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Abstract The global population depends on fairly a

small number of crops including wheat, rice and maize

for food and nutrition, leaving a wealth of genetic

resources neglected. Owing to ever increasing

demands of the growing world, food production must

be increased but research evidences suggests that

climate change has adversely affected crop yields,

thereby impacting whole agriculture. Exploring the

potential reservoir of underutilized crops would

provide a highly diversified agricultural production

system in sustaining food and nutritional security

under climate change. Buckwheat (Fagopyrum sp.) is

one such crop representing a broad gene pool harbor-

ing diverse genetic resources for future agriculture due

to their suitability to marginalized environments.

Research advancements suggest that buckwheat has

immense potential of commercialization due to pres-

ence of essential nutrients and therapeutics. With a

balance of bioactive components and nutraceuticals, it

has the ability to withstand various environmental

stresses to make it a suitable candidate crop for future

nutritional security initiatives. Despite such potential,

efforts pertaining to genetic improvement, including

breeding and molecular techniques are not exemplary.

In this review, we present a comprehensive coverage

of buckwheat germplasm research done till date along

with a tangible perspective of integrating breeding and

omics-driven approaches to accelerate higher genetic

gains. The implementation of this strategy could

enhance the nutritional benefits and adaptation to

changing climates for future needs.
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Introduction

Globalization of agriculture and consequent industri-

alization along with changing climate scenario has

diminished the genetic diversity in general and, food

and agriculture in particular. Adoption of monocul-

turing practices and technological advancements have

ousted the traditional cropping practices, thereby,

making the global food security and economic growth

dependent on limited number of crop species. With an

ever increasing human population (* 9 billion by the

year 2050) and its nutritional requirements, there is an

urgent need to combat food and feed deficiencies

which are developing in the form of hidden hunger as

per estimates of Sustainable Development Goals

(Barrett 2010; FAO 2017; Allen and de Brauw

2018). According to the EASAC Policy Report
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(2011), the underutilized crops can be strategically

exploited to ensure the effective management of eco-

efficient production of nutritious and functional food

along with minimal land usage and inputs. Being

resilient to a large number of biotic and abiotic

stresses, these can mitigate the effect of climate

change (Massawe et al. 2015; Mabhaudhi et al. 2019).

Among various underutilized crops occurring world-

wide, buckwheat (Fagopyrum sp.) offers unique

combination of biologically valuable compounds to

ensure its usefulness as an extraordinary super food

having nutraceutical and pharmaceutical potential.

Buckwheat is a dicotyledonous crop belonging to

the Polygonaceae family and Fagopyrum genus which

is comprised of both perennial and annual species

having diploid (2n = 2x = 16) and tetraploid

(2n = 4x = 32) chromosome numbers with a haploid

genome size of * 1.2 Gb (Yasui et al. 2016). Out of

the 34 reported species till date, it is recognized

primarily by two cultivated species, common buck-

wheat (F. esculentum Moench) and tartary buckwheat

(F. tataricum Gaertn) along with a wild species F.

cymosum (Trev.) Meisn (Fig. 1) occurring in high-

lands of Euro-Asian regions (Farooq and Tahir 1987;

Ohnishi 1995; Chen 1999; Tsuji et al. 1999; Chen et al.

2001; Rana 2004; Lui et al. 2001; Shao et al. 2011;

Kalinova and Dadakova 2013; Tang et al. 2014; Zhou

et al. 2015; Hou et al. 2015; Chen et al. 2018).

Buckwheat is said to have been originated in temper-

ate Central Asia (Morris 1947; Tsvetoukhine 1952)

and China is considered as center of its origin (Farooq

et al. 2016; Zhou et al. 2018a, b). Globally, the

countries responsible for buckwheat production are

Brazil, Canada, France, Poland, Russia, Ukraine and

USA, including China and India (Campbell 1997; Di

Fabio and Parraga 2016). It is cultivated in 2.4 Mha

area worldwide with average production and produc-

tivity of 2.4 million tonnes and 1000 kg/ha, respec-

tively. France has the distinction of having highest

buckwheat productivity (3735 kg/ha) in the world

(FAOSTAT 2018a, b). In India, the estimates for

buckwheat production are not available separately,

although it is distributed in Jammu & Kashmir in the

North to Arunachal Pradesh in the East and Tamil

Nadu in the South.

