
J Grid Computing (2006) 4: 225–246
DOI 10.1007/s10723-006-9040-x

Labs of the World, Unite!!!

Walfredo Cirne · Francisco Brasileiro · Nazareno Andrade · Lauro B. Costa ·

Alisson Andrade · Reynaldo Novaes · Miranda Mowbray

Received: 31 August 2005 / Accepted: 28 February 2006 / Published online: 27 June 2006
© Springer Science+Business Media B.V. 2006

Abstract eScience is rapidly changing the way
we do research. As a result, many research labs
now need non-trivial computational power. Grid
and voluntary computing are well-established so-
lutions for this need. However, not all labs can
effectively benefit from these technologies. In par-
ticular, small and medium research labs (which

W. Cirne (B) · F. Brasileiro · N. Andrade ·

L. B. Costa · A. Andrade
Departamento de Sistemas e Computação,
Laboratório de Sistemas Distribuídos,
Universidade Federal de Campina Grande,
Paraiba, Brazil
e-mail: walfredo@dsc.ufcg.edu.br

F. Brasileiro
e-mail: fubica@dsc.ufcg.edu.br

N. Andrade
e-mail: nazareno@dsc.ufcg.edu.br

L. B. Costa
e-mail: lauro@dsc.ufcg.edu.br

A. Andrade
e-mail: aandrade@dsc.ufcg.edu.br

R. Novaes
Hewlett Packard,
Porto Alegre, RS, Brazil
e-mail: reynaldo.novaes@hp.com

M. Mowbray
Hewlett Packard,
Bristol, United Kingdom
e-mail: miranda.mowbray@hp.com

are the majority of the labs in the world) have a
hard time using these technologies as they demand
high visibility projects and/or high-qualified com-
puter personnel. This paper describes OurGrid,
a system designed to fill this gap. OurGrid is
an open, free-to-join, cooperative Grid in which
labs donate their idle computational resources in
exchange for accessing other labs’ idle resources
when needed. It relies on an incentive mechanism
that makes it in the best interest of participants to
collaborate with the system, employs a novel ap-
plication scheduling technique that demands very
little information, and uses virtual machines to
isolate applications and thus provide security. The
vision is that OurGrid enables labs to combine
their resources in a massive worldwide computing
platform. OurGrid is in production since Decem-
ber 2004. Any lab can join it by downloading its
software from http://www.ourgrid.org.

Key words free-to-join Grids · Grid computing ·

Grid scheduling · incentive to collaborate ·

peer-to-peer Grids · sandboxing

1. Introduction

The recent advances in computing and networking
are changing the way we do scientific research, a
trend that has been dubbed eScience. Thanks to
the power of computer-based communication,

http://www.ourgrid.org

226 J Grid Computing (2006) 4: 225–246

research is now a much more collaborative endeavor.
Moreover, computers play an ever-increasing role
in the process of scientific discovery. Data analy-
sis without computers sounds antediluvian. Sim-
ulation has joined theory and experimentation as
the third scientific methodology. As a result, many
research labs now demand non-trivial computing
capabilities. Buying more computers is a natural
answer to this demand. But compute demand
seems to be insatiable. No matter how much com-
puting resource is available, it is commonplace to
hear “we could do more/better research if we had
access to more computing power.”

Computer scientists have long recognized this
fact, and began to address it by providing a way to
harvest the computing power going idle in one’s
lab or university [43]. This represented an impor-
tant step forward, but has limited scale. Latter, this
idea evolved into harvesting the computing power
going idle in the Internet [2, 3], in what became
known as voluntary computing. At about the same
time, Grid computing [11, 34] appeared with the
enticing vision of “plug into the Grid and solve
your computational problem.”

Voluntary computing has been able to deliver
unprecedented computing power to some appli-
cations. For example, at the beginning of March
2005, SETI@home had mustered more than 2.2
million years of CPU time, from over 5.3 million
users, spread across 226 countries [57]. However,
in order to benefit from voluntary computing, it is
necessary to have a high visibility project, set up
a large control center to manage the volunteers,
and put a lot of effort into ‘publicity’ to convince
people to install the worker module. Naturally,
being in a prestigious University and having a
qualified team for software development and sys-
tem administration can help a great deal towards
this. Alas, these conditions do not hold for most
research labs in the world.

On the other hand, Grid computing is turn-
ing from promise into reality. There are now
a few large Globus-based Grids in production.
With dozens of sites and thousands of computers,
CERN’s LCG [17] is probably the best current
example of what Grids can achieve. However,
current Grids are somewhat limited in scale [33,
51], not going beyond dozens of sites. Moreover,
installing, configuring, and customizing Globus

is not a trivial task, and currently requires a
highly skilled support team. Therefore, current
Grid solutions make excellent sense for dozens of
large labs that work together on similar problems.
Again, that is not the case for most labs around the
world.

The vast majority of research labs are small
(a dozen people or so), focus their research on
some narrow topic (as to have a chance to compete
in the “scientific ecosystem”), do not belong to
top Universities (as by definition top places are
few), and cannot count on having a cutting-edge
computer support team (due to all above). Yet,
these labs increasingly demand large amounts of
computational power, just as large labs and high-
visibility projects do.

This paper provides a comprehensive descrip-
tion of OurGrid, a system designed to fill this
gap, catering for small and medium-sized labs
around the world that have unserved computa-
tional demands. OurGrid is an open, free-to-join,
cooperative Grid in which labs donate their idle
computational resources in exchange for accessing
other labs’ idle resources when needed. It uses the
Network of Favors, a peer-to-peer mechanism that
makes it in each lab’s best interest to collaborate
with the system by donating its idle resources.
OurGrid leverages the fact that people do not use
their computers all the time. Even when actively
using computers as research tools, researchers al-
ternate between job execution (when they require
computational power) and result analysis (when
their computational resources go mostly idle). In
fact, in most small and medium labs, people have
relatively small jobs, for which they seek fast turn-
around times, so as to speed-up the run/analyze it-
erative cycle. Interestingly, such behavior has also
been observed among users of Enterprise Desktop
Grids [41].

For OurGrid to succeed, it must be fast, simple,
scalable, and secure. Clearly,OurGrid must be fast,
i.e. the turnaround time of a job must be much bet-
ter than that which is possible using only local re-
sources. In particular, the user is not interested in
some system-wide metric such as throughput [41].
The user must see her own application running
faster; otherwise she will see no value in OurGrid
and will thus abandon the system. Simplicity is also
a fundamental requirement for OurGrid. After all,

J Grid Computing (2006) 4: 225–246 227

labs want to spend the minimum possible effort
on the computer technology that will solve their
problems. They want to focus on the research
that they do. Computers are just tools for them.
Another key requirement for OurGrid is scalabil-
ity. OurGrid must scale well; otherwise it will not
tap the huge amount of computational power that
goes idle in the labs around the world. Note that
scalability is not just a technical issue. It also has
administrative implications. In particular, it is not
acceptable to have to go through a human nego-
tiation to define who can access what, when and
how (something that is needed to set up current
Grids). OurGrid must be a free-to-join open Grid.
Finally, OurGrid must be secure, because its peer-
to-peer automatic granting of access will allow
unknown foreign code to access one’s machine.
Nevertheless one’s machine must remain safe.

Achieving these goals is a very challenging task,
which gets even tougher because (i) current In-
ternet connectivity is far from universal (due to
firewalls and private addressing), and (ii) new vul-
nerabilities appear on a daily basis. In order to
simplify the problem somewhat, at least for now,
we reduce OurGrid’s scope to supporting Bag-of-
Tasks (BoT) applications. BoT applications are
those parallel applications whose tasks are inde-
pendent. Despite their simplicity, BoT applica-
tions are used in a variety of scenarios, including
data mining, massive searches (such as key break-
ing), parameter sweeps, simulations, fractal cal-
culations, computational biology, and computer
imaging. Assuming applications to be BoT simpli-
fies our requirements in a few important ways. In
particular, since a failed task does not affect other
tasks, we can deliver fast execution of applications
without demanding any QoS guarantees from the
resources. It also makes it easier to provide a
secure environment, since network access is not
necessary during the execution of a foreign task.

In short, by focusing on BoT applications, we
can deliver a useful (though not complete) solu-
tion for the compute-hungry labs of the world,
now. In fact, OurGrid is in production since De-
cember 2004. Any lab can join the system by
downloading the code from http://www.ourgrid.
org. Note that no human contacts or negotiation
are needed for a new lab to join the system. At the
time of the writing of this paper, OurGrid com-

prises about a dozen labs and a few hundred ma-
chines. The current state of the system is available
at http://status.ourgrid.org. Naturally, OurGrid is
open source.

The rest of this paper is organized as follows.
Section 2 defines OurGrid’s scope and presents its
architecture. Section 3 describes how we make it
in each lab’s best interest to contribute resources
to the Grid. Section 4 explains how we use Xen
virtual machines [8] to deal with the security
concerns inherent to an open free-to-join Grid.
Section 5 describes how OurGrid is used, includ-
ing how the Grid heterogeneity is hidden from the
user, and how scheduling promotes the application
performance. Section 6 discusses the experiences
gained in developing OurGrid, and Section 7 dis-
cusses the process of putting the system in pro-
duction. Section 8 compares OurGrid with related
work. Finally, Section 9 closes the paper with our
final remarks.

