
Journal of Grid Computing 2: 3–14, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

3

MAAN: A Multi-Attribute Addressable Network for
Grid Information Services

Min Cai, Martin Frank, Jinbo Chen and Pedro Szekely
Information Sciences Institute, University of Southern California, Suite 1001, Marina Del Rey, CA 90292, USA
E-mail: mcai@isi.edu

Key words: Grid computing, information services, multi-attribute range queries, peer-to-peer

Abstract

Recent structured Peer-to-Peer (P2P) systems such as Distributed Hash Tables (DHTs) offer scalable key-based
lookup for distributed resources. However, they cannot be simply applied to grid information services because
grid resources need to be registered and searched using multiple attributes. This paper proposes a Multi-Attribute
Addressable Network (MAAN) that extends Chord to support multi-attribute and range queries. MAAN addresses
range queries by mapping attribute values to the Chord identifier space via uniform locality preserving hashing.
It uses an iterative or single attribute dominated query routing algorithm to resolve multi-attribute based queries.
Each node in MAAN only has O(log N) neighbors for N nodes. The number of routing hops to resolve a multi-
attribute range query is O(log N + N × smin), where smin is the minimum range selectivity on all attributes. When
smin = ε, it is logarithmic to the number of nodes, which is scalable to a large number of nodes and attributes. We
also measured the performance of our MAAN implementation and the experimental results are consistent with our
theoretical analysis.

1. Introduction

Grid computing is emerging as a novel approach of
employing distributed computational and storage re-
sources to solve large-scale problems in science, en-
gineering, and commerce. Grid computing on a large
scale requires scalable and efficient resource registra-
tion and lookup. Traditional approaches maintain a
centralized server or a set of hierarchically organized
servers to index resource information. For example,
Globus [5] uses an LDAP-based directory service
named MDS [4] for resource registration and lookup.
However, the centralized server(s) can become a reg-
istration bottleneck in a highly dynamic environment
where many resources join, leave, and change char-
acteristics (such as CPU load) at any time. Thus, it
does not scale well to a large number of grid nodes
across autonomous organizations. Also, centralized
approaches have the inherent drawback of a single
point of failure. Hierarchical approaches provide bet-
ter scalability and failure tolerance by introducing a

set of hierarchically organized servers and partition-
ing resource information on different servers, similar
to the DNS. Typically, the partitioning scheme is pre-
defined and can not adapt to the dynamic change of
virtual organizations. Also it might take a long time
for resource information to be updated from the leaf
nodes to the root node.

To overcome the above shortcomings of central-
ized approaches, Adriana Iamnitchi et al. [8] proposed
a P2P approach to organize the MDS directories in a
flat, dynamic P2P network. Every virtual organization
in the grid dedicates a certain amount of its resources
as peers that host information services. Those peers
constitute a P2P network between organizations. Re-
source requesters can search desired resources through
query forwarding that is similar to unstructured P2P
systems such as Gnutella. However, this approach
does not scale well because of the large volume of
query messages generated by flooding [15, 19]. In
order to avoid flooding of the complete network, the
number of hops on the forwarding path is typically

4

bounded by the Time to Live (TTL) field of query mes-
sages. Thus, the search results are not deterministic
and this approach cannot guarantee to find the desired
resource even if it exists.

In contrast, recent structured P2P systems use mes-
sage routing instead of flooding by leveraging a struc-
tured overlay network among peers. These systems
typically support distributed hash table (DHT) func-
tionality and the basic operation they offer is lookup
(key), which returns the identity of the node storing the
object with the key [13]. Current proposed DHT sys-
tems include Tapestry [25], Pastry [16], Chord [21],
CAN [12] and Koorde [9]. In these DHT systems, ob-
jects are associated with a key that can be produced
by hashing the object name. Nodes have identifiers
that share the same space as the keys. Each node
is responsible for storing a range of keys and corre-
sponding objects. The DHT nodes maintain an overlay
network with each node having several other nodes
as neighbors. When a lookup (key) request is issued
from one node, the lookup message is routed through
the overlay network to the node responsible for the
key. Different DHT systems construct different over-
lay networks and employ different routing algorithms.
They can guarantee to finish lookup in O(log N) or
O(dN1/d) hops and each node only maintains the in-
formation of O(log N) or d neighbors for a N nodes
network (where d is the dimension of the hypercube
organization of the network). Therefore, they provide
very good scalability as well as failure resilience.

While DHTs have some desirable properties, they
can not be directly applied to grid information ser-
vices. This is because DHTs can only look up a
resource that exactly matches the given key. Cur-
rent DHT systems typically assume their applications
already know the key of the target resource. For exam-
ple, file systems such as CFS use DHT to index each
file block and use the unique block identifier as a key
to store and retrieve the block.

However, this kind of hash table functionality is
not enough for grid information services because re-
sources typically have multiple attributes and thus
need to be registered with a list of attribute-value
pairs. For example, a resource provider would want
to register its multiple attributes like this:

register name= pioneer
&& url= gram://pioneer.isi.edu:8000
&& os-type= linux && cpu-speed= 1000 MHz
&& memory-size= 512 M.

Consequently, resource requesters want to be able
to search for resources that meet multiple attribute
requirements (as demonstrated by, e.g., the Resource
Specification Language (RSL) [3] in Globus), using a
query like:

search os-type= linux
&& 800 MHz<= cpu-speed<= 1000 MHz
&& memory-size>= 512 MB.

