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Abstract

An overview is presented of the characteristics of HEP computing and its mapping to the Grid paradigm. This is
followed by a synopsis of the main experiences and lessons learned by HEP experiments in their use of DataGrid
middleware using both the EDG application testbed and the LCG production service. Particular reference is made
to experiment ‘data challenges’, and a forward look is given to necessary developments in the framework of the
EGEE project.

1. Introduction

This paper overviews the evaluations of European
DataGrid (EDG) middleware performed by the High
Energy Physics (HEP) Applications Workpackage
(Work Package 8 – WP8) throughout the lifetime of
the DataGrid project from January 2001 to the end of
March 2004. It also comments on the use of this mid-

dleware by the LHC Computing Grid (LCG) project
up to September 2004 (the LHC is the Large Hadron
Collider particle accelerator).

WP8 was composed of representatives from HEP
experiments, starting with the 4 LHC experiments
(ALICE, ATLAS, CMS, LHCb) and later augmented
by effort from the US experiments BaBar and D0.
In addition there were experiment independent ex-
perts, the so-called “loose cannons”, who performed
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generic application-oriented evaluations in addition to
assisting experiments with their evaluations.

During 2001 WP8 worked on writing detailed re-
quirements documents which later evolved into the
HEPCAL [1] use case documents used by the HEP
community as reference documents for middleware
developments. Evaluations of the first middleware
started in late 2001, and by July 2002 the project
decided to form experiment/middleware task-forces
to bring the middleware towards production quality.
This commenced with ATLAS and in November 2002
evolved to intensive work with the CMS experiment.
This pioneering work enabled the EDG middleware
to be used for real physics production by CMS, and
subsequently by the other LHC experiments later in
2003. The middleware continued to evolve, with new
versions also being evaluated by LCG starting in sum-
mer 2003, and were used for real production by LCG
starting in early 2004. At the time of writing this paper
EDG middleware is being used in over 70 LCG sites
distributed world-wide.

In Section 2 of this paper we give an overview
of the nature of HEP computing, and introduce the
HEPCAL use cases. In Section 3 we provide a qual-
itative appreciation of the various system components
and relate these evaluations to the HEPCAL use cases.
Section 4 describes the various quantitative evalua-
tions performed throughout the history of the project
up to current evaluations within the umbrella of LCG.
Here we see that in addition to middleware issues
there are major sources of problems for production
systems in the areas of individual site configuration
and validation and application software distribution.

Section 5 concludes the paper with a summary of
the major lessons learned of relevance to the provision
of large scale Grid systems.

2. High Energy Physics (HEP) Computing

Computing has always been important for nuclear and
particle physics as many physics processes can only be
studied statistically using large samples of data. The
experiments which are currently being prepared for the
LHC (Large Hadron Collider) at the European Labo-
ratory for Particle Physics CERN in Geneva, will be
looking for reactions which in some cases are expected
to be detected only a few times per year. The samples
of data to be processed off-line to find these events will
total thousands of Terabytes. The associated comput-
ing is both CPU and data intensive, involving highly
tuned “data mining”.

The European DataGrid (EDG) project came
at a time of the LHC Computing Grid (LCG)
project preparation when Monte Carlo studies of the
physics processes and the detector responses to those
processes were very important. In a Monte Carlo
simulation several steps can be recognised:
(1) event simulation (generation),
(2) detector simulation,
(3) detector response simulation (digitisation),
(4) background simulation.

In (1), event simulation, knowledge of physics
processes has been encapsulated in code, and run-
ning such code produces lists of the particles pro-
duced when two protons collide, together with their
properties.

In (2), the detector simulation step, all these par-
ticles are tracked through the whole volume of the
detector. This is by far the most compute intensive
step of the calculation, involving tracking thousands of
particles with tiny steps through very large detectors.
A particle makes a small step in 3-dimensional space
and for each step a possible change of direction is cal-
culated if a magnetic field is present and if the particle
is charged. Moreover, as a function of the material
in which the particle progresses, multiple scattering
and energy loss are calculated, and at each step the
probability is calculated that the particle may decay
into other particles, or annihilate, or be absorbed, or
interact with the material to produce more particles.

In (3), the last step of the simulation, the detector
response to the traversal of all the particles is deter-
mined. This means that a detailed layout of all active
elements, their position and their read-out electronics
has to be known. The output from this step in the pro-
gram sequence must be data that looks just like the
real data which will be collected with beams collid-
ing at the centre of the detector. Such data can then
subsequently be used to test the data reconstruction
programs as if it were real data from the detector.
This is important for the development of reconstruc-
tion algorithms and to determine the reconstruction
efficiency.

In (4), to make the data for testing the reconstruc-
tion more realistic, extra data has to be added to each
event. This extra data comes from different classes of
background to the signal event of interest. This back-
ground arises from, for example, other possible events
in the same proton–proton bunch collision, or from
noise in the detectors.

At all steps of this program sequence data has to
be fed to the running code, both through data files
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and experiment specific databases accessible to the
running program. Event data is generally processed
sequentially, with each processed event being written
out before the next event is read. This general scenario
is implemented in different ways in each experiment
which has its own data model.

The raw physics data, itself totalling several
Petabytes, will be generated and stored at CERN. The
processing of this data will be distributed world-wide.
The models for this processing and associated data dis-
tribution are still under evaluation, but certainly these
models include replication of large samples of recon-
structed data throughout the collaborations. Typically
the raw data will be reprocessed a few times over the
life of the experiment as reconstruction algorithms are
improved.

The amount of data coming from the reconstruc-
tion is less than the raw unprocessed data, but is
still very significant in size. However, while the un-
processed data is likely to be needed only a few times,
the processed data, which is used for physics analysis,
is used over and over again by many physicists and
at many places. Moreover, whereas the reconstruc-
tion is a relatively controlled process which will be
operated by a limited number of specialised people,
analysis operates around the clock on a world-wide
basis according to the work patterns and pressures of
individual scientists and engineers. Hence there is a
need for the data used by these analyses to be even
more distributed than the raw, unprocessed data.

Databases containing experiment-specific data will
probably have to be replicated at various places for
efficiency reasons as they are accessed frequently: for
reconstruction, for analysis and for Monte Carlo sim-
ulations. Plans for replicated databases exist but were
not tested within the EDG project.

For many years the HEP community has been run-
ning large distributed computing infrastructures, but
generally each site is configured in substantially differ-
ent ways. The Grid paradigm [2] offers an opportunity
to have a homogeneous view of a world-wide virtual
computing system, and potentially access to world-
wide resources, some of which may not be owned by
the community.

The HEP computing user expects to see a distrib-
uted computing infrastructure, including hardware re-
sources and the corresponding software tools and ser-
vices, which allow optimal execution of computational
tasks, with appropriate access to the distributed data.
The Grid is assumed to provide proper authentication
and authorisation, transparent access to resources, and
management of the necessary databases.

2.1. HEP Computing and the Grid – the Model and
the Use Cases

The 4 LHC experiments (ALICE, ATLAS, CMS and
LHCb) have all developed detailed planning for com-
puting leading up to the LHC startup in 2007. This
includes large scale data challenges taking place in
2004. As an example, Table 1 summarises the char-
acteristics of the data challenge performed in spring
2004 by CMS. Note that CPU times are normalised
to CPUs with a power equivalent to a Speclnt 2000
rating of 1000. Real times assume that the simulation
and digitisation phases use machines with an average
power of 500 SI2000, and 700 SI2000 for recon-
struction, which is a rough average for the resources
expected to be available.

