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Abstract Single-copy organelle DNA loci are

widely used to infer plants’ phylogenetic relation-

ships. In bananas (Musa spp.), the maternal transmis-

sion of chloroplast DNA and paternal transmission of

mitochondrial DNA provides an excellent possibility

to follow both maternal and paternal lineages by using

chloroplast and mitochondrial markers, respectively.

In the present study, 25 chloroplast and 12 mitochon-

drial DNA sequences of Musa spp. were used to

elucidate the genetic diversity and phylogenetic

relationships of wild and cultivated bananas. Sequence

alignment and phylogenetic analyses grouped the 34

wild and 26 cultivars into different clades and

subclades. The use of cytoplasmic genes to analyze

the origin and evolution of cultivated bananas revealed

two main maternal and paternal origins: via Musa

acuminata Colla and via Musa balbisiana Colla.

Relationships among wild accessions and intra- and

interspecific hybrids, as well as between the latter,

evidenced eight chloroplast and six mitochondrial

gene pools, and 18 cytotypes were identified. The

maternal origin of most M. acuminata hybrids was the

Ca2 gene pool, while the A-B hybrids were derived

from the Ca3 or Ca5 gene pools. The most common

paternal origin was the Ma3 gene pool, except for

ABB genotypes with Mb1 origin. Furthermore, we

found a role for Musa itinerans Cheesman in the

paternal origin of banana cultivars. The present

findings will help refine Musa spp. phylogeny, and

enrich the available cytoplasmic data for Musa spp.

germplasms that will be useful for improving the

breeding of banana cultivars.

Keywords Maternal origin � Musa species �
Organelle DNA loci � Paternal origin

Introduction

Bananas (Musa spp., family Musaceae) originated in

southeast Asia and western Pacific, and spread widely

throughout the tropics and subtropics to become one of

the most important sources of tropical food, next to

rice, wheat, and maize. The genus Musa comprises 70

wild species (Häkkinen 2013) and 500 cultivars

(Simmonds 1966).

The phylogenetics of bananas were first studied in

1753 (Linnaeus 1753), and the genus was named

Musa by Carl Linnaeus. Later, Sagot (1887) divided

the genus into giant bananas, fleshy edible bananas,

and ornamental bananas. Based on Sagot’s work,
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Baker (1893) further divided Musa into three sub-

genus: physocaulis, eumusa, and rhodochlamys. Clas-

sification at the chromosomal level was first

performed by Cheesman (1947), who divided Musa

into four sections: eumusa and rhodochlamys

(2n = 22), and callimusa and australimusa

(2n = 20). Subsequently, Simmonds (1960) added a

group, ingentimusa, containing only two species:

Musa ingens Simmonds (2n = 14) and Musa beccarii

Simmonds (2n = 18). Thereafter, Argent (1976) cre-

ated a new section ingentimusa, into which M. ingens

was placed, and Häkkinen et al. (2005) suggested the

inclusion of M. beccarii into the callimusa section. For

half a century there has been little change in the genus

classification system for Musa as proposed by Chees-

man (1947). However, studies examining the taxo-

nomic relationships within Musa using molecular

approaches have questioned the validity and practica-

bility of this system and have generally classified the

genus into two groups, namely, Musa (2n = 22) and

Callimusa (2n = 20/18) (Gawel et al. 1992; Wong

et al. 2002; Nwakanma et al. 2003; Li et al. 2010; Liu

et al. 2010; Bekele and Shigeta 2011; Christelová et al.

2011; Häkkinen 2013). Most recently, Feng et al.

(2016) confirmed this classification using simple

sequence repeat (SSR) markers to determine the

molecular phylogeny of the genus Musa.

To date, more than 70 wild Musa species have been

identified; of these, Musa acuminata Colla (A

genome) and Musa balbisiana Colla (B genome) are

the most prominent. The genomic constitutions of AA,

AB, AAA, AAB, and ABB (Stover and Simmonds

1987) observed in present-day banana cultivars

evolved through intra- and inter-specific crosses

(Cheesman 1948; Simmonds and Shepherd 1955) of

these two species. M. acuminata is genetically rich

comprising 10 subspecies (banksii, burmannica, bur-

mannicodes, errans, malaccensis, microcarpa, sia-

mea, truncata, and zebrina) and the variety (var.)

chinensis (Feng et al. 2009). Although higher genetic

diversity has been observed in M. balbisiana (Sotto

and Rabara 2000), intraspecific classification has not

been reported to date.

Banana cultivars are mostly diploid, triploid, or

tetraploid, with characteristics of sterility, partheno-

carpy, polyploidy, or unknown origin, which has led to

the slow progress of banana genetic improvements.

Examining the genetic diversity and phylogenetic

relationships of banana germplasms would therefore

help clarifying the origin and evolution of banana

cultivars and accelerate their breeding.

