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grains. In general, our data confirm Bobrov’s previ-
ous views on the system of the genus Nitraria, which 
distinguished ser. Sibiricae and ser. Schoberianae in 
sect. Nitraria.
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Introduction

The nucleus of plant cells contains the material car-
rying genetic information. Therefore, studying the 
nuclear DNA content and ploidy is of fundamental 
importance for answering complex biological ques-
tions. Genomes of organisms at the same level of 
organization are known to vary substantially in the 
DNA content. The genome size variation is character-
ized by a difference in the number of chromosomes, 
nuclear DNA content, and various repetitive DNA 
sequences (Sedelnikova 2015).

Research has demonstrated the correlations of 
genome size with breeding systems and species gen-
esis (Albach and Greilhuber 2004; Weiss-Schnee-
weiss et  al. 2005). Intraspecific variation of genome 
size has been found among plant specimens from 
geographically separated populations (Jakob et  al. 
2004; Schmuths et al. 2004; Smarda and Bures 2006), 
and the nuclear DNA content correlates with envi-
ronmental factors (Kalendar et  al. 2000; Knight and 
Ackerly 2002) and plant phenotypic traits (Knight 

Abstract  For the first time, nuclear genome size 
and ploidy of five Nitraria species from 49 popula-
tions were examined by flow cytometry. All popula-
tions were also analyzed for the chromosome num-
ber. We identified significant differences in the 2C 
nuclear DNA content among the analyzed species, 
and this parameter correlated with their ploidy. Dip-
loid (2n = 2x = 24) species N. sibirica and N. tangu-
torum were found to have smaller genome size (1.24–
1.34 and 1.57–1.65  pg) as compared to tetraploid 
(2n = 4x = 48) species N. komarovii (2.23–2.32  pg), 
N. pamirica (3.10–3.30  pg), and N. schoberi (2.93–
3.39 pg). Intra-population genome size variation was 
found in examined species, varying from 1.01 to 
1.08-fold. Nitraria sibirica has lower inter-population 
variation of the 2C (1.08-fold) as compared to N. 
schoberi (1.16-fold). All the Nitraria species are mix-
oploids. It turned out that an increase in the equatorial 
axis of Nitraria pollen is associated with an increase 
in 2C and 1Cx. An exception is N. komarovii, with its 
intermediate 2C DNA content and the smallest pollen 
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et al. 2005; Murray et al. 2005; Beaulieu et al. 2007). 
The amount of nuclear DNA can influence the phe-
notype through regulatory processes in the genome 
and via simple physical effects of the DNA material 
at the cellular level (Moeller 2018). These effects are 
known to result in changes in cell cycle duration, pol-
len maturation timing, and pollen grain size (Bennett 
1972, 1987; Leitch and Bennett 2007; Beaulieu et al. 
2008; Lomax et  al. 2009), guard and epidermal cell 
size (Snodgrass et al. 2017), and seed size (Beaulieu 
et al. 2007). Plant ploidy is reported to be related to 
pollen grain size (Sousa et  al. 2013; Srisuwan et  al. 
2019). An analysis of genome size in terms of phylo-
genetic relationships among individual taxa revealed 
that evolutionary trajectories of genome size and pol-
len size are probably unrelated (Moeller 2018).

Plants of the genus Nitraria L. are halophytes and 
are usually confined to intrazonal communities. The 
considerable isolation of numerous populations of 
Nitraria species from each other makes this genus 
a unique model plant for research on processes of 
genetic differentiation.

In this regard, despite the small number of taxa 
(10–12 species), no obvious patterns in the genus 
Nitraria (Bobrov 1965; Khalkuziev 1990; Pan et  al. 
1999; Banaev et al. 2023) and no clear idea of species 
genesis have been published so far. The issues about 
the center and time of origin of the genus Nitraria and 
pathways of species dispersal also remain debatable. 
The presence of its representatives in Australia (N. bil-
lardierei DC.) and the genus’s biology led Komarov 
(1908) to believe that Nitraria had originated on saline 
sea coasts of Gondwana as part of tropical flora before 
the formation of the Asian and Australian deserts. 
Later on, almost all researchers believed in phyloge-
netic antiquity of the genus (Il’in 1944, 1958). At the 
same time, Korovin (1935) and Bobrov (1946) assumed 
that the center of origin of the genus Nitraria could 
be deserts of Central Asia, where at present, there is a 
center of its diversity. Popov (1927) suggested that a 
new habitat of the genus Nitraria had formed in Cen-
tral Asia on the basis of data about N. schoberi L. and 
N. retusa (Forsk.) Aschers, already existing on the 
African continent in the Cretaceous period. Pan et  al. 
(1999) assumed an African-Mediterranean origin of 
the genus in accordance with the distribution of dip-
loid Nitraria species. Nonetheless, the same species 
has been reported to belong to a diploid or a tetraploid 
group (Pan et al. 2003; Temirbayeva and Zhang 2015; 

