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using the amino acid sequences of AMT1.1 genes 
confirms the speciation patterns shown by matK 
gene sequence. Promoter analysis of millet AMTs 
showed presence of cis-elements related to light 
response, anaerobic induction, growth hormones, 
drought stress, biotic stress and several endogenous 
signals related to plant growth and development. 
This research provides insights into the structural and 
functional aspects of ammonium transporter genes in 
millets, and will serve as a foundation for utilizing 
AMTs for devising NUE strategies.

Keywords AMT · Millet · NUE · Evolution · 
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Introduction

Nitrogen (N) is the most commonly required 
macronutrient for plant growth and development. 
It is an essential element for the synthesis of 
biomolecules such as nucleotides, amino acids, 
proteins, chlorophyll, and several others (Marcos de 
Leão et al. 2020). Nitrogen in the soil exists in three 
forms, which include organic nitrogen compounds, 
ammonium  (NH4

+), and nitrate  (NO3
−) ions 

(Williams and Miller 2001). Plants absorb nitrogen 
primarily in the ammonium and nitrate forms, and 
the organic nitrogen compounds need to be converted 
to these two forms before being taken by the plants. 
The use of nitrogen by plants involves absorption, 
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assimilation, and remobilization during plant growth 
and development. In addition to N absorption from 
the soil, nitrogen use efficiency (NUE) depends on the 
assimilation of inorganic nitrogen from the soil, and 
the utilization of nitrogen during the life cycle of a 
crop plant (Masclaux-Daubresse et al. 2010; Xu et al. 
2012). Plants have a preference for ammonium N 
form over nitrate nitrogen for uptake from the soil due 
to the direct assimilation of  NH4

+ into amino acids in 
plant cells, whereas,  NO3

− nitrogen has to be reduced 
to  NH4

+ before assimilation (Bloom et al. 1992; Jiang 
et  al. 2019; Boschiero  et al. 2019). The biological 
assimilation of nitrogen occurs either through the 
glutamine synthetase/glutamate synthase pathway 
(GS/GOGAT) or through glutamate dehydrogenase 
(GDH), resulting in the synthesis of glutamine which 
is the substrate for the synthesis of other amino 
acids via transamination reactions. Ammonium 
transport is tightly regulated during plant growth 
and development by the activities of high- and low-
affinity ammonium transporters (Loque et  al. 2006; 
Yuan et  al. 2007; Kiba and Krapp 2016). Generally, 
high-affinity ammonium transport is preferred for 
 NH4

+ acquisition by plants due to the low ammonium 
concentration (< 1 mm) in the soil (Hao et al. 2020).

Ammonium transporters (AMTs) involved in the 
uptake of  NH4

+ have been identified in varied plant 
species (Couturier et  al. 2007; Yuan et  al. 2007; 
Tang et al. 2020). These AMTs are distributed in the 
plasma membranes of plant cells and form homo-or 
heterotrimers complexes for facilitating the passing 
of  NH4

+ ions or  NH3 through the pore (Shelden et al. 
2001; Ludewig et al. 2003). The transport mechanism 
of plant AMTs could be an  NH4

+ uniporter,  NH4
+/

H+ symporter, or  NH3/H+ co-transporter. Plant AMTs 
can be divided into the following two subfamilies: 
the AMT1 subfamily (AMT1 cluster) and the AMT2 
subfamily (AMT2/3/4 cluster) (Huang et al. 2022).

The AMT genes were identified both in prokaryotic 
and eukaryotic organisms (Mcdonald and Ward 
2016). The first ammonium transporter genes 
were identified in Saccharomyces cerevisiae and 
Arabadopsis thaliana (Marini et al. 1997; Ninnemann 
et  al. 1994). Further, AMT family genes were 
characterized in several crop species namely; Zea 
mays (Gu et  al. 2013), Glycine max (Kobae et  al. 
2010), Arabidopsis thaliana (Loqué et  al. 2006; 
Yuan et  al. 2007, 2009, 2013; Lanquar et  al. 2009; 
Huang et  al. 2015), Lotus japonicas (Guether et  al. 

2009; Wang et al. 2022), Oryza sativa (Ferreira et al. 
2015; Li et al. 2016), Medicago truncatula (Breuillin-
Sessoms et  al. 2015), Populus trichocarpa (Wu 
et al. 2015), Triticum aestivum (Duan et al. 2016; Li 
et al. 2017), Coffea canephora ( Santos et al. 2017), 
Medicago truncatula (Breuillin-Sessoms et al. 2015), 
Pinus (Castro-Rodriguez et  al. 2016), Solanum 
lycopersicum (Filiz and Akbudak 2020), and Malus 
domestica (Huang et al. 2022).

Millets, a group of small-seeded grains, have 
gained recognition as a pivotal component in 
achieving global food security and contribute to 
agricultural sustainability. Millet species include pearl 
millet (Pennisetum glaucum), finger millet (Eleusine 
coracana), green foxtail millet (Setaria viridis), 
foxtail millet (Setaria italica), great millet (Sorghum 
bicolor), proso millet (Panicum miliaceum), kodo 
millet (Paspalum scrobiculatum), Japanese barnyard 
millet (Echinocloa esculenta), Indian barnyard 
millet (Echinocloa frumentacea), and little millet 
(Panicum sumatrense), among others (Goron and 
Raizada 2015). Millets are hardy, resilient crops that 
thrive in diverse agro-climatic conditions, making 
them an essential resource for enhancing agricultural 
sustainability. Their exceptional nutritional profile, 
including high levels of protein, fiber, and essential 
micronutrients, placed millets as key contributors 
to improving food security, especially in regions 
grappling with malnutrition and food scarcity (Ceasar 
2023). Improving the NUE of the cereals is essential 
to enhance yields under low-nutrient soils and 
conserve the fertility of the soils (Baligar et al. 2001; 
Bariya and Ahish 2014; Naeem et  al. 2017; Nieves-
Cordones et  al. 2020). Several investigations have 
been conducted during the last decade by the wider 
scientific community, employing various molecular 
genetic tools to study and improve the NUE of crop 
plants. These include the utilization of genome-wide 
association study (GWAS)  approach, molecular 
marker-assisted breeding (MAB), nutrient transporter 
characterization and functional genomics approaches. 
These investigations have been reported for model 
crop plants to improve NUE (Hawkesford 2012; Avin-
Wittenberg et al. 2018). However, genome-based and 
forward genetic research may not be easy for millets 
with limited genomic resources.

