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Abstract The increased popularity of Grid sys-
tems and cycle sharing across organizations re-
quires scalable systems that provide facilities to
locate resources, to be fair in the use of those
resources, to allow resource providers to host un-
trusted applications safely, and to allow resource
consumers to monitor the progress and correct-
ness of jobs executing on remote machines. This
paper presents such a framework that locates
computational resources with a peer-to-peer net-
work, assures fair resource usage with a distrib-
uted credit accounting system, provides resource
contributors a safe environment, for example Java
Virtual Machine (JVM), to host untrusted appli-
cations, and provides the resource consumers a
monitoring system, GridCop, to track the progress
and correctness of remotely executing jobs. We
present the details of the credit accounting sub-
system and the GridCop remote job monitoring
subsystem. GridCop and the distributed credit ac-
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counting system together enable incremental pay-
ments so that the risk for both resource providers
and resource consumers is bounded.

Key words Peer-to-peer · Cycle-sharing · Grid ·

Fairness · Incentive · Monitoring ·

Trustworthiness

1. Introduction

Computational workloads for many academic
groups, small businesses and consumers are
bursty. That is, they are characterized by long
periods of little or no processing punctuated by
periods of intense computation and insufficient
computational resources. By aggregating large
numbers of computers and users, the resource
demands are ‘smoothed out’ across sub-groups
even as demand remains bursty within sub-groups.
Centrally managed software projects [11, 17, 28,
34] have sprung up to access idle machines to
perform computations that would be economi-
cally infeasible to solve on committed hardware.
Centrally managed systems like Condor [25] and
LoadLeveler [23] have been developed to allow
resources to be aggregated within permanent or
ad hoc organizations.
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Centralized administration of resources exists
because it allows a trusted entity – system adminis-
trators – to verify and track the trustworthiness of
users given access to the resources, and it allows
users to deal with a known, trusted entity. Certi-
fication of the user of a machine is almost always
contingent on being an employee of the machine
owner, or being certified by another organization
which the user belongs to, and which is, in turn,
trusted by the machine owner. This certification
requires legal contracts that carefully delineate
risks and responsibilities, staff to maintain ac-
counts, accountants to monitor funding streams
and tax consequences, and generally increases the
overhead and real cost of acquiring and using
computational resources. This in turn restricts the
domain of applications that can be run on shared
resources.

The irony of this situation is that the resources
to be shared are extremely perishable – Cycles,
bandwidth and disk space not used in the past do
not create additional resources to be consumed
in the future. The major value of these resources
to their owner is the knowledge that they are
available when needed. Therefore, contributing
cycles to others during idle periods imposes little
cost on a resource owner, while achieving ad-
ditional processing power during ‘peak’ periods
significantly increases the return on an existing
investment.

On the other hand, the major costs of shar-
ing unneeded cycles are the legal and admin-
istrative overheads. Eliminating these overheads
would dramatically increase the quantity, and de-
crease the cost, of available cycles. Both the de-
creased cost and the ease of accessing cycles would
increase the range of applications that could ex-
ploit them. Academics and research laboratories
would have access to a vast array of machines for
running simulations, benchmarking programs, and
running scientific applications; small businesses
would have machines available for data-mining
sales, accounting and forecasting; and consumers
would have machines available to perform com-
putationally intensive, but low-economic value
activities such as games and digitally process-
ing home movies. Elimination of these overheads
would allow automatic intermediation between
consumers and providers of resources, allowing

shared resources to blend seamlessly with locally
owned resources.

The promise of increasing available process-
ing power during peak periods by trading cycles
during idle periods, without significant additional
cost, would motivate people to join a cycle-sharing
system, but only one in which the following diffi-
cult technical challenges have been solved.

1. How can resource consumers discover compu-
tational resources capable of hosting their job?

2. How can an application be run on a variety
of resource provider machines without change
(portability)?

3. How can a resource provider machine safely
execute an application from an untrusted
source (safety)?

4. How can resource providers be compensated
(and cheaters punished), to enforce the fair-
ness of the system resource usage?

5. How does the resource consumer know its
job is being faithfully executed? How does
the resource consumer know its job is making
progress?

Such a system will unleash the potential of the
massive computational resources that are going
unused.

In a cycle-sharing system, a submitter machine,
i.e. a machine submitting a job request to the
system, plays the role of a system resource con-
sumer; a host machine, i.e. a machine accepting
and executing a job, plays the role of a system
resource provider. We use these terms to refer to
components in our system design.

Peer-to-peer (p2p) networks (e.g., CAN [29],
Chord [36], Pastry [32], and Tapestry [40]) have
achieved widespread use as a content discovery
mechanism. We propose using the same mecha-
nisms for resource discovery and job assignment
to solve the first challenge. Moreover, because
of the self-organizing feature of p2p networks,
it is easy for nodes to join, and leave, without
the necessity of a central administrative orga-
nization and human intervention, which in turn
obviates the need for a central organization and
human intervention, and lowers administrative
overhead.
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The use of Java is extremely convenient, if not
essential, for overcoming the second and third
of these challenges (portability and safety). We
utilize Java’s universal virtual machine execution
environment feature to enable applications to run
on a wide variety of physical machines without
any change (portability); We utilize a Java virtual
machine’s sandboxing and security feature to give
resource providers a safe execution environment
to host untrusted applications (host safety). Both
of these attributes significantly lower the cost and
risk for producers and consumers of cycles to
join a network of shared resources. Moreover,
research [26, 27] shows that there are no inherent
technical reasons for not using Java for high per-
formance computing.

To solve the fourth challenge, we have de-
signed a credit accounting system. A community
of pooled resources will survive only as long as
members are treated with a high (but not neces-
sarily perfect) degree of fairness. Moreover, just
as the larger economy can function well with a
certain amount of fraud and noise in transactions
and accounting, so should economies involved in
sharing computational resources. Thus our goal is
not to produce a perfectly fair system, but instead
to produce a sufficiently good system to enable
wide scale sharing of computational resources.
An incremental payment scheme is used in many
modern economic activities to bound the amount
of risk for both providers and consumers of a
transaction to with the size of the incremental pay-
ment. Our credit system, along with the GridCop
system, enables the risk for both submitters and
hosts in our cycle-sharing system to be bounded
by the size of an incremental payment.

We have developed a remote job progress and
correctness monitoring system, GridCop, to solve
the last challenge. The GridCop system allows a
computation on a remote, and potentially fraud-
ulent, host system to be monitored for progress
and execution correctness. Monitoring progress
and correctness is especially important to the sub-
mitter during a long running application because
it provides submitters confidence that their jobs
will be executed by a remote, otherwise untrusted
host. Moreover, along with the above credit sys-
tem, GridCop enables the use of the incremental
payment scheme.

This paper makes the following technical
contributions:

– We design a framework for large scale cycle-
sharing systems, in which constructive partic-
ipant behavior is motivated by self-interest,
and which solves the five significant challenges
listed above.