The attributes in the above example have two dif-
ferent types: string and numerical. Attribute “name”,
“url” and “os-type” are string based and only have a
limited number of values, while attribute “cpu-speed”
and “memory-size” have continuous numerical val-
ues. For numerical types of attributes, being able to
query with attribute ranges instead of exact values is a
critical requirement. However, current DHT systems
can neither handle multi-attribute queries nor range
queries.

In this paper, we proposed a new structured P2P
system for grid information services that we call
Multi-Attribute Addressable Network (MAAN). In
MAAN, resources can be registered with a set of
attribute-value pairs and can be searched by multi-
attribute based range queries.

The remainder of this paper introduces Chord in
Section 2, describes MAAN and its routing algorithms
in Section 3, presents experimental performance re-
sults of MAAN in Section 4, discusses related work in
Section 5, and presents conclusions and future work in
Section 6.

2. Chord

In this section, we briefly describe the Chord DHT sys-
tem proposed by Ion Stoica al el. [21]. Like all other
DHT systems, Chord supports scalable 〈key, object〉
pairs registration and lookup operations. Chord uses a
one-dimensional circular identifier space with modulo
2m where m is the number of bits in node identifiers
and object keys. Every node in Chord is assigned a
unique m-bit identifier (called the node ID) and all
nodes self-organize to a ring topology based on their
node IDs. The node ID can be chosen locally by hash-
ing the node’s IP address and port number using a
hashing function, such as SHA1. Each object is also
assigned a unique m-bit identifier (called object key).
Chord uses consistent hashing to assign keys to nodes.
Key k is assigned to the first node whose identifier is

5

Figure 1. A 6-bit Chord network consisting of 8 nodes and 4 object keys.

equal to or follows the identifier of k in the identifier
circle. This node is called the successor node of key k,
denoted by successor(k). Each object is registered on
the successor node of its object key. Figure 1 shows
an 8-node Chord network with 6-bit circular identifier
space. Node N20 has the node ID of 20 and stores the
objects with key 10 and key 15.

Each Chord node maintains two sets of neighbors,
the successor list and finger table. The nodes in the
successor list immediately follow the node in the iden-
tifier space, while the nodes in the finger table are
spaced exponentially around the identifier space. The
finger table has at most m entries. The ith entry in the
table for the node with ID n contains the identity of
the first node s, that succeeds n by at least 2i−1 on the
identifier circle, i.e. s = successor(n + 2i−1), where
1 � i � m (and all arithmetic is modulo 2m). In

Chord, s is called the ith finger of node n, and denoted
by n.finger[i]. The first finger is the immediate succes-
sor of n (i = 1). The finger table contains more close
nodes than far nodes at a doubling distance. Thus each
node only needs to maintain the state for O(log N)

neighbors for a Chord network with N nodes. For ex-
ample, the fingers of N4 in Figure 1 are N8, N20 and
N40 correspondingly.

When node n wants to search the object with key k,
it will route a lookup request to the successor node
x of key k, x = successor(k). If node x is far away
from n, n can forward the request to a far node in its
finger table, which is much closer to x than n. The
routing algorithm works as follows: given a lookup
request with key k, the node searches its successor
list for the successor of k and forwards the request to
it if possible. If it does not know the successor of k,

6

it forwards the request to the node j whose identifier
most immediately precedes k in its finger list. By re-
peating this process, the request gets closer and closer
to the successor of k. In the end, x receives the lookup
request for object with key k, finds the object locally
and sends the response back to n. For example, if
N4 in Figure 1 issues a lookup request for K52, it
sends the request to its finger N40 that is the closest
one to K52 in the identifier space. N40 then forwards
the request to N48 that will forward it to N56. Since
N56 is the successor node of K52, it looks up the
object corresponding to K52 locally and returns the
result to N4. Because the fingers in the node’s fin-
ger table are spaced exponentially around the identifier
space, each hop from node n to the next node covers
at least half the identifier space (clockwise) between
n and k. So the average number of hops for a lookup
is O(log N), where N is the number of nodes in the
network.

Chord achieves the load balancing of nodes by us-
ing consistent hashing and virtual nodes. Since the
node identifiers generated by SHA1 hash do not uni-
formly cover the identifier space, consistent hashing
can not guarantee that the keys will be evenly dis-
tributed on each node. Chord solves this problem by
associating keys with virtual nodes and hosting mul-
tiple virtual nodes on each real node. Chord also has
a stabilization algorithm for constructing finger tables
when a node joins and for maintaining finger tables
when nodes fail.

However, each hop in Chord overlay might cor-
respond to multiple hops in underlying IP network.
Zhang et al. [24] proposed a lookup-parasitic random
sampling (LPRS) algorithm for Chord to reduce its
IP layer lookup latency. They prove that LPRS-Chord
can result in lookup latencies propositional to the av-
erage unicast latency of the network, provided the
underlying physical topology has power-law latency
expansion.

3. Multi-Attribute Addressable Network

Like many other DHT systems, Chord offers efficient
and scalable single-key based registration and lookup
service for decentralized resources. However, it can
not support range queries and multi-attribute based
lookup. Our MAAN approach addresses this problem
by extending Chord with locality preserving hashing
and a recursive multi-dimensional query resolution
mechanism.