The data challenge is logically divided into three
data processing phases (Generation & Simulation,
Digitisation and Reconstruction), followed by a data
distribution phase. To reach a reconstruction event rate
which corresponds to 25% of the LHC startup rate
in 2007, 50 million events must be processed in one
month. This work is executed in an organised pro-
duction mode. There will be future evaluations of the
performance of the Grid in supporting chaotic use by
thousands of users.

For convenience the data are split into several
streams, so the objects for a single event are spread
across several files (e.g., 16 for the reconstruction out-
put). The number of events per job is adjusted to keep
file sizes below 2 Gb.

The number of CPUs dedicated to the different
steps of the challenge has been calculated assuming
75% efficiency during the allocated time, i.e. it is as-
sumed that 25% of jobs will fail in some way and
need to be re-run. This is just an ad-hoc guess, the
real efficiencies can vary substantially depending on
circumstances (see Section 4 for further discussion).

From the characteristics of the programs, the inter-
action frequencies with the Grid Workload Manage-
ment System (WMS, see Section 3.7) and the Replica
Manager (see Section 3.6) can be extracted. For exam-
ple, for the reconstruction phase about 2700 jobs per
day are submitted to the WMS, 0.4 files per second
registered with the RM (0.5 interactions per second are
needed if considering also the lookup frequency), and
4 MB/s are transferred to each Regional Centre.

It should be noted that this challenge used com-
ponents both from Grid projects and from CMS, the
latter including a system for scheduling file transfers.
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Table 1. Parameters of the CMS data challenge 2004.

Gen./Sim. Dig. Reco.

Time allocated months 5 2 1

CPU time per event sec 160 24 12

Input event size kb 40 900 700

Output event size kb 900 700 150

Number of jobs 200,000 50,000 50,000

Events per job 250 1,000 1,000

CPU time per job sec 40,000 24,000 12,000

Output size per job Mb 225 700 150

Duration of job hours 20.2 12.1 4.8

No. of input files/job 1 4 3

No. of output files/job 1 3 16

Total CPU time months 4115 617 309

Total no. of CPUs 1496 561 440

Total output data size Tb 45 35 7.5

Total no. of files 200,000 150,000 3,200,000

Event rate (at 100% eff.) Hz 5.1 12.9 25.7

Job submission rate jobs/day 1777 1110 2217

Output rate MB/sec 4.6 9.0 3.9

File registration rate Hz 0.02 0.04 0.4

2.2. Users and Virtual Organisations (VOs)

A community is organised within a VO which has
appropriate structures and authorisations according to
the role of the user. Typically an HEP VO is organ-
ised in groups and sub-groups such as “experiment
production”, “physics group production”, “group user
analysis” and so on.

A user is any individual associated with a VO using
the Grid services in the process of performing com-
putational work. A user typically submits jobs to the
Grid, i.e. requests of work to be done or actions to
be taken on his behalf. Sometimes this kind of user is
called an “end user” to indicate that she is not part
of the service-providing infrastructure, but rather at
the “end” of the service providing chain. Typically, in
the scope of HEP users are physicists, engineers and
computer scientists working for the ultimate goal of
extracting the physics information from the collected
data. Other kinds of “actors” accessing Grid resources
are described in the following section. We have used
the term “actor” in a set of use case analyses developed
for HEP computing [1].

To identify a set of common use cases, it was nec-
essary to start with the definition of the actors that are

involved in the computing activity of an LHC experi-
ment. The same physical person may play more than
one role depending on her activity at a given moment.
Examples of actors are physics users, production man-
agers, experiment managers, software developers and
software librarians.

The HEPCAL (HEP Common Application Layer)
document [1, 3] was published in May 2002. It gives
43 use cases related to the expected use of Grid
middleware in an HEP context. This was a natural
development of the ongoing requirements work which
was accomplished at the start of the EDG project [4].
These use cases were not intended to cover every as-
pect of HEP use of the Grid, but specify the basic
functionality required.

HEPCAL distinguishes two logical entities con-
taining data: catalogues and datasets. A catalogue is a
collection of data that is updateable and transactional.
A dataset is a read-only collection of data. Datasets
or catalogues might be implemented as one or more
files; however they might be implemented otherwise,
such as in Objectivity or Oracle databases. Catalogues
will often contain so-called metadata, i.e. informa-
tion about other data stored in datasets. Potentially
there are various kinds of catalogue; some contain
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Grid-specific metadata such as information about the
location of replicas, some contain application-related
metadata, and others contain general application-
specific data like detector conditions for a particular
time period.

The use cases provide important benchmarks to
measure the current state of the technology. An eval-
uation of EDG middleware with respect to these use
cases is given in Section 3.1.

3. Qualitative Application Evaluations of Grid
Software Components in EDG

Since late 2001 a series of evaluations have been made
of EDG middleware as deployed on the EDG testbed.
These fall into 2 classes, firstly generic evaluations of
the basic components, and secondly end- to-end evalu-
ations conducted by the HEP experiments interfacing
the middleware to their production systems. In addi-
tion, towards the end of 2003 the LCG project began
to deploy a Grid infrastructure including many compo-
nents from EDG, which the experiments are now using
to perform large-scale data challenges.

In general, the fact that the middleware has been
in rapid development, and in EDG was deployed on
a testbed which was not intended to have production-
quality levels of support, has made it difficult to make
detailed numerical evaluations of performance. Also
the definition of metrics for assessment of Grid perfor-
mance is not straightforward and is still under active
discussion. Nevertheless it has been possible to draw
many qualitative conclusions about the current state of
the middleware and the desired directions for future
development.

Below we describe the level of satisfaction of the
HEPCAL use cases, and then overview the results
of the middleware evaluations component by compo-
nent. In Section 4 we summarise particular important
results obtained by the experiments. Throughout the
EDG project HEP applications produced 3 major eval-
uation reports [5–7] for the EU, and an overview
for CHEP03 (the 2003 Computing in High Energy
Physics conference) [8].

3.1. The Current Status with Respect to HEPCAL
Use Cases

In the following sub-sections we summarise the satis-
faction, or otherwise, by the EDG middleware of the

43 HEPCAL use cases. For this purpose we have bro-
ken down the use cases into various classes. The num-
bers in brackets give the number of use cases which
are reasonably well-satisfied, and the total number.

3.1.1. Basic (15/19)
These relate to fundamental Grid operations like sub-
mitting and controlling jobs, registering and replicat-
ing files, and querying the state of the system. Of
these, 15 are implemented by the EDG middleware,
although in some cases there are minor areas where the
implementation is not ideal, in particular concerning
the detection and treatment of errors and support for
file metadata.

Three of the missing cases concern the job submis-
sion system, specifying ways to control jobs and query
their state. At present the EDG software allows only
very limited control, and queries relate only to high-
level state changes. The final unimplemented case is
a technical issue involving registration of files with a
known GUID, and this has subsequently been fixed by
LCG.