Three different genomes exist within plant cells: a

nuclear genome, a chloroplast genome, and a mito-

chondrial genome. Several studies have shown the

potential of using complete organellar genomes to

analyze phylogenetic relationships in plants. The

nuclear genome size of M. acuminata is 523 Mbps

(D’Hont et al. 2012) and the M. balbisiana genome

size is 79% that of M. acuminata (Davey et al. 2013).

In contrast, the organellar genomes are much smaller

than the nuclear genome; the chloroplast genome is

0.17 Mbps (Barrett et al. 2014; Shetty et al. 2016; Li

et al. 2017), while the exact size of the mitochondrial

genome is currently unknown. Moreover, the com-

plete chloroplast genomes of M. acuminata (Martin

et al., 2013) and Musa itinerans Cheesman (Li et al.,

2017) have been published. In Musa spp., inheritance

of the chloroplast genome is strongly biased toward

the maternal lineage, while the mitochondrial genome

is paternally inherited (Fauré et al. 1994). Thus,

organellar genomes enable maternal and paternal

lineages to be followed using chloroplast and mito-

chondrial markers, respectively.

Gawel and Jarret (1991a) used chloroplast DNA

restriction fragment length polymorphisms (RFLPs) to

analyze the phylogenetics of Musa species and

subspecies, and reported cytoplasmic diversity among

Musa cultivars (Gawel and Jarret 1991b). Later,

Carreel et al. (2002) combined RFLPs with the

hybridization of heterologous mitochondrial and

chloroplastic probes to characterize 71 wild acces-

sions, and 131 diploid and 103 triploid cultivars of

Musa, and identified 10 chloroplastic patterns and

more than 100 mitochondrial DNA patterns. Umali

and Nakamura (2003) reported a single nucleotide

polymorphism (SNP) marker from the trnL-F inter-

genic spacer region of chloroplast DNA, which could

be used to discriminate M. acuminata from M.

balbisiana. Nwakanma et al. (2003) constructed a

molecular phylogeny of Musa species using restric-

tion-site polymorphisms of organelles, and suggested

that the evolutionary status of M. balbisiana was

primitive. More recently, Swangpol et al. (2007)

analyzed SNPs from selected non-coding chloroplast

DNA sequences of Musa interspecific hybrids and

found that the M. acuminata and M. balbisiana

genomes could be clearly distinguished. Boonruan-

grod et al. (2008) analyzed the relationship between
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chloroplast and mitochondrial haplotypes of 54 acces-

sions and identified six chloroplastic and seven

mitochondrial gene pools. A combination of chloro-

plast and mitochondria gene pools identified 14

cytotypes; Cytotype VIII, resulting from the crossing

of maternal Cytotypes I and II and paternal Cytotype

III ancestors, was identified in the majority of the

analyzed cultivars.

In the present study, sequence data from 25

chloroplast and 12 mitochondria DNA genomes were

used to assess the phylogenetic relationships of 60

Musa species, including a wide range of wild and

cultivated species. We aimed to elucidate the genetic

diversity and phylogenetic relationships of wild and

cultivated Musa species and subspecies, especially

Chinese species. Furthermore, we generated addi-

tional cytoplasmic data on Musa germplasms to refine

phylogenetic research, and reconstructed the paternal

and maternal lineages of diploid wild species as well

as that of banana cultivars.

Materials and methods

Plant materials and DNA extraction

Sixty Musa spp. samples were used in the present

study (Table 1). Of these, 49 accessions were collected

from the Biodiversity International Musa Germplasm

Transit Centre (ITC, Leuven University, Belgium) and

11 were collected by the authors during trips through-

out south China. Samples were identified and mor-

phological characters were described using the Musa

descriptors (INIBAP/CIRAD, 1996). Total genomic

DNA was extracted from young leaves using a

modified cetyltrimethylammonium bromide (CTAB)

method (Paterson et al. 1993). The quality of extracted

DNA was determined by visualization on 1% agarose

gel and on NanoDrop 2000 (Thermo Fisher Scientific,

MA, USA). Total DNA samples were diluted to 50 ng/

lL with sterile water.

PCR amplification and sequencing

Twenty-five pairs of chloroplast DNA primers and 12

pairs of mitochondrial DNA primers were selected for

use in PCR amplifications (Table 2). These were

carried out in 50-lL reaction mixtures containing

2 lL of 50 ng/lL DNA, 2 lL of each primer (10 lM),

and 25 lL of 2 9 Taq Master Mix (Vazyme Biotech

Co., Ltd., China), with the final volume adjusted using

double distilled water. PCR amplifications were

performed in a FlexCycler (Analytikjena, Germany)

under the following reaction conditions: 94 �C for

5 min, 30 cycles of 94 �C for 30 s, 48–58.5 �C for

30 s, 72 �C for 60 s, and a final extension at 72 �C for

7 min. PCR products were visualized on 1% agarose

gels and subsequently purified and sequenced at BGI

Technology Co., Ltd. (China) using the Sanger

method. The primers used for sequencing were the

same as those used for the PCR. Sequencher v.4.2

software (Gene Codes Corp., MI, USA) was used to

assemble the sequences.