– We design a distributed credit mechanism that
along with the GridCop remote monitoring
system (for accountability) enables the fair us-
age of system resources, and enables the incre-
mental payment scheme.

– We design and implement a prototype of the
GridCop system to track the progress and cor-
rectness of a program executing on remote and
potentially fraudulent host machines. The ex-
perimental results of GridCop, when remotely
monitoring a standard benchmark suite of com-
putations over a wide area network, show that
the overhead on the host is less than 4.5%, and
the cost of monitoring a job is less than 0.4%
of that of running the same job locally on the
submitter side.

The rest of the paper is organized as follows.
Section 2 first gives an overview of our cycle-
sharing system and then presents the four con-
stituent components one-by-one: A peer-to-peer
overlay based resource discovery mechanism (see
Section 2.2); a JVM based safe host platform (see
Section 2.3); a distributed hash table (DHT) based
credit accounting system; and the GridCop remote
job monitoring system. The last two of these com-
ponents are discussed briefly in Section 2, and in
more detail in the next two sections. Section 3 de-
scribes the credit feedback system and incremen-
tal payment scheme in detail. Section 4 describes
the design and implementation of the GridCop
system in detail and presents experimental results
showing its low overhead. Finally, Section 5 dis-
cusses the related work and Section 6 concludes
the paper.

2. Design of a Large Scale Self-Interest Motivated
Cycle Sharing System

In this section, we first give an overview of our
cycle-sharing framework in Section 2.1. In the
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remainder of the section we present the four com-
ponents and their functionality within our cycle-
sharing system.

2.1. Overview of the Cycle-Sharing System

Our remote cycle sharing system works as follows.
Every participating node can be a resource con-
sumer (submitter node) or a provider (host node).
A node can fill both roles simultaneously as well,
e.g., its jobs can be running on remote nodes while
jobs from other nodes are running on it. Each
participating node installs a Java virtual machine
(JVM) as the safe execution environment when
it hosts a job. Each participating node installs
the GridCop monitoring runtime library. Figure 1
shows the design of our system.

Before a submitter submits a job to the system,
it passes the program through our code transfor-
mation tool which transforms it into a program
that executes on the host machine (H-code) and
a program that executes on the submitter machine
(S-code). Then, the p2p network is queried for a
possible host node, the credit information for this
node in the accounting system is checked, and if
acceptable, the job is submitted to the node for
execution. Credit reports are stored in the p2p

network, and can be viewed by all nodes in the
network.

The H-code is the original program augmented
with beacons and auxiliary code that send beacon
information about the program to the submitter
machine during execution. The S-code, executing
on the submitter machine (or a trusted machine
accessible from the submitter machine), uses this
information to track the progress, and verify the
correctness of, the program during its execution.
The submitter incrementally issues digitally signed
credits for the hosting machine to the accounting
system to record the fact that it has consumed
cycles. If the submitting node finds the job is
making progress, it issues a credit to the execution
node. Credits are not issued if the job is not mak-
ing satisfactory progress. If the submission node
tries to cheat and not issue a credit to the host
node, the host node can evict the job. Therefore,
self-interest motivates the submitter node to issue
credits, and the host node to run the program.
Our remote program progress monitoring system,
along with the accounting system, simultaneously
provides the consumer with assurances that jobs
are making progress on remote machines, and the
resource provider with assurances that resource
usage will be compensated. With the incremental
payment scheme enabled by the GridCop system,

Figure 1 Overall design
of the proposed scheme.
Each node can be a
submission node, or an
execution node, for the
submitted jobs.
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the risk for both submitters and hosts is bounded
to the size of an incremental payment.

2.2. Resource Discovery through Peer-to-Peer
Networks

While p2p overlay networks have been used
mainly for data-centric applications, our system
exploits p2p overlays for compute cycle sharing.
Specifically, it organizes all the participating nodes
into a peer-to-peer overlay network, and uses the
overlay to discover available compute cycles on
remote nodes. Our system exploits the locality-
awareness property of Pastry [6] to maintain and
locate nearby available resources to dispatch jobs
for remote execution. The Pastry overlay network
is self-organizing, and each node maintains only a
small routing table of O(log N) entries, where N
is the number of nodes in the overlay. Messages
are routed by Pastry to the destination node in
O(log N) hops in the overlay network.

Periodically, each node propagates its resource
availability and characteristics to its neighbors in
the proximity space. This is achieved by propa-
gating the resource information to the nodes in
each node n’s Pastry routing table rows. Each
such node, n′, also forwards the resource infor-
mation according to a Time-to-Live (TTL) value
associated with every message. The TTL is the
maximum number of hops in the overlay between
n and the nodes that receive its resource infor-
mation. Hence, the resource information is only
propagated to neighboring nodes within TTL hops
in the overlay. Because Pastry routing tables con-
tain only nearby nodes, this ‘controlled flood-
ing’ will cause resource information to be spread
among nearby nodes in the proximity space.
Each node that receives such an announcement
caches the information in the announcement for
its local matchmaking between jobs and available
resources.

To locate a remote node for job execution,
a node utilizes its accumulated knowledge about
available resources to select a node for execut-
ing a job. Proximity and credit-worthiness of the
remote node are taken into account during this
selection process. The actual remote execution of

the program and subsequent I/O activities are per-
formed between the submitter node and the host
node directly, and do not go through the overlay.

2.3. Host Safety and Portability through
Java VM

Our cycle-sharing system uses a Java virtual ma-
chine as the host platform to execute submitted
jobs, and programs submitted to the cycle-sharing
system are Java programs. We chose a Java virtual
machine as the platform because of Java’s safety
and portability properties.

Host safety is a key issue for the wide-spread
use of cycle sharing systems. Untrusted submitter
nodes may submit malicious applications into the
cycle-sharing system to compromise the host ma-
chines that accept and execute the applications.
A self-interested computation resource owner is
only willing to join the cycle-sharing system to
get benefits when hosting untrusted applications
from the cycle-sharing system does not impose a
security risk to the local computation resource,
since this would be, in almost all cases, a much
more significant cost than the benefits achieved.
Furthermore, one of the goals of our system design
is to allow cycle sharing with a minimum of human
based administrative overhead. Therefore, the sys-
tem needs to provide host security with a mini-
mal involvement of local computational resource
owner effort. This requires that jobs be accepted
from users who have not been vouched for by
some accrediting organization. This, in turn, re-
quires that submitted applications not be able to
damage the hosting machine. We note that any
sandboxing mechanism providing isolation can
achieve such a goal. For example, Tron [2] is an
implementation of a process-level discretionary
access control for Unix systems, and it allows
users to specify the capability of a process’s access
to files on the machine. The FreeBSD ‘Jail’ [22]
provides users ‘root’ privileges limited to the scope
of the jail, allowing system administrators to del-
egate management capabilities for each virtual
machine environment.