Marhold et al. 2020). The latest fossil pollen evidences 
suggest a new evolutionary history of Nitraria (Wout-
ersen et al. 2023). Previous molecular genetic research 
of some Nitraria species from 31 populations in Sibe-
ria, the Republics of Kazakhstan and Tajikistan showed 
a clear separation of a diploid (ser. Sibiricae Bobrov) 
and a tetraploid (ser. Schoberianae Bobrov) species 
(Banaev et  al. 2023). Biogeographical analysis sug-
gest that the Central Asian species N. sphaerocarpa 
Maxim. is the oldest species (Paleocene), and the dis-
persal started from Central Asia to Africa (since the 
Oligocene) and to Siberia (5.95 Mya) (Late Miocene) 
and Australia (2.61 Mya) (Late Pliocene) (Zhang et al. 
2015). However, as revealed by integration of fos-
sil pollen morphology and molecular data, the split 
between N. sphaerocarpa and the other Nitraria types 
did not happen before the Miocene and modern species 
of Nitraria originate during the Late Miocene (Wout-
ersen et al. 2023).

The nuclear DNA content, estimated by flow cytom-
etry, is an essential genome feature together with the 
chromosome number (Doležel and Bartoš 2005). Kary-
otype analysis is an important method for revising spe-
cies classification and studying phylogenetic relation-
ships (Hong 2021). Flow cytometry can be considered 
a useful method for understanding taxonomic relation-
ships (Bourge et al. 2018).

Available Nitraria-related cytological information 
that is important for understanding Nitrariaceae evolu-
tion is very scarce (Tarnavshi 1948; Reese 1958; Pan 
et  al. 2003; Banaev et  al. 2018a,b; Voronkova et  al. 
2018; Marhold et  al. 2020, 2021, 2022). The Plant 
DNA C-values Database (https://​cvalu​es.​scien​ce.​kew.​
org/; accessed on 20 June 2023) does not contain infor-
mation on genome sizes of Nitraria species. Determi-
nation of genetic variability of wild plants helps to con-
serve and use them (Khaleghi and Khadivi 2023).

The purpose of this study was to analyze intra- and 
inter-population variations of the 2C DNA content 
and chromosome number and their correlations with 
pollen grain size of Nitraria species.

Materials and methods

Plant materials

Seeds of five species of the genus Nitraria (N. sibir-
ica Pall., N. schoberi, N. pamirica L.I. Vassiljeva, N. 

https://cvalues.science.kew.org/
https://cvalues.science.kew.org/
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komarovii Iljin & Lava ex Bobrov, and N. tangutorum 
Bobrov) were collected in 49 natural populations in 
Russia, Tajikistan, and Kazakhstan from 2009 to 
2021 (Table  1, Fig.  1). Twenty-four populations of 
N. sibirica, 22 populations of N. schoberi, and one 
population of each of three species (N. pamirica, N. 
komarovii, and N. tangutorum) were investigated. The 
vouchers are stored in herbarium NSK (the Dendrol-
ogy Laboratory of the CSBG SB RAS, Novosibirsk, 
Russia) and available in the digital herbarium of the 
CSBG SB RAS, NSK (http://​herb.​csbg.​nsc.​ru:​8081).

Fresh leaves of Pisum sativum L. ‘Ctirad’ 
(2C = 9.09  pg) and Raphanus sativus L. ‘Saxa’32 
(2C = 1.11 pg) (Doležel et al. 1998) grown from seeds 
obtained from the Centre of Plant Structural and 
Functional Genomic at the Institute of Experimental 
Botany of the Academy of Sciences, AS CR (Olo-
mouc-Holice, Czech Republic) (Doležel et  al. 1992) 
were used as an internal standard.

Flow Cytometry (FCM)

All FCM procedures were performed in the Central 
Siberian Botanical Garden SB RAS (Novosibirsk, 
Russia). The analysis was performed on a Cy Flow 
Space instrument (Sysmex Partec, Norderstedt, Ger-
many) with a 532 nm laser source. The DNA content 
of plants was determined by FCM with staining of 
isolated nuclei with propidium iodide (PI). The seeds 
of Nitraria were analyzed following a previously 
developed methodology (Banaev et  al. 2018b). At 
least 10 plants were randomly selected in each popu-
lation of Nitraria species for genome size variation 
analysis.

Nitraria plant embryos extracted from the seed 
were ground up using a razor blade in plastic Petri 
dishes together with an appropriate amount of an 
internal standard (P. sativum or R. sativus) in 500 µL 
of chilled extraction buffer (Nuclei Extraction Buffer) 
(Sysmex Partec, Norderstedt, Germany) according to 
the manufacturer’s protocol. The plant tissue samples 
were incubated at room temperature for 2 min. After 
the extraction of the nuclei, the samples were passed 
through a 50  µm Celltrics Partec disposable filter 
(Sysmex Partec, Norderstedt, Germany), followed 
by the addition of 2  mL of the Staining Solution 
(for staining) consisting of Staining Buffer (Sysmex 
Partec, Norderstedt, Germany), PI (50  µg/mL), and 
RNase A (50 µg/mL). The staining was performed at 

room temperature in a dark place for 15 min. The pre-
pared nuclei samples were stored in a refrigerator for 
no more than 4 h.