Sequence alignment and phylogenetic analyses

Nucleotide sequences were aligned by MAFFT v.7

(Katoh and Standley. 2013). Characteristics of genetic

diversity, including conserved sites, variable sites, and

parsimony-informative (Pi) sites were computed in

DnaSP v.6.12.03 (Rozas et al. 2017). The incongru-

ence length difference (ILD) test was performed in

PAUP v.4.0b (Swofford 2002) to estimate the level of

potential incongruence in the data. The aligned

chloroplast and mitochondrial DNA sequences were

then concatenated in SequenceMatrix-Windows

v.1.7.8 (Vaidya et al. 2011), and used for further

phylogenetic analyses.

Phylogenetic relationships were inferred using

maximum likelihood (ML) and Bayesian inference

(BI) methods. For ML analysis, IQ-TREE v.1.6

software was first used for best-fit model estimation

of the sequence matrix (Kalyaanamoorthy et al. 2017),

and then to calculate and select suitable nucleotide

substitution models and corresponding parameters.

The ML tree was then constructed with the ultrafast

bootstrap (BS) of IQ-TREE v.1.6 (Hoang et al. 2018;

Nguyen et al. 2015) following repeated searches for

1000 repeats, using a tree with the largest likelihood

value, 1000 repeated self-expansion detections to tests

the confidence of each branch, and the Figtree option

to view and optimize the generated ML tree.

For the BI analysis, the data sets were first tested for

the best-fit model of evolution with IQ-TREE v.1.6

using the Akaike information criterion (AIC) and then

analyzed using MrBayes v.3.2 software (Ronquist

et al. 2012). The BI analysis utilized the Markov Chain

Monte Carlo algorithm, starting with a random tree,
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four chains (one cold chain and three hot chains)

running for 10,000,000 generations, and sampling

once every 1000 generations. After reaching equilib-

rium, 25% of the burn-in samples were discarded, and

the remaining samples were used to build a consistent

tree. Bayesian trees were evaluated using posterior

probability (PP).

Results

Phylogenetic analysis of Musa spp. based on 25

chloroplast gene sequences

The results of the ILD test supported the combination of

the 25 chloroplast genes dataset (p = 0.01). The com-

bined dataset covered 22,306 bp, which generated 617

variable sites with 265 Pi sites. The IQ-TREE analysis

found that the best-fit models for the ML and BI trees

were K3Pu ? F ? I and GTR ? G ? I, respectively.

The phylogenetic trees constructed by both methods

revealed the same topological structure (Fig. 1).

Three major clades were identified by the phyloge-

netic trees. Clade A was formed by the M. acuminata

complex, Musa laterita Cheesman, Musa yunnanensis

Häkkinen & H. Wang, Musa chunii Häkkinen, M.

balbisiana from the ITC, M. balbisiana 9 Musa

textiles Née, and most banana cultivars (BS = 100,

PP = 1). Clade B (BS = 81, PP = 0.94) consisted ofM.

itinerans, Musa nagensium Prain, most M. balbisiana,

and two cultivars with a B genome. Clade C included

M. beccarii as the outgroup, which belongs to section

callimusa, with a basic chromosome number of

2n = 18. The number of chromosomes in other test

materials was 2n = 22 or 2n = 20.

Clade A contained eight subclades. Subclade A1

(BS = 100, PP = 1) consisted of M. acuminata var.

chinensis, M. acuminata subsp. siamea, M. acuminata

ssp529, and M. laterita. Among these, M. acuminata

var. chinensis is a unique variant found in China.

Subclade A2 (BS = 95, PP = 1) comprised cultivars

with the A genotype, which are widely spread, and

most of M. acuminata wild accessions, including

subspecies malaccensis, burmannica, and burmanni-

coides; these wild accessions are mainly distributed in

Malaysia. Subclade A3 (BS = 89, PP = 1) comprised

most A-B genotype cultivars and a single M. acumi-

nata wild accession, M. acuminata ssp516. Subclade

A4 (BS = 54, PP = 1) comprised three wildT
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Fig. 1 Maximum Likelihood (ML) tree of 60 Musa spp. accessions based on 25 chloroplast gene sequences (including chloroplast

genotyping)
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Fig. 2 Maximum Likelihood (ML) tree of 60 Musa spp. accessions based on 12 mitochondrial gene sequences (including

mitochondrial genotyping)
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accessions of M. acuminata, including subspecies

zebrina, ssp503, and ssp505, M. peekelii Lauterb, and

one AA genotype cultivar. Subclade A5 (BS = 58,

PP = 1) consisted ofM. acuminata subsp. microcarpa,

M. yunnanensis, and three AAB genotype cultivars.

Subclade A6 (PP = 1) included one AA genotype

cultivar but no wild types, being an independent

branch. Subclade A7 (BS = 100, PP = 1) comprised

two wild accessions, M. balbisiana and M. bal-

bisiana 9 M. textilis. Subclade A8 contained only

wild accessions of M. chunii, which are found

exclusively in Yunnan, China.

