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Abstract

Many current international scientific projects are based on large scale applications that are both computationally
complex and require the management of large amounts of distributed data. Grid computing is fast emerging as the
solution to the problems posed by these applications. To evaluate the impact of resource optimisation algorithms,
simulation of the Grid environment can be used to achieve important performance results before any algorithms
are deployed on the Grid. In this paper, we study the effects of various job scheduling and data replication
strategies and compare them in a variety of Grid scenarios using several performance metrics. We use the Grid
simulator OptorSim, and base our simulations on a world-wide Grid testbed for data intensive high energy physics
experiments.

Our results show that scheduling algorithms which take into account both the file access cost of jobs
and the workload of computing resources are the most effective at optimising computing and storage re-
sources as well as improving the job throughput. The results also show that, in most cases, the economy-
based replication strategies which we have developed improve the Grid performance under changing network
loads.

1. Introduction

Data Grids are predicted to be the solution to the large
computational power and data storage requirements of
many current projects such as the next generation of
high energy physics experiments. These Data Grids
will enable sharing of distributed computational and
storage resources among users located all over the
world. An important challenge to undertake during the
construction of Data Grids is the problem of how to
optimise the use of available resources.

Efficient job scheduling, i.e. the decision of when
and where to run jobs submitted to the Data Grid,
is important to ensure that these resources are nei-
ther over- nor under-used. Data replication – the
process of creating identical copies of data files at

different sites – is also an important part of max-
imising job throughput in a typical Data Grid. The
task of Replica Optimisation strategies is to cre-
ate, select and delete replicas taking into account
both the access patterns (work loads) and the re-
source consumption of the jobs that are scheduled
on the Grid. The combined use of scheduling and
replica optimisation strategies should lead to opti-
mal use of computational, data storage and network
resources.

The European DataGrid project [19] has built com-
puting infrastructure and middleware services for the
management of large-scale data across widely dis-
tributed scientific communities. Within this project a
Resource Broker (RB) was designed to handle job
scheduling decisions and a Replica Optimisation Ser-
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vice (ROS) [3] was developed to address the issues
related to Replica Optimisation.

An efficient RB and ROS should use an optimi-
sation strategy that must work effectively in a Data
Grid under a wide range of conditions, so potential
strategies should be thoroughly tested before they are
employed. One way to achieve a realistic evaluation
of various strategies is to define a Grid simulation en-
vironment that closely mimics a real Data Grid. This
environment should be capable of simulating a number
of Grid jobs using a candidate optimisation strategy,
and to collect measurements on which the evaluation
of the strategy is based. The authors have developed
the Grid simulator OptorSim [4, 23], which has been
used to evaluate several Grid Replica Optimisation
strategies; in particular, an auction protocol and eco-
nomic model were introduced [5] and it was shown
that for certain file access patterns this model signif-
icantly outperforms more traditional models. Some
early simulation results were used to select the opti-
misation strategy embedded in the ROS deployed in
the European DataGrid project.

In this paper we are interested in continuing exper-
imentation on optimisation strategies. We first discuss
the key elements of a realistic Grid model, which
forms the basis of our simulation environment. With
respect to our previous work, we first consider the
effects of different job scheduling strategies and im-
prove the accuracy of the model by taking into account
background (i.e. non-Grid) network traffic, which can
use a sizeable proportion of the underlying network
resources. Second, we analyse some metrics which
are useful for the evaluation of a Data Grid. In pre-
vious experiments [5], the metric used was the total
execution time of a set of jobs on the Grid. Here, we
add other indicators of performance that are significant
for different Grid users. Third, we present the per-
formance of a number of scheduling and replication
strategies in different operating scenarios [25].

The paper is structured as follows. Related work
on Grid simulations is examined in Section 2. We
discuss the features of a realistic simulation environ-
ment and briefly present the main features of OptorSim
in Section 3. Section 4 describes our Scheduling and
Replica Optimisation strategies in detail, and a set of
performance measurements to evaluate these strate-
gies is presented in Section 5. The specific setup
we use for our simulations is described in Section 6,
with results presented in Section 7. Finally, we draw
some conclusions and present ideas for future work in
Section 8.