3.1. Range Queries in MAAN

Chord assigns each node and key an m-bits identifier
using a base hashing function such as SHA1, and uses
consistent hash to map keys to nodes. This approach
can achieve load balancing because SHA1 hash can
generate randomly distributed identifiers no matter the
distribution of actual node addresses and keys. How-
ever, SHA1 hashing destroys the locality of keys, and
cannot support range queries for numerical attribute
values.

MAAN uses SHA1 hashing to assign an m-bits
identifier to each node and the attribute value with
string type. However, for attributes with numerical
values MAAN uses locality preserving hashing func-
tions to assign each attribute value an identifier in the
m-bit space.

DEFINITION 1. Hash function H is a locality pre-
serving hashing function if it has the following prop-
erty: H(vi) < H(vj) iff vi < vj , and if an interval
[vi, vj] is split into [vi, vk] and [vk, vj], the corre-
sponding interval [H(vi),H(vj)] must be split into
[H(vi),H(vk)] and [H(vk),H(vj)].

Suppose we have an attribute a with numerical
values in the range of [vmin, vmax]. A simple local-
ity preserving hashing function we can use could be
H(v) = (v − vmin) × (2m − 1)/(vmax − vmin), where
v ∈ [vmin, vmax]. So for each attribute value v, it has
the corresponding identifier H(v) in the [0, 2m − 1]
identifier space. MAAN also use the same consistent
hashing as Chord and assign attribute value v to the
successor node of its identifier, i.e. successor(H(v)).

THEOREM 1. If we use locality preserving hash
function H to map attribute value v to the m-bit
circular space [0, 2m − 1], given a range query
[l, u] where l and u are the lower bound and up-
per bound respectively, nodes that contain attribute
value v in [l, u] must have an identifier equal to or
larger than successor(H(l)) and equal to or less than
successor(H(u)).

Proof. Attribute value v is assigned to
successor(H(v)) and successor(H(v)) is the first
node whose identifier is equal to or follows the identi-
fier of H(v) in the identifier circle. Since l � v � u

and from Definition 1, we can see that attribute value v

can only be assigned to node n and successor(H(l)) �
n � successor(H(u)). �

Thus we can use the following algorithm to resolve
range queries for numeric attribute values. Suppose

7

node n wants search for resources with attribute value
v between l and u for attribute a, i.e. l � v � u,
where l and u are the lower bound and upper bound,
respectively. Node n composes a search request and
uses the Chord routing algorithm to route it to node
nl , the successor of H(l). The search request is as fol-
lowing: SEARCH_REQUEST(k, R,X). k is the key
used for Chord routing, initially k = H(l). R is the
desired attribute value range: [l, u] and X is a list of re-
sources discovered in the range. Initially, X is empty.
When node nl receives the search request, it searches
its local resource entries and appends those resources
that satisfy the range query to X in the request. Then
it checks whether it is the successor of H(u) also. If
true, it sends back the search response to node n with
the search result in X of the search request. Other-
wise, it forwards the search request to its immediate
successor ni . Node ni also searches its local resource
entries, appends matched resources to X, and forwards
the request to its immediate successor until the request
reaches node nu, the successor of H(u). In terms of
Theorem 1, the resources that have attribute values
in the range of [l, u] must be registered on the nodes
between nl and nu (clockwise) in the Chord ring. So
the above search algorithm is complete. Obviously,
routing the search request to node nl using Chord rout-
ing algorithm takes O(log N) hops for N nodes. The
next sequential forwarding from nl to nu takes O(K) ,
where K is the number of nodes between nl and nu. So
there are total O(log N + K) routing hops to resolve
a range query for single attribute. Since there are K

nodes that might contain the resources matching the
range query, we have to visit all of those K nodes
to guarantee to find the correct search result. In this
sense, O(log N +K) routing hops is optimal for range
queries in Chord.

3.1.1. Uniform Locality Preserving Hashing
Though our simple locality preserving hashing func-
tion keeps the locality of attribute values, it does not
produce uniform distribution of hashing values if the
distribution of attribute values is not uniform. Conse-
quently, the load balancing of resource entries can be
poor across the nodes. To address this problem, we
propose a uniform locality preserving hashing func-
tion that can always produce uniform distribution of
hashing values if the distribution function of input
attribute values is continuous and monotonically in-
creasing, and is known in advance. This condition
is satisfied for many common distributions, such as

Gaussian, Pareto, and exponential distributions. Sup-
pose attribute value v of resources conforms to a cer-
tain distribution with continuous and monotonically
increasing distribution function D(v) and possibility
function P(v) = D(v)

dv
, and v ∈ [vmin, vmax]. We can

design a uniform locality preserving hashing function
H(v) as following: H(v) = D(v) × (2m − 1).

THEOREM 2. Hash function H(v) is a locality pre-
serving hashing function.

Proof. Since D(v) is monotonically increasing,
H(v) is monotonically increasing too. Obviously,
H(v) is a locality preserving hashing function accord-
ing to Definition 1. �
THEOREM 3. Suppose attribute value v ∈ [vmin,vmax]
and v has distribution function D(v). Let hashing
value y = H(v), then y conforms to a uniform
distribution in the range of [H(vmin),H(vmax)].