Complete annotated genome sequence information 
is lacking for many millet species, which limits 
the understanding of gene sequences involved 
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in determining the NUE traits in these crops. 
Nevertheless, the genome sequences of six millets, 
namely; Setaria viridis, Setaria italica, Eleusine 
coracana, Sorghum bicolor, Pennisetum glaucum 
and Panicum miliaceum are available for sequence 
analyses. These genome sequences provide a valuable 
resource to understand the structural and functional 
domains of genes coding for plant productivity, 
consequently enabling us to identify the AMT genes 
in the millet genome. Scanty reports for the AMT gene 
family characterization in millets are available in the 
literature, with limited coverage of genome sequence 
databases. Inadequate analysis of two  AMTs in S. 
bicolor (Koegel et al. 2013), followed by an EcAMT1 
study with other nutrient transporters (Maharajan 
et al. 2022), and a brief report about S. italica AMTs 
(SiAMT1.1 and SiAMT1.3) phylogeny and level of 
expression (Ahmad et  al. 2018; Ceasar et  al. 2023). 
Whereas, S. viridis, P. glaucum and P. miliaceum 
AMTs have not been taken into account for defining 
the structural and functional domains of this gene 
family.

After discussing all the above, in this study, 
six millet species are taken into consideration. 
We performed detailed analyses of the sequence 
characteristics, gene structures, chromosome 
distribution, motif compositions, and evolutionary 
relationships of millet AMT genes. In this context, 
the characterization of AMT genes from these six 
species and their comparative analysis to study and 
improve the NUE in millets may be helpful for further 
research.

Material and methods

Identification of AMT genes in different species

The genomic sequences, protein sequences, coding 
sequences (CDS) and genomic feature files (GFF) of 
six millet crops (S. viridis, S. italica, E. corocana, S. 
bicolor, P. miliaceum, and P. glaucum) obtained from 
Phytozome database (https:// phyto zome- next. jgi. doe. 
gov/ accessed on June1, 2023), National Genomics 
Data Center (NGDC) (https:// ngdc. cncb. ac. cn/ gwh/ 
accessed on June 1 2023) and the International Pearl 
Millet Genome Sequencing Consortium (IPMGSC) 
(https:// cegsb. icris at. org/ ipmgsc/ index. html accessed 
on June 1 2023). The Hidden Markov model (HMM) 

of all the conserved protein domain file Pfam-A.hmm 
was downloaded from InterPro (https:// www. ebi. ac. uk/ 
inter pro/ downl oad/ pfam/ accessed on 5 June, 2023). 
A simple HMM search of the TBtools software (Chen 
et al. 2020) was used to obtain ammonium transporters 
in different species. Pfam Id of ammonium transporter 
(Ammonium_transp—PF00909) was used for this 
study. Proteins with e-values of less than 5E-40 were 
included in further analyses. Different splicing variants 
of one gene and the incomplete genes were discarded. 
We searched for the ammonium-domain in all of the 
collected proteins using Interproscan (http:// www. ebi. 
ac. uk/ Tools/pfa/iprscan/ accessed on June 6, 2023) and 
SMART software (Letunic et al. 2012).

Physicochemical properties and transmembrane 
structure analysis of AMT proteins

The theoretical molecular weight (kDa) and 
isoelectric point (pI) of millet AMTs were calculated 
using the ExPASy server (http:// web. expasy. org/ 
compu te_ pi/ accessed on June 6, 2023) (Gasteiger 
et  al. 2003). The evaluation of the grand average of 
hydropathicity (GRAVY) of all identified proteins 
was measured through the GRAVY calculator 
(https:// www. gravy- calcu lator. de/ accessed on 
June 6, 2023) (Gasteiger 2003). Predictions of 
subcellular localization of the concerned proteins 
were verified with the help of Plant-mPloc tool 
(http:// www. csbio. sjtu. edu. cn/ cgi- bin/ Plant mPLoc. 
cgi/ accessed on June 6, 2023) (Chou and Shen 
2010). The TMHMM server v. 2.0 (https:// servi ces. 
healt htech. dtu. dk/ servi ces/ TMHMM-2. 0/ accessed 
on June 6, 2023) (Krogh et  al. 2001) was used for 
the prediction of transmembrane helices in AMT 
proteins. Individually, the physical locations of millet 
AMTs genes were obtained from the millet database 
(S. viridis, S. italica, E. coracana, S. bicolor, P. 
miliaceum, and P. glaucum) genome, and the map to 
locate genes on chromosomes of all six millet species 
was constructed through the PhenoGram (http:// visua 
lizat ion. ritch ielab. org/ pheno grams/ plot accessed on 
June 10, 2023 (Wolfe et al. 2013).

Gene structure, conserved motif and conserved 
protein domain analyses of AMTs

The gene structures (CDS/exon/intron) of all the AMT 
genes were determined using the Gene Structure 

https://phytozome-next.jgi.doe.gov/
https://phytozome-next.jgi.doe.gov/
https://ngdc.cncb.ac.cn/gwh/
https://cegsb.icrisat.org/ipmgsc/index.html
https://www.ebi.ac.uk/interpro/download/pfam/
https://www.ebi.ac.uk/interpro/download/pfam/
http://www.ebi.ac.uk/
http://www.ebi.ac.uk/
http://web.expasy.org/compute_pi/
http://web.expasy.org/compute_pi/
https://www.gravy-calculator.de/
http://www.csbio.sjtu.edu.cn/cgi-bin/PlantmPLoc.cgi/
http://www.csbio.sjtu.edu.cn/cgi-bin/PlantmPLoc.cgi/
https://services.healthtech.dtu.dk/services/TMHMM-2.0/
https://services.healthtech.dtu.dk/services/TMHMM-2.0/
http://visualization.ritchielab.org/phenograms/plot
http://visualization.ritchielab.org/phenograms/plot
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Display Server (CSDS) (http:// gsds. gao- lab. org/ 
accessed on June 8, 2023) (Hu et al. 2015). For these 
analyses, the predicted coding sequence (CDS) of 
AMT genes and their corresponding genomic DNA 
sequences were used. The MEME (Multiple Em for 
Motif Elicitation) online tool (Bailey and Elkan 1994; 
Bailey et al. 2009) was used to identify the conserved 
motifs in the promoter regions of AMT genes and 
AMT amino acid sequences (https:// meme- suite. org/ 
meme/ tools/meme accessed on June 8, 2023). The 
conserved domains of AMT proteins were analysed 
by the NCBI-CD (National Center for Biotechnology 
Information- Conserved Domain) search tool (https:// 
www. ncbi. nlm. nih. gov/ Struc ture/ cdd/ wrpsb. cgi 
accessed on June 8, 2023) (Marchler-Bauer and 
Bryant 2004). The TBtools software was used to 
integrate the phylogenetic tree, conserved motifs 
of and domains of millet AMT proteins (Chen et al. 
2020).