Next, 15,000 FCM events were collected [the 
required number is 5,000 to 20,000 (Galbraith et  al. 
1998; Doležel and Bartoš 2005)] three times per sam-
ple; the coefficient of variation of the mean was less 
than 5%. A relative nuclear DNA content was calcu-
lated based on a linear relation between fluorescence 
signals from stained nuclei of tested specimens and 
the internal standard (Doležel et  al. 2007) and was 
expressed as an index.

The chromosome number (CHN)

Seeds were stratified on moist filter paper for 1 month 
and germinated at 27–28  °C. For fixation, roots 
0.5–2.5 cm long were selected. After that, 30 individ-
ual plant specimens from each population of Nitraria 
were subjected to the determination of chromosome 
numbers (2n). Cytological procedures were per-
formed on root meristem. Actively growing seedlings 
were kept for 3 h at room temperature in a 0.2% col-
chicine solution and fixed in an ethanol: acetic acid 
solution (3:1). Seeds were fixed between 10:00 and 
11:00 AM (UTC + 7). The preparations were stained 
with acetohematoxylin according to Smirnov (1968). 
Chromosome examination and photodocumentation 
of metaphase plates were carried out under an Axi-
oscope 40 microscope equipped with an AxioCam 
MRc 5 color digital camera and AxioVision v.4.8 
software (Carl Zeiss Ltd., Göttingen, Germany) and 
under an Axioscope A1 microscope with an Axiocam 
506 color digital camera and ZEN 2012 (blue edition) 
software (Carl Zeiss Ltd., Göttingen, Germany).

The most common number is taken as the value 
of the chromosome number. The following notation 
is used for chromosome numbers: modal number and 
numbers determined.

Morphometric results on pollen grains

For a comparative analysis of the DNA content and 
pollen characteristics, pollen morphometric data were 
borrowed from a previously published article (Tomo-
shevich et  al. 2022). The following traits were char-
acterized: polar axis (P, µm), equatorial axis (E, µm), 
and the P/E ratio.

http://herb.csbg.nsc.ru:8081
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Table 1   Voucher specimens of Nitraria 

Name of the population Voucher information Herbarium 
specimen 
number

N. sibirica

Noven’koe Russia, Altai Krai, vicinity of Noven’koe Village, 23 July 2020 NSK3001267
Kulunda Russia, Altai Krai, on the shore of Lake Kulundinskoye, 08 August 2011 NSK3000987
Bele Russia, Republic of Khakassia, the shore of Lake Bele, 08 August 2012 NSK3001261
Balansor Russia, Altai Krai, on the shore of Lake Balansor, 26 July 2020 NSK3001257
Dzhira Russia, Altai Krai, eastern shore of Lake Dzhira, 27 July 2020 NSK3001788
Gornyak Russia, Altai Krai, vicinity of Gornyak Village, 23 July 2020 NSK3001268
Kuchuk Russia, Altai Krai, vicinity of Nizhny Kuchuk Village, 27 July 2020 NSK3001778
Yarovoe Russia, Altai Krai, southern shore of Bolshoye Yarovoe Lake, 28 July 2020 NSK3001253
Shara-Nur Russia, Tuva Republic, the shore of Lake Shara-Nur, 04 August 2021 NSK3001733
Rubtsovsk Russia, Altai Krai, vicinity of Rubtsovsk City, 06 August 2011 NSK3000992
Hadyn Russia, Tuva Republic, northern shore of the Lake Hadyn, 26 July 2011 NSK3000912
Turan Russia, Tuva Republic, vicinity of Turan village, the shore of Lake Beloe, 26 July 2011 NSK3001778
Ulug-Kol Russia, Khakassia Republic, the shore of Lake Ulug-Kol, 08 August 2012 NSK3001262
Pospeliha Russia, Altai Krai, vicinity of Pospelikha Village, 22 July 2020 NSK3001256
Uglovskoye Russia, Altai Krai, vicinity of Uglovskoye Village, 26 July 2020 NSK3001498
Tassor Russia, Altai Krai, the shore of Lake Big Tassor, 26 July 2020 NSK3001260
Chinkussor Russia, Altai Krai, the shore of Lake Chinkussor, 26 July 2020 NSK3001252
Bagan Russia, Novosibirsk Oblast, vicinity of Bagan Village, 29 July 2020 NSK3001251
Chagan Russia, Novosibirsk Oblast, the shore of Lake Chagan, 03 August 2009 NSK3001288
Kosh-Agach (Chuya) Russia, Altai Republic, 13 km from the Kosh-Agach Village, on the shore of a lake in the 

valley of the Chuya River, 10 August 2016
NSK3001007

Kosh-Agach (Chaganka) Russia, Altai Republic, vicinity of Kosh-Agach Village, bank of the Chaganka River, 06 
July 2018

NSK3001270

Balhash Kazakhstan, Almaty Region, on the shore of Lake Balkhash, sandy desert, 25 July 2013 NSK3000921
Kurti Kazakhstan, Almaty Region, north of Kurty Village, bank of the Kurty River, 20 July 

2014
NSK3001782

Koktal Kazakhstan, Almaty Region, vicinity of Koktal Village, 30 July 2013 NSK3000989
N. schoberi