2. Scope and Architecture

OurGrid’s goal is to enhance the computing capa-
bilities of research labs around the world. For now,
at least, OurGrid assumes applications to be Bag-
of-Tasks (BoT). However, a single OurGrid task
may itself be a parallel tightly coupled application
(written in MPI, for example). Although OurGrid
does not run a parallel task across the Grid, it may
very well run it on a remote site. OurGrid can use
both interactive desktop computers and dedicated
clusters (which may be controlled by a resource
manager, such as Maui, OpenPBS, and LSF).

OurGrid strives to be non-intrusive, in the sense
that a local user always has priority access to local
resources. In fact, the submission of a local job kills
any foreign jobs that are running locally. This rule
assures that OurGrid cannot worsen local perfor-
mance, a property that has long been identified as
key for the success of resource-harvesting systems
[60].

OurGrid is designed to be scalable, both in
the sense that it can support thousands of labs,
and that joining the system is straightforward. For
scalability, OurGrid is based on a peer-to-peer
network, with each research lab corresponding to
a peer in the system. However, peer-to-peer sys-

http://www.ourgrid.org
http://www.ourgrid.org
http://www.ourgrid.org
http://status.ourgrid.org

228 J Grid Computing (2006) 4: 225–246

tems may have their performance compromised
by freeriding peers [38, 50, 55]. A freerider is a
peer that only consumes resources, never con-
tributing back to the community. This behavior
can be expected to have a very negative impact
on OurGrid, because many users reportedly have
an ‘insatiable demand for computer resources’,
and thus we do not anticipate having a resource
surplus to give to freeriders. We have dealt with
this problem by creating the Network of Favors,
a totally decentralized and autonomous allocation
mechanism that marginalizes freeriders. Section 3
describes the Network of Favors.

A given lab in OurGrid will commonly run tasks
from other unknown labs that are also part of the
community. This creates a very obvious security
threat, especially in these days of so many software
vulnerabilities. Therefore, we must provide a way
to protect local resources from foreign unknown
code. That is the job of SWAN (Sandboxing With-
out A Name), a solution based on the Xen virtual
machine [8], which isolates the foreign code into a

sandbox, where it can neither access local data nor
use the network. Naturally, we must also protect
the application from malicious labs. This can be
done with low overhead by using the credibility-
based sabotage detection proposed by Sarmenta
[54]. Section 4 describes OurGrid’s security.

Users interact with OurGrid via MyGrid, a per-
sonal broker that performs application schedul-
ing and provides a set of abstractions that hide
the Grid heterogeneity from the user. The great
challenge in scheduling is how to assure good per-
formance for the application in a system as large
and loose-coupled as OurGrid. In particular, the
scale of the system makes it hard to obtain reliable
forecasts about the execution time of a given task
on a given processor. To deal with this problem,
we have devised schedulers that use task replica-
tion to achieve good performance in the absence
of performance forecasts. As for the abstractions,
the goal is to balance between ease-of-use and
performance, while considering the limitations of

Figure 1 OurGrid architecture.

J Grid Computing (2006) 4: 225–246 229

the current lack of general connectivity in the
Internet [59]. Section 5 presents MyGrid.

In summary, OurGrid has three main compo-
nents: The OurGrid peer, the MyGrid broker, and
the SWAN security service. Figure 1 shows them
all, depicting the OurGrid architecture.

3. Promoting Cooperation

OurGrid is based on a peer-to-peer resource-
sharing network through which labs with idle re-
sources donate them to labs with computational
demands. A potential problem for any resource-
sharing network is that some users may freeride,
that is, they may consume resources offered by
others but offer none of their own. Freeriding
can be achieved by simply creating a peer with
no resources to offer, or (slightly less simply) by
hacking the OurGrid code. Experience with file-
sharing peer-to-peer systems shows that in the
absence of incentives for collaboration, a large
proportion of the peers only consume the re-
sources of the system [38, 50, 55]. This problem is
especially pertinent for a network such as OurGrid
which connects unknown sites, and which has
an expected high demand for the resource being
shared (namely, computational power). Freerid-
ing is a serious concern because the more labs
freeride, the smaller the system utility becomes,
potentially to the point of system collapse.

One way to address this problem is to imple-
ment a market-based resource allocation mech-
anism [1, 13, 14, 47]: Users are required to pay
the resource owners for the use of their resources,
either in real currency or in an artificial currency
only valid within the network. To make this so-
lution work across organizational boundaries it
is necessary to have secure and reliable global
accounting and billing mechanisms. Implementing
such mechanisms is challenging, and we believe
that the difficulty of doing this has been a ma-
jor factor limiting the wide adoption of multi-
organizational Grids.

Accounting and billing systems may be nec-
essary in any case when resources are shared
between different commercial organizations. How-
ever, for non-commercial organizations, in partic-
ular labs carrying out eScience research, there is

room for a different and more lightweight way to
promote cooperation. In fact, OurGrid uses the
Network of Favors to discourage freeriding with-
out requiring a billing system, and employs an au-
tonomous accounting mechanism that solely uses
information local to the peer, therefore without
requiring a Grid-wide accounting system. The two
mechanisms together make OurGrid resistant to
freeriding and yet lightweight and easy to deploy.

3.1. Network of Favors

OurGrid provides an incentive for peers to co-
operate, by using a peer-to-peer reciprocation
scheme called the Network of Favors. A key cri-
terion for the design of this scheme was that it
should be particularly lightweight and easy to im-
plement in real systems. The Network of Favors
has been described and evaluated in [4–6]. We give
an overview of it here.

In the Network of Favors, a favor is the alloca-
tion of a processor to a peer that requests it, and
the value of that favor is the value of the work
done for the requesting peer. Each peer A keeps
a local record of the total value of the favors it
has given to and received from each peer B with
which it has interacted, denoted, respectively, by
vA(A,B) and vA(B,A). (We shall soon see how
the autonomous accounting mechanism is used to
determine vA(A,B) and vA(B,A)).

If A has an idle processor that is requested by
more than one peer, A calculates a local ranking
value RA(B) for each requesting peer B based on
these numbers, using the function

RA(B) = max {0, vA(B, A) − vA(A, B)}

and donates the use of the processor to the
requesting peer with the highest ranking. The
rationale is that each peer autonomously priori-
tizes donations to the peers to whom they owe
most favors, motivating cooperation. Note that the
ranking value is used only to prioritize a peer B,
to which the donating peer A owns more favors,
over a peer C, to which peer A owns less favors.
Resource donation always happens. In particular,
a peer C with RA(C) = 0 (whether a newcomer
who has not yet given any favors, or a peer who

230 J Grid Computing (2006) 4: 225–246

has temporarily received more favors from A than
it has given to A) can still receive a favor from A,
provided that no peer B with RA(B) > 0 requests
the same resource at the same time.

A key feature of our ranking scheme is that
each peer performs it in a completely autonomous
way. The value RA(B) will be based solely on A’s
past interactions with B, and in general will not
be equal to RC(B), where C is a third peer. No
attempt is made to combine or reconcile these
values to determine a global ranking value for B.
There is therefore no requirement for the labs in-
volved in OurGrid to adopt special mechanisms to
ensure the integrity of information received from
peers about their interactions with third parties,
such as the shared cryptographic infrastructures or
specialized storage infrastructures used by some
peer-to-peer reputation schemes [24, 40]. This al-
lows our ranking scheme to be very lightweight.
Furthermore, there is little scope for malicious
peers to distort the rankings: Since RA(B) is based
only on interactions directly involving A and B,
strategies based on lying about the behavior of
third parties cannot be applied, and since the local
ranking for a peer is always non-negative and is
zero if the peer is new to the system, a malicious
peer cannot increase its ranking by leaving the
system and re-entering as a newcomer.

Naturally, for this scheme to work, peers must
be able to find each other in the first place, and we
need to protect the system against impersonation
of one peer by another. We currently use a simply
centralized discovery mechanism on which peers
register themselves and discover the other peers in
the system. Peers thus form a clique within which
a request is directly sent from the originating
peer to all other peers. While this simple scheme
causes no problem at the current system scale (see
Section 7), it clearly poises serious scalability lim-
itations. Consequently, we are currently replacing
it by NodeWiz, a fully decentralized peer-to-peer
request propagation system [9]. Impersonation
of peers with high reputation can be prevented
by a simple use of asymmetric cryptography, in
which a peer autonomously selects a public key
to identify itself to other peers. Note that this
does not require a shared system-wide public key
infrastructure.

We have demonstrated through simulations
and analytical modeling that the Network of Fa-
vors is indeed effective at discouraging freeriding,
provided that there is enough contention for re-
sources [4–6]. Figure 2 exemplifies our findings. It
shows the results of three simulations of 100 peers,
100 · f of whom are freeriders who request all
available processors at each turn, and the rest of

Figure 2 Resources freeriders manage to obtain.

J Grid Computing (2006) 4: 225–246 231

whom with probability 1/2 at each turn either
offer a compute cycle to the community or re-
quest it. Accounting was perfect, i.e. the values of
vA(A,B)and vA(B,A) were provided by an omni-
scient oracle. Figure 2 plots epsilon, the fraction of
the community’s resources consumed by freerid-
ers. As can be seen, epsilon becomes very small
as the system reaches steady state. Therefore, it
becomes in the best interest of each peer not to
freeride.

3.2. Autonomous Accounting

For the Network of Favors to work, each peer A
must be able to determine vA(A,B) and vA(B,A)
for each peer B with whom it interacted. In order
to keep the system easy to deploy, we want to
avoid having a Grid-wide service that everybody
must trust. Therefore, peer A must be able to
autonomously determine vA(A,B) and vA(B,A).