Proof. The possibility distribution of y, denoted
P(y) dy, is determined by the fundamental transfor-
mation law of probabilities, which is

|P(y) dy| = |P(v) dv|
or

P(y) = P(v)

∣
∣
∣
∣

dv

dy

∣
∣
∣
∣
. (1)

Since
y = H(v) = D(v) × (2m − 1),

we have
∣
∣
∣
∣

dy

dv

∣
∣
∣
∣
= d(D(v))

dv
× (2m − 1)

or ∣
∣
∣
∣

dy

dv

∣
∣
∣
∣
= P(v) × (2m − 1). (2)

From (1) and (2), we have

P(y) = 1

2m − 1
. (3)

Since attribute value v ∈ [vmin, vmax] and its prob-
ability function P(v) is normalized by definition, as
in ∫ vmax

vmin

P(v) dv = 1

or
D(vmax) − D(vmin) = 1.

Also since ∫ vmin

−∞
P(v) dv = 0

8

we have

D(vmin) = 0 and D(vmax) = 1.

Therefore,

H(vmin) = D(vmin) × (2m − 1) = 0

and

H(vmax) = D(vmax) × (2m − 1) = 2m − 1,

so that
∫ H(vmax)

H(vmin)

P (y) dy =
∫ 2m−1

0

1

2m − 1
dy = 1. (4)

From (3) and (4), we can see that hashing value y

conforms to a uniform distribution in the range of
[H(vmin),H(vmax)]. �

Thus, with this uniform locality preserving hash-
ing function, resources will be uniformly distributed
on all nodes if the nodes uniformly cover the m-bit
identifier space. We know that the latter is true when
each node hosts O(log N) virtual nodes with unrelated
identifiers [21].

3.2. Multi-Attribute Query Resolution

Instead of only supporting one attribute based lookup,
our MAAN scheme also extends the above routing
algorithm for range queries to support multi-attribute
lookup. In this multi-attribute setting, we assume each
resource has M attributes a1, a2, . . . , aM and corre-
sponding attribute value pairs 〈ai, vi〉, where 1 �
i � M . For each attribute ai , its attribute value vi

is in the range of [vi min, vi max] and conforms to a
certain distribution with distribution function Di(v).
Thus, we can generate a uniform locality preserving
hashing function Hi(v) = Di(v) × (2m − 1) for each
attribute ai . With these hashing functions we can map
all attribute values to the same m-bit space in Chord.

Each resource will register its information
(attribute value pairs) at node ni = successor(H(vi))

for each attribute value vi , where 1 � i � M .
Resource registration request for attribute value vi is
routed to its successor node using Chord routing algo-
rithm with key identifier H(vi). Each node categorizes
the indices of 〈attribute-value, resource-info〉 pairs by
different attributes. When a node receives a resource
registration request from resource x with attribute
value ai = vix and resource information rx , it adds
the 〈vix, rx〉 pair to corresponding list for attribute ai .

When a node searches for interested resources,
it composes a multi-attribute range query that is the
combination of sub-queries on each attribute dimen-
sion, i.e. vil � ai � viu where 1 � i � M , vil and
viu are the lower bound and upper bound of the query
range, respectively.

We support two approaches to search candidate re-
sources for multi-attribute range queries: iterative and
single attribute dominated query resolution.

3.2.1. Iterative Query Resolution
The iterative query resolution scheme is very straight-
forward. If node n wants to search resources by a
query of M sub-queries on different attributes, it it-
eratively searches all candidate resources for each
sub-query on one attribute dimension, and inter-
sects these search results at query originator. We
can reuse the search algorithm we proposed for
single attribute based lookup in Section 3.1. The
only modification is to carry a 〈attribute〉 field in
each search request to indicate which attribute we
are interested in. The search request is as fol-
lows: SEARCH_REQUEST(k, a, R,X), where a is
the name of the attribute we are interested in, and k,
R and X are the same as in a single attribute based
query. When a node receives a query request and it
intersects with the query range, it only searches the
index that matches the attribute name in the search
request. Though this approach is simple and easy to
implement, it is not very efficient. For M-attribute
queries, it takes O(

∑M
i=1 (log N + Ki)) routing hops

to resolve the queries, where Ki is the number of nodes
intersects the query range on attribute ai . We define
selectivity si as the ratio of query range width in iden-
tifier space to the size of the whole identifier space,
i.e.

si = H(viu) − H(vil)

2m
.

Suppose attribute values are uniformly distributed on
all N nodes, then we have Ki = si × N and routing
hops would be O(

∑M
i=1 (log N + N × si)). Thus, the

routing hops for searching increase linearly with the
number of attributes in the query.

3.2.2. Single Attribute Dominated Query Resolution
Obviously, the search result of a multi-attribute query
must satisfy all the sub-queries on each attribute di-
mension and it is the intersection set of all resources
that satisfies each individual sub-query. Suppose X is
the set of resources satisfying all sub-queries, and Xi

9

Figure 2. An example for single-attribute-dominated query resolution algorithm.

is the set of resources satisfying the sub-query on at-
tribute ai , where 1 � i � M . So we have X = ⋂

Xi

and each Xi is a superset of X. The iterative query res-
olution approach computes all Xi using M iterations
and calculates their intersection set. However, since
we register the resource information for each attribute
dimension, resources in the set of Xi also contain the
information of other attribute value pairs. The single
attribute dominated query resolution approach can uti-
lize this extra information and only need to compute
a set of candidate resources Xk that satisfies the sub-
query on the attribute ak . Then it apply the sub-queries
for other attributes on these candidate resources and
computes the set X that satisfies all sub-queries. Here,
we call attribute ak dominated attribute. There are two
possible approaches to apply these sub-queries. One
approach is to apply them at the query originator af-
ter it receives all candidate resources in Xk . Since

the set Xk is typically much larger than X, search
requests and responses might contain many candidate
resources that do not satisfy other sub-queries. Thus
this approach will introduce unnecessarily large search
messages and increase communication overhead. An-
other approach is to carry these sub-queries in the
search request, and apply them locally at the nodes that
contain candidate resources in Xk . This approach is
more efficient because search requests and responses
only carry the resources satisfying all sub-queries.