Since buckwheat has the wide adaptability to grow

in any kind of environment, it has gained considerable

interest among socio-scientific communities world-

wide to improve food and nutritional security by

increasing agricultural diversification and minimizing

environmental degradation. Owing to presence of

various bioactive constituents, crop-specific traits and

physiological responses, buckwheat research has seen

significant advances in context of crop cultivation and

food applications (Ahmed et al. 2013; Alencar and

Oliveria 2019; Pirzadah et al. 2019). In this article, we

review the nutraceutical potential, origin and species

distribution, genetic resources management, breeding

and genomic advancements along with future pro-

spects of buckwheat research. Our initiative will help

in promotion and conservation of underutilized crops

including buckwheat which will play an important role

in providing food and nutritional security to the

developing world under changing climate scenario.

Multifarious uses and health benefits

Buckwheat has been widely recognized as a future

crop having multifarious uses ranging from restoring

Fig. 1 View of cultivated a F. esculentum b F. tataricum and wild c F. cymosum species of buckwheat
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soil productivity to nutraceutical properties and sus-

taining livelihood security of world population (Babu

et al. 2018). It is an ephemeral green manure crop

which tightens up the on-farm nutrient cycle by

soaking up the leachable nutrients, thereby enhancing

soil aggregate stability and nutrient scavenging mech-

anism (Clark 2007; Bjorkman and Shail 2010). The

crop also has the potential to suppress root pathogens

and insect-pests cycle (Magdoff and van Es 2009).

Being an excellent phosphorus scavenger, buckwheat

is often regarded as natural phosphorus pump having

10 times higher uptake capacity than wheat (Zhu et al.

2002). The roots exudates of buckwheat contain

several mild acids which mineralize the slow release

of organic fertilizers to subsequent crops (Bjorkman

and Shail 2010; Tolaini et al. 2016).

The economic importance of buckwheat is due to

presence of bioactive compounds such as flavonoids

including rutin- the major marker compound along

with nutritional characteristics. The flavonoids such as

rutin, orientin, homoorientin, quercetin, vitexin and

isovitexin present in flowers, leaves and seeds impart

nutraceutical value to this crop (Zielinska et al. 2012;

Raina and Gupta 2015). Rutin has been widely used in

treatment of edema, haemorrhagic diseases, hyperten-

sion and inflammation (Omidbaigi and Mastro 2004;

Nile and Park 2014). It is also known to avert

Alzheimer’s disease by ameliorating oxidative stress

(Javed et al. 2012). On the other hand, quercetin

possesses health effects like rutin and reduces inflam-

mation (Sikder et al. 2014). Buckwheat also contains

fagopyrin which is used in photodynamic therapy for

the treatment of cancer, diabetic and microbial cells

(Dai et al. 2009; Amezqueta et al. 2012; Tavčar et al.

2014). Also, the occurrence of polyphenolic anti-

oxidants like caffeic acid, gallic acid and salicylic acid

in this crop is helpful in curing various metabolic

diseases (Oniszczuk 2016). The distinct aroma of its

grains is due to the presence of salicylaldehyde (Janes

and Kreft 2008). In addition, the gluten-free buck-

wheat flour is used in preventing celiac disease in

human population (Wronkowska et al. 2013; Costan-

tini et al. 2014; Giménez-Bastida et al. 2015; Kaur

et al. 2015; Tummaramatti et al. 2016). Buckwheat

contains a variety of nutrients viz. carbohydrates,

proteins, lipids, minerals and vitamins whose concen-

trations are higher than most of the major cereal crops

(Table 1). The total content of components depends on

the variety vis-à-vis environmental factors (Bárta et al.