A very simple option is to use time to determine
vA(A,B) and vA(B,A), setting vA(A,B) equal to
t(A,B), the length of time that A has made a
machine available to B. vA(B,A) = t(B,A) would
be how long A has used a machine made available
by B. Clearly, A can compute both values au-
tonomously, without demanding any information
from other peers.

The problem with the time-based accounting is
that it gives a peer A an incentive to run multiple

tasks simultaneously on each of its processors.
This strategy gives two advantages to A. First, it
enables A to run many more tasks, thus providing
more favors to more peers. Second, it increases
the execution time of each task, which is a good
thing for A, because other peers value the favors
of A based on how long A took to run their tasks.
This may also decrease the power of the Grid as a
whole, since it introduces thrashing when all tasks
that share a machine cannot fit in main memory.
As tasks take longer to finish, the probability of
task preemption also increases.

We deal with this problem by using a simple
relative accounting scheme. This scheme assumes
that all jobs have some of their tasks executed
locally. Since local jobs preempt remote jobs in
OurGrid, this assumption seems quite reasonable.
We thus set vA(B,A) = t(B,A) × RPA(B), where
RPA(B) denotes the relative power of B, com-
pared to A, i.e. RPA(B) = e(A) / e(B), where e(A)
is the average execution time of A’s tasks running
locally, and e(B) is the average execution time of
A’s tasks running at B. We also set vA(A,B) =

t(A,B). (That is, RPA(A) = 1).
How well this scheme works will naturally

depend on the Grid heterogeneity (how ma-
chines differ) as well as on the job heterogeneity
(how tasks differ in terms of their computational
demands). For the vast majority of scenarios we
investigated, however, this scheme performs very

Figure 3 Mean response
time of jobs using perfect,
time, and relative
accounting.

232 J Grid Computing (2006) 4: 225–246

well [52]. Figure 3 gives a good example of our
results. It shows the mean response time of jobs
ran in a Grid with 20 peers, each with 25 machines
whose relative speed varies following the uniform
distribution U(4,16). However, 10 of such peers
run two tasks on each machine, appearing for
the Grid to have 50 machines of speed U(2,8).
We call these peers slowers, whereas the other
10 peers (which run one task per machine) are
called fasters. Jobs arrive every U(1,799) time
units, each consisting of 250 tasks, each task re-
quiring U(200,600) time units to execute on a ma-
chine with relative speed equal to one. Note that
the workload submitted to each peer is enough
to saturate the peer, but due to the probabilistic
job arrival times, the peer is nevertheless some-
times idle. The simulations were run using three
accounting schemes, the aforementioned time and
relative schemes, and the perfect scheme, in which
an omniscient oracle reveals exactly how much
compute power each task consumed. As Figure 3
shows, using perfect accounting, the Network of
Favors is almost insensitive to whether peers are
faster or slower. (The small difference is due to
the greater chance of preemption of a remote
task by a local task in the slower peers.) As ex-
pected, time-based accounting gives an advantage
to slower peers, creating an incentive for peers
to adopt this strategy. The proposed relative au-
tonomous accounting gives a small advantage to
the faster peers, compared to the perfect scheme.
However, this advantage is small (around 10% in
this scenario). More importantly it discourages the
machine-sharing strategy, and therefore avoids a
decrease in the overall utility of the system.

4. Dealing with Security

The Network of Favors makes it feasible to create
a free-to-join Grid in which labs not necessarily
know each other, yet have an incentive to collab-
orate with the community. While this greatly aids
system growth, it raises serious security concerns.
First, how can we protect an application from a
malicious lab? Second, how can we protect a lab
from a malicious application?

Note that the Network of Favors creates an
incentive for a lab to sabotage tasks, meaning

that tasks are not executed and bogus results are
returned instead. By pretending to have executed
tasks, a saboteur lab could rapidly put other labs in
debt to it. We intend to deal with this issue by judi-
ciously replicating tasks using the credibility-based
sabotage detection scheme proposed by Sarmenta
[54]. Currently, we allow the application to test
the results processed in the Grid using application-
specific checks. Another issue regarding protect-
ing an application from a malicious lab is data
privacy, i.e., how we can ensure that a lab does
not read the data of a guest task. Although this
is an important concern, we do not provide any
mechanism to handle this potential problem. We
assume that applications are not very secretive,
thus requiring no data security, which seems to
be an appropriate assumption for most research
labs. Moreover, the application data is naturally
scattered throughout the Grid, making it much
harder for a few malicious labs to obtain much of
the application data.

We address the converse issue by proposing
SWAN (Sand-boxing Without A Name), an ex-
ecution environment that protects the provider’s
resource against malicious or buggy foreign task.
From the task standpoint, SWAN is totally trans-
parent, i.e., the task does not need to be modified
in order to run on SWAN. SWAN builds on other
research efforts that try to ensure security and
integrity of shared resources in a distributed envi-
ronment. These solutions can be classified by the
kind of isolation used: Enhanced access control
[45], system call interposition [26, 49], and virtual
machines (VM) [31, 36].

Enhanced access control and system call in-
terposition are very similar. They try to improve
security at the operating system level since avail-
able operating systems do not efficiently isolate
sensitive resources from applications, basing the
access control only on user identity and resource
ownership [44]. These approaches define a specific
security policy for each application. They vary
on how they implement the security policy, with
enhanced access control demanding changes in the
operating system kernel.

In the VM approach, the operating system runs
on top of a hypervisor that creates an isolated
environment and controls all physical resources.
Application software inside the virtual machine

J Grid Computing (2006) 4: 225–246 233

can only access resources that have been explic-
itly allocated to its host operating system by the
hypervisor.

We evaluated these three mechanisms accord-
ing to security, performance and intrusiveness,
and came to the conclusion that the VM ap-
proach is the best choice for OurGrid. Security
was the decisive aspect in our choice. VM offers
the best isolation because it offers ‘double barrier’
isolation to an attacker. Even when an attacker
trespasses the first barrier (the native operating
system security mechanism) and gains unautho-
rized access to resources, he is contained inside a
virtual machine. Furthermore, systems based on
system call interposition or enhanced access con-
trol are hard to configure and maintain [35]. The
configuration may not cover all security breaches
present in the operating system.

Xen is a virtual machine implementation that
achieves excellent performance, especially for
CPU-intensive applications [8]. However, it does
require changes in the operating system kernel.
Despite its intrusiveness, we opted for Xen as the
basis of our security infrastructure due to its better
security and performance. SWAN goes one step
further than Xen. Because the applications are
BoT, i.e., no communication is required during
the execution, SWAN disables the virtual machine
network access. This is essential to prevent a mali-

cious task behind the lab’s firewall from exploring
vulnerabilities in the surrounding machines. In
fact, when remotely executing a task on a given
computer, OurGrid requires a network connec-
tion for transferring data, launching, monitoring,
and retrieving the results from the task. But the
task itself does not need to access the network.
The idea behind SWAN is to enforce security by
creating two distinct security levels for execution,
referred to as trusted and non-trusted, based on
the resource requirements of OurGrid and the
BoT applications.

As shown in Figure 4, the trusted level runs
OurGrid software and has access to the network.
OurGrid software is assumed to be secure for
two reasons. First, it does not change from the
execution of one task to another. Second, it is open
source and the lab’s system administrator can
check it. At the non-trusted level, only the basic
resources necessary for executing the remote tasks
are available. Since these are BoT applications,
they do not require network access, and this is not
provided. Furthermore, the non-trusted level has
a file system that is completely isolated from the
trusted level.

SWAN also implements another security mech-
anism, the sanity check, which uses checksums
to verify the integrity of the non-trusted VM
after each task execution. This feature prevents

Figure 4 SWAN
architecture.

234 J Grid Computing (2006) 4: 225–246

malicious tasks from installing a Trojan horse or
modifying the virtual machine file system in order
to attack the next task running on the machine.

5. Making it Simple and Fast

Now that we have a peer-to-peer resource-sharing
scheme that provides sensible incentives and a
sandboxing mechanism that addresses the security
worries that come with the use of such a scheme,
we must provide the user with a convenient way
to use the system. First, we must hide the Grid
heterogeneity from the user. After all, in a free-
to-join Grid such as OurGrid, the user will often
face a totally unknown machine, with unknown
hardware architecture, operating system, installed
software, and file system organization. Second, we
must ensure that the user’s application runs
quickly. Since many users see OurGrid as a way
to speed up the run/analyze cycle for computer-
based research, we must assure fast applica-
tion turnaround, not just system-wide asymptotic
throughput. In OurGrid, these functionalities are
provided by MyGrid, a personal broker through
which the user interacts with the Grid, as depicted
in Figure 1. We will now describe how MyGrid
provides such functionalities. For the internal ar-
chitecture and deeper details of MyGrid, we refer
the reader to [19, 48, 53].

5.1. Hiding Heterogeneity

Recall that OurGrid deals with BoT applications,
i.e. applications comprised of independent tasks.
A task is formed by initial, Grid, and final sub-
tasks, which are executed sequentially in this or-
der. Subtasks are external commands invoked by
OurGrid; consequently, any program, written in
any language, can be a subtask. The initial and
final subtasks are executed locally, on the user
machine. The initial subtask is meant to set up the
task’s environment by, for instance, transferring
the input data to the Grid machine selected to
run the task. The final subtask is typically used to
collect the task’s results back to the user machine.
The Grid subtask runs on a Grid machine and
performs the computation per se. In addition to its

subtasks, a task definition also includes the Grid
machine requirements, as we shall shortly see.