2. Related Work

Various Grid simulation projects have been undertaken
in recent years, among them ChicagoSim [16, 17],
EDGSim [9], GridSim [7], and GridNet [11].

In [16] the authors simulated various replication
and caching strategies in a tier-model Grid environ-
ment. In [17] they combined replication strategies with
different scheduling algorithms and found that when
using any replication strategy, taking the location of
data into account when scheduling vastly improves
the overall job performance. They found, however,
that there was no marked difference in the choice
of replication algorithm, perhaps because replication
took place at the level of entire file sets (one file set
defining a job) rather than individual files.

EDGSim [9] was designed to simulate the per-
formance of the European DataGrid but concentrates
on the optimisation of scheduling algorithms. Analy-
sis showed that data location was important in the
scheduling decision, but no replication of data was
taken into account.

The GridSim project [7] produced a very detailed
simulation of the components of a Grid and introduced
an economic model to manage the use of Grid re-
sources through the buying and selling of resources. It
was designed primarily to study scheduling algorithms
and did not examine the issue of data replication.

In [11] a replication algorithm was tested which
uses a cost function to predict whether replicas are
worth creating. It was found to be more effective in
reducing average job time than the case where there
was no replication. The simulation architecture used
was based on a hierarchical model where leaf client
nodes ran jobs but higher nodes contained all the stor-
age resources, in contrast to the European DataGrid
architecture which we describe in Section 3.

The main advantage of OptorSim with respect to
the previous simulators is that it performs two-stage
optimisation. Scheduling decisions are based on both
the location of data and the status of network links
between grid sites, while (re)optimisation during the
run-time of a job takes into account dynamic varia-
tions in the distribution of data and in the behaviour of
network resources.

3. A Data Grid Simulation Environment

A realistic Grid simulation environment should be
based on a Grid model that represents a real Data Grid
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Figure 1. European Data Grid Architecture.

at the proper level of abstraction. This is the case for
our model, which includes the elements for describing
the Grid topology and site structure, the set of jobs
to be simulated, and the parameters that regulate the
dynamics of the simulation. In this section we examine
its various components.

3.1. Components of the Simulation Model

3.1.1. Grid Architecture
We adopt a Grid structure based on a simplification of
the architecture proposed by the European DataGrid
project [19], as illustrated in Figure 1. In this model,
the Grid consists of several sites, each of which may
provide computational and data-storage resources for
submitted jobs. Each site may contain a Comput-
ing Element (CE) and/or Storage Element (SE), with
sites that have no Storage or Computing Elements
acting as network nodes or routers. Computing El-
ements run jobs that use the data in files stored on
Storage Elements. Our focus is on overall optimisa-
tion of Grid resources rather than performing intra-site
optimisation, so in our model we assume simplified
Computing Elements that have no internal structure.
For instance, we do not consider scheduling of jobs to
worker nodes within a Computing Element or internal
queuing systems for jobs.

A Resource Broker controls the scheduling of jobs
to Computing Elements, with the aim of improving
the overall throughput of the Grid. Grid sites are con-
nected by Network Links, each of which has a certain

bandwidth. A Replica Manager at each site manages
the data flow between sites and interfaces between the
computing and storage resources and the Grid. The
Replica Optimisation Service [3] inside the Replica
Manager is responsible for both replica selection and
the automatic creation and deletion of replicas.

3.1.2. Files and Jobs
In our model a data file is characterised by its name
and size. A job is specified by the set of data files
it needs to analyse. Files are considered to be ho-
mogeneous and only the movement of files caused
by replication is simulated, not the analysis processes
performed by the jobs. We also model the initial dis-
tribution of files to Data Grid sites before starting a
simulation run.

3.1.3. Dynamics
The order in which a job requests files is determined
by the Access Pattern used. Several access patterns are
possible, owing to the different types of Grid jobs that
may be run. Another important aspect is background
network traffic, which can vary unpredictably over
time. Any optimisation strategy must be sufficiently
flexible that it can adapt to the continually changing
environment, and still obtain the best performance for
its users.