We use a Java virtual machine as the runtime
environment in our current implementation, as
Java’s sandboxing mechanisms fit in well with the
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above requirement. The Java 2 security design
[19] enables fine-grained access, security checks
for all Java programs and a configurable security
policy. The host platforms in our cycle-sharing
system uses Java virtual machines, whose inher-
ent sandboxing and security design enables the
protection of the host machines. By providing
a central security policy applicable to each host
platform, our system can obviate the necessity of
setting up policies by each participant (therefore
lowering the human intervention overhead): Each
host machine simply configures the JVM accord-
ing to the central policy; each job submitter must
respect the central security policy while writ-
ing applications so as to make the applications
runnable on remote sites within the system. If
submitters have undergone additional verification
(i.e. they are a trusted user), digital signature
based security mechanisms can be used to allow
potentially more harmful code to be executed,
for example, code that accesses the host’s file
system.

Moreover, application portability is another
key issue for the wide-spread use of cycle-sharing
systems. Various modern hardware and operating
systems expose heterogeneous application binary
interfaces (ABI) to application developers. Again,
our system needs to achieve portability without
requiring a change of configuration of host ma-
chines, and to achieve it with low management
overhead.

Java portability across different software and
hardware environments significantly lowers the
barriers to machines joining the pool of users and
resources available on the network. Java’s porta-
bility is, in part, because the bytecode specifica-
tion is well defined. However, another important
reason for its portability is that much of the func-
tionality that is provided by system libraries (and
that is not part of languages like C++ and Fortran
– e.g. thread libraries and sockets), is provided by
well specified standard Java libraries. As a con-
sequence, in practice Java’s interfaces to system
services, e.g., sockets, appear to be more portable
than with C++ implementations. These attributes
allow submitter nodes to have a larger number of
potential hosts to choose from, and increase the
probability that a program will execute correctly
on a remote host.

2.4. Fairness Through the Accounting System –
A Brief Introduction

Fairness in our system is achieved through a credit
accounting system. In the physical world, money
is used as a conveyor of information about one’s
contribution to the economy; in our cycle-sharing
system, credits are used to convey information
about computational resource contributions to the
system. The storage and retrieval of these credits is
accomplished through the p2p network. Our credit
mechanism provides a distributed, scalable system
for making and accepting payments of resource
usage, i.e., credits in the language of this paper.
The details of the credit system will be discussed
in detail in Section 3.

2.5. Progress and Correctness Monitoring –
A Brief Introduction

GridCop is the component of our framework that
allows the submitter to monitor a remotely ex-
ecuting application. The basic idea of GridCop
is to instrument a program with beacons and to
use beacon information to track the progress and
verify the correctness of a remotely executing job.
This technique treats a modified program control
flow graph as a finite state automaton (FSA), and
constructs a transducer using this FSA. The trans-
ducer is part of the program that is executed on
the host, and emits beacon information that allows
a corresponding FSA on the submitter machine
to follow the progress of the job. If the beacon
information follows legal transitions in the FSA
on the submitter machine, execution correctness
is verified and job progress as represented by the
state transitions in the FSA is updated. Along with
our credit system, progress information can be
translated into an incremental payment according
to any agreed upon scheme. The details of the
GridCop system will be described in Section 4.

3. Accountability with the Credit System
and Incremental Payment

We now describe the design of our credit system
in detail.



J Grid Computing (2006) 4: 265–286 271

3.1. Accounting through a Credit System

To ensure the compensation of consumed cycles
consumed on node B by node A, we propose a
distributed credit based mechanism. There are two
building blocks of our approach: (1) Credits, which
are digitally signed entities that can be ‘traded’
in exchange for resources, and (2) a distributed
feedback system which provides the resource con-
tributors with the capability to check the credit
history of a node, as well as to submit feedback
about the behavior of a node.

The distributed feedback database is built on
top of the Distributed Hash Table (DHT) sup-
ported by the underlying structured p2p overlay
for resource discovery described in Section 2.2. It
maintains the feedback for each node regarding its
behavior towards honoring credits. Any node in
the system can access this information and decide
whether to allow an exchange with a requesting
node, or to consider it a rogue node and avoid any
dealings with it. In this way, a node can individu-
ally decide to punish a node whose consumption
of shared resources has exceeded its contribution
to other nodes by some threshold determined by
the deciding node.

Figure 2 shows the various steps involved in
ensuring that B is adequately compensated for
its contribution. When A runs a job on B (1 in
Figure 2), A will issue a (digitally signed) credit to
B (2 in Figure 2). This credit is similar to a claim in
Samsara [8] – It can be ‘traded’ with other nodes
for equivalent resources. The credit is labeled with

a system-wide unique identifier which consists of
A’s identifier (e.g., A’s IP address) and a unique
sequence number – Unique in that A will issue no
other credits with that number. B will digitally sign
the credit and store it in a DHT-based repository
(3 in Figure 2) by hashing the credit’s system-
wide unique identifier via a generic hash function,
e.g., SHA-1.

Similarly, if B gives the credit to C (4 in the
Figure), B will digitally sign the credit before giv-
ing it to C, and C will digitally sign it, compute
the hash based on the credit’s system-wide unique
identifier (i.e. [identifier of A, credit sequence
number]), and store it (5 in the Figure). The stor-
ing node will replace the existing copy of the credit
with the new copy. It knows it can do this since
the end of the signing sequence is ‘B, B, C’, i.e. the
last-1 and last-2 signatures match, showing that the
last-1 signer is the previous owner and is allowed
to transfer the certificate.

If the certificate goes to Z (6 and 7 in the Figure)
and returns to A (8 in the Figure), A destroys it.
Since the end of the signing sequence is ‘Z, Z, A’,
the system knows that the transfer to A is valid and
A is the owner, and therefore A can choose to have
the credit destroyed. Note that this also allows
credits to be destroyed by any owner (i.e. C above
could have asked that the credit be destroyed, not
saved) perhaps because of monetary payments,
lawsuits, bankruptcy of the root signer, etc.

The approach guarantees that a transaction
between two nodes is represented by a unique,
unforgeable entity, which prevents a node forging

Figure 2 Various steps
to ensure proper
compensation of a
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credits to deceive other nodes in the system. Ad-
ditionally, by maintaining information about the
current owner of a credit in the DHT, illegal re-
play or copying of a credit is also thwarted. Be-
cause a credit hashes to a fixed location, attempts
to forge credits (for example in a replay attack)
will leave multiple copies of the credit (identified
by its unique sequence number) in the same DHT
location, and the second forged credit will not be
saved. Thus if B tries to give the same credit d to
both C and Z, one would be rejected (say Z’s)
when it tries to insert the credit into the DHT,
and Z could then refuse to run B’s job. Should the
DHT node on which the credit is saved be mali-
cious and save both copies of the credit, a node
checking on the credit worthiness of the issuing
node can determine that there are two credits with
the same identifier, and either ignore or factor this
into its evaluation of both the issuing node and
node B.