3.1.2. Security (3/5)
Two use cases concern the joining and leaving of a
Virtual Organisation (VO). These are implemented in
EDG using an LDAP server to hold VO membership
lists, but this has fairly limited functionality. EDG
has developed VOMS (the Virtual Organisation Man-
agement System) in collaboration with the DataTAG
project, which should allow much more flexible con-
trol of VO-based authorisation. A third case specifies
single sign-on, which is satisfied by the standard
Globus proxy creation and will be enhanced with the
extended proxies used by VOMS.

The two final security use cases concern the ad-
vance reservation of resources and the allocation of
resources between VO members, and these are not
addressed in the current system.

3.1.3. Metadata (0/2)
Two use cases specifically involve the modification of
file-related metadata, and performing queries to select
files based on the metadata. The EDG Replica Meta-
data Catalogue offers a prototype with partial support
for these use cases, but more work is needed by both
application and middleware developers in this area.

3.1.4. Virtual Data (0/2)
The virtual data concept implies that a recipe to gener-
ate a file is stored in a catalogue, and files can therefore
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be materialised on demand if a physical copy of the file
does not already exist, or if that is more efficient than
replicating the file from elsewhere. This was out of
the scope of EDG, and is likely to require substantial
further work to implement.

3.1.5. Optimisation (3/4)
One use case concerns the evaluation of cost func-
tions for data access to allow the most efficient access
method to be chosen. The EDG middleware has a sub-
stantial amount of support for this concept, but testing
has been limited because the relevant network moni-
toring data can only be gathered in something close to
a real production system.

Two other optimisation use cases refer to job sub-
mission. One concerns the specification of hints, e.g.,
for cpu time consumption, memory usage or disk
space needed, to allow jobs to be scheduled effi-
ciently. This is supported to the extent that jobs can
apply their own constraints and ranking criteria based
on information stored in the information system, but
any optimisation is provided by the user rather than
the WMS. More research on job distribution algo-
rithms is desirable in the light of experience with real
production Grids.

Another use case concerns the automatic splitting
of jobs into subjobs. HEP jobs generally involve the
sequential processing of large numbers of files, and
hence are good candidates for splitting to balance the
load. Functionality to address this was available right
at the end of the project and was demonstrated by
CMS at the final EU review.

A final use case relates to the possibility of us-
ing remote access to a small part of a file to avoid
the overhead of complete replication. This is not
supported.

3.1.6. Application Catalogues (0/4)
Four use cases concern the concept of application cat-
alogues stored within the Grid. EDG has provided a
GSI-enabled interface to underlying databases which
is used, for example, for the Replica and Metadata
Catalogues, but there is no explicit support for ap-
plication databases. At present the model for files is
that they are write-once and subsequently read-only,
whereas catalogues must be updatable, which implies
strong consistency requirements if catalogues are to
be replicated. R-GMA provides a different model for
a distributed database which may be suitable for some
of the use cases, but this has not yet been investigated.

3.1.7. Application Interfaces (0/7)
The final set of use cases are at a higher level, and
relate to interactions between middleware and appli-
cation software. These can generally be achieved by
implementing the functionality at the application level,
but have no specific support in the middleware.

Two relate to the submission and control of large
sets of jobs treated as a single production, and a
third relates to storing user-defined metadata about
jobs in the WMS job catalogue. Three more relate to
specialised kinds of jobs.

Finally, there is the question of the installation and
publication of application software. Within EDG this
has been achieved by treating application software in
the same way as the middleware and incorporating it in
the EDG releases, but this is not suitable as a long-term
solution. LCG has since developed a solution which
allows software managers from each VO to install and
manage software on NFS-mounted areas.

3.2. Security Issues for HEP

In general HEP does not have strong security re-
quirements, in that data are not usually confidential
or sensitive and the community of users is relatively
trustworthy. However, as with any computer systems
there is a need to protect against hackers and other
forms of malicious attack, and sites require robust
audit trails to allow the tracing of actions by indi-
vidual users. Accounting systems are also needed to
allow monitoring and enforcement of resource sharing
between and within Virtual Organisations. We touch
below on two of the areas which particularly affect the
operation of an HEP experiment.

3.2.1. Authorisation
HEP Virtual Organisations are generally very large
(hundreds or thousands of people) and long-lived
(decades), with a well-developed internal structure.
This implies the need for a relatively heavyweight
authorisation management system which emphasises
functionality and scalability at the cost of a higher
administrative burden.

Authorisation is likely to be needed at a variety
of granularities, from overall permission to use a CE
down to access control on individual files, or to par-
ticular fields in the information system. There is also
likely to be a need for resource reservation, e.g., to
ensure sufficient resources for official production jobs
which may need to take precedence over individual
users.
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The VOMS system securely manages users within
a VO, organising them into subgroups and allowing
the specification of arbitrary roles and capabilities.
This information is embedded as an extension to a
Globus proxy [9], and can be parsed by VOMS-aware
middleware to enforce authorisation decisions.

VOMS seems to be a promising way to solve the
authorisation needs of HEP experiments. It was tested
to a limited extent towards the end of the project and
appeared to work as expected.

3.2.2. Service Proxies
Many sites wish to deny direct access to the wide-area
Internet from batch worker nodes. This is partly due
to the fact that IP addresses are a limited resource, and
partly because a large Grid could otherwise be an ideal
platform from which to launch a Distributed Denial of
Service (DDOS) attack. Sites also want to limit the
number of holes in their firewalls as much as possible.

However, at present both middleware and applica-
tion client software require outbound external access.
This requirement could be removed by running service
proxies on gateway nodes. This could also be useful
in other ways, for example allowing retries of failing
operations without blocking the client. So far there
has been little development in this area, indeed be-
tween release 1 and release 2 of the EDG middleware
the replica management system moved away from a
client-server model to a purely client-based system.

3.3. Storage Elements

In principle a Storage Element (SE) is a managed in-
terface to mass storage, but the required functionality
has only emerged gradually during the EDG project.
The need has developed for the SE concept to be
extended to provide an interface to a wide range of
tape and disk based systems, in a way which is easy
to deploy and manage with limited manpower and
expertise.

In addition there is a need to have some manage-
ment of disk space local to jobs running on batch
worker nodes, to provide general scratch space, for
local copies of permanent files and to store application
software needed by jobs in execution. So far the SE
concept has not been extended to deal with these re-
quirements, and management of local storage is left to
applications, but this appears to be an area which is in
the middleware domain and deserves further attention.

In the early stages of the project a minimal SE was
deployed which essentially consisted of a Globus [10]

GridFTP server running over a simple disk-based file
system, or more recently with an interface to a tape-
based system. This so-called “classic SE” provides the
basic functionality to read and write files, and simple
access control via the Grid map file, but lacks any
management features.

EDG has participated in the definition of the Stor-
age Resource Manager (SRM) standard [11], which
is intended to provide a standard Grid-aware web
service-based interface to any Mass Storage System
(MSS). However, SRM implementations are not fully
mature and a full assessment will have to wait for
a stable implementation. The initial experience is
encouraging, but many desired features are not yet
available, e.g., reservation of disk space, pinning and
automatic deletion of cached copies of files, load bal-
ancing across disk servers, fine-grained access control,
and optimisation hints.