3.2. The Grid Simulator OptorSim

To evaluate optimisation strategies in a realistic simu-
lation scenario, we have developed the Grid simulator
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OptorSim. Given (a) a Grid topology and resources,
(b) a set of jobs that the Grid must execute and
(c) an optimisation strategy, OptorSim simulates what
would happen in the Grid if that optimisation strategy
were in use. It provides us with the set of measure-
ments described in Section 5 in order to quantify the
effectiveness of the strategy.

OptorSim is written in Java™ and it is designed
to follow the model described in Section 3.1, using a
number of threads that mimic the components shown
in Figure 1. It also models peer-to-peer communica-
tion between Grid sites. This is used by the auction
protocol for file selection, which we presented in [5].

OptorSim adopts time-based simulation. As we are
interested in evaluating replication strategies, we sim-
ulate data transfer among Grid sites and neglect their
processing by jobs. The total time needed for the sim-
ulation of a Grid scenario is proportional to the time
that data transfer would take in a real Grid. This means
that any time that would be spent performing optimisa-
tion calculations in the real Grid is automatically taken
into account in the simulation. The adoption of a time-
based simulation certainly has the disadvantage of a
longer simulation time with respect to an event-driven
model, especially if we want to simulate the execution
of thousands of jobs on large-scale Grids; however,
we are able to reduce simulation time by scaling down
certain parameters, which decreases the simulated data
transfer time.

4. Scheduling and Replica Optimisation
Strategies

In this paper we will consider two stages of optimisa-
tion, namely Scheduling Optimisation (deciding where
a job should be executed) and runtime Replica Opti-
misation (deciding which is the best replica for a file
requested by a running job and how best to position
the data).

4.1. Scheduling Strategies

In the past, much work has been done on tradi-
tional CPU-based scheduling algorithms in a Grid (see
Section 2). In this paper we evaluate scheduling al-
gorithms that take into account both computational
and data resources for selecting the best job location.
A scheduling algorithm calculates the cost of running
a job on each site from a group of candidate sites. It

then submits the job to the site with the minimum es-
timated cost. The algorithms we test are based on one
or more of the following cost metrics:
– Access Cost. The estimated cost, based on the

current network status, for obtaining all the
files required by the job. This metric uses a
Replica Catalogue (a Grid service, implemented in
OptorSim as a table containing the locations of
every copy of every file) to look up all the replicas
for each required file. The access time for each
replica is calculated and thus the best replica can
be found for each file. The combined access time
for the best replicas is used to rank candidate sites.

– Queue Size. The number of jobs waiting in the
queue at the candidate site. We assume only one
job at a time can run on each CE.

– Queue Access Cost. For each job in the queue the
access cost is calculated as for the Access Cost al-
gorithm. The access costs for all jobs are summed
to give a total estimated access cost for all the jobs
in the queue.

4.2. Replica Optimisation Strategies

We assume that Replica Optimisation is performed in
a distributed way by a number of Replica Optimisation
Agents (or Optimisers), one for each Grid site. An Op-
timiser performs local Replica Optimisation; the aim
is to achieve global optimisation as the emergent result
of local optimisation and every Optimiser therefore
has two goals:
– To minimise a single job’s execution cost. Users

want their jobs to be executed at as low a cost as
possible; an Optimiser therefore aims to minimise
the execution cost of every job that is run on its
Grid site. In this paper we define the cost of ex-
ecuting a job to be the total running time of the
job.

– To maximise the usefulness of locally stored files.
Good utilisation of available data resources is an-
other goal of optimisation. An Optimiser should
also, therefore, aim to keep locally those files that
are most useful for jobs that are executed either
locally or at neighbouring sites with good network
connectivity. This also reduces the running times
and hence the costs of running jobs.

Whenever an Optimiser is considering a file re-
quest, it performs the following tasks in order to
achieve the goals above:
– Replication Decision. If a requested file is not

present on a site’s SE, this process decides whether
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local replication of this file should take place. If
the Optimiser decides not to replicate a file then
the job must access that file remotely.

– Replica Selection. When considering which
replica to read or replicate locally, this process se-
lects the best of those available. In general, the se-
lection criterion depends on the chosen evaluation
metric.