Sariozek Kazakhstan, Almaty Region, 30 km north of Saryozek Village, 29 July 2014 NSK3000969
Basshi Kazakhstan, Almaty Region, vicinity of Bashshi Village, 30 July 2013 NSK3000998
Aidarli Kazakhstan, Almaty Region, Zhambylskii District, 17 km south of Aydarly Village, 21 

August 2017
NSK3000958

Koktal Kazakhstan, Almaty Region, vicinity of Koktal Village, 30 July 2013 NSK3000999
Lepsi Kazakhstan, Almaty Region, on the bank of the Lepsi River in outskirts of Lepsi Village, 

28 July 2013
NSK3000997

Bagan Russia, Novosibirsk Oblast, on the terrace of Lake Bagan, 29 July 2020 NSK3001254
Kaspii Kazakhstan, Mangistauskaya Oblast, vicinity of Aktau City, on sandy mound, 12 June 

2012
NSK3000979

Actau Kazakhstan, Mangistauskaya Oblast, vicinity of Aktau City, 12 June 2012 NSK3000978
Tigen Kazakhstan, Mangistauskaya Oblast, 6 km south of Tigen Village, 10 August 2017 NSK3000913
Krim Crimea, on the sandy coast of the Black Sea in Dvuyakornaya Bay, 16 September 2013 NSK3000960
Pyandzh1 Tajikistan, on the sandy bank of the Panj River, 08 August 2014 NSK3000994
Pyandzh2 Tajikistan, 10 km north of Ishkashim Village, on the bank of the Panj River, 08 August 

2014
NSK3000993
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Table 1   (continued)

Name of the population Voucher information Herbarium 
specimen 
number

N. sibirica

Kulunda Russia, Altai Krai, on the shore of Lake Kulundinskoe, 08 August 2011 NSK3000987
Malinovoe Russia, Altai Krai, on the shore of Lake Malinovoe, 27 July 2020 NSK3001250
Karalat Russia, Astrakhan Oblast, vicinity of Karalat Village, 26 July 2018 NSK3000937
Baskunchak Russia, Astrakhan Oblast, vicinity of Nizhnii Baskunchak village, 28 July 2018 NSK3000929
Balhash Republic of Kazakhstan, Almaty Region, on the shore of Lake Balkhash, sandy desert, 25 

July 2013
NSK3001000

Karatal Kazakhstan, Almaty Region, vicinity of Ushtobe City, on the terrace of the Karatal River, 
01 July 2015

NSK3000923

Alakol Kazakhstan, Jambyl Region, the shore of Lake Alakol, 21 August 2017 NSK3000942
Taskarasu Kazakhstan, Almaty Region, vicinity of Taskarasu Village, 01 August 2013 NSK3001001
Kuchuk Russia, Altai Krai, vicinity of Nizhny Kuchuk Village, 27 July 2020 NSK3001265
Xinjiang China, Xinjiang Uygur Autonomous Region, the vicinity of Altai City, saline land, 22 

September 2012
NSK3000914

N. komarovii
Balhash Kazakhstan, Almaty Region, on the shore of Lake Balkhash, sandy desert, 26 July 2013 NSK3000926

N. tangutorum
Ningxia-Hui China, Ningxia-Hui Autonomous Region, sandy desert, 25 August 2015 NSK3000916

N. pamirica
Shaimak Tajikistan, Eastern Pamir, on the cliff of the Djilga River, 10 August 2014 NSK3001238

Fig. 1   The map of sampling sites of species from the genus Nitraria 
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Statistical analysis

These procedures were carried out in Microsoft Excel 
7.0 and STATISTICA 6.0 (correlation analysis, LSD 
test, Newman–Keuls test, ANOVA, at p ≤ 0.05) (Stat-
Soft Inc., Tulsa, OK, USA). The images and data 
obtained by FCM were analyzed in the CyFlow® 
Space software (Sysmex Partec, Norderstedt, Ger-
many). The findings are presented as mean values 
with standard error, standard deviation, and a coeffi-
cient of variation (mean ± SE; mean ± SD; CV, %). To 
calculate the 1C value, 2C was divided by two, and to 
calculate 1Cx, 2C was divided by ploidy.

Results

Genome size and ploidy

FCM revealed three peaks in N. sibirica, N. 
komarovii, N. tangutorum, and N. pamirica and four 
peaks in N. schoberi (Fig.  2). The first peaks in N. 
schoberi and N. pamirica proved to be internal stand-
ard peaks G1 and G2 (R. sativus). The next two peaks 
represented the G1 and G2 peaks of Nitraria (Fig. 2c, 
d). In N. sibirica, N. komarovii, and N. tangutorum, 
the first peaks were peaks G1 and G2 of the Nitraria 
plant itself, followed by the internal standard (P. sati-
vum) (Fig. 2a, b, e). Figure 2f shows the histograms 
of N. sibirica, N. komarovii, and N. schoberi without 
the internal standard and illustrates the differences in 
genome size among these species.