Phylogenetic tree analysis of AMTs

The full-length amino acid sequences of AMTs 
from Arabidopsis thaliana, Triticum aestivum, 
Oryza sativa, Zea mays, Brachypodium distachyon, 
and Hordium vulgare were downloaded from 
the Phytozome database (Goodstein et  al. 2012). 
AMT amino acid sequences of two bacteria, viz. 
Escherichia coli and Nitrosomonas europaea are 
also downloaded from NCBI (National Center for 
Biotechnology Information) (https:// blast. ncbi. nlm. 
nih. gov/ accessed on June 6, 2023). To gain a deeper 
understanding of the taxonomical classification of the 
poaceae family, the chloroplast maturase K (matK) 
amino acid sequences were also downloaded. The 
amino acid sequences of AMTs as well as matK were 
aligned by MEGA-XI software (Koichiro et al. 2021), 
and a total of four phylogenetic trees were constructed 
by the maximum-likelihood method (ML). Bootstrap 
analysis was calculated for 1000 replicates. The 
evolutionary tree was visualized on the web-based 
tool Interactive Tree of Life (iTOL, https:// itol. embl. 
de/ accessed on June 15, 2023) (Letunic and Bork 
2021).

Ka/Ks analyses

The synonymous (Ks) and non-synonymous (Ka) 
substitution rates of the paralogs genes were further 

investigated by using the Ka_Ks calculator 2.0 
(Zhang et  al. 2006). A circular ideogram was made 
by Circos (Krzywinski et  al. 2009) using TBTool 
software (Chen et al. 2020) to facilitate the display of 
relationships between paralogous pairs by the use of 
coloured lines. These encode the position, size, and 
orientation of related genomic elements in the Circos 
plots.

Synteny analysis of AMT genes

For visualization of protein sequence similarity 
between these six millet AMT genes, an online 
visualization tool named Circoletto (http:// tools. bat. 
infsp ire. org/ circo letto/ accessed on June 16, 2023) 
(Darzentas 2010) was used, which provides fast and 
informative overview of sequence similarity of search 
results. These results provide an essential first glimpse 
of the relationship between protein sequences.

Cis-element analysis of millet AMT promoter regions

The 2 kb upstream genomic DNA sequences of all six 
millet AMT genes were used for promoter analysis, 
and the cis-regulatory elements were predicted using 
the PlantCARE online website (https:// bioin forma 
tics. psb. ugent. be/ webto ols/ plant care/ html/ accessed 
on 18 June 2023) (Lescot et al. 2002). The data were 
visualised by TBtools (Chen et al. 2020).

Results

Identification of AMT genes in different species

After validation of AMTs by HMM search, a total of 
53 AMT protein sequences (S. viridis-7; S. italica-9; 
E. corocana -12; S. bicolor-5; P. glaucum -8 and 
P. miliaceum -12) were identified from six millet 
genomes. The AMTs of these species were termed as 
per existing rules of nomenclature for gene symbols, 
such as SvAMTs (derived from S. viridis), SiAMTs 
(derived from S. italica), EcAMTs (derived from 
E. corocana), SbAMTs (derived from S. bicolor), 
PgAMTs (derived from P. glaucum) and PmAMTs 
(derived from P. glaucum) genes throughout the 
study.

http://gsds.gao-lab
https://meme-suite.org/meme/tools/
https://meme-suite.org/meme/tools/
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://blast.ncbi.nlm.nih.gov/
https://blast.ncbi.nlm.nih.gov/
https://itol.embl.de/
https://itol.embl.de/
http://tools.bat.infspire.org/circoletto/
http://tools.bat.infspire.org/circoletto/
https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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Physicochemical properties and transmembrane 
structure analysis of AMT proteins

The physiochemical properties of AMT proteins 
have been established using parameters such as 
chromosome location, strand, protein length, 
molecular weight (MW), isoelectric point (pI), 
prediction of the hydrophobicity (GRAVY), 
subcellular location and their family. The lengths 
of the millet AMT proteins ranged from 304 
(SbAMT 2.2b; Sobic.003G344700) to 632 (EcAMT 
2.1; ELECO.r07.5BG0417460) amino acids, 
with molecular weight ranging from 32.07 kD 
(PmAMT4.1b; GWHPAAEZ055444) to 67.61 
kD (EcAMT 2.1; ELECO.r07.5BG0417460) and 
theoretical pI values ranging from 5.37 (SbAMT 
3.3; Sobic.004G173200) to 8.84 (PmAMT1.3b; 
GWHPAAEZ069937). Subcellular localization 
prediction showed that all millet AMTs were 
localized to the cell membrane with few exceptions 
such as, SbAMT 3.3 (Sobic.004G173200), 
PmAMT1.3a (GWHPAAEZ021947), PmAMT3.2 
(GWHPAAEZ054634), and PmAMT3.3 
(GWHPAAEZ070534) are located both in cell 
membrane as well as vacuole. And the PgAMT1.1 
(Pgl_GLEAN_10009225) is located in both cell 
membrane and mitochondrion whereas PmAMT3.2 
(GWHPAAEZ054634) found in cell membrane, 
vacuole and mitochondrion (Table  1). The grand 
average of hydropathy (GRAVY) value was 
calculated for all the millet AMT proteins.