– File Replacement. When a remote replica has been
selected for replication to the site’s SE, the SE
might not have sufficient spare capacity. In this
case, one or more local replicas must be deleted.
The selection criteria for deciding which locally
stored replicas to delete depend on some estimate
of future usefulness.

A specific combination of algorithms for each
stage defines a runtime replica optimisation strategy.
We consider three specific optimisation strategies: one
based on the traditional LFU (Least Frequently Used)
algorithm, and two economic strategies.

The LFU-based strategy will always replicate files
to storage local to the Computing Element on which
the job is running. Replica Selection is achieved using
a Replica Catalogue to locate all replicas. The replica
that can be accessed in the shortest time under the cur-
rent network conditions is chosen. If the local storage
is full, the file that has been accessed the fewest times
in the preceding period of time is deleted, creating
space for the new replica.

The two economy-based strategies are similar to
each other, but use two different prediction func-
tions, one binomial-based [8] and the other Zipf-based
[25], to calculate file values used in the replication
and file replacement decisions. If the potential replica
under consideration has a higher value than the lowest-
valued file currently in the local storage, that file is
deleted and the new replica is ‘bought.’ If local stor-
age is not yet full, the economic models will always
replicate.

The file value is approximated by the number of
times it is expected to be accessed in a future time
window δT ′, based on the file access history for the
previous time window δT . The binomial prediction
function constructs a binomial distribution of file pop-
ularity, centred on the mean number of file accesses
in δT . The value of the file in question is then found
by checking where it lies on that distribution. This
prediction function is described in more detail in [8].
The Zipf prediction function orders the files into a Zipf
distribution according to their popularity in δT , and

takes the value from there. A description of the Zipf
distribution function is given in Section 6.

Replica Selection is based on the auction protocol
for buying and selling files, as described in [5]. By
means of the auction protocol, file requests are prop-
agated, using a peer-to-peer infrastructure, over the
neighbourhood of the site from which the file request
originates. If the file request reaches a site where the
file is available locally, the Optimiser at that site will
calculate the transfer cost to the requesting site and
reply with a corresponding bid. If the file is not present
on the site, the Optimiser might start a nested auction
in order to create a replica of the requested file locally.
Once this auction is complete the site can reply with
a bid to the initial auction. When all bids have been
collected, the winner is the site which bid the lowest
price, and it is paid the price of the second lowest bid.
This is known as a reverse Vickrey auction [22].

5. Grid Performance Metrics

In order to evaluate the effectiveness of the various
optimisation strategies implemented in OptorSim, we
have identified the following metrics:
− Mean job execution time;
− Network usage;
− SE usage;
− CE usage.

5.1. Mean Job Execution Time

The mean job execution time is defined as the total
time to execute all the jobs, divided by the number
of jobs completed. This is related to the metric we
used in [4, 5] and a typical Grid user would probably
consider it to be the most important metric of how the
algorithm is performing.

5.2. Network Usage

Replicating a file takes time and uses network band-
width. However, performing no replication has been
shown [4] to be ineffective compared to even the sim-
plest replicating optimsation algorithm. Thus, a good
balance must be found, where any replication is in the
interest of reducing future network traffic. We define
effective network usage rENU:

rENU = Nremote file accesses + Nfile replications

Nlocal file accesses
,
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where Nremote file accesses is the number of times the
CE reads a file from a SE on a different site,
Nfile replications is the total number of file replications,
and Nlocal file accesses is the number of times a CE reads
a file from a SE on the same site (we assume infinite
bandwidth within a site).

For a given network topology, a lower value of
rENU indicates that more files are accessed locally,
fewer network resources are used and hence the op-
timisation strategy is better at replicating files to the
correct location.

5.3. SE Usage

Monitoring the use of storage resources in Grid sites
can also be a valuable source of information and thus
we measure the percentage of storage used during the
simulation. This can help in evaluating a strategy from
two opposite points of view: on the one hand, the
goal could be the minimisation of storage usage, per-
haps because the resource cost is proportional to the
amount being used; on the other hand, its cost might
be fixed and one would then aim at maximising the use
of storage space.