The search request in single attribute dominated
approach is as follows: SEARCH_REQUEST(k, a, R,

O,X). k, a, R are the same as those in iterative query
resolve approach. O is a list of sub-queries for all
other attributes except a, and X is a list of discov-
ered resources satisfying all sub-queries. When node
n wants to issue a search request with R = [l, u], it

10

first routes the request to node nl = successor(H(l)).
The node nl searches its local index corresponding
to attribute a for the resources with attribute value in
the range of [l, u] and with all other attributes satisfy-
ing sub-queries in O, and appends them to X. Then
it checks whether it is also the successor of H(u).
If true, it sends back a search response to node n

with the resources in X. Otherwise, it forwards the
search request to its immediate successor ns . ns re-
peats this process until the search request reaches node
nu = successor(H(u)).

Since this approach only needs to do one iteration
for the dominated attribute ak , it takes O(log N +
N × sk) routing hops to resolve the query. We can
further minimize the routing hops by choosing the
attribute with minimum selectivity as the dominated
attribute. Thus, the routing hops will be O(log N +
N × smin), where smin is the minimum selectivity for
all attributes.

Figure 2 shows an example of the single attribute
dominated algorithm in an 8-node MAAN network
storing 11 resources. This MAAN network has the
identifier space of [0, 64). Each resource has two at-
tributes: cpu-speed and memory-size. The attribute
ranges and corresponding locality preserving hash
functions are shown in the attribute settings table.
Each node has one or more resources. For example,
node B has two resources: B1 with 0.8 GHz CPU
and 128 MB memory, and B2 with 4.8 GHz CPU
and 256 MB memory. Each resource is registered
by both cpu-speed and memory-size. For instance,
resource B1 is registered at node C that is the suc-
cessor node of its cpu-speed, and it is also registered
at node B for its memory-size. When node A wants
to look for resources with cpu-speed in the range of
(4.0 GHz, 5.0 GHz) and memory-size in the range of
[768 MB, 1024 MB], it will first apply the locality pre-
serving hashing on each sub-query and compute the
sub-queries in the Chord identifier space. It chooses
the attribute with minimum selectivity as the domi-
nated attribute, which is cpu-speed in this example.
Then node A composes a search request with the hash
value of lower bound as the key and routes it to the
corresponding successor node G using Chord’s rout-
ing algorithm. The initial search_request (1) in this
example is SEARCH_REQUEST (50.4, cpu-speed,

(4.0 GHz, 5.0 GHz), memory-size ∈ [768 MB,

1024 MB], {EMPTY}). When node G receives search_
request (1), it will find the matched resource F1
for both sub-queries and append it into the set X.
Since node G is not the successor node of upper

Table 1. An example attribute schema for grid nodes

Attribute Name Type Min Max Unit

Name String / / /

URL String / / /

OS-Type String / / /

CPU-Speed Numerical 1 105 MHz

Memory-Size Numerical 1 106 MBytes

Disk-Size Numerical 1 106 GBytes

Bandwidth Numerical 10−3 104 MBps

CPU-Count Numerical 1 104 CPU

bound, it forwards the search request to its im-
mediate successor that is node H . The search_re-
quest (2) will be SEARCH_REQUEST (57, cpu-speed,
(4.0 GHz, 5.0 GHz), memory-size ∈ [768 MB,

1024 MB], {F1}). Since there is no resource regis-
tered at node H , it just simply forwards the request to
node A and the search_request (3) will be the same as
search_request (2) except that k is set to be 61. Node A

has no matched resource for the sub-query of memory-
size and it is already the successor node of the upper
bound. So it just returns the resource F1 in set X as
the search result to the search originator that happens
to be itself.

In the single attribute dominated approach, the
number of routing hops is independent of the number
of attributes, and thus scales perfectly in the number
of attributes of a query. On the other hand, it incurs
the memory cost of registering all attributes for a re-
source if any of its attributes is registered; and it incurs
more updating overhead of attribute values change.
However, the good query performance of the single
attribute dominated approach will typically outweigh
the greater updating cost in the Grid environment
since node registration operations (of OS-Type, CPU-
Speed, Memory-Size, CPU-Count, etc.) are typically
far less frequent than query operations to find suitable
machines.

4. Implementation and Evaluation

We verified our theoretical MAAN results by measur-
ing the performance of an implementation in Java. It
can easily be configured to support different attribute
schemas, such as an example for grid nodes shown
in Table 1. Our implementation runs each distributed
node in its own Java virtual machine as a separated

11

Figure 3. The number of neighbors as a logarithmic function of
network size.

process. The implementation uses sockets to commu-
nicate between the peers, and supports the “register”
and “search” commands described in the Introduction.
New nodes can be added by contacting any existing
peer at its IP address and port number.