In this study, the predictions of the hydrophobicity 
of the deduced amino acid sequences indicated that 
the GRAVY of all millet AMT proteins were above 
zero, this led to conclusion that these amino acids 
are polar in nature (Table 1). Further, distribution of 
all six millet AMTs on chromosomes was analysed. 
It was observed that AMTs of S. viridis were located 
on five chromosomes viz. Chr1, Chr3, Chr5, Chr7 
and Chr9 (Online Resource: S1), AMTs of S. italica 
located on five scaffolds with number 1, 3, 5, 7, 9 
(Online Resource: S2), AMTs of  E. corocana placed 
on Chr 1A, Chr 1B, Chr 2A, Chr 3A, Chr 3B, Chr 
4B and Chr 5B. (Online Resource: S3), AMTs of S. 
bicolor located on three chromosomes viz, Chr1, 
Chr3 and Chr4 (Online Resource: S4). PgAMTs were 
present on three chromosomes (Chr 1, Chr 3 and 
Chr 6) and on the scaffold 2474 (Fig.  1). Whereas, 
PmAMTs were located on six chromosomes viz. Chr 

1, Chr 3, Chr 4, Chr 5, Chr 6 and Chr 12 (Online 
Resource: S5). Transmembrane domain analysis of 
all millet AMTs showed occurrence of conserved 
transmembrane domains (Fig. 2 and Online Resource: 
S6-S10). These transmembrane domains regulate 
membrane localization and transport activity of 
a protein. Generally, millet AMTs have 11–12 
transmembrane domains, whereas, these PgAMT1.1, 
PmAMT4.1b, SbAMT 2.2, SbAMT 3.3, PmAMT3.2, 
PgAMT1.2b, PmAMT2.2, PgAMT2.2, PmAMT1.3b 
and PgAMT1.2a have transmembrane domains 
varying from 6 to 10) which may be due to the small 
size of their protein sequences (Table 1). 

Gene structure, conserved motif and conserved 
protein domain analyses of AMTs

Structural analysis of the AMT proteins of six millet 
species were carried out expending the conserved 
domains and motifs based on the evolutionary 
relationships (Fig. 3). Gene structures of millet AMT 
proteins were predicted by using their CDS and 
genomic sequences. The graphical representation 
derived using GSDS showed that the AMT1 
superfamily has less number of introns whereas 
in AMT2 the presence of introns is very common 
(Fig.  3). The domain analysis prediction showed 
that, the ammonium transporter (Ammonium_transp; 
PFam ID: PF00909, InterPro ID: IPR001905) 
structural domains are present in all the query 
proteins. This Ammonium_transp domains have 
found to relate the cl03012 protein superfamily 
and are mainly associated with transporting  NH4 + 
across the membrane. In MEME server, the number 
of motif finder parameter was set to 20, so that upto 
20 putative conserved motifs were found from each 
of the query protein sequences. Throughout the motif 
analysis it was found that, the subfamilies AMT1 
and AMT2 had variable motif compositions. Also, 
proteins in the same subgroup showed identical motif 
components. Some of the motifs usually range from 
1 to 5 were found present in AMTs of all the species 
this indicated that there are characteristic motifs of 
ammonium transporters.

Noticeably, presence of a small motif can cause 
differences in subgroups and which may give an 
idea about the evolution of AMTs. In S. viridis AMT 
proteins, four motifs (motif-3, 6, 7 and 9) were found 
commonly present in all the AMT proteins of this 
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species (Online Resource: S11). In S. italica AMT 
proteins, the five motifs (motif-5, 6, 8, 9 and 11) 
were found common in all AMTs (Online Resource: 
S12). Whereas in E. corocana, only single motif 
(motif-1) was found common in both the AMT1 and 
AMT2 families (Online Resource: S13). Similarly, in 
P. miliaceum, a single motif (motif-4) was observed 
common in all the AMTs (Online Resource: S15). 
Furthermore, in S. bicolor three motifs (motif-1, 2 
and 19) are common in all the AMT proteins, (Online 
Resource: S14). Motif analysis of P. glaucum AMTs 
showed four common motifs in both the protein 
subfamily (AMT 1 and AMT 2) (Fig. 4).

Phylogenetic tree analysis of AMTs

A total of 53 millet AMT protein sequences have 
been identified using sequence search and alignment 
and used to understand the evolutionary relationships 
among AMT genes (Fig.  5). The common feature 
among AMTs of all the millet crops showed that 
they belong to two subfamilies i.e. AMT1 and AMT2 
(AMT2/AMT3/AMT4). The major evolutionary 
conservation among the transporters exhibited 
that all millet AMTs stemmed from two major 
AMT transporter groups necessitates confirmation 
and further exploration of the evolutionary 
relationships with the AMTs from other species. 
The AMT protein sequences of twelve plant species 
(Setaria viridis, Setaria italica, Eleusine corocana, 
Sorghum bicolor, Pennisetum glaucum, Panicum 
miliaceum, Arabidopsis thaliana, Oriza sativa, 
Zea mays, Hordium vulgare, Triticum aestivum 
and Brachypodium distachyon) and two bacteria 
namely, Escherichia coli and Nitrosomonas europaea 
(ammonia oxidizing bacterium) were used to 
construct phylogenetic tree (Fig. 6). The phylogenetic 
tree structure clearly demonstrated the association of 
AMTs of Poaceae family which include all millets 
and other cereal species. The AMTs of Poaceae 
family have some degree of similarity with AMT 
genes from Arabadopsis thaliana, however, formed 
a different clade and clearly indicated divergence of 
the monocot transporters from the dicot ammonium 
transporters. The exclusion of bacterial group AMTs 
(E. coli and N. europaea) as an outgroup further, 
confirmed the AMT relationships and divergences in 
the phylogenetic grouping. Ta
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Ka/Ks analyses

Nucleotide substitutions in the coding regions may 
or may not result into amino acid change in the 
protein. One of the parameters i.e. Ka/Ks ratio which 
is the measure of the number of nonsynonymous 
substitutions per nonsynonymous site (Ka) and the 
number of synonymous substitutions per synonymous 
site (Ks). This Ka/Ks ration is the measure of selection 
pressure a gene has experienced during evolution. In 
the millet AMT family, analysis of selection types of 
duplicate gene pairs in the SvAMTs, SiAMTs, EcAMTs, 
SbAMTs, PgAMTs and PmAMTs genes were carried 
out using the Ka/Ks ratio. Majority of duplicated 
gene pairs has Ka/Ks ration less than one hence, less 
nonsynonymous substitutions taken place and the 
most of millet AMT genes have undergone negative 
selection. Majority of AMT genes are the resultant 
products of purifying selection during evolution 