The feedback information is used to enforce
contributions from selfish nodes as follows. In
Figure 2, before node B executes a job on behalf
of node A, it retrieves all the feedback for A from
the DHT, verifies the signatures to ensure validity,
and can decide to punish A by refusing its job if A’s
number of failures to honor credits has exceeded
some threshold determined by B. We note that
this system allows independent credit rating ser-
vices to be developed that a submitting node can
rely on for evaluating the credit worthiness of a
host.

3.2. Incremental Payment

We assume in this project that we are not exe-
cuting on truly malicious machines, rather we are
running on machines that may be over-committed,
or that may be ‘fraudulently’ selling cycles that do
not exist in order to gain credits to purchase real
cycles. Thus our system does not need to detect all
fraudulent or over-committed systems, but rather
must allow fraudulent and over-committed sys-
tems to be detected ‘soon enough’. This is anal-
ogous to the goal of credit rating services in real
world commerce, which is not to prevent any ex-
tension of credit to unworthy recipients, but rather
to bound the extent to which they can receive

credit to an amount that can be absorbed by the
system.

Similarly, one critical issue that needs to be
solved is how to deal with the timing between the
issuing of credits and the running of submitted
jobs. In particular, a running node may refuse to
spend further cycles upon receiving credits from
job submitting nodes, and conversely, the submit-
ting node may refuse to issue credits upon learning
of the completion of its remote job execution. To
provide mutual assurances, we propose the issuing
of incremental credits.

Consider the case when A is submitting a job
to run on B. Under the incremental credit is-
suing scheme, A gives incremental credits when it
sees progress of its job on B. A might also choose
to checkpoint its job when issuing an incremental
credit to eliminate the chance of losing work that
has been paid for. Secondly, A can also issue a neg-
ative feedback for B if it misbehaves. This is done
as follows. A monitors its job on B at predeter-
mined intervals. On each interval that A finds its
job stalled, it calculates a probability q, which
increases exponentially with an increasing number
of consecutive failures of B. A does not allow the
job to continue further and issues a negative feed-
back for B with probability q. This scheme allows
B to have transient failures, but punishes it for
chronically cheating. Conversely, the case where
A refuses to honor its issued credit is already
addressed by the distributed feedback mechanism.

Our GridCop monitoring component (see
Section 4), along with the distributed credit sys-
tem described in this section, enables incremental
payment. This is especially important for a long
running job which consumes significant computa-
tional resources.

4. The GridCop System

GridCop, the remote job progress and correctness
monitoring system in our cycle-sharing system,
enables a job submitter to periodically receive its
submitted job’s progress information and track
progress and correctness. After verifying the cor-
rectness and progress of the program, the submit-
ter can issue a credit payment (Section 3.2) to
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the host for the consumed cycles that have been
verified by the submitter.

Every participating node can submit jobs (i.e.
be a submitter node) or host jobs (i.e. be a host
node). A node can perform both roles simultane-
ously, i.e., its jobs can be running on remote nodes
while jobs from other remote nodes are running
on it. Before a program is executed, it is passed
to our tool which transforms it into a program
that executes on the host machine (H-code) and
a program that executes on the submitter machine
(S-code). The H-code is the original program aug-
mented with beacons and auxiliary code that sends
information about the program to the submitter
machine. The S-code, executing on the submitter
machine (or a trusted machine accessible from
the submitter machine) uses this information to
track the progress, and verify the execution, of
the program.

Our GridCop system consists of compiler tech-
niques to produce the H-code and S-code pro-
grams. The GridCop system includes the following
three components: (i) A beacon message creation
component on the host, which is integrated with
the submitted application, (ii) a beacon reporting
component on the host that sends beacon mes-
sages to the submitter, and (iii) a beacon message
processing component on the submitter. The mon-
itoring system architecture is shown in Figure 3.
In the following, we first state the threat model
assumed by our GridCop system, and then present
the components of GridCop.

4.1. The Threat Model

Untrusted systems can be divided into two cat-
egories: Malicious and fraudulently irresponsible
(e.g. the environment targeted by the Samsara [8]
system.) Malicious systems are willing to expend
significant resources to damage their victims. For
example, a malicious system might be willing to
execute a program until the final results are to be
written to disk, and then terminate it. Our system
is assumed to operate in a less hostile, but perhaps
fraudulent environment. In particular, we assume
that hosts are motivated by self-interest, that our
programs execute on unmodified runtime system
(such as JVMs), and that the source program is not
altered. These are reasonable assumptions since
runtime systems such as JVMs are large com-
plicated pieces of software distributed in binary
form, and are not easy to modify without access
to the source code. Our monitoring system makes
it very difficult to change a program without being
caught. Moreover, because we apparently monitor
almost the entire program execution (but actu-
ally monitor only a small part of the execution),
fully automatic tools will not be effective. Program
alteration requiring human intervention is costly
enough to preclude its use.

4.2. Basic Beacon Scheme

Beacons emit information at significant program
execution points. This information is sent to the

Figure 3 Components
of the GridCop
monitoring system.
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submitter machine which uses it to determine what
parts of the program have been executed. Plac-
ing beacons at every branch would provide very
precise, fine-grained beacon information. Unfor-
tunately, beacon processing would consume unac-
ceptably large amounts of resources on the host
and the submitter machines, since a large percent-
age of the instructions executed would be beacon
related. Instead, GridCop places beacons at com-
putationally significant points in the program.

For the H-code, the compiler finds computation-
ally significant points in the program and places a
beacon at each of them. It also inserts hard-coded
routines into the code that aggregate and structure
information provided by beacons, and that report
the information to the submitter program. These
routines are described in Section 4.4. An FSA is
created in the S-code, where each state in the FSA
corresponds to a beacon in the H-code. Beacon
processing consists of checking if a sequence of
beacon messages corresponds to legal transitions
on the FSA. Viewed in this light, beacons in the
H-code can be viewed as a transducer, i.e. a fi-
nite state machine that emits information on state
transitions.

Because beacons report the progress of a job,
the time between milestones should be reasonably
long. Our approach is to place beacons at the
beginning of method calls, but only at the begin-
ning of method calls that perform a ‘significant’
amount of work. Two broad strategies can be used
to determine methods with a significant amount
of work: Profiling and compile time cost models.
We have chosen to use a very crude compile-time
cost model, namely, methods that contain loops
are considered to be computationally significant.
Future work for the project may involve refining
this model (although for the current benchmark
set, our current model is adequate). A beacon is
inserted as the first statement in each computa-
tionally significant method. The beginning of the
main program also gets a beacon, as does any
node that can return from the program as the
result of a normal program termination. For a
multi-threaded program, each run() function is
also treated as a main program.