To collect the performance data from the distrib-
uted nodes, we implemented a status message that is
flooded to all nodes (it exists for experimental mea-
surement purposes only). The message causes every
node to dump its neighborhood state to a log file. We
also instrumented MAAN messages with additional
fields, such as hops taken. Our experiment environ-
ment consists of 2 dual Xeon workstations with 1 GB
memory, 4 P4 desktops with 1 GB memory and 8
dual PIII workstations with 512 MB memory. The op-
erating systems installed on these machines include
Redhat 9.0, FreeBSD 4.9 and Windows XP profes-
sional. In order to setup a large MAAN network with
512 nodes, we ran up to 64 nodes each on 2 dual Xeon
workstations and up to 32 nodes each on other ma-
chines. Since we use routing hops as our performance
metric in this experiment, hosting multiple nodes on
each machine will not affect the correctness of the
results.

We know that the number of neighbors per node
in Chord increases logarithmically with the network
size. MAAN uses the Chord algorithm to maintain the
overlay network among nodes, and thus has the same
property of neighborhood states as Chord. To validate
our Java implementation of MAAN, we measured the
number of neighbors per node against network size.
In this experiment, we set the successor replication
factor to be 4, i.e. each node maintains 4 successors in-
stead of only its immediate successor. These redundant

(a)

(b)
Figure 4. The routing hops as a function of network size: (a) log-
arithmic for 5-attribute range query with ε% range selectivity;
(b) linear for 2-attribute range query with 10% range selectivity.

successors will be used to recover the ring topology
when nodes fail and also replicate resources. The re-
sult shown in Figure 3 confirms that similar to Chord
the neighborhood states in MAAN can scale well to a
large number of nodes.

Another important performance metric is the num-
ber of routing hops a search request would take to
resolve a query. From Section 3.2, we know that the
number of routing hops is O(log N +N ×smin), where
N is the total number of nodes in network, and smin
is the minimum range selectivity for all attributes. So
if we want to search resources with at least one ex-
act matching sub-query, i.e. smin = ε%, the number
of routing hops is O(log N), which is logarithmic to
network size. Figure 4(a) shows our measurement re-
sult for 5-attribute queries with ε% range selectivity
on a network with up to 512 nodes. The measured
average routing hops roughly match with our theoret-

12

Figure 5. The routing hops as a linear function of query’s range
selectivity (64 nodes, 1 attribute).

ical analysis as the dotted line (log2(N)/ 2) shows in
Figure 4(a).

However, for normal range queries whose selec-
tivity si > ε%, the number of routing hops increases
linearly with network size. This is because si of total
N nodes have to be visited by the search queries if we
want to balance the load to all the nodes. Figure 4(b)
shows this linear relationship between the number of
routing hops and the number of nodes for 2-attribute
range queries with 10% range selectivity in a 64 nodes
network. For the same reason, the number of routing
hops also increases linearly with the range selectivity
of search queries as shown in Figure 5. Theoretically,
the average number of routing hops for range queries
is log2(N)/ 2 + N × smin. Our measurement result
matches quite well with the analysis result, as shown
by the dotted line in Figures 4(b) and 5. However we
can see that range queries with large range selectivity
are very costly – they will basically flood the whole
network.

We also compared the two multi-attribute query
resolution algorithms we proposed in Section 3.2,
i.e. iterative vs. single attribute dominated. Figure 6
shows the comparison result of these two approaches.
It is consistent well with our theoretical analysis.

5. Related Work

Many recent structured P2P systems are related to
our research. These systems can be classified into
three broad categories: DHTs, tree-based, and skiplist-
based.

Besides Chord, other DHT systems include
Tapestry [25], Pastry [16], CAN [12], and Koorde [9].

Figure 6. The expected number of routing hops as a function of the
number of attributes (64 nodes, 10% range selectivity).

The routing algorithms used in Tapestry and Pastry are
both inspired by Plaxton [11]. The idea of the Plaxton
algorithm is to find a neighboring node that shares the
longest prefix with the key in lookup message, repeat
this operation until find a destination node that shares
the longest possible prefix with the key. In Tapestry
and Pastry, each node has O(log N) neighbors and
the routing path takes at most O(log N) hops. CAN
maps its keys to a d-dimensional Cartesian coordi-
nate space that is partitioned into N zones. Each CAN
node owns the zone corresponding to the mapping of
its node id’s on the coordinate space. The neighbors
in each node are the nodes that own the contiguous
zones to their local zones. Routing in CAN is straight-
forward: a message is always greedily forwarded to
a neighbor that is closer to the key’s destination in the
coordinate space. Nodes in CAN have O(d) neighbors
and routing path length are O(dN1/d) hops. Kaashoek
and Karger [9] proved that for any constant neighbor-
hood state k, �(log N) routing hops is optimal. But
in order to provide a high degree of fault tolerance,
a node must maintain O(log N) neighbors. In that
case, O(log N/ log log N) optimal routing hops can
be achieved. Koorde is a neighborhood state optimal
DHT based on Chord and de Bruijn graphs. It embeds
a de Bruijn graph on the identifier circle of Chord
for forwarding lookup requests. To lookup a key k,
Koorde finds the successor of k by walking down the
de Bruijn graph.