(Table  2). However, the gene pair SbAMT1.2 and 
SbAMT4.1 showed that it had undergone neutral 
selection (Ka/Ks = 1). Schematic representations of 
the chromosomal distribution and inter chromosomal 
relationships was studied for all the six millet 
species by making circos plot of each species 
separately. These graphical representations showed 
gene duplication events in circular format. Among 
the 7 SvAMTs genes, three segmental duplication 
pairs (SvAMT1.2/SvAMT1.1, SvAMT2.2/SvAMT2.1 
and SvAMT3.1/SvAMT3.2 were identified (Online 
Resource: S16). In S. italica, out of 9 SiAMTs genes 
only one tandem repeat pair (SiAMT2.3/SiAMT2.2) 
was found and other 3 pairs (SiAMT4.1/SiAMT2.1, 
SiAMT3.2/SiAMT3.1 and SiAMT1.1/SiAMT1.2) 
showed segment duplication (Online Resource: S17). 
Further, the 12 EcAMTs, 5 segment duplication pairs 
(EcAMT3.1b/EcAMT3.1a, EcAMT2.2c/EcAMT2.2b, 
EcAMT2.2d /EcAMT2.2a, EcAMT1.1a/EcAMT1.2a 

Fig. 1  Representative 
figure chromosomes of 
Pennisetum glaucum 
showing distribution 
of PgAMT genes. The 
chromosome number 
is listed below each 
chromosome while the 
numbers on the left 
represent  location of the 
PgAMT genes. (AMTs 
chromosomal locations for 
other five millet species are 
given in Online Resource: 
S1-S5)
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Fig. 2  Representative figure of transmembrane structure 
prediction AMT proteins of Pennisetum glaucum. *Orange 
line represents outside, purple line indicates on transmembrane 

and blue line represents inside transmembrane position. 
(Transmembrane structure prediction of AMTs of other five 
millet species are given in Online Resource: S6-S10)
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and EcAMT4.2/EcAMT4.1) were identified (Online 
Resource: S18). In S. bicolor, two segmental 
duplication pairs were observed out of 5 SbAMTs 
genes (Online Resource: S19). In P. glaucum, out of 
8 genes, one PgAMT pair (PgAMT1.2b/PgAMT1.2a) 
found as tandem while other two pairs (PgAMT3.2/
PgAMT3.3 and PgAMT2.2/PgAMT2.1) showed 
segmental duplications (Fig.  7). Whereas, in case 
of P. miliaceum, all the five pairs (PmAMT4.1b/
PmAMT4.1a, PmAMT2.1/PmAMT2.3, PmAMT1.3a/
PmAMT1.3b, PmAMT1.2b/PmAMT1.2a and 

PmAMT3.3/PmAMT3.1) among twelve genes showed 
segmental duplications (Online Resource: S20). The 
frequency of occurrence of segmental duplication 
events in the AMTs of these millet species suggest 
that these duplications plays bigger role in evolution 
of these genomes. Several research reports mentioned 
the significant role of tandem and segmental 
duplication events in gene family expansion and 
evolution of their genomes (Canon et  al. 2004; 
Panchy et al. 2016; Kuo et al. 2019). 

Fig. 3  Representation of the millet AMT genes structure showing exons, upstream/downstream regions of the gene and introns with 
the pink box, blue and black lines, respectively. Scale bar indicates number of nucleic acids (bp)
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Fig. 4  Illustration of conserved protein motifs and conserved 
domain of AMTs in Pennisetum glaucum. An unrooted 
phylogenetic tree represents AMT1 and AMT2 subfamilies 
with their respective motifs are represented using different 

colours and conserved domains are shown by yellow boxes. 
(Conserved protein motifs and conserved domain analysis 
of AMTs of other five millet species are given in Online 
Resource: S11-S15)

Fig. 5  Phylogenetic tree analysis of AMTs from six millet 
species Setaria viridis (Sv), Setaria italica (Si), Eleusine 
coracana (Ec), and Sorghum bicolor (Sb), Pennisetum 

glaucum (Pg) and Panicum miliacium (Pm). *Different colours 
of circles represent different clusters
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Synteny analysis of AMT genes

In this study, synteny analysis between six millet 
AMT proteins (S. viridis, S. italica, E. corocana, S. 
bicolor, P. glaucum and P. miliaceum) with other 
species of poaceae family (O. sativa, Z. mays, 
H. vulgare, T. aestivum and B. distachyon) was 
performed by circoletto tool to understand the 
evolutionary history of genomes. In this analysis, 
amino acid sequences of AMTs of one species were 

used as query and while the rest of all the AMT 
sequences used as comparative files. ‘E-value’ 
and ‘score/max’ ratio parameter was considered 
to produce the colour bands and the colour of the 
bands indicate the sequence similarities (blue ≤ 0.25, 
green ≤ 0.50, orange ≤ 0.75, and red > 0.75). Based on 
the synteny analyses, maximum high synteny blocks 
(maximum red coloured bands > 0.75) were identified 
between AMTs of millets and other poaceae 
members/species. Considering these maximum 

Fig. 6  Phylogenetic tree analysis of AMTs of Setaria viridis 
(Sv), Setaria italica (Si), Eleusine corocana (Ec), Sorghum 
bicolour (Sb), Arabidopsis thaliana (At), Oriza sativa (Os), 
Zea mays (Zm), Hordium vulgare (Hv), Triticum aestivum 

(Ta) and Brachypodium distachyon (Bd). Two bacterial AMT 
namely, Escherichia coli (Eco) and Nitrosomona seuropaea 
(Ne) showing out grouping. *Different colors of circles 
represent different clusters
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red coloured synteny blocks, it can be concluded 
that, the AMT genes are more conserved in terms of 
evolutionary and genomic architecture in poaceae 
family.