Clade B was divided into two subclades. Subclade

B1 (BS = 99, PP = 1) contained M. nagensium and

four M. itinerans accessions, which were collected

from different populations in China. M. itinerans

accessions collected from the Guangdong and Hainan

populations were grouped together, while those from

the Guangxi and Yunnan populations formed another

group. Subclade B2 (BS = 100, PP = 1) contained

four M. balbisiana accessions, ITC0080, ITC0246,

and ITC0271, which were collected from China, and

two ABB genotype cultivars.

Phylogenetic analysis of Musa spp. based on 12

mitochondrial gene sequences

The dataset based on 12 mitochondrial genes was

supported by the ILD test (p = 0.01); these fragments

were therefore combined to form a single dataset for

subsequent phylogenetic analyses. The combined

dataset covered 6802 bp, generating 553 variable sites

with 279 Pi sites. The IQ-TREE analyses found that

the best-fit model was TVM ? F ? I for the ML tree

and GTR ? G ? I for the BI tree. The phylogenetic

trees constructed using these two methods presented

the same topological structure (Fig. 2).

Four major clades were identified from the phylo-

genetic trees. Clade A (BS = 100, PP = 1) contained

the M. acuminata complex, M. laterita, M. chunii, and

most of the banana cultivars in our sample set. Clade B

(BS = 100, PP = 1) included all tested M. balbisiana,

M. nagensium, the natural wild hybrid M. bal-

bisiana 9 M. textilis, and three A-B genotype culti-

vated bananas. Clade C (BS = 100, PP = 0.99)

contained samples from different populations of M.

itinerans and M. yunnanensis, and the AAB genotype

cultivar ‘Cluoi mat’. Clade D included M. beccarii as

the outgroup.

Clade A consisted of five subclades. Subclade A1

contained M. acuminata var. chinensis, M. acuminata

subspecies burmannicoides and malaccensis, eight

unclassified wild M. acuminata accessions, M. later-

ita, two AA genotype cultivars (‘Pisang lilin’ and

‘Pisang berlin’), one AB genotype cultivar (‘Safet

velchi’), two AAB genotype cultivars (‘Kluai roi wi’

and ‘Chuoi mat’), and two AAAB genotype cultivars

(‘Tetraploide EMBRAPA 401’ and ‘Pc12-05’). Sub-

clade A2 included M. acuminata subspecies burman-

nica and zebrina, two unclassified wild M. acuminata

accessions, and M. peekelii, with no related cultivars

in our sample set. Subclade A3 contained M. acumi-

nata subsp. microcarpa, M. acuminata ssp528, and 14

cultivars, including five AA genotypes (‘Tjau lagada’,

‘Gunn chio’, ‘Guyod’, ‘Amas’, and ‘Khai’), one AB

genotype (‘Datil’), two AAA genotypes (‘Highgate’

and ‘Williams’), four AAB genotypes (‘Prata’,

‘Pisang raja bulu’, ‘Mdzodji’, and ‘Vudi wai wai’),

and two AAAB genotypes (‘FHIA01’ and ‘FHIA18’).

Subclades A4 and A5 each contained one sample; the

cultivar ‘Kluai lep mu nang’ (AA genotype) and M.

chunii, respectively.

Clade B consisted of two subclades, with M.

nagensium forming an independent subclade (BS =

100, PP = 1). M. balbisiana, the natural wild hybrids

M. balbisiana 9 M. textilis, and three A-B genotype

cultivated bananas were grouped in another subclade

(BS = 100, PP = 1), which was further divided into

three branches (BS = 100, PP = 1). Musa balbisiana-

ITC0246 and M. balbisiana-ITC0080 formed inde-

pendent branches, while other M. balbisiana samples,

M. balbisiana 9 M. textilis, and cultivars ‘Fenjiao’

(AB), ‘Maduranga’ (ABB), and ‘Namwa khom’

(ABB) clustered together.

Clade C consisted of two subclades: subclade C1

contained four samples of M. itinerans obtained from

different geographical sources in China, and one AAB

genotype cultivar, ‘Chuoi mat’. M. itinerans from the

Guangdong and Hainan populations grouped together,

and those from the Guangxi and Yunnan populations

also grouped together. In contrast, subclade C2

contained only M. yunnanensis.