According to the FCM results, the species in ques-
tion can be classified into diploids (2n = 2x = 24) and 
tetraploids (2n = 4x = 48). Statistical analysis revealed 
four isolated groups based on 2C genome size 
(Fig.  3). The lowest DNA content was found in N. 
sibirica (1.24–1.34 pg), and the highest in N. pamir-
ica (3.10–3.30 pg) and N. schoberi (2.93–3.39 pg).

The lowest intra-population variation of the DNA 
content is characteristic of N. sibirica (1.01–1.02-
fold), and the highest variation is characteristic of N. 
schoberi (1.03–1.08-fold). In N. komarovii, N. tangu-
torum, and N. pamirica, the intra-population variation 
of genome size proved to be 1.04-, 1.05-, and 1.06-
fold, respectively (Table 2). Additionally, N. sibirica 
has lower inter-population variation of the DNA con-
tent (maximum variation 1.08-fold) as compared to 
N. schoberi (maximum variation 1.16-fold). A DNA 

content (2C) analysis of variance (Newman–Keuls 
test, p ≤ 0.05) subdivided N. schoberi populations 
into two groups: 2.93–3.10 and 3.17–3.38  pg. No 
significant differences were found among N. sibirica 
populations.

We noticed that in N. pamirica, N. komarovii, and 
N. schoberi, the modal number of chromosomes is 
2n = 48, whereas in N. sibirica and N. tangutorum, 
it is 2n = 24, confirming the ploidy shown by FCM 
(Table 2, Fig. 2).

The characterization of the karyotype of Nitraria 
species helped us to determine the most frequent num-
bers of chromosomes (Table 2, Fig. 4). For instance, 
in N. sibirica, cells with 2n = 3x = 36, 2n = 4x = 48, 
2n = 5x = 60 were found; in N. tangutorum, 2n≈26; in 
N. schoberi, 2n = 2x = 24, 2n = 5x = 60, 2n = 6x = 72, 
2n = 8x = 96 (Fig.  5); in N. pamirica, 2n = 2x = 24. 
Cells with 2n≈40 and 2n≈80 were sometimes 
observed in N. schoberi and N. sibirica.

Different sets of chromosomes in Nitraria species 
were noted among different plants within populations 
and among cells of a single plant. The analysis of the 
nuclear DNA of N. sibirica revealed the presence of 
endopolyploid nuclei (up to 16C) in plants from dif-
ferent populations (Fig. 6).

Correlation of the nuclear DNA content with pollen 
grain size

The correlation analysis of datasets of pollen size 
and DNA contents uncovered a positive correlation 
between the pollen E and the 2C value (r = 0.52) and 
a negative correlation between the P/E ratio and 2C 
(r = –0.54) (Tables  3 and 4), indicating that E goes 
up with the increasing DNA content along with 
unchanged or decreasing pollen grain size. Monop-
loid genome size (1Cx) positively correlated with E 
even more strongly (r = 0.64).

Discussion

Genome size and ploidy

Interspecies variation of genome size is a well-known 
fact (Bennet et  al. 2000; Doležel et  al. 2007), but 
genome size within a species is thought to be stable 
(Greilhuber et  al. 2005; Lomonosova et  al. 2020). 
Lysak et al. (2000) documented a 1.06-fold variation 
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of genome size in European populations of Sesle-
ria albicans. Similarly, lack of a significant varia-
tion, i.e., a 1.06-fold difference, was proved in Pinus 
nigra (Bogunic et  al. 2007). In Trifolium repens 
and T. fragiferum, only a slight intraspecific vari-
ation of genome size was recorded, 1.05- and 1.03-
fold, respectively (Lukjanová and Řepková 2021). In 

a paper about Allium cepa cultivars from different 
parts of the world, some authors reported exceptional 
intraspecific stability of genome size (Bennet et  al. 
2000).

Our results indicate intra-population stability of 
the nuclear DNA content in all five examined species, 
ranging from 1.01- to 1.08-fold. A similar magnitude 

Fig. 2   Histograms of 
fluorescence intensity of 
PI. a Nitraria sibirica, 
b N. tangutorum, c N. 
schoberi, d N. pamirica, 
e N. komarovii, and f N. 
sibirica, N. komarovii, and 
N. schoberi 
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of variation was observed within a single plant of 
each species of genus Nitraria (Banaev et al. 2018a). 
This result can be explained by the finding that seeds 
collected from one bush may have a male gameto-
phyte from another plant (Voronkova et al. 2018).

We detected no obvious patterns regarding levels 
of variation of the DNA content across populations. 
In particular, among N. schoberi plants from the East-
ern Pamir, the variation is 1.07-fold in the Pyandzh1 
population and 1.01-fold in the Pyandzh2 popula-
tion located 20  km away. Among N. sibirica plants, 
the highest variation of genome size (1.02-fold) was 
found in populations of Altai Krai (Uglovskoe), Altai 
Republic (Kosh-Agach), Tuva (Turan), and Kazakh-
stan (Koktal), located at a substantial distance from 
each other. Correlations between ecological differen-
tiation and genome size have been reported at both 
interspecific and intraspecific levels (Knight et  al. 
2005; Knight and Ackerly 2002), for example, in 
plant species of genera Larrea (Poggio et  al. 1989), 
Cardiospermum (Urdampilleta et  al. 2012), Berb-
eris (Bottini et  al. 2000), Coffea (Razafinarivo et  al. 
2012), and Psidium (Tuler et al. 2019). For instance, 
it was shown that the species of Larrea, Bulnesia, and 
Pintoa that inhabit the most arid environments are 

the ones possessing the highest DNA content (Poggio 
et al. 1989). In other research, intraspecific DNA con-
tent variation has correlated with a geographic envi-
ronment and ploidy in Festuca pallens (Smarda and 
Bures 2006) and Miscanthus sp. (Sheng et al. 2016). 
Our results suggest that among N. schoberi popula-
tions, the DNA content is lower in plants growing in 
the Balkhash-Alakol basin and along the coasts of 
large water bodies, the Black Sea and Caspian Sea.