MyGrid abstractions allow users to write sub-
tasks without knowing details about the Grid ma-
chines on which they will be run, such as how
their file systems are organized. The abstractions
storage and playpen represent storage spaces in
the unknown Grid machine, which the task refers
to as $STORAGE and $PLAYPEN, respectively.
File transfer commands are available to send and
retrieve files in the storage spaces.

Storage is a best-effort persistent area: Files
stored there may be available for the next task
to run on the machine. Storage is useful for dis-
tributing files that are going to be used more than
once, such as program binaries. Since storage does
not guarantee the presence of a file previously
transferred, the task description must always state
which files are to be sent to the storage area.
Unnecessary transfers are avoided by checking the
existence, the modification date and a file hash
before sending the file. Playpen provides tempo-
rary storage, serving as the working directory for
the Grid subtask, and disappearing when the task
terminates. The Grid machine’s owner can specify
the directories that are going to be presented as
storage and playpen, as well as the maximum size
they can reach. Storage space is managed using
the least-recently used policy. We recommend for
storage to be configured in a file system that is
mounted by all machines in the lab. By doing so,
transferring a file to storage makes it available to
all machines within that lab.

In order to make it easier to write the initial and
final subtasks, MyGrid also defines the environ-
ment variables $PROC, $JOB, and $TASK. They,
respectively, contain the Grid machine chosen to
run the task, the job unique number, and the
task unique number (within a job). For example,
suppose the user wants to run the binary task,
which has the file IN as input and the file OUT
as output. The initial subtask would then be:

store task $STORAGE
put IN $PLAYPEN

The Grid subtask would be simply:

$STORAGE/task < IN > OUT

J Grid Computing (2006) 4: 225–246 235

And the final subtask would collect OUT to the
results directory, renaming the file by appending
the unique job/task number to its name.

get $PLAYPEN/OUT
results/OUT-$JOB-$TASK

Appending the job and task numbers to OUT
ensures the uniqueness of each output in the quite
common cases where a given application is run
many times, and/or several tasks produce output
with the same name.

The final component of a task is its Grid ma-
chine requirements. In OurGrid, Grid machines
are labeled with attributes. Attributes have values
and simple Boolean expressions can be used to
specify the needed machine characteristics. Pre-
defined attributes include playpensize, storage-
size, opsys, and arch. For example, when a task
requires opsys = linux and arch = IA32, it de-
mands Intel 32-bit compatible machines running
Linux.

Any subtask can also use the attributes of a
Grid machine. This makes it possible for subtasks
to adapt to different kinds of Grid machines.
Refining the above example, suppose that task
has binaries for Linux and Windows, placed, re-
spectively, at linux and windows directories. The
initial subtask could then use the opsys attribute
to mirror the correct binary, as shown below.

if (opsys = linux) then
store linux/task.sh $STORAGE/task

else
store windows/task.bat $STORAGE/task

endif
put IN $PLAYPEN

It is interesting to contrast OurGrid’s approach
to hiding Grid heterogeneity with the approach
used by Condor. Condor hides the differences
among Grid machines by intercepting the system
calls and forwarding them to the user machine
[60]. This way, a task running in a remote machine
has the illusion that it is running locally. We see
these two approaches as representing different
trade-offs in the design space of Grid working
environments. Condor’s working environment ap-
proach is simpler for the user to understand, but
requires re-linking the application with Condor’s

redirection library. OurGrid’s working environ-
ment approach is not complicated, but it does
require the user to learn a few new concepts.
On the other hand, OurGrid’s approach does not
require end-to-end communication between the
user machine and the Grid machine, simplifying
the deployment of OurGrid. Which approach has
the best performance is heavily dependent on the
application. If an OurGrid application transfers
a large file but only uses part of it, performance
would be better with Condor. If a Condor appli-
cation accesses the same small file many times,
OurGrid is likely to do better. Finally, Condor’s
approach implies that a write is immediately prop-
agated to the user machine, whereas in OurGrid
results go to the user’s machine only when tasks
finish. This makes fault recovery easier in OurGrid
(simply resubmit the task, without worrying about
side effects) and enables task replication, an im-
portant issue for efficient scheduling as discussed
next.

5.2. Promoting Application Performance

Despite the simplicity of BoT applications, sched-
uling BoT applications on Grids is difficult due to
two issues. First, efficient schedulers depend on
information about application (such as estimated
execution time) and resources (processor speed,
network topology, load, and so on). However, it
is difficult to obtain accurate information in a sys-
tem as large and widely dispersed as a Grid. Sec-
ond, since many important BoT applications are
also data-intensive applications, considering data
transfers is paramount to achieve good perfor-
mance. Thus, in order to achieve efficient sched-
ules, one must provide coordinated scheduling of
data and computation.

MyGrid’s first scheduler (Workqueue with Repli-
cation or simply WQR) dealt only with the first
issue. WQR uses no information about tasks or
machines. It randomly sends a task to a machine;
when a machine finishes, another task is sent to
it; when there are no more tasks to send, a ran-
domly chosen running task is replicated. Replica-
tion is the key to recovering from bad allocations
of tasks to machines (which are inevitable, since
WQR uses no information). WQR performance is
as good as traditional knowledge-based schedulers

236 J Grid Computing (2006) 4: 225–246

fed with perfect information [48]. It did consume
more cycles though. However, this was noticeable
only when the number of tasks was of the same
order of magnitude as the number of machines,
or less [48]. And, somewhat surprisingly, limiting
replication to 2× (i.e. the original and the replica)
delivered most of the performance improvement,
while resource waste was limited to around 40%
for the extreme case with three machines per task
[48]. However, WQR does not take data transfers
into account.

With version 2.0 of MyGrid, we released an
alternative scheduler for MyGrid, called Storage
Affinity [53], which does tackle both problems
simultaneously. (WQR is still available within
MyGrid because it does quite a good job with
CPU-intensive BoT applications.) There are a few
Grid schedulers that take data transfers into ac-
count in order to improve the performance of the
applications. However, all these schedulers re-
quire a priori knowledge of the execution time
of the tasks on each processor that composes the
Grid, and this varies dynamically with the Grid
load. Storage Affinity, on the other hand, does not
use dynamic, hard-to-obtain information. The idea
is to exploit data reutilization to avoid unneces-
sary data transfers. The data reutilization appears
in two basic flavors: Inter-job and inter-task. The
former arises when a job uses the data already
used by (or produced by) a job that executed
previously, while the latter appears in applications
whose tasks share the same input data.

We gauge data reutilization by the storage affin-
ity metric. This metric determines how close to a
site a given task is. By how close we mean how
many bytes of the task input dataset are already
stored at a specific site. Thus, the storage affinity
of a task to a site is the number of bytes within the
task input dataset that are already stored in the
site. Information on data size and data location
can be obtained a priori with less difficulty and
loss of accuracy than, for example, information on
CPU and network loads or the completion time of
tasks. For instance, information on data size and
location can be obtained if a data server at a par-
ticular site is able to answer requests about which
data elements it stores and how large each data
element is. Alternatively, an implementation of a
Storage Affinity heuristic can easily store a history

of previous data transfer operations containing the
required information.

Naturally, since Storage Affinity does not use
dynamic information about the Grid and the appli-
cation, inefficient task-to-processor assignments
do occur. In order to circumvent this problem,
Storage Affinity uses a task replication strategy
similar to that used by WQR [48]. Replicas have
a chance of being submitted to faster processors
than those processors assigned to the original task,
thus decreasing average task completion time.

To test Storage Affinity, we performed a total
of 3,000 simulations in a variety of scenarios [53].
The Grid and the application varied in hetero-
geneity across the scenarios. The application was
assumed to have a 2GB input, and reuse was inter-
job. The simulations compared the efficiency of
Storage Affinity against XSufferage and WQR.
XSufferage [16] is a famous scheduler that takes
data placement into account, but requires knowl-
edge of the execution time of the tasks on each
processor that composes the Grid. WQR was con-
sidered for the opposite reason: It does not need
information, but does not consider data placement
either. Each simulation consisted of a sequence of
three executions of the same job in a given Grid
scenario. These three executions differed only in
the scheduler used (WQR, XSufferage and Stor-
age Affinity).

Table 1 presents a summary of the simula-
tion results. As can be seen, on average, Stor-
age Affinity and XSufferage achieve comparable
performances. The results show that both data-
aware heuristics attain much better performance
than WQR. This is because data transfer delays
dominate the execution time of the application,

Table 1 Storage affinity results

Storage
affinity

WQR XSufferage

Execution
time (s)

Mean 14,377 42,919 14,665
Std dev 10,653 24,542 11,451

Wasted
CPU (%)

Mean 59.24 1.08 N/A
Std dev 52.71 4.12 N/A

Wasted
bandwidth
(%)

Mean 3.19 130.88 N/A
Std dev 8.57 135.82 N/A

J Grid Computing (2006) 4: 225–246 237

thus not taking them into account severely hurts
the performance of the application. In the case of
WQR, the execution of each task is always pre-
ceded by a costly data transfer operation (as can
be inferred from the large bandwidth and small
CPU wastage). This impedes any improvement
that the replication strategy of WQR could bring.
On the other hand, the replication strategy of
Storage Affinity is able to cope with the lack of
dynamic information and yields a performance
very similar to that of XSufferage. The main in-
convenience of XSufferage is the need for knowl-
edge about dynamic information, whereas the
drawback of Storage Affinity is the consumption
of extra resources due to its replication strategy
(an average of 59% extra CPU cycles, and a
negligible amount of extra bandwidth). However,
as with WQR, the resources wasted by Storage
Affinity can be controlled by limiting replication,
with very little impact on performance [53].