TerraDir [20] is a tree-based structured P2P sys-
tem. It organizes nodes in a hierarchical fashion ac-
cording to the underlying data hierarchy. Each query
request will be forwarded upwards repeatedly until
reaching the node with the longest matching prefix of

13

the query. Then the query is forward to the destination
downwards the tree. In TerraDir, each node maintains
constant number of neighbors and routing hops are
bounded in O(h), where h is the height of the tree.

Skip Graphs [2] and SkipNet [7] are two skip-
list based structured P2P systems. Skip Graphs and
SkipNet maintain O(log N) neighbors in their rout-
ing table. For each node, the neighbor at level h has
the distance of 2h to this node, i.e. they are 2h nodes
far away. This is very similar to the fingers in Chord.
There are 2h rings at level h with n/ 2h nodes per ring.
Searching a key in Skip Graphs or SkipNet is started
at the top-most level of the node seeking the key. It
proceeds along the same level without overshooting
the key, continuing at a lower level if required, until it
reaches level 0. Their routing hops of searching a key
are also O(log N).

The above structured P2P systems provide scal-
able distributed lookup for unique keys. However they
can not support efficient search, such as keyword
search and multi-dimensional range queries. Patrick
Reynolds and Amin Vahdat [14] proposed an efficient
distributed keyword search system, which distributes
an inverted index into a distributed hash table, such
as Chord or Pastry. To minimize the bandwidth con-
sumed by multi-keyword conjunctive searches, they
use bloom filters to compress the document ID sets
by about one order of magnitude and use caching to
exploit temporal locality in the query workload. For
large sets of search results, they also use streaming
transfers and return only the desired number of results.

pSearch [22] is another peer-to-peer keyword
search system that distributes document indices into a
CAN network based on the document semantics gen-
erated by Latent Semantic Indexing (LSI). In pSearch,
the rolling index scheme is used to map the high
dimensional semantic space to the low dimensional
CAN space. Also it uses content-aware node boot-
strapping to force the distribution of nodes in the CAN
to follow the distribution of indices.

Artur Andrzejak and Z. Xu [1] extend CAN for
handling range queries on single attributes by mapping
one-dimensional space to CAN’s multi-dimensional
space using Hibert Space Filling Curve as hash func-
tion. For a range query [l, u], they first route to a
node whose zone includes the middle point (l + u)/ 2.
Then the node recursively propagates the request to
its neighbors until all the nodes that intersect the
query are visited (a flooding strategy). They also
proposed and compared three different flooding strate-
gies: brute force, controlled flooding and directed con-
trolled flooding. However, this work did not address
multi-attribute range queries.

In contrast to Andrzejak’s system, Cristina
Schmidt and Manish Parashar [18] proposed a dimen-
sion reducing indexing scheme that efficiently maps
the multi-dimensional information space into the one
dimensional Chord identifier space by using Hibert
Space Filling Curve. This system can support complex
queries containing partial keywords, wildcards, and
range queries. They solve the load balance problem by
probing multiple successors at node join and migrat-
ing virtual nodes at runtime. Thus these systems do
not need to know the distribution of different attribute
values, but they will introduce some extra joining and
migration overhead.

6. Conclusion and Future Work

In this paper, we proposed a multi-attribute address-
able network (MAAN) for grid information services.
It can register grid resources with a set of (attri-
bute,value) pairs and search interested resources via
multi-attribute based range queries. MAAN routes
search queries to the nodes where the target resources
are registered, and avoids flooding queries to all other
irrelevant nodes.

MAAN supports efficient range queries by map-
ping attribute values to Chord identifier space via uni-
form locality preserving hashing. It not only preserves
the locality of resources but also distributes resources
to all nodes uniformly and achieves good load balanc-
ing among nodes. MAAN can use iterative or single
attribute dominated query routing algorithm to resolve
multi-attribute based queries. In MAAN, each node
only maintains routing information for O(log N) other
nodes. When using single attribute dominated query
routing, the number of routing hops to resolve a query
is O(log N + N × smin), where smin is the minimum
range selectivity on all attributes; thus, it scales well
in the number of attributes. Also when smin = ε, the
number of routing hops is logarithmic to the number
of nodes.

While MAAN can support multi-attribute range
queries quite well, it does have important limitations.
First, the attribute schema of resources has to be fixed
and known in advance with MAAN. We believe that
supporting attribute schemas that evolve during P2P
network use is an important future research direction.
Second, when the range selectivity of queries is very
large, flooding the query to the whole network can ac-
tually be more efficient than routing it to nodes one by
one as MAAN does. It would be interesting to analyze

14

the threshold of range selectivity at which flooding be-
comes more efficient than routing, and to have MAAN
use different query resolution algorithms for different
kind of queries.

Our current MAAN implementation uses MAAN-
specific and non-standard protocol on top of TCP to
communicate between nodes. However, recently the
Grid community has moved to the Web Services based
infrastructure, such as OGSA [23]. To be used in the
real Grid environment, it is important to design and
implement P2P resource information services based
on standard Grid services. One approach is to imple-
ment the whole MAAN network as a distributed Grid
service, which exposes a generic resource registration
and discovery interface to other Grid services. In the
MAAN network, each node will still uses MAAN
specific protocol to communicate to each other, al-
though they can be based on SOAP. This is similar to
OpenHash [10] that provides an service-oriented DHT
network instead of libraries to other applications.