Based on best score match parameter in circoletto 
tool, the best matched AMT sequences of different 
species showed synteny blocks. The AMTs of the 
species S. viridis and S. italica showed best synteny 
association (Online Resource: S21, S22). In case of 
E. corocana AMTs, 12 best score synteny blocks 
were identified between E. corocana AMTs and 
S. viridis, S. italica and S. bicolor AMTs (Online 
Resource: S23), while in case of S. bicolor 5 synteny 
blocks with best score was found between S. bicolor 
and Zea mays, S. viridis, S. italica (Online Resource: 
S24). In P. glaucum, eight best score synteny blocks 

were found in between P. glaucum and S. viridis, S. 
italica, S. bicolor AMTs (Fig. 8). Twelve best score 
synteny blocks were found to be associated with P. 
miliaceum AMTs and P. glaucum and S. viridis, S. 
italica (Online Resource: S25). Genomic dynamicity 
and evolutionary improvement along mobile elements 
in the genome of these six studied millet species were 
determined in these syntenic circles.

Cis-element analysis of millet AMT promoter regions

To study the expression characteristics and 
potential functions of millet AMT genes, 2000  bp 
upstream sequences of start codons of the AMT 
genes of the six studied species were obtained 
as promoter sequences and used to analyse their 

Table 2  Ka/Ks ratios and estimated divergence time for paralogous AMT genes in millets

Paralogous pairs Chromosomal location Duplication event Ka Ks Ka/Ks Selection

Setaria viridis
SvAMT1.2/SvAMT1.1 Chr 1/Chr 7 Segmental 0.05283 0.1924 0.27461 Purifying
SvAMT2.2/SvAMT2.1 Chr 5/Chr 3 Segmental 0.05191 0.22515 0.23055 Purifying
SvAMT3.1/SvAMT3.2 Chr 5/Chr 9 Segmental 0.08041 0.1868 0.43046 Purifying
Setaria italica
SiAMT2.3/SiAMT2.2 scaffold 5/scaffold 5 Tandem 0.04863 0.14225 0.34188 Purifying
SiAMT4.1/SiAMT2.1 scaffold 9/scaffold 3 Segmental 0.13879 0.30335 0.45753 Purifying
SiAMT3.2/SiAMT3.1 scaffold 9/scaffold 5 Segmental 0.07653 0.17625 0.43421 Purifying
SiAMT1.1/SiAMT1.2 scaffold 7/scaffold 1 Segmental 0.04995 0.1767 0.2827 Purifying
Eleusine corocana
EcAMT3.1b/EcAMT3.1a Chr 1B/Chr 1A Segmental 0.00084 0.04375 0.01927 Purifying
EcAMT2.2c/EcAMT2.2b Chr 1B/Chr 1A Segmental 0.00042 0.04607 0.00908 Purifying
EcAMT2.2d /EcAMT2.2a Chr 1B/Chr 1A Segmental 0.00784 0.06567 0.11942 Purifying
EcAMT1.1a/EcAMT1.2a Chr 4B/Chr 2A Segmental 0.06475 0.2043 0.31691 Purifying
EcAMT4.2/EcAMT4.1 Chr 3A/Chr 3B 0.00471 0.04019 0.11715 Purifying
Sorghum bicolor
SbAMT1.2 /SbAMT4.1 Chr 4/Chr 1 Segmental 0.3701 0.34905 1.06031 Neutral
SbAMT3.3/SbAMT3.1 Chr 4/Chr 3 Segmental 0.06694 0.31795 0.21053 Purifying
Pennisetum glaucum
PgAMT1.2b/PgAMT1.2a Chr 3/Chr 3 Tandem 0.02125 0.1033 0.20574 Purifying
PgAMT3.2/PgAMT3.3 scaffold 2474/Chr 3 Segmental 0.08944 0.4701 0.19025 Purifying
PgAMT2.2/PgAMT2.1 Chr 6/Chr 1 Segmental 0.07949 0.23305 0.34109 Purifying
Panicum miliaceum
PmAMT4.1b/PmAMT4.1a Chr4/Chr1 Segmental 0.01625 0.03797 0.42791 Purifying
PmAMT2.1/PmAMT2.3 Chr3/Chr5 Segmental 0.04889 0.19785 0.24711 Purifying
PmAMT1.3a/PmAMT1.3b Chr12/Chr6 Segmental 0.02618 0.0572 0.45762 Purifying
PmAMT1.2b/PmAMT1.2a Chr6/Chr12 Segmental 0.0038 0.03853 0.09858 Purifying
PmAMT3.3/PmAMT3.1 Chr6/Chr5 Segmental 0.09066 0.5224 0.17354 Purifying
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cis-acting elements. The comprehensive results 
showed that millet AMT promoters have numerous 
cis-elements that respond to endogenous signals 
related to plant growth and development (viz. zein 
metabolism, circadian control, endosperm and 
meristem expression, root-seed-palisade mesophyll 
cells regulations), growth hormones (mainly 
auxin, gibberellin, abscisic acid, salicylic acid and 
methyl jasmonate), and environmental stresses 
(e.g. light response elements, low temperature 
stress-related elements, defense and stress, wound, 
anaerobic induction, anoxic specific induction and 
drought stress) (Fig.  9, Online Resource: S26-S30, 
Table. S1). All the millet AMT promoters have 
cis-elements responsive to light, suggesting an 
essential role of these AMT genes in plant growth 
and metabolism. From the data, it was evident that 

each gene promoter contains response element (s) 
to different phytohormone (s) with varied numbers 
ranging from 1 to 20, indicating that these AMT 
genes are under the regulation of hormone (s) and 
are involved in the hormone-mediated biological 
processes. Cis-elements involved in regulation 
of anaerobic induction are also common in all the 
millet AMT promoters, suggesting their possible 
role in plant growth and metabolism in anaerobic 
conditions. Almost all the promoter sequences have 
binding site for MYB-transcription factors related 
to many biological processes, such as plant growth 
and development, primary and secondary metabolic 
reactions, different physiological activity and 
responses to environmental stresses. Cis-elements 
related to drought- inducibility are also present 
adequate amount in almost all the promoters.