5.4. CE Usage

Another resource which is of interest is the computa-
tional power usage, which we define as the percentage
of time that a CE is running jobs or otherwise active.
The metric used in this paper is the total computational
power usage for all the CEs on the Grid, which we
call the CE usage. A good scheduler should be able
to maximise the CE usage by spreading the workload,
avoiding the situation where some sites lie idle while
others have long queues of jobs.

6. Simulation Setup

In this section we describe the topology of a realistic
Grid environment. We also provide a description of
the simulated jobs and discuss various access patterns
(work loads) implemented in OptorSim.

6.1. Grid Topology

In this paper we base all simulation studies on the test-
bed used during a large scale production effort for the

Figure 2. Grid topology for CMS data production challenge in Spring 2002.
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high energy physics experiment CMS [12]. We used a
similar testbed configuration in our previous work [5].
The Grid topology (see Figure 2) comprises 20 sites
in Europe and the USA. CERN and FNAL (where the
data are originally produced) have a storage capacity
of 100 GB each and a master copy of each file is stored
at one of these sites. Every other site has a Comput-
ing Element and initially empty storage of capacity
50 GB. The storage capacity values used are represen-
tative, being scaled down from the actual resources at
these sites. In Figure 2, the labels over network links
represent the available bandwidth in Gb/sec or Mb/sec.
During our simulation studies we include contending
network traffic which is based on network monitoring
data between some of the sites shown in Figure 2 (see
Section 7.3).

6.2. Simulated Jobs

The simulated work loads are based on a scaled down
set of high energy physics analysis jobs from the CDF
experiment use case (as described in [10]). In this case
each file has a size of 1 GB and the total size of the
whole file set on the Grid is 97 GB. Each CE takes one
second to process each file.

6.3. Access Patterns

Access patterns determine the order in which files for
a particular job are requested by a CE. In this paper
we will consider the following access patterns: se-
quential [4] (all files are requested in a predetermined
order), Gaussian random walk [4] (successive files are
selected from a Gaussian distribution centered on the
previous file) and Zipf.

A Zipf-like distribution, which is an inverse power
law distribution, is defined as Pi ∝ i−α , where Pi is
the frequency of occurrence of the ith ranked item and
α � 1. In other words, a few items in the observed set
occur very often while many others occur rarely. Due
to the increasing importance of the web as an Internet
application, recent research [1, 2] has investigated how
to model and reproduce typical web workloads and
shown that they generally follow a Zipf-like distrib-
ution. Web proxy caching techniques especially have
received considerable interest due to the importance
of reducing web traffic [6]. As there is a conceptual
similarity between web workloads and Data Grid file
access patterns, we have decided to investigate the
effects of such a distribution in a Grid environment.
Values of α are typically between 0.7 and 1; for the

results presented in this paper, a value of 0.85 was
used.

7. Results

In this section we present simulation results, using
OptorSim to evaluate and compare different strategies
for both scheduling and replica optimisation. We use
the metrics described in Section 5 as indicators of
how well the strategies perform. The simulation was
run on a farm of dual processor Pentium IIIs, taking
the average of several simulation runs for each set of
results.

7.1. Scheduling and Replica Optimisation Strategies

We start our evaluation by studying the impact of the
scheduling algorithm used by the Resource Broker on
a given replica optimisation strategy. The following
scheduling algorithms are analysed (see Section 4.1):
– Random: schedule jobs to a random CE;
– Shortest Queue: schedule to the CE with the

shortest job queue;
– Access Cost: schedule to the CE where the job has

lowest file access cost;
– Queue Access Cost: schedule to the CE where the

sum of the access cost for the job itself and the
access costs of all jobs in the queue is lowest.

The simulation was run with 1000 jobs submitted
at 5 second intervals and for each scheduling algo-
rithm, each of the three access patterns described
previously (sequential, Gaussian random walk and
Zipf ) was considered.

Figures 3, 4, and 5 show the mean job execu-
tion time and CE usage for the three different access
patterns.

In general the three access patterns show very
similar relative performance for each scheduling and
replication strategy. The mean job time for Gaussian
random walk access patterns, however, is roughly half
that for sequential access patterns and for Zipf access
patterns it is half as much again. This is because with
sequential access patterns, every file is accessed once
whereas for the other two, some files may be accessed
more than once and others not at all. The access pat-
tern has very little effect on the CE usage, but with
Zipf access patterns it is around 10% higher than with
the other two.