Our analysis of DNA content variation showed 
higher stability of genome size in N. sibirica than in 
N. schoberi. This finding is consistent with available 
data on increased variation of genome size in poly-
ploids (Tuna et al. 2017). As stated above, N. sibirica 
is diploid (2n = 2x = 24), and N. schoberi is tetraploid 
(2n = 4x = 48).

Our results show that monoploid genome size of 
Nitraria varies 1.40-fold (0.57–0.80  pg), with the 
smallest value in N. komarovii. Genome downsiz-
ing in the process of polyploidization may increase 
a plant’s environmental adaptive fitness and facilitate 
competition with their diploid species. For example, 
it was demonstrated that altered 1Cx values reflect 
plasticity of the polyploid genome in various Mis-
canthus species (Sheng et  al. 2016). Furthermore, a 

Fig. 3   A block diagram 
of the DNA content (2C) 
in five species of the genus 
Nitraria 
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Table 2   Relative genome sizes (2C) and CHNs (2n) in Nitraria 

Name of the population DNA content (pg) CHN

Mean Min Max SD CV% Modal number Numbers determined

N. schoberi
Karalat 3.12 3.09 3.14 0.023 0.75 48 42*,46*,48,50*,56*,64*
Baskunchak 3.24 3.23 3.25 0.010 0.31 48 48
Krim 3.09 3.06 3.11 0.017 0.55 48 24, 36, 40, 42*, 48, 57, 60, 66, 69
Kaspii 3.23 3.21 3.25 0.015 0.46 48 48
Actau 3.20 3.16 3.23 0.020 0.63 48 48
Tigen 3.10 3.06 3.13 0.029 0.92 48 36, 48, 54, 56*, 60, 64*
Pyandzh2 3.25 3.22 3.26 0.016 0.49 48 24, 36, 48, 56, 72, 76, 92
Pyandzh1 3.21 3.09 3.32 0.050 1.56 48 24, 44, 48, 54, 60, 74
Aidarli 3.07 3.05 3.09 0.012 0.39 48 24*, 26, 36, 42*, 48, 54, 58*, 62
Lepsi 3.25 3.18 3.34 0.040 1.23 48 24, 36, 48, 60, 68
Balhash 2.98 2.93 3.02 0.031 1.04 48 48, 60, 72
Karatal 2.97** 2.95 2.99 0.013 0.45 48 42,46,48,50,64
Alakol 2.97 2.94 2.99 0.044 0.54 48 48
Sariozek 3.17 3.16 3.21 0.019 0.60 48 36, 48, 50, 60*, 66, 74
Taskarasu 3.29 3.25 3.32 0.028 0.88 48 48
Basshi 3.32 3.30 3.34 0.015 0.45 48 38, 40, 48, 72
Koktal 3.27 3.23 3.30 0.027 0.83 48 24, 36, 48, 50, 56, 64
Kuchuk 3.33 3.28 3.38 0.035 1.06 48 48
Malinovoe 3.21 3.16 3.27 0.032 1.00 48 24, 36, 42*, 46*, 48, 54, 60, 70, 76*, 82
Kulunda 3.22 3.16 3.28 0.035 1.09 48 24, 36, 42*, 48, 68
Bagan 3.34 3.28 3.39 0.036 1.08 48 24, 34*, 36, 42*, 48, 60, 64*
Xinjiang 3.26 3.23 3.34 0.029 0.89 48 24, 36, 48, 54, 60, 62
Mean 3.19 2.93 3.39 0.104 3.25
N. sibirica
Gornyak 1.32 1.32 1.34 0.007 0.52 24 24, 36, 48
Noven’koe 1.28 1.27 1.28 0.003 0.25 24 18, 24, 28
Pospeliha 1.25 1.24 1.26 0.003 0.32 24 24
Balansor 1.27 1.27 1.28 0.004 0.33 24 24, 36, 48
Uglovskoye 1.32 1.30 1.33 0.008 0.60 24 24, 36, 48
Tassor 1.27 1.26 1.28 0.003 0.33 24 24
Chinkussor 1.25 1.24 1.26 0.004 0.29 24 24
Rubtsovsk 1.30 1.29 1.30 0.004 0.28 24 24, 36, 48
Kuchuk 1.29 1.27 1.29 0.005 0.30 24 24
Dzhira 1.27 1.26 1.28 0.006 0.45 24 16, 24, 36, 48
Kulunda 1.27 1.27 1.28 0.004 0.33 24 18, 20, 24, 36, 48
Yarovoe 1.28 1.27 1.29 0.006 0.41 24 24
Bagan 1.28 1.27 1.29 0.004 0.30 24 24, 36, 54, 60
Chagan 1.33 1.32 1.33 0.003 0.24 24 24
Bele 1.27 1.26 1.28 0.007 0.55 24 24, 48
Ulug-Kol 1.33 1.32 1.34 0.005 0.35 24 24, 32, 40, 49
Turan 1.34 1.32 1.34 0.008 0.63 24 24
Hadyn 1.28 1.27 1.29 0.007 0.52 24 24, 36, 38
Shara-Nur 1.32 1.31 1.32 0.003 0.24 24 24
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decrease in the size of a monoploid genome indicates 
that the species in question is evolutionarily young 
(Šmarda et al. 2008). Our finding that the monoploid 
genome of N. komarovii is the smallest supports the 
point of view of Bobrov (1946), according to whom 
N. komarovii is the youngest species associated with 
the recent history of the Caspian Basin.