As described above, when beacon information
is sent to the submitter machine, the submitter
checks the validity of the beacon information

by traversing an FSA (multiple FSAs are tra-
versed for a multi-threaded program, see details in
Section 4.4). Each beacon inserted above corre-
sponds to a state in the FSA, and the beacon’s
ID is the input for the transition to the state. The
beacons inserted at the beginning and the end of
the program serve as the start and the accept state,
respectively, in the FSA.

4.3. Replay Resilient Beacon Scheme

Beacons are placed along certain control flow
graph (CFG) edges, as described in Section 4.2,
and identify the location of the program that is
currently executing. Beacons provide fine-grained
location information, but they are subject to re-
play and spoofing attacks if inserted in a determin-
istic way. A cheater can replay the stream beacons
from a previous run for later requests to run the
same job.

We prevent this type of attack by not always
inserting beacons at the same locations when in-
strumenting a program (generating H-code). At
each potential beacon site B, a beacon is inserted
with probability PB. If PB = 0, no beacon is ever
inserted at this site, if PB = 1 a beacon is always
inserted at this site. For 0 < PB < 1 a beacon may
be inserted. By setting the values of PB to be
non-zero and less than one, each version of the
program generated by our compiler will likely
have a different set of beacons inserted and con-
sequently a different sequence of valid beacon
values. Because the values of PB can be different
at different candidate beacon sites B, the place-
ment of beacons can be made more or less likely
depending on the hotness of a program region.
Attempts to replay the old beacon values will
fail, with a high probability, because the replayed
set of beacons will likely contain invalid beacon
values. Because the bytecode for programs used
in high performance computing are usually orders
of magnitude smaller than the data they operate
on, shipping (possibly) new bytecode with each
execution imposes only a small overhead.

The algorithm of Figure 4 describes how to
build an FSA with this replay resilient beacon
generation scheme. We build the FSA for the sub-
mitter side in two steps. The first step transforms
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Figure 4 Algorithm
to Build an FSA for the
Replay Resilient Scheme.

the control flow graph (CFG) GF of the pro-
gram into a graph G′

F that contains only nodes
with actually selected beacons. First, we add nodes
of GF that contain potential beacon candidates
(i.e. the computationally significant nodes), with
probability of PB to the set Nb . All other nodes
(non-candidate nodes and not chosen beacon can-
didate nodes) of GF are placed in the set Nb̃ . For
each node nb̃ ∈ Nb̃ , edges are added between each
of its predecessors {np} and each of its successors
{ns}, i.e., edges 〈np, ns〉 are added to GF . Then
all original edges connected to nb̃ , i.e., 〈np, nb̃ 〉

and 〈nb̃ , ns〉 in GF , are removed from GF . Finally,
nb̃ is removed from GF . This procedure repeats
till there exists no nb̃ in GF . We call the graph
resulting from the above procedure G′

F .
The second step generates the FSA. The FSA

transition table can be trivially constructed as fol-
lows. Let the set of states be the set of nodes in
G′

F . For each edge 〈ni, n j〉 ∈ Edges(G′
F), there is

a transition from ni to n j on the symbol which is
the beacon ID of n j. The start state of the FSA
corresponds to the node at the beginning of the

main program, and the accept states correspond
to nodes that can return from the program.

Figure 5 shows a program fragment with bea-
cons inserted with PB = 1. For each computation-
ally intensive function in Figure 5a, the compiler
inserts a beacon instruction at the beginning of
the function to emit a unique transition ID in
Figure 5b. These IDs are treated as the transition
symbols between states in the FSA. A transition
ID always drives the FSA to the unique state
named by the transition ID. Consider the FSA
shown in Figure 5c: bar2 in the example emits ‘3’,
which causes a transition from any predecessor of
bar2, in the FSA, to bar2.

4.4. Runtime Support for Beacons

At runtime, the beacon instructions inserted by
the compiler are executed. Each beacon instruc-
tion generates a location ID (IDL) and the cur-
rent thread ID (IDT), which together form a
beacon message (IDT , IDL). For multi-threaded
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Figure 5 A part of FSA
derived from the Java
Grande LU benchmark,
PB = 1.

programs, beacon messages from different appli-
cation threads are multiplexed in the beacon buffer
(using an adaptive scheme which will be described
in detail next). IDTs are used to label different
threads so that the beacon processing component
on the submitter side can use them to track the
progress of different threads. A different FSA is
used for each application thread, thus IDT in a
beacon message identifies an FSA and IDL drives
transitions on that FSA.

The reporting component on the host is in a
separate thread (Sender) that transmits beacon
messages to the submitter through a TCP connec-
tion. The reporting component uses a paced bea-
con transmission scheme. A timed wait/notify
mechanism, utilizing Java wait(long) and notify
() functions, is used to achieve the paced trans-
mission scheme as follows. Sender waits for an in-
terval (set by the submitter when the program is
submitted to the host) and wakes up to send the



J Grid Computing (2006) 4: 265–286 277

messages in the beacon buffer. If the buffer gets
full before a waiting interval passes, Sender is no-
tified and wakes up to send the messages in the
beacon buffer. The capacity of the beacon buffer
is fixed, and it is set to contain 3,000 beacon mes-
sages in our current implementation. During the
sending procedure, Sender copies the contents in
the beacon buffer into a private buffer to clear the
beacon buffer, and then leaves the critical section.
It then sends the contents in the private buffer
across the network. Thus the cross-network data
transfer procedure is asynchronous to the applica-
tion execution.

A beacon stride variable is used to achieve the
adaptive beacon deposit scheme. The value of the
stride variable controls the stride between two
beacons, generated in an individual application
thread, that is actually deposited into the buffer.
Initially, the value of the stride variable is set to
1, i.e., every beacon message generated in an indi-
vidual application thread will be deposited to the
buffer. Whenever Sender sends the beacon buffer
as a result of the buffer becoming full before the
set interval passes, the value of the stride variable
is doubled. For example, if the value of the stride
variable is doubled from the initial value, every
other beacon message generated in an individual
application thread will be deposited to the buffer.
When Sender sends the beacon buffer because the
waiting interval passes, Sender checks the actual
buffer usage ratio, i.e., the number of beacon
messages that have been deposited into the buffer
over the buffer size. The stride variable value is
decreased to half if the ratio is less than 0.5. In this
way, the rate that beacon messages are deposited
in the beacon buffer is set adaptively: When the
beacon messages are generated at a high volume,
the stride distance between two beacons that are
deposited into the buffer is increased; when the
beacon messages are generated at a low volume,
the stride distance is decreased.

The submitter node uses the beacon messages
sent by the host as input to the FSAs to track the
progress of the remote job. The stride value and
the number of beacon messages contained in each
beacon buffer that is sent from the host machine is
located at the beginning of each message stream.
The submitter de-multiplexes and processes the
received beacon messages in a beacon buffer as

follows. Upon receiving a beacon buffer, the sub-
mitter first looks at the value of the stride variable,
n, to see the stride value for the beacon messages
in this beacon buffer. It then reads each beacon
message, locates an FSA using IDT and drives
transitions using IDL. Each beacon value in the
buffer is processed by comparing it to states
exactly n steps next from the current state by
performing a lookup in the FSAs transition table.
If the beacon value does not match a valid transi-
tion from the current state, it is an illegal transition
and the appropriate action is taken. Because the
beacon message strides are changed adaptively so
that the number of beacon messages is limited,
the submitter overhead to process these beacons
is also limited. Buffers continue to be received,
and beacon values in the buffers continue to be
processed, until the submitter receives the final
state beacon value.