The scheduling strategies Random and Shortest
Queue show similar performance and generally have
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(a) (b)

Figure 3. (a) Mean job time and (b) CE usage for various replica optimisation strategies and sequential access pattern.

(a) (b)

Figure 4. (a) Mean job time and (b) CE usage for various replica optimisation strategies and Gaussian random walk access pattern.

the longest mean job execution times. The scheduling
strategy Access Cost has a lower mean job execution
time but has the lowest CE usage, due to the fact that
jobs are only scheduled to sites with high network
connectivity.

The mean job execution time is lowest and CE us-
age is highest when we use the scheduling strategy
Queue Access Cost. This algorithm has the tendency
to schedule data intensive jobs close to the location of
the data, whilst ensuring that sites with high network
connectivity are not overloaded and sites with poor
connectivity are not idle.

The SE usage was also monitored as the simulation
progressed, and the same scheduling strategies evalu-
ated with the three replica optimisation strategies. Se-
quential access patterns were used. Figure 6(a) shows
that the scheduling strategies Random and Shortest
Queue quickly fill up all the available SEs to reach the
maximum of 90% (100% SE usage is never reached
due to the Grid configuration used, in which CERN
and FNAL serve as data repositories for master files,
to which no jobs are sent and which thus remain un-
affected by data replication). The strategy Access Cost
uses only the sites with high network connectivity, re-
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(a) (b)

Figure 5. (a) Mean job time and (b) CE usage for various replica optimisation strategies and Zipf access pattern.

(a) (b)

Figure 6. SE usage: (a) all schedulers, binomial economic model; (b) all replica optimisation strategies, Queue Access Cost and Access Cost
schedulers.

sulting in slower execution time and a final SE usage
level of only 37%. Queue Access Cost, on the other
hand, takes network connections into account and also
avoids long queues of jobs, resulting in good SE usage
and fast execution time.

All Replica Optimisation strategies gave very sim-
ilar results, as can be seen for two of the schedulers in
Figure 6(b). The difference in SE usage between these
two schedulers is comparable to the difference in CE
usage shown above.

Given that the Queue Access Cost scheduling algo-
rithm had given the best results in all the experiments
above, it was chosen for all further tests, with sequen-
tial access patterns taken to be the closest available
approximation to physics analysis jobs.

7.2. Scalability of Replica Optimisation Algorithms

In the next set of tests we study the scalability of the
optimisation algorithms by varying the number of jobs
from 100 to 1,000 to 10,000. To set a scale for these
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(a) (b)

Figure 7. Effective network usage (a) and mean job time (b) for different number of submitted jobs.

tests, the number of jobs required to fill the SEs to
∼75% was measured. Using the binomial economic
model, sequential access patterns and Queue Access
Cost scheduler, it was found that this level was reached
after ∼ 500 jobs had been completed and hence that
the above range was reasonable.

The effective network usage for 100, 1,000 and
10,000 jobs, shown in Figure 7(a), decreases with
the number of jobs submitted. This is as might be
expected, since the access histories used by the opti-
misation strategies to make replication decisions take
time to build up and stabilise. The economic strategies,
though, show much lower usage with an increased
number of jobs, with a factor of 3 difference between
the binomial based economic model and the LFU strat-
egy. In short, the main advantage of the economic
strategies is that they use up considerably less network
bandwidth than the LFU strategy.

This scalability can also be seen in the mean job
times (Figure 7(b)), with the economic strategies be-
coming more effective with an increased job load.
From 1000 jobs to 10000 jobs, the mean job time for
the binomial based economic strategy fell by 2 s and
for the Zipf based economic strategy by 1.2 s, whereas
for the LFU strategy it only fell by 0.6 s.

7.3. Effects of Non-grid Network Traffic

In all the previous evaluations, non-Grid background
traffic was included in the network model. This non-
Grid background traffic consists of any data transfers
that can be observed on the network throughout the

day; here, we examine the effect this has on Grid per-
formance by comparing results with and without the
inclusion of background.