3.4. Replica Catalogues

For the first major release of the EDG software the
Globus Replica Catalog, based on LDAP (the Light-
weight Directory Access Protocol), was used, but this
proved to be inadequate both in the small number of
file names which could be stored (a few thousand) and
poor performance under load.

The second release uses a web-service front end to
a standard database; deployed systems so far use either
Oracle or MySQL. This has proved to be much more
robust. The system has been tested up to O(100,000)
entries with no sign of degradation, and there have
been no outages due to the catalogues themselves. The
use of a Globally Unique Identifier (GUID) as a file
identifier appears to be a good design choice to solve
problems with name clashes in a distributed system.

However, as currently deployed we have only a
single catalogue instance for the whole Grid, which
clearly represents a single point of failure and a po-
tential limit to scalability. Even in the relatively small
systems tested so far some scalability problems can
be seen, for example running 600 file registrations
in parallel shows an 0.5% failure rate due to cata-
logue communication errors, which also highlights the
need for retries of operations which fail for transient
reasons.

There are also performance issues associated with
the use of a web service interface with Java client
tools. Starting the Java Virtual Machine adds an
overhead of several seconds which is unsuitable for
single operations with a command-line tool. In addi-
tion, the way data are transported means that queries
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which return large amounts of data are extremely
time-consuming, typically taking 10 minutes to return
15,000 file names. Above about 50,000 matches to the
query the client exceeds the configured memory limit.

A general security mechanism for web services,
allowing both authentication and authorisation, is vital
for use in a production system. This is not yet available
and is a strong requirement for future development.

The topic of constructing scalable replica location
services is an ongoing area of research [12].

3.5. Metadata Catalogues

Metadata is an area which still requires research at
both the application and middleware levels. Applica-
tions typically have large amounts of metadata relat-
ing, for example, to the physics properties of events
stored in files. Such metadata is highly application-
specific, but it is essential that standard interfaces are
available to allow application metadata catalogues to
be integrated with Grid systems.

Metadata catalogues are also needed at the middle-
ware level, for example to store file sizes, timestamps
and security information. The EDG middleware also
stores a human-readable Logical File Name (LFN) in
the metadata catalogue. The current system is essen-
tially a prototype, from which it should be possible to
determine the requirements for future development. It
uses a single database instance, currently shared with
the Replica Catalogue, but there is no existing model
for extending this to a distributed system. Apart from
the LFNs the use of metadata is rudimentary, limited
to checking that the file size is correct after replication.
Treating LFNs as metadata rather than binding them
tightly to GUIDs may not prove to be the best design
choice, but the use of file names at the application level
is not yet well-defined. The current security model en-
visages storing security information (Access Control
Lists) in proximity to the files rather than in a metadata
catalogue, but the optimum strategy is still a matter of
discussion.

3.6. Replica Management

A replica management system needs to bind together
access to file and metadata catalogues, Storage Ele-
ments and optimisation services and provide a high-
level managed replication and file access service [13].
The first release of the EDG middleware used software
called GDMP (Grid Data Mirroring Protocol), which
had been adapted from a non-Grid-enabled file mir-
roring system. This had a C++-based client-server ar-
chitecture with the concept of subscriptions for groups

of files between pairs of Storage Elements. In practice
this was found to be very difficult to configure and use
correctly in a Grid environment.

The second release has a completely new replica
manager, which is purely client code and is written
in Java. The design has (at the request of applica-
tion groups) emphasised usability and reliability over
functionality. Functions provided include registration,
replication and deletion of single files, which can be
identified by GUID or LFN. Individual replicas can
also be deleted. There is an interface to an optimisation
service, allowing the selection of the most efficient
replica relative to a given site, and to the SE for
file listing and to obtain Transfer URLs for supported
access protocols. However, there is currently no high-
level interface to the catalogue query and metadata
operations.

In terms of the implemented functionality the only
significant problem is that the operations are very
slow, e.g., registering a small file can take more than
10 seconds. This is related to the switch from C++ to
Java and web service interfaces for the catalogues and
SEs. We hope that this can be improved with further
development.

Security is not implemented in the current system,
but it has been designed with a secure web service
model in mind. The current security model ties the
services, i.e. file catalogues and name spaces on SEs,
tightly to the Virtual Organisations, in that each VO
has only one catalogue and different VOs are unable
to read each other’s catalogues or files. This is more
restrictive than the model developed by the security
group, but for HEP VOs which tend to be large and
static it may be adequate.

The initial priority of application groups was ro-
bustness with basic functionality. However, applica-
tions will need a replica management interface at a
higher level. Some important elements to be developed
are:
(a) In the present model all replicas are equivalent,

there is no way to designate a master copy which
should not be deleted, or temporary copies which
can be deleted freely by the system.

(b) There are no bulk transfer operations, all com-
mands operate on single files with the exception
of a batch registration command. Similarly there
is no middleware support for file collections to be
treated as a unit.

(c) The system does not have a robust transaction
model. Failures during compound operations can
leave the system in a variety of inconsistent states,
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and error reports often make it difficult to deter-
mine the reason for a failure. There is usually no
attempt to retry a failed operation, although this
would in any case be difficult without a client-
server model.

3.7. Job Handling

3.7.1. Requirements
Certain specifics of HEP computing had to be taken
into account while developing workload management
services.
(1) Resources consist of Linux clusters which are

inhomogeneous both in terms of hardware and
configuration:
− mostly commodity hardware, no mainframes

or parallel systems, hence no dedicated local
scheduling systems;1

− a single OS (originally RedHat 6.2, later up-
graded to 7.3) has been chosen for the testbed;

− OpenPBS has been chosen as the principle sup-
ported batch system for clusters, although LSF
is also supported.

(2) User tasks are predominantly non-interactive, ser-
ial jobs:
− there is a strong interest in interactive tasks, but

this was not the top priority in the first instance;
− certain user groups need to process parallel jobs

as well, but within one cluster only, hence no
inter-cluster communication is required.

(3) Jobs typically process large amounts of data and
involve movement of big (up to several Gigabytes)
files.
The main user requirements with respect to job

handling can be outlined as:
(1) the Grid must present itself to the user as a “global

batch system”, providing seamless scheduling
over distributed resources;

(2) in the absence of specific requirements, the job
should be scheduled to the best available resource,
i.e., the one providing the fastest turnaround;

(3) if the job requires access to a large input data set,
it is usually desirable to move the job to the data,
rather then other way around.

There are more detailed requirements, e.g., concerning
job monitoring (see the HEPCAL [1] document for the
extended description). However, for the first test runs
by the LHC experiments, the fulfillment of at least
those mentioned above was essential.

1 A couple of sites actually had dedicated batch systems, and
certain attempts to make use of them “as is” were made.

3.7.2. Performance
During the test runs on the EDG testbeds, the Work-
load Management System (WMS) was put under
heavy load. Typically, it performed up to expectations,
allowing users to submit thousands of simultaneous
jobs and to use the system in production runs with
high efficiencies. However, various problems were
encountered by users.
− A centralized Resource Broker (RB) represents a

single point of failure. Even though another RB
instance can be deployed, jobs submitted via one
RB can not be retrieved via another. This re-
sulted in many jobs being inaccessible due to the
unavailability of the original RB.

− A centralized Logging/Bookkeeping (LB) service
is another single point of failure. Jobs cannot be
managed while the LB is down, and lack of a dis-
tributed design for such a service led to many jobs
being suspended or lost altogether.