Origin and evolution of cultivated bananas based

on cytoplasmic genes

To elucidate the gene pools of cultivated bananas

ancestors, we analyzed 49 wild and cultivated types of
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M. acuminata and M. balbisiana using chloroplast and

mitochondrial genes inherited from single parents.

Based on 25 chloroplast genes, eight chloroplast gene

pools were identified; five from M. acuminata and

three from M. balbisiana (Table 1). The first gene pool

(Ca1) contained three M. acuminata wild types (var.

chinensis and subspecies siamea and ssp529), with no

related cultivars in our sample set. The presence of

diploid wild type M. acuminata subspecies burman-

nica, malaccensis, burmannicoides, ssp517, ssp513,

ssp528, ssp521, ssp523, and ssp527 characterized the

largest gene pool (Ca2), along with six AA cultivars

(‘Pisang lilin’, ‘Gu nin chio’, ‘Khai’, ‘Kluai lep mu

nang’, ‘Amas’, and ‘Pisang berlin’), one AB diploid

hybrid cultivar (‘Datil’), and two triploid AAA

cultivars (‘Highgate’ and ‘Willams’). This gene pool

contained the most abundant wild type M. acuminata

accessions, most of the AA cultivars, and all AAA

cultivars. One unclassified M. acuminata wild type

(ssp516) and 10 cultivars formed the third gene pool

(Ca3). The cultivars in Ca3 included one AB diploid

hybrid (‘Safet velchi’), five triploids (AAB: ‘Prata’,

‘Kluai roi wi’, ‘Chuoi mat’, and ‘Mdzodji’; AAB:

‘Maduranga’), and all four tetraploid AAAB cultivars

(‘Fhia-01’, ‘Fhia-18’, ‘Tetraploide EMBRAPA 401’,

and ‘Pc12-05’). All cultivars in this gene pool

contained genome B. Three M. acuminata wild type

subspecies (zebrina, ssp503, and ssp505) and one AA

diploid cultivar (‘Guyod’) formed the fourth gene pool

(Ca4).The Ca5 gene pool comprised two M. acumi-

nata wild type subspecies (microcarpa and ssp507),

one AA cultivar (‘Tiau lagada’), and three AAB

triploids (‘Vudi wai’, ‘Pisang raja bulu’, and ‘Chuoi

mat’).

Based on 25 chloroplast genes, three subgroups of

M. balbisiana were identified. Three diploid M.

balbisiana wild types (one collected from China and

subspecies ssp501 and ssp510) formed the larger gene

pool (Cb1) along with two ABB triploid cultivars

(‘Fenjiao’ and ‘Namwa Khom’), while subspecies

ssp504 and ssp513 were found in the Cb1 and Cb2

gene pools, respectively.

Similarly, based on 12 mitochondrial genes, six

mitochondrial gene pools were identified among the

49 analyzed accessions (Table 1). M. acuminata var.

chinensis, M. acuminata subspecies siamea, malac-

censis, and burmannicoides, and eight unclassified M.

acuminata wild accessions formed the largest gene

pool (Ma1) along with two diploid AA cultivars

(‘Pisang lilin’ and ‘Pisang berlin’), one diploid AB

cultivar (‘Safet velchi’), two triploid AAB cultivars

(‘Kluai roi wi’ and ‘Chuoi mat’), and two tetraploid

AAAB cultivars (‘Tetraploide EMBRAPA 401’ and

‘Pc12-05’). Three diploid wild type M. acuminata

subspecies (burmannica, zebrina, and ssp516) formed

the second gene pool (Ma2) with no related cultivars.

Gene pool Ma3 consisted of two diploid M. acuminata

wild subspecies (microcarpa and ssp528), six diploid

cultivars (AA: ‘Tjau lagada’, ‘Gu nin chio’, ‘K hai’,

‘Amas’, ‘Guyod’; and AB: ‘Datil’), six triploid

cultivars (AAA: ‘Highgate’ and ‘Williams’; AAB:

‘Prata’, ‘Mdzodji’, ‘Vudi wai’, and ‘Pisang raja bulu’),

and two tetraploid AAAB cultivars (‘Fhia-01’ and

‘Fhia-18’). In contrast, M. balbisiana comprised three

gene pools. The Mb1 and Mb3 gene pools were

represented by one subspecies each (ssp501, Mb1;

ssp510, Mb3), while Mb2 consisted of six samples,

including three diploid M. balbisiana wild types (one

collected from China, ssp504, and ssp513), and three

ABB triploid cultivars (‘Fenjiao’, ‘Namwa Khom’,

and ‘Maduranga’).