Fig. 7  Schematic 
representations of the 
chromosomal distribution 
and inter-chromosomal 
relationships among AMT 
genes of Pennisetum 
glaucum. *Duplication 
events occurred in AMT 
gene family of P. glaucum 
are represented by 
blue, green, and yellow 
lines. *Chromosomes 
are represented in sky 
blue colors with the 
chromosomal number 
indicated inside each 
chromosome. (Visualization 
of chromosomal distribution 
and inter chromosomal 
relationships of other five 
millet species are given 
in the Online Resource: 
S16-S20)
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Discussion

In plants, the Arabidopsis thaliana AtAMT gene 
was first recognized as an ammonium transporter 
(Ninnemann et  al. 1994; Sohlenkampet al. 2000). 
Further analysis in Arabidopsis thaliana, proved that 
these AMTs also act as ammonium sensors that can 
sense the signal for cell–cell communication during 
plant growth and promote root to shoot ammonium 
translocation (Giehl et  al. 2017). Genetic and 
molecular analysis in rice AMTs also proved that it acts 
in cell–cell communication and enhance the crown 
root formation in plants (Luo et al. 2022). In poaceae, 
several AMT homologues have been reported to 
play important roles in ammonium transport, such as 
Triticum aestivum (Li et al. 2017; Jiang et al. 2019), 
Oriza sativa (Li et  al. 2009; Su-mei  et al. 2012), 
Zea mays (Gu et  al. 2013; Dechorgnat et  al. 2019), 
Hordium vugare (Han et  al. 2016) and Saccharum 
spontaneum (Wu et  al 2021). In some millets, these 
AMT genes were also identified and are predicted to 
be associated with plant growth and development via 
ammonium transport (Maharajan et al. 2022; Ceasar 
et al. 2023). In Sorghum bicolor, induction of AMTs 

by arbuscular mycorrhizal fungi was studied which 
enhances the ammonium transport in plant parts 
(Koegel et  al. 2013). The results suggested that, 
this AMT gene family has been involved in many 
biological processes in poaceae family. Millets are 
highly nutritious cereal crops and realizing their 
potential as nutraceutical food, much emphasis is 
given to improvement of these crops. Understanding 
the genomic loci involved in response, uptake and 
utilization of the nitrogen, a major nutrient in millet 
growth and production has utmost significance. There 
are two transporters involved in nitrogen uptake, the 
NRTs and AMTs in crop plants. Extensive research 
on in-silico analysis of NRTs has been carried out in 
millets. However, information about AMTs  in millet 
crops is scanty. Hence, we performed an in-silico 
characterization of millet AMT genes that belong 
to two subfamilies viz. AMT1 and AMT2 (AMT2/
AMT3/AMT4). Generally, the approximate length 
of members AMT gene family are between 400–450 
amino acids and the structure can range from 45 to 
50 kDa (Ninnemann et al. 1994; Blakey et al. 2002). 
The present study involved AMTs of six millet 
species and the length of the amino acids ranged 

Fig. 8  Visualization of the sequence similarity of AMT genes 
between Pennisetum glaucum with other millet AMTs as 
well as AMTs of different species of poaceae family (Oryza 
sativa, Zea mays, Hordeum vulgare, Triticum aestivum and B. 
distachyon). a Representation of synteny of PgAMTs and other 

AMTs. b Synteny blocks in ‘best score’ matching parameter of 
circoletto showing best matches between AMTs of P. glaucum 
and AMTs belongs to same tribe (S. italica, S. viridis and P. 
miliaceum). (Visualization of synteny analysis of other five 
millets are given in Online Resource: S21-S25)



Genet Resour Crop Evol 

Vol.: (0123456789)

from 304 to 632, and molecular weights ranging 
from 32.07 to 67.61 kDa are in consensus with earlier 
research.

Structural analysis AMT genes of millet revealed 
that the two subfamilies AMT1 and AMT2 exhibit 
divergent exon–intron patterns (Fig. 3). The structure 
of AMT genes of millet are highly conserved, 
among all the studied millets. AMT1 of P. glaucum 
(PgAMT1.2b, PgAMT1.2a, PgAMT1.1) and P. 
miliaceum (PmAMT1.2b, PmAMT1.3a) have introns 
in it, others are intronless. Similar research in 
MdAMT1 of Apple and GmAMT1 of Soybean reported 
absence of introns in AMT1 sub family (Huang et al. 
2022; Yang et al. 2023). In Populus, Lotus japonicus, 
chilli pepper, most AMT1 genes have no introns in 
it, with the exception of LjAMT1.1, PtAMT1.7 and 

CaAMT1.1 that have one intron (Wu et  al. 2015; 
Wang et  al. 2022; Fang et  al 2023). Millet AMT2 
genes contain introns (ranges from 1 to 3), exons, and 
UTRs. The lengths of the UTRs, exons and introns 
vary among these AMT2 genes. Introns are usually 
involved in the regulation of gene expression and/
or RNA stability (Shaul 2017). Mutations in critical 
regions in gene structure, including upstream region 
and coding sequence site may alter the expression 
patterns of members of gene family under evolution 
events (Heidari et  al. 2022; Yaghobi and Heidari 
2023). The lack of introns in the AMT1 subfamily 
genes suggests that the expression of these genes is 
essentially regulated at the transcriptional level. Large 
variations in the length and number of introns in 
different AMT2 subfamily genes indicate that these 

Fig. 9  Representation of promoter cis-element analysis of 
AMT genes in P. glaucum. a Promoter position information. 
The different colored markers indicate different predicted 
cis-acting elements. b Promoter number analysis. The color 

scale to the right of the heat map represents the number of 
promoters. (Promoter cis-element analysis of AMT genes of 
other five millets are given in Online Resource: S26-S30)
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genes may undergo more complicated regulation, 
such as mRNA transport, alternative splicing, or 
chromatin assembly, which have been reported 
previously (Zhao et al. 2014; Jo and Choi 2015).

The phylogenetic analysis for ammonium 
transporters genes of six millets (Fig. 5) revealed that 
S. viridis, S. italica, P. glaucum and P. miliaceum 
shares a close relationship after alignment of 
retrieved proteins sequences of all the AMTs. 
This could be due to taxonomic commonality for 
instance, these four species (S. viridis, S. italica, 
P. glaucum and P. miliaceum) belong to the same 
tribe Paniceae (Li and Bruntnell  2011). Further, 
combined phylogenetic analysis using AMT proteins 
of all cereals (millets, rice, wheat, maize, barley and 
brachypodium), arabidopsis and bacterial AMTs 
(E. coli and N. europaea) evidently identified 
close association among six millets species for two 
ammonium transporter subfamilies. The maize 
transporter (ZmAMTs) were found closely related 
with millet AMTs as Zea mays (maize) is a member 
of Andropogoneae, which is a sister tribe to millet 
family, the Paniceae (Li and Brutnell 2011). The 
phylogenetic analysis of all millet AMTs and the 
combined phylogenetics involving AMTs of rice, 
wheat, maize, arabadopsis AMTs and bacterial 
AMTs (E. coli and N. europaea) clustered into 
conspicuous two subgroups of AMTs and similar 
findings of AMTs grouping has been reported in 
several investigations carried on other crops such as, 
soybean (Yang et al. 2023), poplus (Wu et al. 2015) 
and cassava (Xia et al. 2023).