− The RB allows the transfer of input and output
files with the job, in addition to the use of Grid-
registered files stored on SEs. However, the trans-
fer of these files for all users through a single RB is
not scalable, especially in the absence of disk man-
agement tools. Many RB failures can be attributed
simply to full disks.

− The fact that data management is largely decou-
pled from job handling forced users to prepare
wrapper scripts performing data movement prior
to and after the main task execution. While mov-
ing jobs to data is often profitable, it is not unusual
that jobs will wait in the queue on the cluster to
which data are local longer than it takes to repli-
cate the files to an arbitrary cluster. No brokering
is provided which takes this factor into account,
and the Job Description Language (JDL) does not
allow users to specify whether input data should
be moved to the job or other way around. Also,
although there was some development of network
monitoring and other tools aimed at optimising
data transfer and job placement decisions, this
functionality is not yet available.
Several important enhancements to job manage-

ment were delivered right at the end of the EDG
project, notably in the area of handling DAG (Di-
rected Acyclic Graph) composite job definitions. This
was successfully demonstrated in the context of CMS
at the final EU review of the EDG project, and is
extremely useful for defining the sub-job sequences
involved in HEP workflows.
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3.8. Information Systems and Monitoring

An Information System is crucial for the proper func-
tioning of the Workload Management System, since
it is used for resource discovery and the choice of an
execution site, and should also be able to provide a
solid basis for resource and job monitoring.

EDG initially adopted the Globus MDS (Mon-
itoring and Discovery Service) system, based on
LDAP, with information cached in a hierarchy of in-
dex servers. However, the use of LDAP imposes some
constraints as it uses a fairly simple data model, and
also additions to the schema, e.g., to allow an appli-
cation to publish monitoring data, are fairly difficult.
EDG also used an alternative cache with a Berkeley
Database LDAP back-end (BDII), which is currently
successfully used by LCG.

3.8.1. R-GMA

A different system called R-GMA (Relational Grid
Monitoring Architecture) [14] was developed within
EDG. This uses a relational data model and a pro-
ducer/consumer architecture, and allows applications
to define their own tables in a straightforward way.
An adapter was also written to allow R-GMA infor-
mation to be republished in the LDAP format to allow
interoperability.

A central Registry holds pointers to information
producers but does not cache the information itself (at
present the Registry is a single point of failure). How-
ever, caches can be set up as necessary, and for the
EDG deployment a cache was defined locally to each
RB in a similar way to the MDS-based Information
Indices used in the first EDG release, and the BDIIs
(Berkeley Database Information Indices) used in LCG.

R-GMA was available for the second major release
of the EDG software from the summer of 2003. The
initial version had very poor stability, with a mean
time between failures of a few hours. Intensive de-
bugging extended this to at least a week by the end of
the project, but it was not considered sufficiently ro-
bust to be used by LCG, although they will shortly be
deploying it in parallel with the LDAP-based system
to allow further experience to be gained.

As a result of this it has not yet been possible to
systematically evaluate the performance of R-GMA or
compare it directly with alternative systems. However,
it has been possible to get an idea of the capabilities
of the system. Apart from the instability, R-GMA ap-
peared to be fast enough that the limiting factors for

job submission related to the RB rather than the infor-
mation system, and no scalability problems were seen
up to the 15 or so sites in the EDG testbed.

Both D0 [7] and CMS have successfully tested the
use of R-GMA for job monitoring, with jobs pub-
lishing start and end records into application-specific
tables. This was found to be relatively easy to im-
plement and worked well within the restricted testing
environment available. A significant advantage over
direct publication to an external database is that jobs
running on worker nodes do not need access to the
WAN, only to the local machine running the R-GMA
servlets.

An interesting study of the relative merits of MDS
and R-GMA was made by Zhang et al. in 2003 [15].

3.8.2. Schema Issues
An important issue, particularly in the context of inter-
operability between different Grid projects, is that the
interpreration of information items needs to be consis-
tent across all providers and users. EDG initially used
a custom-designed schema, but in 2002 the GLUE
[16] project was set up to produce a uniform schema
to be used by both US and European Grids. This has
worked reasonably well, but some problems have been
encountered in the precise interpretation of some of
the values, for example how the total number of CPUs
should be represented when hyperthreading is enabled
or when multiple jobs can be run on a single CPU.
For a large distributed Grid with no central control the
definition of schema items needs to be as unambiguous
as possible.

In addition, monitoring tools need to be developed
to verify that the information being published is cor-
rect. In a number of cases sites have become “black
holes”, attracting jobs which they are unable to run,
due to incorrect information being published.

Also, the initial version of the GLUE schema has
proved to be insufficiently flexible to reflect the wide
variety of configurations at different sites. In particular
it does not allow for the complex scheduling policies
used in many batch systems, notably that different
VOs may have different quotas and priorities. It would
also be desirable to include information about jobs in
the information system.

Possible changes to the schema have been in dis-
cussion for some time, but so far it has not proved
possible to implement them. Schema changes are in-
evitably difficult because they affect the entire system,
but Grid projects need to provide both technical and
institutional mechanisms to allow schema evolution
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in a way which is reasonably timely and no more
disruptive than necessary.

3.8.3. Monitoring
Rather little was accomplished in the area of stable
Grid monitoring tools on the applications testbed in
EDG. The only reliable way to monitor job status
was via the Logging and Bookkeeping database, and
very little site monitoring was available. However for
LCG, the DataTAG/GridIce [17] monitoring service
has been developed, based on the EDG architecture
and services and local site monitoring tools. It pro-
vides a convenient access via a Web browser to the
information on Grid resources, accumulated activity
reports, status of the Information System, etc.

3.9. Site Deployment

The EDG approach to site deployment with Grid
middleware and applications software was driven by
the requirement to have a simple procedure available
quickly. Since the testbed was chosen to run a uniform
OS based on RedHat Linux, the straightforward choice
for the packaging tool was RPM. While this did not
necessarily coincide with tools preferred by the HEP
experiments, all the user groups provided their appli-
cation software distribution kits in the required RPM
format.

The total set of packages to be deployed on a site
amounted to several hundred, some being specific to
services and some being common. EDG decided to
make use of the Local ConFiGuration system (LCFG)
[18], a centralized site installation and configuration
system. By configuring Grid services using LCFG,
system administrators were largely spared the troubles
of upgrading separate packages and going through
complicated configuration process. Every time such a
configured box boots, it retrieves the latest approved
configuration from the central server and deploys it.
The packages served by LCFG range from operat-
ing system upgrades to application-specific software.
Therefore, by checking the latest software upgrades
into LCFG one guarantees that the changes will be
propagated to all the sites that use the service.

Not every site can move to a complete LCFG-
driven installation. For example, if a site runs a non-
standard OS, complete LCFG installation would imply
installation of the official OS, possibly including re-
partitioning of disks and so forth. The latest LCFG
version allows site owners to choose subsets of pack-
ages to be upgraded, providing more flexibility. If a

site does not run the supported OS version it must find
manpower to provide the porting. Packages have to be
installed manually, which is quite time-consuming. A
very sensitive issue is the fact that even worker nodes
require some EDG-specific installation and configura-
tion, which is often unacceptable for sites which share
their resources with other user communities.