Eighteen cytotypes (a combination of chloroplast

and mitochondrial gene pools) were identified among

the analyzed samples (Table 1). The analyzed wild

type M. acuminata accessions yielded nine cytotypes

(I, II, III, IV, VI, VIII, IX, XI, and XII), while five

cytotypes (XIV, XV, XVI, XVII, and XVIII) were

found among the M. balbisiana wild types. Seven

different cytotypes were found among 23 cultivars;

three of these cytotypes resembled those found in the

wild types (cytotypes II, IV, and XV), while the

remaining four represented new combinations.

Three different cytotypes (II, IV, and X) were

identified among the six diploid AA genotypes. The

chloroplast genomes of ‘Pisang lilin’ and ‘Pisang

berlin’ belonged to the Ca2 gene pool, which

contained the wild type M. acuminata subspecies

malaccensis, burmannica, and burmannicoides. The

mitochondrial genome of those subspecies originated

from the Ma1 gene pool, which contained the wild

type subspecies malaccensis, siamea, and burmanni-

coides, and the var. chinensis, all of cytotype II. A

similar chloroplast type was identified in the diploid

AA cultivars ‘Gu nin chio’, ‘Khai’, and ‘Amas’;

however, its mitochondrial genome represented the

Ma3 gene pool, which contained M. acuminata subsp.

microcarpa. The remaining AA hybrid cultivar ‘Guy-

od’ had Ca4 chloroplast and Ma3 mitochondrial
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genomes, representing the gene pools containing M.

acuminata subsp. zebrina (chloroplast) and M. acumi-

nata subsp. microcarpa (mitochondrial). Two diploid

AA cultivars were identified, ‘Kluai lep mu nang’

(AA) and ‘Tjau lagada’ (AA). The chloroplast gene

pool of ‘Kluai lep mu nang’ was Ca2, which contained

M. acuminata subspecies malaccensis, burmannica,

and burmannicoides. However, the identity of the

mitochondrial genome remains unknown. Conversely,

the mitochondrial gene pool of ‘Tjau lagada’ was

Ma3, which contained M. acuminata subsp. micro-

carpa, while the chloroplast genome remains

unknown. Therefore, we were unable to classify these

two cultivars into the abovementioned cytotypes.

Similar to the diploid AA cultivars, two triploid

AAA genotypes were of cytotype IV (‘Highgate’ and

‘Williams’). Therefore, cytotype IV was found most

frequently among the intraspecific M. acuminata

hybrids. Among the interspecific hybrids analyzed in

the present study, the two diploid AB cultivars were of

two cytotypes, IV and V.

The six triploid AAB cultivars were of three

cytotypes (V, VII, and XI). However, the cytotype of

‘Chuoi mat’ with an AAB genome was identified as

cytotype XIX, as it combined the Ca5 chloroplast

genome and the M. itinerans mitochondrial genome.

The three ABB cooking bananas were of cytotypes

XIII and XV.

Similarly, two of the four tetraploid AAAB culti-

vars (‘Tetraploid EMBRAPA 401’ and ‘Pc12-05’)

were of cytotype V, while the remaining two tetraploid

cultivars (‘Fhia-01’ and ‘Fhia-18’) were of cytotype

VII.

Discussion

In Musa spp., inheritance of the chloroplast genome is

strongly biased toward the maternal lineage, while the

mitochondrial genome is paternally inherited (Fauré

et al. 1994). Consequently, the organellar genomes

enable the maternal as well as the paternal lineages to

be followed through the use of chloroplast and

mitochondrial markers, respectively. In the present

study, ML and BI trees of 60 Musa spp. accessions

were constructed based on 25 chloroplast and 12

mitochondrial gene sequences. The topologies identi-

fied using both approaches were consistent for the two

organellar genomes.

Maternal phylogenetic analysis of Musa spp. based

on chloroplast genes

Based on 25 chloroplast gene sequences, the M.

acuminata wild types and cultivars grouped together

and were distinguished from M. balbisiana wild types

and cultivars. Gawel and Jarret (1991a) reported

similar findings using different chloroplast probes

and Southern blot analysis. However, in the present

study, differences in the maternal origin of M.

balbisiana were identified. Most M. balbisiana sam-

ples grouped with M. itinerans and M. nagensium,

while M. balbisiana (ITC0545) and M. bal-

bisiana 9 M. textilis clustered with M. acuminata.

Although relatively independent from M. acuminata,

both M. balbisiana (ITC0545) and M. bal-

bisiana 9 M. textiliswere expected to have a common

maternal origin. Therefore, we hypothesized that some

of theM. balbisiana germplasms might have contacted

M. acuminata germplasms during their evolution. In

addition, M. balbisiana (ITC0545) and M. bal-

bisiana 9 M. textilis clustered together, indicating

that M. balbisiana and M. textilis have a closer genetic

relationship in terms of their maternal origin (Gawel

and Jarret 1991b).