It is documented in the literature that in Nitraria 
species, most frequent chromosome numbers are 
divisible by the principal number x = 12 or nondi-
visible by it (Zakharyeva and Astanova 1968; Pan 

et  al. 2002, 2003). For N. schoberi from mountain 
deserts of Central Asia, 2n = 24 was reported (Reese 
1958), and for N. schoberi from southern Romania, 
it is 2n = 66 (Tarnavshi 1948). The data on chromo-
some sets for most plants are now readily available 
and collected in publicly available resources such as 
the Chromosome Counts Database (CCDB; http://​
ccdb.​tau.​ac.​il/ (accessed on 20 August 2023), where 
information (2n) on six species of the genus Nitraria 
is available: N. sibirica (24, 30, and 60), N. schoberi 
(24, 34, 42, 48, 60, ⁓66, 72, and 96), N. pamirica (24 

Table 2   (continued)

Name of the population DNA content (pg) CHN

Mean Min Max SD CV% Modal number Numbers determined

Kosh-Agach (Chuya) 1.31 1.31 1.32 0.004 0.32 24 24, 36
Kosh-Agach (Chaganka) 1.26 1.25 1.28 0.011 0.86 24 24, 36
Balhash 1.31 1.31 1.32 0.007 0.54 24 24, 27, 34, 36, 39
Kurti 1.26 1.24 1.27 0.007 0.59 24 24, 36, 48
Koktal 1.26 1.25 1.27 0.009 0.69 24 24
Mean 1.30 1.24 1.34 0.029 2.25
N. pamirica 3.15 3.10 3.30 0.062 1.97 48 24, 48
N. komarovii 2.28 2.23 2.32 0.045 1.96 48 48, 60
N. tangutorum 1.59 1.57 1.65 0.041 1.45 24 24, 26
*  population already studied by Marhold et al. (2021) concerning CHN, ** population already studied by Voronkova et al. (2018) 
concerning FCM
Average values are boldfaced

Fig. 4   The habitus and mitotic chromosomes ofNitraria  sibirica from different populations: a1, a2 Kurti, (2n = 24), b1, b2 Koktal 
(2n = 24), c1, c2 Shara-Nur (2n = 24), and d1, d2 Gornyak. Photos by E.V. Banaev and M.A. Tomoshevich

http://ccdb.tau.ac.il/
http://ccdb.tau.ac.il/
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and 48), N. komarovii (24), N. tangutorum (24), and 
N. retusa (18 and 24). In the Index to Plant Chromo-
some Numbers (IPCN, http://​legacy.​tropi​cos.​org/​
Proje​ct/​IPCN; accessed on 20 August 2023), data 
(2n) are given for N. sibirica (24 and 60) and N. 
retusa (24).

Earlier, various cytotypes in the genus Nitraria 
have been documented; for instance, in N. pamirica, 
the typical chromosome number proved to be 2n = 48, 
2n≈4x, and 2C = 3.15 pg, but only a few specimens 
showed 2n = 24, 2n≈2x, 2C = 1.50 pg; in N. schoberi 
the typical number is 2n = 48, 2n≈4x, 2C = 2.98  pg, 
but some specimens have 2n≈8x≈96, 2C = 5.75 
(Marhold et  al. 2020). Furthermore, different chro-
mosome numbers have been detected among cells of 
a single plant, thus pointing to mixoploidy. The lat-
ter is a phenomenon characteristic of many woody 
plant species (Butorina 1989; Butorina and Gavrilov 
2001), in particular, it is typical for representatives of 
families with small chromosomes, including Nitraria 
(Muratova et  al. 2011, 2013). Proportions (%) of 
cells having different ploidy levels is one of the fac-
tors of plant adaptation to new or extreme habitat 
conditions, e.g., drought, strong light intensity, and 
high salinity (Cookson et  al. 2006; Kunakh 2011; 
Gegas et al. 2014; Scholes and Paige 2015). Accord-
ing to Sedelnikova (2015), mixoploidy and ane-
uploidy in Pinaceae family species are often seen in 
extreme intrazonal bog and mountain ecotypes, and 

the highest level of mixoploidy for conifers is found 
in populations of Larix sibirica at the northern bor-
der of the species range. The level of endoreduplica-
tion may be species-specific or may differ between 
populations or even between individuals of the same 
species (Barow and Meister 2003). When researching 
the family Chenopodiaceae, Skaptsov et  al. (2017) 
reported that endopolyploidy is usually observed in 
diploid species of the genera Chenopodium, Dyspha-
nia, Oxybasis, and Suaeda and not found in polyploid 
specimens of Suaeda.