The fact that application-specific software can be
installed in a centralized manner is convenient for pro-
duction runs, lasting for months without changing the
software. However, this does not scale for the case
of user analysis and even non-standard production.
When parts of application software are expected to be
changed at times on an hourly basis, it makes sense
to delegate responsibility for the software installation
from system administrators to actual users - perhaps
privileged ones only. This all but excludes the usage
of RPM for packaging, and prompts for more user-
friendly and localizeable installation tools. While such
a possibility was not provided by EDG, it is under
development by LCG. Such user-triggered software
installation will be achieved by means of dedicated
Grid jobs, downloading and unpacking the software
from a cache to a dedicated area on the cluster, and
publishing the corresponding tag in the Information
System.

4. Quantitative Experience with Experiments’
Data Challenges

Reasonable scale quantitative evaluations of the mid-
dleware have been conducted in three main phases.
Firstly in the period July 2002 to April 2003 when,
commencing with ATLAS and CMS, all experiments
interfaced their Monte Carlo production systems to
middleware on the EDG Application Testbed, and pro-
vided associated middleware evaluations. The second
main phase ran from April 2003 to January 2004 when
EDG were developing middleware, having learnt from
the experiences of the first phase running, and LCG
were setting up their operation based on EDG mid-
dleware, as well as waiting for stability in the EDG
middleware. In this period the experiments used the
LCG testbeds to prepare for their data challenges by
learning how to distribute their software world-wide,
and tested out the developing LCG infrastructure. Dur-
ing this second phase ATLAS and CMS performed
some production running with early versions of the
LCG system. In the third phase, from January 2004
to the autumn of 2004, all experiments ran large scale
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data challenges on the LCG production service. This
phase of running was much larger in scale, both in
the number of sites used, and in the scale of the data
processing.

In addition to experiment specific evaluations it
has been shown to be important to have generic ap-
plication tests running regularly to evaluate the overall
performance of the system. This is a key element in
monitoring the Grid, where the provision of ongoing
site certification has been shown to be vital for running
a production service.

4.1. Experiment Running July 2002–April 2003

Starting in July 2002 with the formation of an
EDG/ATLAS Task Force there was increasing use of
EDG middleware in the production environments of
the experiments. The pioneering ATLAS work solved
several major problems and paved the way for the first
serious production use by an experiment, CMS, in De-
cember 2002. This work was very labour intensive,
requiring a dedicated team of experts [6]. All of this
work was done with configurations of the order of 10
sites on which it was possible to exert a reasonable
amount of direct control.

The ATLAS jobs had the classical profile for ex-
periment Monte Carlo running:
− A user submitted a job description to the Resource

Broker.
− The Resource Broker performed job matching, us-

ing the information provided by both the Replica
Catalog (to locate a Computing Element close to
the input data) and the Information Service (to
satisfy other job requirements).

− Specified input files were transferred via the Re-
source Broker to the chosen CE, and the job
started.

− Selected output files were stored in the CERN
Storage Element (with a possible move to the
CERN CASTOR mass storage system). The EDG
job management tools did not allow automated
output file upload and registration, and so these
operations were included in the production script,
being a part of the batch job.
The early running by ATLAS was of very low ef-

ficiency, since they encountered many fundamental
problems in the EDG 1.2 release. The EDG Workload
Management System (WMS) relied on the standard
Globus submission process, which uses the Globus
GASS mechanisms. They provide staging of the ex-
ecutable and standard input files, and access to the

standard output and error files from the client machine.
During the tests, problems in the GASS cache system
were discovered. One of the consequences was that
a simultaneous submission of more than five jobs to
the same resource caused job execution failures. The
WMS was also seriously affected by problems with the
faulty publication of service information, and poor re-
sponse from MDS with increasing number of sites. In
the period August to November 2002 several such se-
rious bugs and configuration problems were resolved
or worked around, preparing the way for larger scale
running.

ATLAS conducted a second set of tests with EDG
release 1.4.3 in February 2003. This was done in paral-
lel with ALICE and LHCb stress tests. The aim of the
test was not to stress the system, but to check the reli-
ability of the testbed for a period of time of about 10
days, working within the system limitations identified
by CMS. The test consisted of a systematic submission
by two testers of about 10 jobs per day. During the two
weeks of tests two users submitted 130 jobs. In the first
week about 80% were successful, but in the second
there were more failures due to local site problems.

Table 2 summarises the failures and successes
according to the sources of failure. An important mes-
sage from these tests was the importance of controlling
quotas on services at sites, and the lack of appropriate
tools to achieve this.

CMS conducted their EDG stress test in the period
November to December 2002 with some follow-up
running in January 2003. They measured the fail-
ure and success rate of Grid submitted CMS jobs.
These measurements were possible thanks to redun-
dant job tracking and monitoring. The redundancy was
provided by the CMS job tracking system BOSS in ad-
dition to EDG WMS logging. Rates were measured for
the two kinds of CMS simulation jobs submitted to the
Grid, CMKIN and CMSIM. CMKIN jobs were called
short jobs, because of their low CPU time requirement
of about 10 seconds and light access to Grid services.
In particular the Replica Catalog was only accessed to
write and register (via the Replica Manager) the final
produced files. CMSIM jobs were called long jobs,
because of their large CPU time requirement of about
10 hours and heavy access to Grid Services. CMSIM
jobs needed to find the input data file by querying the
Replica Catalog, and then matched the required re-
sources via the Resource Broker. Finally the produced
output had to be written to storage and registered in
the Catalog.

Tables 3 and 4 show the total number of jobs sub-
mitted to the EDG testbed for both CMS simulation
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Table 2. Success/failure breakdown of the ATLAS controlled test with 130 jobs.

EDG site No. jobs

PBS failure CERN 1

Can’t read job wrapper output IN2P3 4

Total failures due to EDG middleware 5

SE corrupted and a WN down RAL 16

SE disk full at CERN RAL 18

SE disk full at CERN CERN 11

SE disk full at CERN NIKHEF 20

NFS failure at CERN NIKHEF 3

Total failures due to site problems 68

Success CERN 40

Success CNAF 15

Success RAL 2

Total successful jobs 57

Table 3. EDG stress test classification of submitted jobs for the CMKIN-like processes.

EDG evaluation CMS evaluation EDG 1.4.3

Finished correctly 5518 4742 1014

Crashed or bad status 818 958 57

Total number of jobs 6336 5700 1071

Efficiency .87 .83 .95

steps (10500 jobs in about three weeks), with a break-
down of successfully finished and failed jobs. The
first column shows the results obtained in 2002 as
seen from the Grid monitoring, and the second col-
umn shows how many jobs actually produced valid
physics results (the application monitoring). Note the
difference between the Grid and application monitor-
ing: for short jobs, the application monitoring shows
fewer jobs successful because the registration of out-
put data sometimes failed which is not recognized by
the Grid monitoring. On the contrary, long jobs risked
being marked failed by the Grid monitoring because
of communication problems with the job or problems
retrieving the job output, even though it may still have
produced valid results. The third column shows the
results obtained in January 2003 after the middleware
had been upgraded.