Most M. balbisiana samples were closely related to

M. itinerans, indicating that they may have shared a

common maternal ancestor. In China, the wild

germplasm of M. balbisiana is only distributed in

Yunnan and cannot form a large population. In

contrast, M. itinerans is distributed throughout

Hainan, Guangdong, Guangxi, and Yunnan (Häkki-

nen, 2008), and can form large populations in all of

these provinces. Here, we showed that M. itinerans

from Guangdong and Hainan populations clustered

together, while those from Guangxi and Yunnan

populations formed a different group, indicating that

in southern China M. itinerans has distinct chloroplast

genomes. Our findings are in contrast to those of Ge

et al. (2005) who analyzed the populations of M.

balbisiana distributed in China using chloroplast

PCR–RFLP markers and identified two major clades

corresponding to two geographical regions; thus, the

wild Musa spp. germplasms might have been incor-

rectly identified by Ge et al. (2005).

Except for M. chunii, the wild germplasms of other

Eumusa groups in the tested materials were inter-

spersed between M. acuminata complexes. Among

them, M. laterita, M. acuminata subsp. siamea, and M.
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acuminata var. chinensis have the same maternal

origin. M. yunnanensis was first identified by Häkki-

nen and Hong (2007). Based on its maternal evolution,

this species has the same origin as M. acuminata

subsp. microcarpa. However, Feng et al. (2016)

analyzed the nuclear genome of this species using

SSR markers and revealed a closer relationship with

M. balbisiana. M. chunii was first identified by

Häkkinen (2009) in Yunnan, China. The maternal

origin of this species is unique; it did not cluster with

any of the tested materials used in the present study.

Based on the 25 chloroplast gene sequences, we

conclude that the maternal evolution of Musa spp.

followed two main routes: via M. acuminata and via

M. balbisiana.

Paternal phylogenetic analysis of Musa spp. based

on mitochondrial genes

Based on the 12 mitochondrial gene sequences, the

test materials could be divided into two independent

branches of M. acuminata and M. balbisiana. There-

fore, we believe that the patrilineal evolution of Musa

spp. also followed two evolutionary routes: via M.

acuminata and via M. balbisiana. However, M.

itinerans and M. balbisiana presented the same

matrilineal evolutionary path, while M. itinerans and

M. acuminata were closer when considering paternal

evolution. M. laterita and M. acuminata var. chinensis

grouped together in both patrilineal and maternal

evolution, indicating the same parental origin. Feng

et al. (2016) used SSR markers for phylogenetic

research on Musa spp., and also found that M. laterita

was most closely related to M. acuminata var.

chinensis. M. peekelii clustered with M. acuminata

subsp. zebrina in both patrilineal and maternal evolu-

tion, having the same parental origin. M. chunii

represents an independent branch in mitochondrial

evolution. This species is unique in terms of both its

maternal and paternal origin.

Few studies on the mitochondrial genome have

investigated the phylogenetic evolution of Musa spp.

Most previous studies have used some molecular

marker technologies, such as PCR–RFLP (Nwakanma

et al. 2003; Boonruangrod et al. 2008) and RFLP

(Carreel et al. 2002). Additionally, the wild germ-

plasm resources of Musa spp. are very limited, and

there are limited references to the wild germplasms

distributed in China. Therefore, we believe that our

study is the first to report the use of multiple

mitochondrial gene sequences for phylogenetic anal-

ysis, providing insight into the patrilineal evolution of

the Musa genus.

Cytoplasm gene pools of M. acuminata ancestors

In the present study, 25 chloroplast gene sequences

resulted in the identification of five chloroplast gene

pools in the M. acuminata complex, namely,

chinensis/siamea, burmannica/malaccensis/burman-

nicoides, and M. acuminata subspecies ssp516,

zebrina, and microcarpa. Carreel et al. (2002) previ-

ously reported five chloroplast patterns for M. acumi-

nata: zebrina, malaccensis, siamea, banksii, and

errans/burmannica/burmannnicoides/siamea/malac-

censis/microcarpa/truncata. Conversely, three chloro-

plast gene pools were identified by Boonruangrod

et al. (2008): errans/banksii, microcarpa, and bur-

mannicoides/siamea/burmannica/zebrina/malaccen-

sis. The results of the present study support the

findings of Carreel et al. (2002), which are, in part,

consistent with those of Boonruangrod et al. (2008),

and consider burmannica/malaccensis/burmanni-

coides as representing the same gene pool, while

zebrina and siamea have independent chloroplast gene

pools. Moreover, consistent with Boonruangrod et al.

(2008), we also found that microcarpa belongs to an

independent chloroplast gene pool. The limited dis-

parity between our findings and those of Carreel et al.

(2002) and Boonruangrod et al. (2008) could be due to

the large number of M. acuminata subspecies used by

those earlier studies, which might have influenced

their separation. However, we believe that this ambi-

guity was addressed here through the use of chloro-

plast gene loci up to 22,306 bp, generating 352 Pi loci

and 1663 insertion/deletion loci, which is sufficiently

large to make the distinction.