The correlation of the nuclear DNA content with 
pollen grain size

The positive correlation between pollen grain size 
and the nuclear DNA content is probably the most 
easily explained because pollen contains only the 
components necessary for the initiation and main-
tenance of pollen tube growth and carries a haploid 
genome. A direct correlation between the nuclear 
DNA content and pollen size has been found in many 
plant species and groups (Bennett 1987; Bennett et al. 
2005; Sinjushin 2021). Of interest are correlations 
between the DNA content, ploidy, and pollen grain 
size. For example, among 17 species of the genus 
Lippia, a positive association was detected between 
the chromosome number and pollen grain size as well 
as between ring length and ring width (Sousa et  al. 

Fig. 5   The habitus and mitotic chromosomes of Nitraria schoberi from different populations: a1, a2 Balhash (2n = 72), b1, b2 Lepsi 
(2n = 60), c1, c2 Sariozek (2n = 60), d1, d2 Pyandzh1 (2n = 72). Photos by E.V. Banaev and M.A. Tomoshevich

http://legacy.tropicos.org/Project/IPCN
http://legacy.tropicos.org/Project/IPCN
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2013). In Ipomoea batatas and I. trifida, both genome 
size and ploidy correlate with pollen size (Srisuwan 
et al. 2019). For species of the genus Plantago, pollen 
diameter was shown to correlate with 2C but not nec-
essarily with ploidy (Wong and Murray 2012).

According to Amer and Amany (2014), there 
is a strong correlation between polyploidy and 

pollen morphological variation in Atriplex halimus. 
By contrast, Knight et al. (2010) found no association 
between pollen size and genome size after examining 
phylogenetic history of 464 plant species.

We did not see enlargement of the pollen grain 
with increasing ploidy or increasing genome size in 
the examined species of Nitraria. Our results indicate 

Fig. 6   Histograms of 
PI fluorescence intensity 
of endopolyploid nuclei 
in plants from different 
populations of Nitraria N. 
sibirica. a Kosh-Agach 
(Chuya); b Gornyak; c 
Shara-Nur; d Balansor; e 
Uglovskoye; and f Kulunda
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a direct correlation between the 2C DNA content, 
chromosome number, and E of pollen grains in spe-
cies N. pamirica, N. schoberi, N. sibirica, and N. tan-
gutorum. N. komarovii is an exception because it is a 
tetraploid but is characterized by the smallest pollen 
E. The P/E ratio, which is a parameter of pollen grain 
shape, is lower in tetraploids N. pamirica, N. scho-
beri, and N. komarovii than in diploids N. sibirica and 
N. tangutorum.

Conclusions

Our work shows that in species of the genus Nitraria, 
genome size, ploidy, and pollen grain size are interre-
lated. We can rank the species under study by genome 
size and ploidy as follows: diploid (2n = 2x = 24): 
N. sibirica (1.30  pg) and N. tangutorum (1.59  pg); 
tetraploid (2n = 2x = 48): N. komarovii (2.28  pg), N. 
pamirica (3.15 pg), N. schoberi (3.19 pg). By pollen 
E and 2C (E; 2C), the ranking is as follows: N. sibir-
ica (20.97  μm; 1.30  pg), N. tangutorum (21.14  μm; 
1.59 pg) < N. schoberi (24.83 μm; 3.19 pg), N. pamir-
ica (26.50 μm; 3.15 pg). An exception is N. komarovii 
(16.42  μm; 2.28  pg), having an intermediate DNA 
content and the smallest pollen width. A comparison 
of pollen E and 1Cx (E; 1Cx) results in the following 

ranking: N. komarovii (16.42; 0.57) < N. sibirica 
(20.97; 0.65) < N. tangutorum (21.14; 0.78) < N. 
schoberi (24.83; 0.8) < N. pamirica (26.50; 0.79). 
An increase in E clearly correlates with 1Cx. Our 
findings indicate the correctness of Bobrov’s (1946) 
views on relationships within the genus Nitraria, who 
distinguished two series in sect. Nitraria: ser. Sibiri-
cae (N. tangutorum and N. sibirica) and ser. Schobe-
rianae (N. schoberi and N. komarovii). N. pamirica, 
which we believe should be placed in the ser. Schobe-
rianae, was not known to E.G. Bobrov because it was 
described by Vasilieva (1974) later. It is obvious that 
the five species under study differ in their genesis. As 
pointed out by Bobrov, the species of the ser. Sibiri-
cae are probably related in origin to ancient deserts 
of Central Asia, whereas N. schoberi originated in 
the Aral-Caspian lowlands and spread eastward and 
southeastward to Central Asia and Western Siberia.
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