4.5. Experimental Results

In this section, we present experimental data on
the monitoring overhead incurred by GridCop
and the simulation results showing the effective-
ness of the monitoring mechanism.

4.5.1. Experimental Platform

Our experiment was run on a submitter/host
pair located at University of Illinois at Urbana-
Champaign and Purdue University. The submitter
machine, located at UIUC, is an uniprocessor with
an Intel 3 GHz Xeon processor with 512 KB cache
and 1 GB main memory. It runs the Sun JDK 1.5.0
and the Linux 2.4.20 kernel. The host machine
located at Purdue is a Dell PowerEdge SMP server
with 4 × 1.5 GHz Intel Xeon processors, each with
512 KB cache and sharing 4 GB main memory. It
runs the Sun JDK 1.4.2 and the Linux 2.4.20 ker-
nel. Both machines are connected to the campus
networks.

4.5.2. Benchmarks and Configuration

As our application benchmarks we use the parallel
Java Grande benchmark suite version 1.0 [35],
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a standard benchmark suite for computationally
intensive Java applications. Suite II of the parallel
Java Grande benchmarks contains simple kernels
which are commonly found in the most compu-
tationally intensive parts of real numerical appli-
cations. The Java Grande benchmarks are self-
initializing, i.e., there is no network activity to send
program data sets. We used data size B as the
input to our experiments. We implemented the
runtime support library described in Section 4.4,
and application programs were hand-transformed
using the techniques described Section 4.2.

In our measurements, we actually inserted bea-
cons at each potential beacon candidate site,
which represents a scenario of PB = 1 described
in Section 4.3. The inter-transmission intervals of
the beacon reporting component were set to 2 s.
This is a highly aggressive monitoring scenario. In
an actual system, the inter-transmission interval
would be in tens of seconds or minutes. Consider-
ing the above two configurations, our experiment
actually provides an upper bound of the perfor-
mance overhead and network traffic incurred by
using our monitoring system.

4.5.3. Runtime Computation Overhead

To simulate long running jobs, a loop is added
outside the individual kernels in the benchmarks.
Each benchmark was run in 1, 2 and 4-thread
mode to evaluate the scalability of our system de-
sign by showing the system performance overhead
with different degrees of parallelism.

On the host side, we first measure the time to
run the original benchmarks on our host machine,
which reflects the scenario of remote job execu-
tion without monitoring. These form our baseline
numbers for host performance. We then run the
manually transformed H-code and S-code versions
of the same benchmarks on the submitter/host
pair, which reflects the scenario of a remote job
submission with monitoring. Figure 6 shows the
overhead of job executions with beacons over
the corresponding un-monitored baseline job ex-
ecution times. We observe that the overhead in-
creases as the degree of parallelism increases. This
is because the higher the degree of parallelism is,
the more expensive it is to synchronize the bea-
con depositing thread and the main computation
threads. Our experimental results show that the
performance overhead is under 4.5%.

On the submitter side, we measured the time to
execute the benchmarks on the submitter in the
single-thread mode and used it as the submitter
baseline (as the submitter is not an SMP machine).
We then measured the CPU time used to process
the beacons while monitoring remote benchmarks
running in 1, 2 and 4-thread modes. These are
the computation resource costs on the submit-
ter. Figure 7 shows the ratio of CPU time used
to monitor a benchmark, which include the time
used to receive the beacon packets and process
them, over that of running the same benchmark in
the single-thread mode locally on the submitter.
Note that we used the system ‘time’ command
to measure the submitter’s system and user time

Figure 6 Overhead
of executing and
transferring beacons.

4 threads
2 threads
1 thread

3

LU SOR Series Sparse Crypt

1

0

2

5

4

M
on

ito
ri

ng
 O

ve
rh

ea
d(
%

)

Monitoring overhead on the SMP host machine



J Grid Computing (2006) 4: 265–286 279

Figure 7 Submitter’s
computational cost
of monitoring a remote
job over running it locally.
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used by the monitoring process. This measure-
ment includes the JVM startup cost, which makes
the submitter cost not proportional to the number
of the beacon messages received and processed.
However, this does give us a sense how effectively
the computation has been outsourced. We observe
that the ratio of CPU usage for monitoring over
locally executing the benchmark is always under
0.4%, which reflects the fact that the submitter
effectively outsources the computation burden to
the host machine. Another point deserves an ex-
planation in Figure 7. When the host runs with
a higher degree of parallelism, beacon messages
from more threads multiplex together and the bea-
con buffer is filled at a higher speed. Our ‘adaptive
beacon deposit scheme’ (see Section 4.4) increases
the stride value and skips beacons when necessary.
Therefore, the number of the beacon messages
transferred per unit time is not changed signif-
icantly. As the execution time is shorter when
running a benchmark with a higher degree of par-
allelism, the number of beacons messages trans-
ferred is less. For example, the numbers of total
beacon messages received and processed at the
submitter side when the LU benchmark was run-
ning in 1, 2 and 4-thread mode are 894,390, 665,852
and 566,260, respectively. This explains why the
submitter cost decreases when the degree of par-
allelism increases.

4.5.4. Network Bandwidth Overhead

Another important metric to evaluate our sys-
tem is its network resource usage. Since network
resources are finite, it is necessary to limit the

amount of data sent from the host machine to the
submitter machine. To see how effectively we ac-
complished this, we measured the actual network
traffic incurred by our beacon subsystem for each
benchmark under different execution modes.

The capability to serialize objects is one of the
features of Java that simplified our implemen-
tation and increased its robustness. Beacons are
placed in serializable objects to make the sub-
mitter’s understanding of the representation of
data from the host easier. However, this mecha-
nism transfers more data across the network than
just sending the raw data. To measure the actual
network traffic sent by our system, we serialize
an object to be sent across the network by the
host into a ByteArrayOutputStream object. We
then measured the actual transferred size of the
serializable object as shown in Figure 8.

Figure 8 Code to measure the network traffic caused by
our approach.
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Table 1 Average network traffic during exe-
cution monitoring.

1 thread 2 threads 4 threads

LU 8.4 KB/s 8.7 KB/s 9.1 KB/s
SOR 2.5 KB/s 3.2 KB/s 3.4 KB/s
Series 75 Byte/s 77 Byte/s 78 Byte/s
Sparse 78 Byte/s 81 Byte/s 94 Byte/s
Crypt 79 Byte/s 85 Byte/s 100 Byte/s

We measured the network traffic from beacons
for different benchmarks running with different
numbers of threads. Table 1 shows the highest
average network traffic per unit time for our
benchmarks is only 9.1 KB/s, showing that our
monitoring mechanism consumes a very small
amount of bandwidth.