To build up a profile of the underlying network
traffic for the testbed links, Iperf [20] monitoring
data from various sources was used, including EDG
WP7 [24], SLAC [14] and FNAL [18] WAN Band-
width Measurement Tests, UK e-Science Grid Net-
work Monitoring [21] and GridNM [13]. The sizes of
the data samples varied from a period of a few days
to about two months. The mean value for each half-
hour period of the day was found and a profile of mean
available bandwidth as a function of the time of day
compiled for each link for which data was available.
Where data for a particular link was not available, it
was substituted by using data from as similar a link as
possible, e.g., a site on the same router.

A selection of these profiles is shown in Figure 8,
with the uncertainty in the mean for each point; it can
be seen that some links exhibit a clear diurnal varia-
tion in the available bandwidth. There is also a large
variation in the actual bandwidth available from link
to link. The data are stored as fractional values of the
maximum bandwidth on each link, so when it is nec-
essary to calculate a bandwidth, the mean value for the
given time and link is taken, a random jitter is added
and the maximum is scaled by the result.

A comparison of the results with and without back-
ground traffic is shown in Figure 9. As would be
expected, there is a large increase in mean job time
when we simulate the background network traffic. For
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(a) (b)

(c) (d)

Figure 8. Mean available bandwidth on some of the monitored links: (a) Lyon – CERN; (b) Lyon – Bologna; (c) SLAC – Florida; (d) FNAL – IC.

all the optimisation strategies, this increase is around
a factor of 3.

There is also a big increase in the effective net-
work usage for the binomial-based economic strategy
and LFU strategy, while for the Zipf-based economic
strategy it remains roughly constant. This is perhaps
due to the changing network bandwidths leading to
less reliable replication decisions by the optimisation
strategies, which in the long term means that more
replication takes place – except in the Zipf-based eco-
nomic strategy, which seems to be the most stable to
fluctuations.

8. Conclusions and Future Work

In this paper we have described an environment suit-
able for the simulation of realistic Grid scenarios and
the evaluation of Grid optimisation algorithms. We
have discussed various strategies in scheduling optimi-
sation and replica optimisation and presented results
showing their performance in tests carried out with the
Grid simulator OptorSim.

We have shown that the choice of strategies used
can affect the throughput of Grid jobs and the extent to
which Grid resources are exploited. In particular, our
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(a) (b)

Figure 9. Effects of background network traffic on (a) mean job time and (b) effective network usage.

experiments show that Queue Access Cost, a schedul-
ing algorithm which takes into account both the file
access cost of jobs and the workload of computing re-
sources, is the most effective at optimising computing
and storage resources and reducing the average time to
execute jobs.

We have also shown that a suitable choice of data
replication strategy can improve Grid performance;
for most situations, particularly with large numbers of
jobs, the economy-based strategies we have developed
have the greatest effect, regardless of the presence of
background (non-Grid) network traffic.

In the future, OptorSim will continue to be de-
veloped to simulate the Grid environment even more
realistically. This will include more accurate simu-
lation of clusters of worker nodes within Computing
Elements and the effects of different types of storage
devices such as tape storage. In addition, OptorSim
currently assumes a static Grid in which resources are
always available. In reality, however, resources such
as network links and Computing Elements will not
always be available. Although work has been carried
out in simulating the unstable nature of network traffic,
more investigation into the dynamic Grid environment
is required.

An important study will be the comparison of sim-
ulation results with real Grid performance measure-
ments. These data should become more widespread as
the use of Grid technology increases and so adjust-
ments can be made to OptorSim to bring it closer to
the reality of a working Grid and validate the results
which have been achieved.

Some areas of Grid research are moving towards
a Grid conceived as a network of inter-operable
services, with user access regulated and optimised
by means of suitable meta-level optimisation agents.
These issues are the focus of Service-Oriented Com-
puting [15]. Since OptorSim has been demonstrated
to be a valuable instrument for the simulation of Data
Grids (which can be seen as networks where the only
service to be optimised is data access), another in-
teresting research direction is the extension of our
simulator for service-oriented environments.

In summary, there are many future directions
which can be taken and the extensible nature of the
OptorSim code means that any of them can be ex-
plored.
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