Note that, to avoid scalability limitations,
OurGrid has no single ‘superscheduler’ that over-
sees all scheduling activity in the system. Each user
runs a MyGrid broker, which schedules the user’s
jobs and competes with other MyGrid brokers for
the system’s resources. However, since MyGrid’s
schedulers use task replication, some resources
will be wasted by executing replicas, instead of
executing someone else’s task. In fact, this extra
consumption of resources raises important con-
cerns about the system-wide performance of a
distributed system with multiple, competing repli-
cation schedulers [41]. We are currently investi-
gating this issue. Our preliminary results suggest
that performance degradation is low for the case
in which each scheduler deals with many more
tasks than the resources available for scheduling.
Alas, the case there are more processors than
tasks is troublesome. However, a simple referee
strategy (which can be locally and autonomously
implemented by each resource) greatly improves
matters. The local referee strategy consists of hav-
ing resources restrict themselves to serving one
scheduler at a time. This strategy improves the
emergent behavior of a system with competing
replication schedulers in all scenarios we have
investigated so far, and appears to be critical in
ensuring good system performance when there are
more resources than tasks.

6. Implementing the Vision

While we were designing and analyzing OurGrid’s
main components, we were also implementing
them with the goal of producing a production-
quality open-source system. OurGrid is written
in Java and supports the execution of Linux and
Windows BoT applications. OurGrid’s current
version is 3.2, which can be downloaded from
http://www.ourgrid.org under GPL.

Reality is always more complex than our mod-
els, and thus an enormous amount of effort had
to be put in generating software that can reliably
work in production, outside our own lab. In peak
periods, we had more than 20 people working on
OurGrid, including undergraduates, graduate stu-
dents, and staff. This section is meant to highlight
what we consider the most interesting aspects of
this experience.

6.1. Isolation Interfaces

In order to assure modularity and easy inter-
operability with other technologies, we designed
OurGrid around two main isolation interfaces:
GridMachine and GridMachineProvider. Grid-
Machine (or GuM) represents a processor ma-
chine in the system. It exports methods to
remotely execute a command, and to transfer files
to and from the processor. We have three im-
plementations of GuM. The first invokes user-
defined scripts for those tasks. It enables the
use of ssh and scp as ‘Grid middleware’, thus
eliminating the need for Grid deployment on
the worker machines. The second implementation
uses GRAM and GridFTP to provide access to
Globus machines. The third is OurGrid’s native
Java-based implementation. It provides faster ac-
cess and better instrumentation than the other
implementations. GuM implementations can run
under SWAN to isolate malicious or erroneous
foreign code.

A GridMachineProvider (or GuMP) is a source
of GuMs. It supports a very simple wannaGuM
primitive, which is eventually responded to with
hereIsGuM. GuMPs abstract the fact that the ma-
chines that compose the Grid are under control
of multiple entities. For example, machines may
be controlled by queue managers such as PBS,

http://www.ourgrid.org

238 J Grid Computing (2006) 4: 225–246

Maui, and LSF. Idle interactive machines may be
under the control of an OurGrid peer itself, or be
managed as a Condor pool. All these sources of
GuMs are hidden behind the very simple GuMP
interface. A GuMP can also funnel all communi-
cations between its GuMs and the external world,
providing a reasonable way to deal with private
IPs and firewalls. Note also that GuMPs can trade
GuMs among themselves by using the Network of
Favors (see Section 3).

6.2. Dealing with Space-shared Machines

Many labs with large computational demands
have access to space-shared machines, composed
of many processors, which do not share memory
but are connected via high-speed networking. This
is often in the form of a small, dedicated clus-
ter, and sometimes in the form of remote access
to a large supercomputer center. Space-shared
resources are typically controlled by a queue
manager, which is designed to promote the per-
formance of parallel jobs. They are also a great
source of compute power that we would like to use
in OurGrid.

Enabling space-shared machines’ idle processors
to be accessed through the Grid is straightforward.
Queue managers typically accept user-defined
scripts that are invoked before and after a proces-
sor is allocated to a job. We use these scripts to
start OurGrid’s native implementation of GuM
when a processor becomes idle, and to kill it when
a processor is about to be allocated to a local job.

However, when a local user submits a job to
OurGrid, it should be able to use the local space-
shared resource as a local user, not only access its
idle resources. This requires submitting a request
to the queue manager that controls the resource.
The request specifies (i) the number of proces-
sors needed, and (ii) the amount of time these
processors are to be allocated to the job. The user
can provide OurGrid with such information. How-
ever, we believe that the user just wants to run
her application, and desires the least involvement
possible with computer-related details. In particu-
lar, estimating execution time for a space-shared
computer is a notoriously error-prone task [42].
Therefore, we devised heuristics to automatically
craft space-shared requests on the user’s behalf.

As a first solution, we implemented a simple
static heuristic. The static heuristic simply issues
the maximum number of allowed requests, each
asking for the maximum number of processors and
maximum amount of time allowed by the local
policy. This greedy approach makes it possible
to use space-shared resources without boring the
user with space-shared requests, however it often
produces large wait times (time spent by the re-
quests waiting in queue before they can run).

In order to solve this problem, we devised an
adaptive heuristic [22]. Its adaptation occurs over
both requested time and number of processors.
That is, the requests are dynamically crafted by
learning from previous requests and the queue
state of the resource, providing better throughput.
The adaptive heuristic aims to maximize through-
put. To calculate throughput, we must estimate
task runtime. In the beginning, we have a de-
fault (constant) runtime estimate. If tasks could
be successfully finished in this time, the estimated
runtime will be the runtime of the longest task.
If requested time is not enough to run tasks, the
estimated task runtime will be the requested time
multiplied by an integer factor. Our inspiration
to enlarge or shrink the requested time is based
on the TCP congestion window rationale: In bad
situations make quick decisions, and in good ones
be careful. Based on the estimated task runtime,
the heuristic sweeps the request queue, choosing
the best (greatest throughput) set of possible re-
quests in a greedy manner. It is worth to point
out that space-shared resources typically have a
maximum number of pending requests per user
(due to administrative policies). Thus, an initial
set with a maximum number of pending requests
allowed is created with the first possible requests.
After that, if a new possible request could improve
the throughput, a previous chosen request is dis-
carded and the new request is inserted into the set
of chosen requests. The chosen set is requested,
and the process is repeated if the requests were
not sufficient to run all tasks.

We evaluated this adaptive heuristic by simu-
lating the arrival of a Grid job with two supercom-
puter workloads classically used for performance
evaluation of space-shared resources: SDSC SP2
and CTC SP2 [30]. Table 2 summarizes the results.
The speed-up denotes how much faster was the

J Grid Computing (2006) 4: 225–246 239

Table 2 Performance of the adaptive heuristic to craft
space-shared requests

Workload Utilization
(%)

Average
speed-up

SDSC SP2 72 2.41
CTC SP2 55 14.81
CTC SP2 (×0.9) 61 1.98
CTC SP2 (×0.8) 68 1.77
CTC SP2 (×0.7) 78 1.84

adaptive heuristic compared with the static heuris-
tic. As one can see, the results are quite good,
especially for CTC SP2. We further investigated
the cause of such difference [22] and found it to
be due to the supercomputer utilization: CTC SP2
is considerably less loaded than SDSC SP2. In
Table 2, we also show modified simulations of
CTC SP2 on which the interarrival time was mul-
tiplied by 0.9, 0.8, and 0.7. As utilization increases
due to the shorter interarrival time, the CTC SP2
speed-up becomes comparable to the SDSC SP2
speed-up. Nevertheless, even in these situations,
the adaptive heuristic still runs approximately
twice as fast as the static heuristic.

6.3. Software Engineering Grid Middleware

Developing production-quality software is much
harder than developing a research prototype. We
are doing research in order to determine what the
software should look like, and hence have to deal
with fuzzy requirements, which certainly compli-
cate the software development. Furthermore, we
have a large and very heterogeneous team, from
undergraduates to fully qualified researchers. Fi-
nally, we must (i) assume as little as possible
about the environment on which the software is
installed, (ii) make the software as user-friendly
as possible, and (iii) provide clear and compre-
hensive documentation. These items are necessary
to increase user satisfaction and reduce support,
but they too add to the challenge of producing
production-quality software.

We had numerous problems with the quality of
OurGrid in the first half of 2004. The software was
buggy and unstable. The architecture was complex
and not fully understood by the whole team. Bug

fixes would frequently add new bugs. We here
summarize how we addressed these problems.
Readers interested in a detailed discussion of this
experience should refer to [25].

To regain control of the software, we intro-
duced a better defined software development
process, heavily based on extreme programming
(XP) [10], and changed the system internal archi-
tecture so as to simplify concurrent programming.
We found XP to be a better fit to our environment
because of its ability to deal with changing require-
ments, which are a commonplace in research. As
preached by XP, we make intensive use of auto-
mated tests to reduce the chances that the evo-
lution of the software introduces bugs. However,
OurGrid is distributed and runs over asynchro-
nous networks, and hence is non-deterministic,
which makes writing automated tests for OurGrid
quite challenging. We used AspectJ [7] to cre-
ate some aspects that give some control over
thread execution. In the tests of OurGrid macro-
components (the peer, MyGrid, and the GuM
implementations), other components are repre-
sented by mock objects, and the programmer
states properties over all threads using AspectJ.
Unfortunately, automated testing of the system as
a whole remains an issue not satisfactorily solved.