The tables also provide information about the mea-
sured efficiencies to run jobs. A total of 6336 CMKIN
jobs were launched into the Grid, and a total of 5518

were successful. The overall efficiency during the
whole test for CMKIN jobs for the EDG evaluation of
testbed and middleware performance turned out to be
87%. A total of 4340 CMSIM jobs were launched into
the Grid, and a total of 1678 were successful, giving
an efficiency of 39%.

The CMS work produced over 260K physics
events, and marked a watershed in the use of EDG
middleware, prior to its deployment in the first LCG
production service.

The main residual problems following the CMS
work, which were worked on in 2003, were
− MDS response and Information Index instability.
− Replica Catalog response for file registration.
− Job submission chain (Resource Broker, Job Sub-

mission Service and local scheduler interfaces).
The work by the four LHC experiments in Phase 1

was summarised at the CHEP03 conference in March
2003: ALICE [19, 20], ATLAS [21], CMS [22] and
LHCb [23, 24].
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Table 4. EDG stress test classification of submitted jobs for the CMSIM-like processes.

EDG evaluation CMS evaluation EDG 1.4.3

Finished correctly 1678 2147 653

Crashed or bad status 2662 935 264

Total number of jobs 4340 3082 917

Efficiency .39 .70 .71

BaBar [25] and D0 [26], whose work was also
reported at CHEP03, also accomplished some inter-
esting work in this period. BaBar were later to ac-
complish some production running on an LCG based
configuration on the Italian LCG-based Grid and D0
were to perform the first evaluations of R-GMA for
job monitoring.

4.2. Experiment Running April 2003–January 2004

This period was mainly dedicated to preparing the ex-
periments’ software for the large scale data challenges
in 2004. Nevertheless, CMS continued to use Grid
technologies regularly on a separate testbed running
the first version of the LCG middleware. It consisted
of about 170 CPUs and 4 TB of disk. The system
produced 0.5 million generated events, 1.5 million
digitised events and 0.6 million reconstructed events.
This corresponded to about 10,000 jobs, 100 CPU-
months and 2 TB of data. The overall failure rate
varied from 5–10% to 25–30%. The main sources
of failure were RLS (Replica Location Service) un-
availability for several periods, site misconfiguration,
network problems and hardware failures.

4.3. Experiment Running January 2004–September
2004

In January 2004 the large scale data challenges by
ALICE, ATLAS and LHCb started. CMS also exe-
cuted a data challenge, but made relatively little use
of LCG WMS services. They concentrated on proving
their computing model from the aspect of data flows
between sites. This also involved an evaluation of the
EDG metadata cataloguing software.

All three experiments implemented their produc-
tion system on the LCG software stack in a similar
way. They were all operating in a multi-Grid envi-
ronment and each saw the LCG service as one, and
not the only, target system. Hence each experiment

implemented its own systems for workload defini-
tion, bookkeeping, and data management. The general
scheme is sketched below.

Jobs were defined and submitted to the experiment-
specific production database. A translator facility re-
trieved the jobs from the central database, translated
the jobs to LCG JDL, and submitted them via the
regular LCG job-submission tools. For ATLAS and
ALICE, the job being sent to the WMS was com-
pletely specified at submission time. For LHCb, the
job being sent to the WMS was an “agent” job, which
upon starting execution, contacted the LHCb produc-
tion database and retrieved the “real” job description
to be executed. The experiments made less use of the
LCG data management commands. Each experiment
had its own private file catalogue services; ATLAS
and ALICE had a link from their private services to
those of LCG, while LHCb did not. Each of the three
experiments relied on their own system for monitoring
and bookkeeping.

4.3.1. ALICE
Phase I of the ALICE data challenge ran from Feb-
ruary to May 2004. 56K jobs were successfully com-
pleted, each running for 7.5 hours. Out of these 11K
used LCG job submission services. The jobs generated
26 TB of data in the CERN mass storage system. As a
pure job execution service LCG provided an efficiency
of 76%. In this first phase the ALICE data catalogue
was used for file registration.

In July ALICE commenced phase 2 of the data
challenge, and made more use of LCG data man-
agement services. A total of about 14k jobs were
submitted, and the total efficiency of the LCG services
(WMS + data management + storage) was seen as
62%, with data management errors being responsible
for two thirds of the failures. Ensuing investigations
have shown that this class of failures were mostly
due to site configuration problems for software and
hardware resources. Thus by late September the LCG
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efficiency for ALICE had risen to 80%. However, the
tracking down of site-related problems proved very
painful.

4.3.2. LHCb
The LHCb data challenge started in May 2004 running
mostly on LHCb-owned, non-LCG sites. Progres-
sively, more and more LCG sites were commissioned
and added to the LHCb pool of sites. The LCG share
in the total volume of produced data grew from 11%
in May to 73% in August, with a total of 43 LCG
sites executing LHCb jobs. A total of 211K jobs was
submitted to LCG, but 26k were cancelled by LHCb
after 24–36 hours in order to avoid the expiration
of the proxy. Of the remaining 185k, 113k were re-
garded as successful by the LCG WMS giving an LCG
efficiency of 61%.

The jobs were all complex, lasting 24 hours or
more, and with multiple stages involving event gen-
eration, data digitisation and event reconstruction.

The breakdown of job statistics is given below. At
least the active cancellation due to proxy expiration
could have been circumvented by using longer-lasting
proxies or proxy renewal techniques.
− 211K jobs were submitted.
− 26K jobs were cancelled by the production man-

ager anticipating proxy expiry.
− 185K jobs remained to be submitted to LCG.
− 37K jobs were aborted before getting into running

status.
− 148K jobs made it to running.
− 37K jobs were aborted during running.
− 113k jobs completed and were retrieved by LHCb.

4.3.3. ATLAS
ATLAS, who started their data challenge in the sum-
mer after ALICE and LHCb, executed their data chal-
lenge using the US and Nordic Grids as well as LCG.
Phase 1 of the ATLAS challenge started in the first
week of July. As of September 7th the number of suc-
cessfully completed jobs was 36k, with a typical job
duration of 1 day. For the period from August 1st the
overall LCG job efficiency was 81%. The following
shows the breakdown of successes and failures in the
LCG service from August 1st to September 7th:
− 29303 jobs completed successfully.
− 750 jobs failed due to misconfigured sites.
− 1600 jobs failed due to failures in the WMS or

related LCG services.
− 4350 jobs failed due to failures in data manage-

ment, Storage Elements or related LCG services.

4.3.4. Generic Testing
The flavour of data challenge work in 2004, as de-
scribed above, changed dramatically, with LCG hav-
ing to offer services to multiple HEP VOs each with
their own variety of technical problems associated
with using the service. Hence the service support was
extremely complex and time consuming, as was the
debugging of problems. As a consequence, it was
useful to have some simple generic test jobs which
regularly exercised the system.

We developed a generic application-flavoured
monitoring job which simply used the LCG sites
‘blind’ in the sense that it did not discriminate between
sites in the LCG configuration. By contrast each ex-
periment using the LCG service benefitted from a high
level MDS/BDII configuration listing sites regarded as
suitable for their experiment running, since in the LCG
start-up phase one could not rely simply on the status
information published by the site.