Based on 12 mitochondrial gene sequences, three

mitochondrial gene pools were identified: chinensis/

siamea/malaccensis/burmannicoides, burmannica/ze-

brina, and microcarpa. The results are, in part,

supported by the findings of previous studies (Boon-

ruangrod et al. 2008; Carreel et al. 2002).

Cytoplasm gene pools of M. balbisiana ancestors

Based on 25 chloroplast gene sequences, three

chloroplast gene pools were identified in M.
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balbisiana: balbisiana (ITC0080)/Cameroun

(ITC0246)/China, Eti Kehel (ITC0271), and bal-

bisiana (ITC0545). As reported by Carreel et al.

(2002) and Boonruangrod et al. (2008), M. balbisiana

formed two maternal gene pools. However, compar-

isons are not possible because only one sample was

common between the present and the previous studies

(Cameroun [ITC0246]). However, Cameroun formed

an independent gene pool (Carreel et al. 2002) and

clustered with Singapurii, and Butuhan (Boonruan-

grod et al. 2008).

Based on the 12 mitochondrial gene sequences, M.

balbisiana could also be divided into three mitochon-

drial gene pools: balbisiana (ITC0080), Eti Kehel/

balbisiana (ITC0545)/China, and Cameroun. Boon-

ruangrod et al. (2008) also divided M. balbisiana into

three mitochondrial gene pools. The material shared

by the two studies (Cameroun) formed an independent

gene pool. However, Carreel et al. (2002) reported no

differences in the mitochondrial genome of M.

balbisiana.

The current research results support that M.

balbisiana originated via different evolutionary

routes; however, the intraspecific classification of M.

balbisiana warrants further discussion.

Origin and evolution of banana cultivars based

on organelle DNA sequences

Banana cultivars originated from intraspecific crosses

of M. acuminata or interspecific crosses of M.

balbisiana. M. acuminata provided the A genome

and M. balbisiana provided the B genome to form a

series of banana cultivars of different genotypes: AA,

AB, AAA, AAB, ABB, and AAAB. Because most

banana cultivars are parthenocarpic and sterile, and

parthenogenetic genomes are susceptible to mutations,

it is possible that the ancient organelle genome was

trapped in existing cultivars remaining more or less

unchanged since the initial cultivar formation. Con-

sidering that present-day wild types are the offspring

of ancient species, comparing these to cultivars may

reveal gene pools of common origin. In the present

study, 25 chloroplast genes and 12 mitochondrial

genes were used to study 18 M. acuminata wild types,

5 M. balbisiana wild types, and 26 cultivars with

different genotypes.

The maternal origin of 26 cultivars with different

genotypes was found to follow three patterns. First, the

maternal origin of most AA/AAA genotype cultivars

was derived from the Ca2 gene pool, which was

represented by the wild type M. acuminata subspecies

malaccensis, burmannica, and burmannicoides. This

finding was similar to those of Carreel et al. (2002) and

Boonruangrod et al. (2008). Second, the maternal

origin of the A-B genotype cultivars (for example, AB,

AAB, AAAB) was mostly of Ca3 (M. acuminata

ssp516) and Ca5 (M. acuminata subsp. microcarpa)

gene pools. Third, when the genome of cultivated

bananas contained only one B genome (for example,

AB or AAB genotypes), the female parent tended to be

M. acuminata. Conversely, when the genome of

cultivated banana contained two B genomes (for

example, the ABB genotype), most of the maternal

sources were derived from M. balbisiana, consistent

with previous studies (Carreel et al., 2002; Boonruan-

grod et al., 2008).

Three paternal origins were identified for the 26

cultivated bananas tested in the present study: Ma1

(chinensis/siamea/malaccensis/burmannicoides),

Ma3 (microcarpa), and Mb2 (Eti Kehel/balbisiana

[ITC0545]/China), with Ma3 being the most common

paternal gene pool. However, Boonruangrod et al.

(2008) and Carreel et al. (2002) reported that the most

common paternal gene pool of the A genome was

errans/banksii. Additionally, all tested ABB culti-

vated bananas belonged to the Mb1 gene pool (‘Pisang

klutuk wulung’/’Pisang batu’/’Honduras’/’Lal vechi’/

’Tani’). Although results cannot be directly compared

because they used different materials, the common

material, M. balbisiana (Cameroun), used in the

present and previous studies was not involved in the

development of banana cultivars. In addition, in the

present study, the AAB genotype ‘Cluoi mat’ grouped

with M. itinerans but not with M. balbisiana and M.

acuminata. Therefore, further exploration is needed to

determine whether M. itinerans also acted as a parent

during the hybridization of banana cultivars.
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