Around May 2004, we went through a major
refactor of the internal OurGrid architecture. The
main goal was to improve modularity. We divided
OurGrid’s macro-components into modules that
communicate asynchronously via events. For ex-
ample, when MyGrid’s Scheduler assigns a task’s
replica to a processor, it sends an event to the
ReplicaExecutor asking for this assignment to be
carried out. Each module reads events from a
queue and processes them. This refactor greatly
reduced the number of synchronized statements
in the code (from 174 in OurGrid 2.1.3 to 110 in
OurGrid 2.2, after the refactor), and, more impor-
tantly, isolated the modules. A thread in a module
never goes into another module. This modulariza-
tion enables us to reason about the multithreaded
behavior of each module individually, greatly sim-
plifying designing, coding, and debugging.

We are currently planning to extend this event-
oriented architecture to the macro-components
level, making OurGrid, MyGrid, and the GuM
implementations communicate via events. For

240 J Grid Computing (2006) 4: 225–246

that, we plan to replace Java RMI (the current
communication mechanism used in OurGrid) by
Jabber (an open standard-based instant messag-
ing platform [39]). In fact, although RMI is great
for client/server applications, it displays weak-
nesses when used by a distributed system such as
OurGrid. First, it may be hard for the ‘server’ to
call back a ‘client’, because a ‘client’ often is be-
hind a firewall. Second, if the ‘client’ is blocked on
a ‘server’ (because callbacks are hard), canceling
such an invocation (for instance when we cancel
a replica) requires special handling. Third, each
pending RMI call blocks a thread, and thus the
number of threads a Java Virtual Machine can ef-
fectively handle (a few hundred) quickly becomes
a bottleneck. We hope to solve these issues with
Jabber.

7. Reality-check of Deployment

As discussed above, getting quality software ready
to be deployed can be a daunting task for a re-
search lab. OurGrid’s first version openly avail-
able for download dates back to mid-2002.
However, it only contained MyGrid and two im-
plementations of the GuM interface (native and
user-defined scripts). This functionally allows the
user to combine all machines she has access to
(i.e. can log into) to create her personal Grid for
running her BoT applications [19]. But it did not
enable the creation of a worldwide free-to-join
cooperative Grid, as described here. Due to the
development problems in 2004, the OurGrid peer
(and thus the ability to create the aforementioned
cooperative Grid) was released only in October
2004, with version 3.0. After exhaustive testing by
us and others, we declared OurGrid in production
in December 2004, and it has been running ever
since.

Note that OurGrid is a federation on which
each peer keeps local autonomy. In fact, there is
no single place that has a detailed Grid-wide view
of the system. All we have is an indication of which
peers are part of the Grid at a given moment. To
obtain a Grid-wide view of OurGrid, we asked
all peers for their local logs. Since peers delete
old logs, we could get data from all peers only
from March 5th 2005 on. After that, we automated

IFigure 5 The evolution of the OurGrid Grid.

the process of log collection (with the peer owner
approval, naturally). Unfortunately, however, a
disk failure caused the loss of the logs from April
13th 2005 to July 28th 2005.

Figure 5 displays the available data on OurGrid
(from March 5th to April 12th 2005 in Figure 5a
and from July 29th 2005 to August 30th 2005 in
Figure 5b). It plots the evolution of peers, ma-
chines, and machines donated to foreign peers. As
expected, Grid conditions vary widely over time.
Nevertheless, most of time there were machines
being donated, implying that the Grid had labs
with idle machines and labs with demand beyond
their local resources. This supports our expecta-
tion that most labs have bursts of computational
demand: They do not use their computational
resources all the time; but when resources are
needed, they can benefit from extra resources.
Also, note that the number of peers and machines
in OurGrid have grown considerably from March
2005 to July 2005.

The use of OurGrid by numerous applications
(molecular dynamics [62], simulations, climate
forecast [21], imaging, hydrological management
[56], and data mining [58]) provided us with very
interesting feedback. A key point that became
clear from the beginning is that dealing with fail-
ure in the Grid is very hard [46]. The key problem
seems to be to identify the source fault that caused
the failure. In fact, our users report that when a
failure appears on the screen, it is very hard for
the user to identify whether the problem is at his
own application, somewhere in the Grid middle-
ware, or even lower in the fabric that comprises
the Grid. We argue that to overcome this prob-
lem, current Grid platforms must be augmented
with multi-layer, collaborative diagnosis mecha-
nisms [27]. We implemented such mechanisms in
OurGrid by using automated tests to identify the
root cause of a failure and propose the appropriate
fix [27].

An interesting aspect of the deployment is
the fact that we sometimes created solutions for
problems that did not present themselves in
practice. For example, in early versions, MyGrid
implemented the proportional-share ticket-based

J Grid Computing (2006) 4: 225–246 241

242 J Grid Computing (2006) 4: 225–246

scheduler described in [18]. This scheduler is tech-
nically very interesting. It allows a user who runs
more than one application simultaneously to de-
fine what fraction of resources obtained from
the Grid should be allocated to each application.
However, none of our users found this capability
useful.

Another aspect of user behavior that did not
match our expectations was the way in which users
interact with the system. We designed OurGrid
so that a user can describe a job in a very sim-
ple scripting language, relying mainly on the file
abstraction (as described in Section 5). In fact,
OurGrid can execute multiple independent runs
of an application even when the user does not have
the application’s source code, only the binaries.
All that is needed is that such an application reads
the input from files, and produces the output to
files. We thought that this simplicity would greatly
ease the use of OurGrid. Nevertheless, the vast
majority of users decided to use OurGrid’s Java
API for job submission.

Finally, rather to our dismay, a few labs that
installed OurGrid asked for control on the set of
other labs with whom they would interact. Some
labs would like to configure the set of labs with
whom they exchange favors. Other labs would
like to give preferential treatment to their pals.
While this goes against the ideal of an open free-
to-join community, the Network of Favors (see
Section 3) treats this gracefully. If there is a lab
A that specifies the labs to whom it will donate
resources, and there is a lab B that is not one of A’s
favorites, B’s favors to A will not be reciprocated
and B will soon stop interacting with A.

As well as bringing surprises, real use also
brings new requirements to be added to the soft-
ware. The most common requirement is check-
pointing. Since local jobs kill foreign jobs, a user
with very long running tasks has a very small
chance of finishing a task on a foreign machine.
We are using the Condor checkpoint library to
cope with this. Another common requirement
is the ability to restart OurGrid’s components
without losing any work. We are investigating
whether saving the components’ state in an em-
bedded database addresses well this issue. Finally,
some users have requested the ability for tasks to
communicate, enabling applications more sophis-

ticated than BoT. Once we have moved from RMI
to Jabber, we intend to export Jabber resource
endpoints to OurGrid applications.

8. Related Work

Grid computing is a very active area of research
[11, 34]. Although it started within High Per-
formance Computing, people have realized that
Grid technology could be used to deliver com-
putational services on demand. This observation
has brought about convergence between Grid and
Web Services technologies, as seen in standards
like OGSA/OGSI [61] and its successor WSMF
[23]. These standards are currently being imple-
mented by both academia and industry. Most no-
tably, these standards are being implemented by
Globus [37], maybe the project with greatest visi-
bility in Grid Computing.

However, this mainstream work in Grids has
evolved more towards control assurance and inter-
operability with commercial standards. Our work
is more concerned with scalability and simplicity.
Condor and voluntary computing systems (such
as SETI@home, BOINC, XtremWeb and Bayani-
han) are closer to our work.

Condor was initially conceived for campus-wide
networks [43], but has been extended to serve as a
broker in a Globus Grid [32], as well as to allow
the federation of multiple Condors in a Flock of
Condors [15, 28]. In fact, a Flock of Condors and
OurGrid are alike in the sense that they feder-
ate multiple distinct administrative domains that
want to share their resources. The key difference
between OurGrid and Condor is that “Condor
assumes that a fair amount of trust exists between
machine owners and users that wish to run jobs”
[60], whereas OurGrid assumes the opposite. This
difference in assumption affects most compo-
nents of both solutions. OurGrid, for example,
uses much stronger sandboxing technology than
Condor. This comes at the expense that OurGrid
applications are (currently) limited to Bag-of-
Tasks, whereas Condor applications are not. Also,
OurGrid places great effort in encouraging the
labs (i.e. different administrative domains) to
share their idle resources with labs they do
not even know (since the more resources a lab

J Grid Computing (2006) 4: 225–246 243

donates, the more resources it is likely to receive
when needed). The Flock of Condors, on the other
hand, does not address the motivation for differ-
ent labs to share their resources. It was designed
to allow for small-scale flocking among labs that
already know and trust each other. OurGrid was
designed to make it technically and administra-
tively possible to scale up much larger than that.

Condor and OurGrid create Grids in which
resource providers and resource consumers are
roles played by the same people. As an alternative,
voluntary computing efforts suggest a more asym-
metrical view, in which many people voluntarily
donate resources to a few projects of great public
appeal. Arguably, voluntary computing originated
from the huge success achieved by SETI@home
[2, 57]. SETI@home makes no distinction between
the application itself (search of extraterrestrial
intelligence evidence in radio signals) and its Grid
support. On the other hand, BOINC [3] has been
introduced as a sequel to SETI@home, promising
exactly such a separation. BOINC aims to create
a voluntary computing infrastructure that can be
used by several different applications. XtremWeb
[29] also provides a similar platform. It places
special care in the provision of a fault-tolerant
programming environment for general parallel ap-
plications [12]. The Bayanihan project also aims to
create a voluntary computing infrastructure and
includes a very interesting contribution to toler-
ating sabotage (i.e. bogus volunteer results) [54].
In fact, we plan to use the Bayanihan approach to
deal with sabotage, as mentioned in Section 4.