Acknowledgements

We gratefully acknowledge AFOSR program fund-
ing for this project under contract number F49620-
01-1-0341. We thank Ramesh Govindan for help-
ful discussions, and Baoshi Yan for contributing the
single-attribute-dominated query resolution idea.

References

1. A. Andrzejak and Z. Xu, “Scalable, Efficient Range Queries
for Grid Information Services,” in Proceedings of the Second
IEEE International Conference on Peer-to-Peer Computing,
2002.

2. J. Aspnes and G. Shah, “Skip Graphs,” in Fourteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms, 2003,
pp. 384–393.

3. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin,
W. Smith and S. Tuecke, “A Resource Management Architec-
ture for Metacomputing Systems,” Lecture Notes in Computer
Science, Vol. 1495, 1998.

4. S. Fitzgerald, I. Foster, C. Kesselman, G. Laszewski, W. Smith
and S. Tuecke, “A Directory Service for Configuring High-
Performance Distributed Computations,” in Proceedings of
the 6th IEEE Symposium on High-Performance Distributed
Computing, 1997, pp. 365–375.

5. I. Foster and C. Kesselman, “Globus: A Metacomputing In-
frastructure Toolkit,” The International Journal of Supercom-
puter Applications and High Performance Computing, Vol. 11,
No. 2, pp. 115–128, 1997.

6. Gnulella. http://freenet.sourceforge.net, 2002.

7. N.J.A. Harvey, M.B. Jone, S. Saroiu, M. Theimer and A. Wol-
man, “SkipNet: A Scalable Overlay Network with Practi-
cal Locality Properties,” in Proceedings of the 4th USENIX
Symposium on Internet Technologies and Systems, 2003.

8. A. Iamnitchi, I. Foster and D. Nurmi, “A Peer-to-Peer Ap-
proach to Resource Discovery in Grid Environments,” in
Proceedings of the 11th Symposium on High Performance
Distributed Computing, 2002.

9. F. Kaashoek and D.R. Karger, “Koorde: A Simple Degree-
optimal Hash Table,” in The 2nd International Workshop on
Peer-to-Peer Systems (IPTPS ’03), 2003.

10. B. Karp, S. Ratnasamy, S. Rhea and S. Shenker, “Spurring
Adoption of DHTs with Open Hash, a Public DHT Servic.,”
IRP-TR-03-16, 2003.

11. C.G. Plaxton, R. Rajaraman and A.W. Richa, “Accessing
Nearby Copies of Replicated Objects in a Distributed Envi-
ronment,” in ACM Symposium on Parallel Algorithms and
Architectures, 1997, pp. 311–320.

12. S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker,
“A Scalable Content Addressable Network,” in Proceedings of
ACM SIGCOMM, 2001.

13. S. Ratnasamy, S. Shenker and I. Stoica, “Routing Algorithms
for DHTs: Some Open Questions,” in The 2nd International
Workshop on Peer-to-Peer Systems (IPTPS ’03), 2003.

14. P. Reynolds and A. Vahdat, “Efficient Peer-to-Peer Keyword
Searching,” in ACM/IFIP/USENIX International Middleware
Conference (Middleware 2003), 2003.

15. M. Ripeanu, I. Foster and A. Iamnitchi, “Mapping the
Gnutella Network: Properties of Large-Scale Peer-to-Peer
Systems and Implications for System Design,” IEEE Internet
Computing Journal, Vol. 6, No. 1, 2002.

16. A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer
Systems,” Lecture Notes in Computer Science, Vol. 2218,
2001.

17. S. Saroiu, P.K. Gummadi and S.D. Gribble, “A Measurement
Study of Peer-to-Peer File Sharing Systems,” in Proceedings
of Multimedia Computing and Networking 2002, 2002.

18. C. Schmidt and M. Parashar, “Flexible Information Discov-
ery in Decentralized Distributed Systems,” in 12th IEEE
International Symposium on High Performance Distributed
Computing (HPDC’03), 2003.

19. S. Sen and J. Wong, “Analyzing Peer-to-Peer Traffic Across
Large Networks,” in Proceedings of ACM SIGCOMM Work-
shop on Internet Measurement Workshop, 2002.

20. B. Silaghi, B. Bhattacharjee and P. Keleher, “Query Routing in
the TerraDir Distributed Directory,” in SPIE ITCOM’02, 2002.

21. I. Stoica, R. Morris, D. Karger, F. Kaashoek and H. Balakr-
ishnan, “Chord: A Scalable Peer-To-Peer Lookup Service for
Internet Applications,” in Proceedings of ACM SIGCOMM,
2001.

22. C. Tang, Z. Xu and S. Dwarkadas, “Peer-to-Peer Infor-
mation Retrieval Using Self-Organizing Semantic Overlay
Networks,” in ACM SIGCOMM, 2003.

23. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman, T. Maguire, T. Sandholm, P. Vanderbilt and
D. Snelling, “The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration,” in
Global Grid Forum Draft Recommendation, 2003.

24. H. Zhang, A. Goel and R. Govindan, “Incremental Optimi-
zation in Distributed Hash Table Systems,” ACM Sigmetrics,
2003.

25. B. Zhao, J. Kubiatowicz and A. Joseph, “Tapestry: An In-
frastructure for Fault-Tolerant Wide-Area Location and Rout-
ing,” Technical Report UCB/CSD-01-1141, 2001.

