, Fort Lauderdale, FL
(2003)

Managing role-based access control policies for Grid databases in OGSA-DAI using CAS 81

http://www.oasis-open.org/committees/tc-home.php?wg-abbrev=security
http://www.oasis-open.org/committees/tc-home.php?wg-abbrev=security

	Managing Role-Based Access Control Policies for Grid Databases in OGSA-DAI Using CAS
	Abstract
	Introduction
	OGSA-DAI
	RBAC and Current Authorization Mechanism in OGSA-DAI

	Community Authorization Service (CAS)
	RBAC with CAS in OGSA-DAI
	Drawbacks of the Existing Approach for RBAC with CAS
	Our Proposed Method for RBAC Using CAS
	Specifying Privileges and Timing Constraints on VO Roles
	Specifying Role Hierarchies
	Authorization Decision Statement in the CAS Credential
	Enforcement of VO Policies

	Implementation Details
	Performance Analysis
	Profiling Details
	Client-Side Security
	Server-Side Security

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