In principle, however, nothing precludes us-
ing OurGrid for voluntary computing. Labs could
promote the voluntary installation of OurGrid
worker machines (e.g. our native implementation
of GuM) connected to their peers. In this scenario,
voluntary machines act as local machines of a
given lab (to which they donate their idle cycles).
Since local jobs preempt foreign jobs, local jobs
always have priorities on the machines donated to
a given lab. However, if the lab temporarily does
not have enough demand for its resources (owned
and volunteered), the surplus is donated to the
OurGrid community at large. This ensures that
when, in the future, the lab computational demand
is greater than its resources, it will have a greater
chance of getting resources from other peers.

It is interesting to notice that OurGrid’s under-
lying principle that a peer prioritizes other peers
from whom it has received resources also provides
the rationale for BitTorrent’s incentive scheme for
sharing bandwidth in peer-to-peer systems [20].
However, OurGrid’s incentive scheme is designed
for sharing computation rather than bandwidth,
and is considerably different from BitTorrent’s.
First, Bittorrent’s algorithm only considers very
recent behavior. Second, in BitTorrent you do not
diminish the local reputatation of a peer when you
do it a favor. Third, the optimistic-unchoking part
of the BitTorrent algorithm favors peers who have
donated nothing over peers who have donated a
small amount.

9. Conclusions

OurGrid is an open free-to-join collaborative Grid
that caters for Bag-of-Tasks applications. OurGrid
is in production since December 2004 and its
current status can be seen at status.ourgrid.org.
Labs wanting to join OurGrid just download the
software from http://www.ourgrid.org and install
it. Joining is automatic; no paperwork or approvals
of any sort are required. The vision is that Our-
Grid provides a massive worldwide computing
platform on which research labs can trade their
spare compute power for the benefit of all.

In order to realize the OurGrid vision, we made
two major contributions to the state of art in
Grid computing. First, as shown in Section 3, the
Network of Favors and its associated Autonomous
Accounting assures fairness for the labs partici-
pating in the Grid by dealing with freeriders in
a totally decentralized and autonomous way. Be-
ing able to promote collaboration without rely-
ing on centralized infrastructure is key to making
OurGrid feasible and easy to deploy. Second,
as presented in Section 5, we devised sched-
ulers that achieve good performance without using
information about the Grid or the application.
These schedulers use task replication to deal
with unfortunate task-to-processor allocations.
Although consuming more resources, these sched-
ulers simplify matters for the user (who does
not have to estimate application execution times)
and greatlysimplify the design and deployment of

http://www.ourgrid.org

244 J Grid Computing (2006) 4: 225–246

OurGrid (because we avoid the need for a scalable
and accurate infrastructure for monitoring and
forecasting performance).

Naturally, OurGrid keeps evolving to be sim-
pler, faster, and more complete, as discussed
throughout this paper. We highlight as critical
aspects where improvement is needed (i) making
sandboxing more convenient, and (ii) improving
the system’s ability to deal with large amounts of
data. In the end, our goal is to regain the simplicity
and power of the original Grid motto: “Plug into
the Grid and solve your problem.”

Acknowledgments Many thanks to the OurGrid team
(http://www.ourgrid.org/twiki- public/bin/view/OG/
OurPeople). This work would have not happen without
everybody’s commitment to do their best. In particular,
thanks to Ayla Dantas for the fabulous coaching of the
team, Érica Gallindo for the great integration work, and
José Pergentino for the help in generating the usage
graphs. Thanks also to the OurGrid users and contributors.
You are the ones who make this project alive. Francisco
Brasileiro and Walfredo Cirne would like to thank
the partial financial support from CNPq/Brazil (grants
300.646/96 and 302.317/03, respectively). Thanks also to
Katia Saikoski for the comments and suggestions.

References

1. Abramson, D., Buyya, R., Giddy, J.: A computational
economy for Grid computing and its implementation
in the Nimrod-G resource broker. Future Gener. Com-
put. Syst. 18, 1061–1074 (2002)

2. Anderson, D., Cobb, J., Korpela, E.: SETI@home: An
experiment in public-resource computing. Communica-
tions of the ACM 45(11), 56–61 (2002)

3. Anderson, D.: Public computing: Reconnecting people
to science. Proceedings of Shared Knowledge and the
Web, Madrid, Spain, Nov. 17–19 2003

4. Andrade, N., Brasileiro, F., Cirne, W., Mowbray,
M.: Discouraging free-riding in a peer-to-peer CPU-
sharing Grid. Proceedings of 13th IEEE International
Symposium on High-Performance Distributed Com-
puting (HPDC13), Honolulu, Hawaii, 4–9 June 2004

5. Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P.:
OurGrid: An approach to easily assemble Grids with
equitable resource sharing. Proceedings of 9th Work-
shop on Job Scheduling Strategies for Parallel Process-
ing, June 2003

6. Andrade, N., Mowbray, M., Cirne, W., Brasileiro, F.:
When can an autonomous reputation scheme discour-
age free-riding in a peer-to-peer system? Proceedings
of 4th Workshop on Global and Peer-to-Peer Comput-
ing (GP2PC), Chicago, USA, 19–22 April 2004

7. AspectJ Team: The AspectJ Programming Guide.
http://www.eclipse.org/aspectj/doc/released/progguide/
index.html. Cited 14 March 2006 (2006)

8. Barham, P., et al.: Xen and the art of virtualization.
Proceedings of SOPS’2003

9. Basu, S., Banerjee, S., Sharma, P., Lee, S.-J.: NodeWiz:
Peer-to-peer resource discovery for Grids. Proceedings
of 5th International Workshop on Global and Peer-to-
Peer Computing (in conjunction with CCGRID 2005),
May 2005

10. Beck, K.: Extreme Programming Explained: Embrace
Change. Addison-Wesley (1999)

11. Berman, F., Fox, G., Hey, T. (eds.): Grid Comput-
ing: Making The Global Infrastructure a Reality. Wiley
(2003)

12. Bosilca, G., et al.: MPICH-V: Toward a scalable
fault tolerant MPI for volatile nodes. In: Proceedings
of 2002 ACM/IEEE Conference on Supercomputing,
Baltimore, Maryland, pp. 1–18, 2002

13. Buyya, R., Abramson, D., Giddy, J.: An economy
driven resource management architecture for com-
putational power Grids. Proceedings of International
Conference on Parallel and Distributed Processing
Techniques and Applications, 2000

14. Buyya, R., Vazhkudai, S.: Compute Power Market:
Towards a market-oriented Grid. Proceedings of 1st
IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid 2001), Beijing,
China, 2001

15. Butt, A.R., Zhang, R., Hu, Y.: A self-organizing flock
of condors. Proceedings of Supercomputing, 2003

16. Casanova, H., et al.: Heuristics for scheduling parame-
ter sweep applications in Grid environments. In: Pro-
ceedings of 9th Heterogeneous Computing Workshop,
pp. 349–363, 2000

17. CERN: Worldwide LCG Computing Grid. http://lcg.
web.cern.ch/LCG/. Cited 14 March 2006 (2006)

18. Cirne, W., Marzullo, K.: The Computational Co-op:
Gathering Clusters into a Metacomputer. Proceedings
of IPPS/SPDP’99, April 1999

19. Cirne, W., et al.: Running bag-of-tasks applications on
computational Grids: The MyGrid approach. Proceed-
ings of ICCP’2003: International Conference on Paral-
lel Processing, Oct. 2003

20. Cohen, B.: Incentives build robustness in BitTorrent.
Proceedings of Workshop on Economics of Peer-to-
Peer Systems, June 2003

21. COPAD project announcement. http://www.eradigital.
com.br/clientes/ourgrid/news01.shtml. Cited 14 March
2006

22. Costa, L., Cirne, W., Fireman, D.: Converting space
shared resources into intermittent resources for use in
bag-of-tasks Grids. Proceedings of 17th Symposium on
Computer Architecture and High Performance Com-
puting (SBAC-PAD’2005), Oct. 2005

23. Czajkowski, K., et al. From Open Grid Services In-
frastructure to WS-Resource Framework: Refactoring
& Evolution. Version 1.1, 3/05/2004. http://www.globus.
org/wsrf/specs/ogsi_to_wsrf_1.0.pdf. Cited 14 March
2006

http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.ourgrid.org/twiki-public/bin/view/OG/OurPeople
http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://www.eclipse.org/aspectj/doc/released/progguide/index.html
http://lcg.web.cern.ch/LCG/
http://lcg.web.cern.ch/LCG/
http://lcg.web.cern.ch/LCG/
http://www.eradigital.com.br/clientes/ourgrid/news01.shtml
http://www.eradigital.com.br/clientes/ourgrid/news01.shtml
http://www.eradigital.com.br/clientes/ourgrid/news01.shtml
http://www.globus.org/wsrf/specs/ogsi_to_wsrf_1.0.pdf
http://www.globus.org/wsrf/specs/ogsi_to_wsrf_1.0.pdf
http://www.globus.org/wsrf/specs/ogsi_to_wsrf_1.0.pdf