4.6. Effectiveness of Cheating Node Detection

In this section, we analyze the effectiveness of our
GridCop remote job monitoring system to catch
fraudulent hosts and enforce a fair and efficient
cycle-sharing system.

4.6.1. Probability of Successful Replay Attack

For simplicity, we analyze the case where a fraudu-
lent host records the beacon stream while running
the job, and replays it to the submitter when asked

to run the application again. Here we denote the
number of potential beacon sites as N, and we
denote the probability that each potential beacon
site B is actually marked as beacon, i.e., an beacon
instruction is inserted at B, as PB. The probability
that any two versions of the generated H-codes get
identical beacons generated at a specific potential
beacon site, i.e., the probability that both have a
beacon generated or neither has a beacon gen-
erated, is P = (PB)2

+ (1 − PB)2. Therefore the
probability that two versions of the generated H-
codes are identical is Psuc = ((PB)2

+ (1 − PB)2)N.
We assume that there are N potential beacon sites
in the code region of ‘possibly executed’ during
runtime, i.e., code not within exception handling
functions, or dead code region. Psuc represents the
probability of a successful replay attack.

As long as the submitter selects PB with a value
not too far away from 0.5, the probability of a
successful replay attack is extremely low. Figure 9
shows the successful replay attack rate if a sub-
mitted job has N = 20 potential beacon sites. For
example, if the submitter chooses PB = 0.7, the
successful rate of a replay attack is about 10−5; and
if the submitter chooses PB = 0.5, the successful
rate of a replay attack is 10−6 or so.

The probability of a successful replay attack,
when the submitter chooses PB as a certain value
decreases quickly as N increases. Figure 10 shows
different successful replay attack rates when a job
has different numbers of potential beacon sites N
when the submitter chooses PB = 0.5. We note

Figure 9 Probability
of successful replay attack
vs. PB (when N = 20).
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Figure 10 Probability
of successful replay attack
vs. N (PB = 0.5).
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that, the number of potential beacon sites is large
for ‘real life’ computations.

Both above figures give us the analytical proof
that our replay resilient beacon mechanism can
detect cheating nodes with high fidelity.

4.6.2. Simulation of the System Usage
with Fraudulent Nodes Detected

Now we simulate the cycle-sharing system with
the functionality of detecting cheating nodes with
GridCop and isolating those nodes from the sys-
tem. The non-cheating nodes faithfully run the
jobs sent to them, and the cheating nodes either
refuse to run the jobs even if they are not busy, or
abandon a running job before completion. For the
purpose of our experiment, we simulated a pool of
1,000 host nodes.

To drive the simulation we created a job trace
as follows. We selected 100 application executions
uniformly randomly from the 15 different appli-
cation executions shown in Figure 6. Next, we
determined the mean execution time (Tµ) for the
100 selected jobs and created a random job issue
sequence such that the inter-arrival time between
two consecutive jobs has a uniform random distri-
bution with a means of Tµ. 500 of the 1000 nodes
issued 100 jobs each using the created trace. We
made 250 of these 500 nodes cheat. The presence
of these nodes affects the time it takes for jobs
issued by non-cheating nodes to complete.

Figure 11 shows the number of jobs issued by
non-cheating nodes only that are issued but wait-
ing in queue over time. Note that the total number
of jobs issued by non-cheating nodes is 25,000. The
topmost curve shows the scheme when no cheaters
are caught. Here jobs from non-cheating nodes
have to compete with jobs from cheating nodes,
and hence it takes longer for them to complete.
When a job is sent to a cheating node, it can
either immediately refuse to run the job or aban-
don the job without completing it. In either case,
the submitter detects that its job is not running
and resubmits it to some other (probably non-
cheating) node. The process is repeated until the
job successfully completes.

The bottom curve in Figure 11 shows an ideal
situation where all cheaters are known a priori.
In this case, the non-cheating nodes send their
jobs to other non-cheating nodes only, and do
not run any jobs submitted by a known cheating
node. The number of jobs enqueued and submit-
ted by non-cheating nodes increases little due to
the issue sequence, and all jobs complete within
2,000 s after the issuance of the last job at 11,730 s.
The next two curves show more realistic cases
where cheaters accept a job, but abandon it after
processing it for a random time. We assume that
within 2 s from a node abandoning a job, i.e.,
the next beacon interval, the cheating node is
caught. We simulate two kinds of cheating nodes:
a) Cheaters that simply refuse to run jobs and
can be detected immediately; and b) cheaters that
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Figure 11 Number of jobs
issued but not completed
over time. The
percentages represent
the portion of cheaters
that are not immediately
caught.
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abandon the execution of an accepted job after
running it for a random amount of time from
the beginning of the job to the finishing time of
the job (i.e.,0 < Tabandon < T job). The percentage
in the legend represents the percentage of the
total cheating nodes that exhibit behavior (b), the
rest of the cheating nodes exhibit behavior (a).
The curves show that our scheme is able to catch
the cheaters, and the jobs for non-cheating nodes
complete much faster than the case where cheaters
were not caught at all. In this scenario both prob-
abilistic cheater schemes were able to complete
under 15,560 s, compared to 21,690 s when no
cheaters were caught. In contrast, the ideal case
took 13,730 s to complete all the issued jobs. The
simulation shows that our scheme is effective in
determining the cheating nodes, and isolating their
effect from the overall system.

5. Related Work

In this section, we present the related research and
the difference between them.

5.1. Cycle Sharing Over the Internet

The idea of cycle sharing among a large number of
administratively independent, geographically dis-
persed, off-the-shelf desktops was popularized by

the SETI@home [34] project. Similar approaches
for solving large scale scientific problems are also
adopted in systems such as Distributed.NET [11],
Entropia [13], Genome@home [17], and Nile [28].
These systems implement a central manager that is
responsible for the distribution of the problem set,
and the collection and analysis of the results. Users
typically download the client programs manually
and then execute them on their resources. The
client programs are specially developed applica-
tions that the resource owners have to explicitly
trust [4]. The clients periodically contact the cen-
tral managers to provide results and to receive
further data for processing. The clients are pure
volunteers in nature, i.e., they do not receive any
resource contribution for their own tasks. The aim
of our project is to provide all nodes in the system
with the capability to utilize shared resources. This
provides an incentive for more resource owners
to contribute resources to the system, thereby
increasing the instantaneous compute capacity of
the system.