The generic testing consists of a test job submit-
ted to LCG once an hour; the job is targeted at an
input file replicated to each SE, with a ranking ex-
pression allowing it to go randomly to matching CEs.
It checks that it can read the input file using RFIO
(a standard HEP remote-access protocol), registers a
file to the close SE, replicates it to a randomly-chosen
remote SE, and finally copies it back to the batch
worker node (WN). The job is submitted with a cron
job running on an LCG UI node. The job only runs
for a few minutes, so it does not test proxy renewal
or stability over long periods. It does not require sig-
nificant resources in terms of disk space, memory or
I/O, or any non-standard software to be installed on
the WNs.

To illustrate the current level of performance we
summarise the outcome for a ten-week period in sum-
mer 2004 which reflects in a compact way the variety
of problems that a job can encounter on a large scale
Grid service. The results are summarised in Table 5,
which shows the number of jobs lost successively to
each reason for failure, and as a fraction of the number
of jobs remaining in the previous line (e.g., 7.9% of the
1652 jobs submitted by cron failed in submission).

Of the possible 1680 jobs, 28 were not submitted
because the UI was rebooted, and for some reason the
cron job did not restart automatically. The broker re-
jected a further 131 jobs. 16 of those were sporadic
failures, but there were also three periods of a day or
two when all or most submissions failed. One of those
was due to an incorrect host certificate, one was prob-
ably a side effect of bugs in a batch system interface
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Table 5. Breakdown of failures for generic test jobs.

No. of jobs Fraction Remaining jobs

Potential number of jobs 1680

Cron failure 28 1.7% 1652

Submission failure 131 7.9% 1521

BDII failure 169 11.1%

Proxy expiry 18 1.2%

Other 7 0.4%

Aborted 196 12.8% 1325

Execution failed 65 4.9% 1260

Input file read failed 293 23.3%

Remote SE failed 144 11.4%

Job ran multiple times 77 6.1%

Jobs with any errors 434 32.8% 826

Overall efficiency 826 49.2%

and one may have been related to the upgrade to a new
middleware version which happened during the period
(the latter two occurred at weekends and the first while
the sysadmin was on holiday).

Of the 1521 submitted jobs, 196 were aborted, 169
of those due to BDII failures. These again happened
in bursts when the BDII was unstable. Another 18 had
proxies expire due to a proxy re-use bug, which has
since been fixed, while the other 7 were miscellaneous
failures.

Of the 1325 completed jobs, 65 had a non-zero
exit code, indicating that no file registration even to
the local SE was possible. The reasons have not been
analysed in detail, but appear to be due to a wide va-
riety of local configuration and operation problems at
individual sites.

Of the jobs that ran at least at the level of be-
ing able to write an output file to the close SE, there
were 293 where the input file read failed. Most of
these were either because RFIO wasn’t working or
because the file had been deleted from the SE. RFIO
is supposed to be supported but is not widely used
and hence is not regarded as a priority, probably a
higher efficiency would be seen with GridFTP. Dele-
tion of files on an SE, e.g., if it gets re-installed,
is an operational issue: in general sysadmins should
try to avoid losing files, but some loss may be in-
evitable.

There were also 144 cases where the replication
to a remote SE failed. That may happen because of

an information system problem or one of the many
things that can cause GridFTP to fail. In production
use it would generally be possible to try a different
SE if one fails, so this is a measure of the gen-
eral stability of SEs in the system rather than a real
inefficiency.

In 22 cases a job had both input and output failures.
In addition, some jobs run successfully in terms of
registering files but are seen as failures by the broker,
usually because the job output is not retrievable. The
jobs then get resubmitted, so effectively they may run
twice or more. Overall, 67 jobs ran twice in this sense,
9 ran three times and one ran four times. Some of
those had input or output file failures already counted
above.

The final count of jobs that ran only once and
showed no (detected) errors is 826. This would sug-
gest an overall efficiency of around 50% based on
the potential 1680 jobs in the period. However, this
number depends very much on the details of the
test job and the particular problems in the system
during the test period, so it should be taken as a
general indication of the level of performance rather
than a precise measurement. However, a recurring
theme in all evaluations, either experiment-specific
or generic, has been the large influence of system
and site configuration problems, which substantially
dominate the effect of bugs or of faults in central
services.
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5. Summary of the Main Lessons Learned and a
Look Forward to EGEE and the Development
of Experiment Analysis Systems

Throughout the three years of the European Data-
Grid project the middleware has evolved and by 2003
reached a level where its components for job and data
management have been successfully deployed onto a
production service for LHC computing as provided by
LCG. All 6 experiments participating in EDG have
performed substantial data processing using EDG soft-
ware, with job efficiencies reaching 85% in well
managed production exercises.

The following have been the main lessons drawn
from the project:
− It would have been better to start with simpler pro-

totype middleware, and to have had more frequent
incremental releases to the users. The integration
of middleware to form a robust, working system
has proved to be much harder than expected.

− The application groups should have worked
closely with the middleware groups from the be-
ginning, both in defining the architecture and
planning the testing of the prototypes. The forma-
tion of Application/Middleware task forces from
July 2002 demonstrated the crucial nature of such
organisation.

− Having an application oriented team of experts
working across applications was vital to the suc-
cess of the project. This promoted synergy within
the project, and formed a vital element of the
intellectual backbone of the project.

− Site configuration and certification must be auto-
mated. Improperly configured sites are a major
factor in job losses in the Grid. Middleware needs
to be fault-tolerant and self-correcting in the face
of configuration problems and other errors.

− Similarly, disk space management on SEs and
WNs remains a serious souce of residual problems
affecting overall efficiency.

− The applications await a stable uniform mass stor-
age interface. It is expected that this will be pro-
vided by SRM implementations, supplemented by
GFAL (the LCG-developed Grid File Access Li-
brary) allowing applications transparent access to
Grid files.

− The applications need flexible schemes for indi-
vidual user software installation on the Grid. The
RPM scheme is too inflexible for individual use.

− Last, but definitely not least, security consider-
ations need to be taken into account from the
beginning, as it is difficult to make software secure
retrospectively.
The project has collectively taken note of these

lessons, and this input is being carried forward into
the EGEE project where there is an HEP applications
group acting as part of an overall applications activity.
In addition to the ongoing data challenges there will
be developments of the LHC experiments’ analysis
models which must cope with the use of the Grid by
thousands of individual users. This poses special prob-
lems of random demands for data and CPU resources,
all to be managed within the context of the VOs and
their policies. The HEPCAL use case work has been
extended [27], taking account of new requirements
arising from individual user analyses, for example
the management of interactive sessions, tracking the
provenance of data though many transformations, and
the provision of query facilities for data selection from
vast datasets.

2004 has seen a major increase in the scale of the
use of Grid technology by HEP experiments using the
LCG service. Experiments have passed hundreds of
thousands of jobs through LCG, being executed in a
world-wide configuration of sites, totalling over 70
in September. The data produced is being used for
physics analyses. The LCG job efficiencies for this
running on a global Grid have ranged from 60% to
80%, with a major source of errors being site config-
uration, this key area being actively addressed now by
the LCG operations team.

All the experiments are using more than one Grid,
and with substantial success. We have moved now
to a stage where Grid technology is being used rou-
tinely in physics data production, and where we are
learning to refine the operational aspects of running
world-wide Grids. In addition we await re-engineered
middleware, benefiting from our start-up experiences,
which will enable the community to use Grid techol-
ogy for physics analyses conducted by thousands of
users distributed world-wide.
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