J Grid Computing (2006) 4: 225–246 245

24. Damiani, E., Vimercati, S., Paraboschi, S., Samarati, P.:
Managing and sharing servents’ reputations in peer-to-
peer systems. IEEE Transactions on Data and Knowl-
edge Engineering 15(4), 840–854 (2003)

25. To appear: Dantas, A., Cirne, W., Saikoski, K.: Using
AOP to Bring a Project Back in Shape: The OurGrid
Case. J Braz Comput Soc. Available at http://walfredo.
dsc.ufcg.edu.br/resume.html#publications. Cited 14
March 2006

26. Dodonov, E., Sousa, J., Guardia, H.: GridBox: Securing
hosts from malicious and greedy applications. In: Pro-
ceedings of Middleware for Grid Computing, pp. 17–22,
2004

27. Duarte, A., Brasileiro, F., Cirne, W., Alencar-Filho, J.:
Collaborative fault diagnosis in Grids through auto-
mated tests. Proceedings of 20th International Con-
ference on Advanced Information Networking and
Applications (AINA’2006), April 2006

28. Epema, D., et al.: A worldwide flock of condors: Load
sharing among workstation clusters. Future Gener.
Comput. Syst. 12 (1996)

29. Fedak, G., et al.: XtremWeb: A generic global comput-
ing system. In: Proceedings of 1st International Sym-
posium on Cluster Computing and the Grid, Brisbane,
Australia, pp. 582–587, 2001

30. Feitelson, D.: Parallel Workloads Archive. http://www.
cs.huji.ac.il/labs/parallel/workload/. Cited 14 March
2006

31. Figueiredo, R., Dinda, P., Fortes, J.: A Case for Grid
Computing on Virtual Machines. Proceedings of Intl.
Conf. on Distributed Computing Systems (ICDCS),
2003

32. Frey, J., et al.: Condor-G: A computation management
agent for multi-institutional Grids. Proceedings of 10th
IEEE Symposium on High Performance Distributed
Computing, HPDC’10, San Francisco, California,
August 7–9, 2001

33. Foster, I., Iamnitchi, A.: On death, taxes, and the
convergence of peer-to-peer and Grid computing. Pro-
ceedings of 2nd International Workshop on Peer-
to-Peer Systems (IPTPS’03), Berkeley, California,
Feb 2003

34. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint
for a New Computing Infrastructure, 2nd edn. Morgan
Kaufmann, 2004

35. Garfinkel, T.: Traps and pitfalls: Practical problems in
system call interposition based security tools. Proceed-
ings of Internet Society’s 2003 Symposium on Network
and Distributed System Security (NDSS 2003)

36. Garfinkel, T., et al.: Terra: A virtual machine-based
platform for trusted computing. Proceedings of 19th
Symposium on Operating System Principles (SOSP
2003)

37. The Globus alliance: http://www.globus.org. Cited 14
March 2006

38. Hughes, D., Coulson, G., Walkerdine, J.: Free riding on
gnutella revisited: The bell tolls? IEEE Distrib. Syst.
Online 6(6) (2005)

39. Jabber, Inc.: http://www.jabber.org/. Cited 14 March
2006

40. Kamvar, S., Schlosser, M., Garcia-Molina, H.: Eigen-
Rep: Reputation management in peer-to-peer net-
works. Proceedings of 12th International World Wide
Web Conference, Budapest, Hungary, May 2003

41. Kondo, D., Chien, A., Casanova, H: Resource man-
agement for short-lived applications on enterprise
desktop Grids. Proceedings of Supercomputing’2004,
Pittsburgh, Pennsylvania, Nov. 2004

42. Lee, C., et al.: Are user runtime estimates inherently
inaccurate? Proceedings of 10th Job Scheduling Strate-
gies for Parallel Processing, June 2004

43. Litzkow, M., Livny, M., Mutka, M.: Condor: A hunter
of idle workstations. Proceedings of 8th International
Conference of Distributed Computing Systems,
pp. 104–111, June 1988

44. Loscocco, P., et al.: The inevitability of failure: The
flawed assumption of security in modern computing
environments. In: Proceedings of 21st National In-
formation Systems Security Conference, pp. 303–314,
Oct. 1998

45. Loscocco, P., Smalley, S.: Integrating flexible support
for security policies into the linux operating system.
Proceedings of FREENIX track of USENIX Annual
Technical Conference, June 2001

46. Medeiros, R., Cirne, W., Brasileiro, F., Sauvé, J.: Faults
in Grids: Why are they so bad and what can be
done about it? Proceedings of Grid 2003: 4th Interna-
tional Workshop on Grid Computing, November 2003

47. Grid Economic Services Architecture Working Group.
http://www.doc.ic.ac.uk/~sjn5/GGF/gesa-wg.html.
Cited 14 March 2006

48. Paranhos, D., Cirne, W., Brasileiro, F.: Trading cycles
for information: Using replication to schedule bag-of-
tasks applications on computational Grids. Proceedings
of Europar’2003, Austria, 2003

49. Riehle, D., Fraleigh, S., Bucka-Lassen, D., Omorogbe,
N.: The architecture of a UML virtual machine. In: Pro-
ceedings of Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA
’01), pp. 327–341, 2001

50. Ripeanu, M., Foster, I.: Mapping the gnutella network:
Macroscopic properties of large-scale peer-to-peer sys-
tems. Proceedings of First International Workshop on
Peer-to-Peer Systems (IPTPS), 2002

51. Ripeanu, M.: The Globus Toolkit Ecosystem (and How
to Make it Work for You). http://people.cs.uchicago.
edu/~matei/GlobusEcosystem/. Cited 14 March 2006

52. Santos, R., Andrade, A., Cirne, W., Brasileiro, F.,
Andrade, N.: Accurate autonomous accounting in
peer-to-peer Grids. In: Proceedings 3rd Workshop on
Middleware for Grid Computing (MGC2005), Novem-
ber 2005

53. Santos-Neto, E., Cirne, W., Brasileiro, F., Lima, A.:
Exploiting replication and data reuse to efficiently
schedule data-intensive applications on Grids. In: Pro-
ceedings of 10th Workshop on Job Scheduling Strate-
gies for Parallel Processing, June 2004

54. Sarmenta, L: Sabotage-tolerance mechanisms for vol-
unteer computing systems. Future Gener. Comput.
Syst. 18(4) (2002)

http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://walfredo.dsc.ufcg.edu.br/resume.html#publications
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.globus.org
http://www.jabber.org/
http://www.doc.ic.ac.uk/~sjn5/GGF/gesa-wg.html
http://people.cs.uchicago.edu/~matei/GlobusEcosystem/
http://people.cs.uchicago.edu/~matei/GlobusEcosystem/
http://people.cs.uchicago.edu/~matei/GlobusEcosystem/

246 J Grid Computing (2006) 4: 225–246

55. Saroiu, S., Gummadi, P., Gribble, S.: A measurement
study of peer-to-peer file sharing systems. Proceedings
of Multimedia Computing and Networking (MMCN)
2002, San Jose, California, Jan. 2002

56. SegHidro project team: SegHidro Web Site http://
seghidro.lsd.ufcg.edu.br/. Cited 14 March 2006

57. SETI@home team: SETI@home statistics web page.
http://setiathome.ssl.berkeley.edu/totals.html. Cited
March 2005

58. Silva, F., et al.: Running data mining applications on
the Grid: A bag-of-tasks approach. Proceedings of
International Conference on Computational Science
and its Applications, 2004

59. Son, S., Livny, M.: Recovering internet symmetry in
distributed computing. Proceedings of GAN’03 Work-

shop on Grids and Advanced Networks, Tokyo, Japan,
12–15 May 2003

60. Thain, D., Tannenbaum, T., Livny, M.: Distrib-
uted Computing in Practice: The Condor Experience.
Concurrency and Computation: Practice and Experi-
ence 17(2–4), 23–356 (2005)

61. Tuecke, S., et al.: Open Grid Services Infrastructure
(OGSI) Version 1.0. Global Grid Forum Draft Recom-
mendation, 6/27/2003. http://www.globus.org/toolkit/
draft-ggf-ogsi-gridservice-33_2003-06-27.pdf. Cited 14
March 2006

62. Veronez, C., Osthoff, C., Pascutti, P.: HIV-I Protease
mutants molecular dynamics research on Grid comput-
ing environment. In: Proceedings of WOB pp. 161–164,
2003

 http://seghidro.lsd.ufcg.edu.br/
 http://seghidro.lsd.ufcg.edu.br/
 http://seghidro.lsd.ufcg.edu.br/
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://setiathome.ssl.berkeley.edu/totals.html
http://www.globus.org/toolkit/draft-ggf-ogsi-gridservice-33_2003-06-27.pdf
http://www.globus.org/toolkit/draft-ggf-ogsi-gridservice-33_2003-06-27.pdf
http://www.globus.org/toolkit/draft-ggf-ogsi-gridservice-33_2003-06-27.pdf

	Labs of the World, Unite!!!
	Abstract
	Introduction
	Scope and Architecture
	Promoting Cooperation
	Network of Favors
	Autonomous Accounting

	Dealing with Security
	Making it Simple and Fast
	Hiding Heterogeneity
	Promoting Application Performance

	Implementing the Vision
	Isolation Interfaces
	Dealing with Space-shared Machines
	Software Engineering Grid Middleware

	Reality-check of Deployment
	Related Work
	Conclusions
	References