In synteny analysis, the high score synteny blocks 
(red > 0.75) reinforce the idea that, AMT genes of 
poaceae are conserved in this family (Fig. 8, Online 
Resource: S21-S25). Five studied millets (S. viridis, 
S. italica, P. glaucum, P. miliaceum and S. bicolor) 
belongs to the subfamily panicoideae showed the 
best score synteny blocks frequently, imparting 
knowledge about the conservation of AMT genes in 
this subfamily. Again, AMTs of S. viridis, S. italica, 
P. glaucum and P. miliaceum exhibit maximum best 
scores synteny blocks as they belong to the same 
tribe paniceae. Furthermore, best score synteny 
blocks were found between S. bicolor and Z. mays, 
which again supporting the concept that AMTs are 
also conserved in tribes, as those two belongs to 
the identical tribe andropogoneae. In best match 
synteny analysis of E. corocana synteny blocks 

were also appeared between E. corocana and other 
millet AMTs, but the frequency is low. E. corocana 
belongs to chloridoideae subfamily, which is a close 
relative of subfamily panicoideae, and this may 
suggest that, there are resemblance of AMT genes 
between two closely related sister subfamilies. No 
best score synteny blocks were found between millet 
AMTs and other members of poaceae viz. O. sativa 
(subfamily: oryzoideae), B. distachyon, T. aestivum 
and H. vulgare (subfamily: pooideae) considered 
for this study, as they shared distant relationship 
from panicoideae subfamily. The phylogenetic tree 
generated by chloroplast matK genes of all the species 
of poaceae family in this study gives a depiction of 
taxonomic classification of poaceae family (Fig. 10), 
(Sorenget al. 2015, 2017, 2022). Interestingly, the 
phylogenetic tree constructed using AMT1.1 gene 
of all the previously studied Poaceae family crops 
reflected precisely the same pattern as proposed in 
their taxonomic classification (Fig. 10). This suggests 
that, in the course of evolution, AMT genes were also 
evolved by means of gene flow, natural selection, 
mutation or genetic drift.

A promoter is a region of DNA upstream of a 
gene where relevant proteins viz. RNA polymerase 
and transcription factors have to bind and initiate 
transcription of that gene (Hernandez-Garcia and 
Finer 2014). The level of transcriptional activation 
in eukaryotes is coordinated by upstream cis-acting 
elements in the regulation of gene expression, 
which are key links in plant environmental 
responses. Plant gene promoters contain a variety 
of important cis-acting elements that are involved 
in regulating the expression of corresponding 
downstream genes at the transcriptional level, 
thereby enabling plants to resist environmental 
stresses (Li et  al. 2020). Cis-acting regulatory 
element analysis of millet AMTs promoter regions 
revealed a great abundance of light responsive 
elements, which implies that AMT gene expression 
is closely associated with photosynthesis and 
might be diurnally regulated. In research with 
Arabidopsis AMTs, AtAMT1.3 exhibited a typical 
diurnal pattern of change in expression; absorption 
of ammonium increased significantly towards 
the end of the day’s light, and decreased as light 
intensity decreased (Gazzarrini et  al. 1999). 
Additionally, two tomato AMTs (LeAMT1.2 and 
LeAMT1.3) also demonstrated rhythmic regulation 
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(Von Wirén et  al. 2000). Further, all the AMT 
genes share cis-elements responsive to anaerobic 
conditions. This has functional application in rice 
where AMTs has been widely studied for their role 
to uptake and utilize ammonium form of nitrogen 
in anaerobic conditions (Konishi and Feng. 2021). 
Cis-element analysis of AMT genes in majority of 
millet species showed involvement of at least one 
cis element in host defense response to the various 
biotic stresses in this study. It has been revealed in 
wheat and rice that ammonium transporters 1.1, 
1.3, and 2.3 are associated with defense response 
to pathogens (Wu et  al. 2022; Li et  al. 2017; 
Jiang et  al. 2019). Similarly evidences in support 
of role of AMTs in plant–microbe symbiosis e.g. 
LjAMT2.1 and LjAMT2.2 of Lotus japonicus 
and MtAMT2.3 of Medicago truncatula could be 
involved in ammonium transport from the host 
plants to nitrogen-fixing rhizobia and arbuscular 
mycorrhizae (Simon-Rosin et  al. 2003; Guether 
et  al. 2009; Breuillin-Sessoms et  al. 2015). In 
addition, these AMT genes are under the control of 
different phytohormone (s) during the development 
and their response varies under diverse 
environmental conditions, thereby co-ordinately 
regulating ammonium uptake and metabolism.

Conclusion

The ammonium transporter gene (AMT) family 
plays a key role in the acquisition and transport 
of NH4 + forms of nitrogen in plants. This study 
identified a total of 53 AMT genes in the genomic 
sequences of the six millet species and classified 
them into two subfamilies, AMT1 and AMT2 
(AMT2/AMT3/AMT4), based on phylogenetic 
analysis. The expansion of millet AMTs is the 
outcome of segmental and tandem duplication 
events in evolution. Syntenic conservation 
was observed in the structure and function of 
ammonium transporters in members of Poaceae. 
Promoter analysis of millet AMTs showed the 
presence of cis-elements regulating light response, 
anaerobic induction, growth hormones, drought 
stress, biotic stress, and several endogenous signals 
related to plant growth and development. This study 
provides in-depth information about the ammonium 
transporter gene family in millets, which would 
assist in improving nitrogen use efficiency through 
genomic manipulation of the expression patterns of 
these transporters.

Fig. 10  Phylogenetic classification of Poaceae family by using matK (A) and AMT1.1 (B) gene sequences
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