Various Grid platforms also share the same
goal of distributed sharing resources. Condor [25]
provides a mechanism for sharing resources in a
single administrative domain by harnessing the
idle-cycles on desktop machines. Globus [14] and
Legion [20] allow users to share resources across
administrative domains. However, the resource
management is hierarchical, and the users have to
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obtain accounts on all the resources that they in-
tend to use [4]. PUNCH [24] decouples the shared
resource users from the users on the underlying
operating system on each resource, hence elimi-
nating the need for accounts on all the shared
resources. The Sun Grid Engine [37] is another
system that harnesses the compute powers of dis-
tributed resources to solve large scale scientific
problems. All of these systems rely on some forms
of centralized resource management and there-
fore are susceptible to performance bottlenecks,
single-point of failures, and unfairness issues that
our system avoids by using p2p mechanisms.

We proposed the self-interest motivated cycle-
sharing system in [5]. In that paper, we proposed
the system design and described the feasibility of
a remote computation monitoring system. In this
paper, we present in detail the prototype of a
remote monitoring system, GridCop.

5.2. Progress Monitoring and Debugging

Various remote debugging techniques have ex-
isted for years, see [7, 30]. Remote debugging
techniques are used as a development facility to
help developers to find bugs on a trusted remote
platform during the program development phase.
Our approach differs from these techniques in that
our approach collects execution correctness infor-
mation on an untrusted platform after the program
has been developed and released, and in how the
data is gathered.

Program monitoring is also employed in the
Globus project for providing better quality of
service [15]. This monitoring is either achieved
indirectly by determining the resource utilization
of the program, or by modifying the program to
insert explicit calls to the Globus API. The moti-
vation of our work is different in that we are using
the monitoring to determine if we are getting a
resource as promised.

With the increasing popularity of volunteer
based cycle sharing, efficient protection against
malicious machines has become an important
research topic. Sarmenta [33] discussed a spot
checking mechanism to catch malicious machines
(saboteurs). Du et al. [12] proposed a Merkle
(Hash) tree based technique to detect cheating

nodes when embarrassingly parallel computations
are being performed. Both of the above tech-
niques ensure the integrity of participant machines
by checking a subset of independent computations
completed by the participant machines. Over time,
our approach monitors the correctness of all parts
of an application. Moreover, our technique moni-
tors the progress of the application, enabling par-
tial payments or detection of errors before a long
running application has finished.

We studied progress monitoring of jobs running
on potentially fraudulent hosts in other projects
[5, 39]. We proposed the idea of using a finite state
automaton to monitor a remote computation in [5]
and investigated the feasibility of such idea, and
we also recognized the potential replay attack. We
proposed a solution to the replay attack in [39] by
partially verifying the computation. Specifically,
the inputs and outputs of randomly selected com-
putation regions (which we called recomputation
beacons) are transferred back to the submitter,
and the submitter gets local outputs by recomput-
ing the inputs to check if the remote outputs are
correct. In this paper, we solve the replay attack
problem by probabilistically generating beacons
at potential beacon sites. Thus we eliminate du-
plicate computation on the submitter side. This
approach significantly reduces the network band-
width usage of the GridCop system, as we do not
transfer the data associated with recomputation
beacons. Our difference from [39] lies also in the
runtime system support. We adaptively adjust the
beacon stride when the beacon buffer gets full
rather than simply dropping the beacons. This
scheme makes the beacon message tracking across
different beacon buffers more accurate.

5.3. Fair Peer-to-Peer Resource Sharing

There is a large body of work on enforcing fairness
in resource sharing [3, 8, 9, 16, 31] and on creating
incentives for fair sharing [18, 21, 38] in peer-to-
peer systems. Our contribution is orthogonal to
this previous work in that our focus is on moni-
toring job progress in the context of cycle sharing
in the Internet, such as in peer-to-peer systems.

CFS [9] allows only a specified storage quota
for use by other nodes without any consideration
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for the space contributed to the system by the
consumer. PAST [31] employs a scheme where
a trusted third party holds usage certificates that
can be used in determining quotas for remote
consumers. The quotas can be adjusted according
to the contribution of a node. Samsara [8] en-
forces fairness in p2p storage without requiring
trusted third parties, symmetric storage relation-
ships, monetary payment, or certified identities.
It utilizes an extensive claim management which
leverages selfish behavior of each node to achieve
an overall fair system. The fairness in our cycle
sharing system was motivated by Samsara. How-
ever, fairness in cycle sharing is more complex
than in data sharing as once a computation is com-
pleted, the execution node has no direct means
of punishing a cheating consumer. SHARP [16]
provides a mechanism for resource peering based
on the exchange of tickets and leases, which can be
traded among peering nodes for resource reserva-
tion and committed consumption. Credits in our
system are similar to tickets in SHARP. However,
our system uses the credit reports to enforce fair-
ness of sharing, and not as a means for advance
resource reservations.

There have also been efforts to design a general
framework for trading resources in p2p systems.
Data trading [3] is proposed to allow a consum-
er and a resource provider to exchange an equal
amount of data, and cheaters can be punished
by withholding their data. The approach requires
symmetric relationships and is not directly ap-
plicable to p2p systems where there is little sym-
metry in resource sharing relationships. The use
of micro-payments as incentives for fair sharing is
proposed in [18]. Fileteller [21] suggests the use
of such micro-payments to account for resource
consumption and contribution. In [38], a distrib-
uted accounting framework is described, where
each node maintains a signed record of every data
object it stores directly on itself or on other nodes
on its behalf, and each node periodically audits
random other nodes by comparing multiple copies
of the same records. The system requires certified
entities to prevent against malicious accusations,
and the auditor has to work for other nodes with-
out any direct benefit. Our system implements a
distributed accounting system as well, but a node
verifies the credit reports of a remote node only

when it has to do an exchange with it, which is a
direct benefit.

OurGrid [1] uses an autonomous reputation
scheme, called the Network of Favors to discour-
age free riding in a peer-to-peer CPU-sharing
Grid. In particular, donating a resource is a fa-
vor, and each autonomously prioritizes peers who
have reciprocated more favors in the past. In con-
trast, our credit system does not directly depend
on the pair-wise favors and is more flexible in
encouraging resource sharing. BOINC [10] is a
volunteer computing system and provides a mech-
anism called ‘trickle messages’ to convey credit
and report computational status which permits
incremental credits for long running jobs. Similar
to BOINC, our credit system, along with our Grid-
Cop monitoring system, also allows incremental
payment. Different from BOINC, our credit sys-
tem manages credits in a distributed manner by
building on top of a DHT.

6. Conclusion

We have described a cycle-sharing system mo-
tivated by participants’ self-interest in a large
scale, and we have presented our solutions to
the main challenges that obstruct the deployment
of such a system. We believe this is the first
comprehensive solution to assure system fairness,
protect not only host machines’ interests (e.g.,
safety) but also submitter machines’ interests (e.g.,
correctness assurance), and bound participants’
risks using the incremental payment mechanism.
Moreover, the overhead of performing monitor-
ing between the job submitter and the job host
is shown to be low, both on the host side and
on the submitter side. This technique opens the
way for exploiting idle cycles across the Inter-
net in a dynamic, decentralized and accountable
fashion.
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