2004). Buckwheat proteins are known to reduce

cholesterol concentration in the serum by increasing

the fecal excretion of the steroids (Takahama and

Hirota 2011) and they also suppress colon carcino-

genesis by reducing cell proliferation (Liu et al. 2001).

Buckwheat can also be harnessed for production of

functional foods with high starch and flavonoid

contents having low glycemic and insulin indexes

(Stokić et al. 2015; Gao et al. 2016). The presence of

higher levels of amino acids especially arginine,

aspartate and lysine than cereals which are generally

considered deficient in essential amino acids makes

buckwheat a promising alternative for super food

applications (Wijngaard and Arendt 2006; Janssen

et al. 2016; Sytar et al. 2018). Additionally, it is also

considered as a mineral source having high concen-

trations of copper, magnesium, phosphorus, potassium

and zinc compared to major cereals (Campbell 1997;

Wijngaard and Arendt 2006) along with the presence

of well documented useful vitamins (Alvarez-Jubete

et al. 2010). Moreover, it also possess high antioxidant

activity, including DPPH radical scavenging activity

which may help in optimization of processing condi-

tions in health promoting products (Şensoy et al. 2006;

Tang et al. 2009). Thus, it can also be blended with

other cereal grains to produce multigrain bread, pasta

and waffles (Lin et al. 2009). The investigations of

Prestamo et al. (2003) showed the effect of buckwheat

ingestion in rat increasing aerobic and lactic acid

bacteria in its intestine with simultaneous decrease in

pathogenic bacteria, thus justifying the role of buck-

wheat products as potential prebiotics for human

consumption. Lately, buckwheat flowers have been

used in preparation of organic tea (Qin et al. 2011;

Thwe et al. 2013). Overall, buckwheat provides high

commercial value and unique functional and nutri-

tional benefits to the civil society. Therefore, the

evaluation of genetic resources is prerequisite to

identify promising genotypes/cultivars and their

exploitations for developing elite varieties using

appropriate breeding strategies. These resources could

also be taken well as super food having pharmaco-

logical usage to resolve the problem of malnutrition.

Gene pool, origin and distribution

The taxonomic studies of buckwheat were first

reported by Gross (1913) on the basis of distinct
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morphological identification which forms the basis of

gene pool classification (Fig. 2). The genus Fagopy-

rum consists of about 34 species of which only two

species viz. F. esculentum and F. tataricum are

cultivated and classified under cymosum group while

F. acutatum, F. callianthum, F. capillatum, F. cauda-

tum, F. crispatifolium, F. cymosum, F. densovillosum,

F. dibotrys, F. emarginatum, F. giganteum, F. gilesii,

F. gracilipedoides, F. gracillipes, F. hailuogouense,

F. hybridum, F. homotropicum, F. jinshaense, F.

leptopodium, F. lineare, F. luojishanense, F. macro-

carpum, F. megaspartanium, F. pilus, F.

pleioremosum, F. pugense, F. qiangcai, F. rubifolium,

F. static, F. sagittatum, F. urophyllum, F. wenchua-

nense, F. zuogongense are wild types occurring under

urophyllum group (Farooq and Tahir 1987; Ohnishi

1995; Chen 1999; Tsuji et al. 1999; Chen et al. 2001;

Rana 2004; Lui et al. 2001; Shao et al. 2011; Kalinova

and Dadakova 2013; Tang et al. 2014; Zhou et al.

2015; Hou et al. 2015; Chen et al. 2018). The genus

Fagopyrum is comprised of both self and cross-

pollinated species and the rate of dimorphic hetero-

styly results in self incompatibility among species

(Chrungoo et al. 2012; Farooq et al. 2016).

Table 1 Comparison of

nutritional and nutraceutical

status of buckwheat with

some major cereal crops

(Partially adapted from

Bonafaccia and Fabjan

2003; Przybylski and

Gruczyńska 2009; Kumar

et al. 2016; Joshi et al.

2019)

Nutrients Buckwheat Barley Maize Rye Wheat

Amino acids (g/100 g)

Cysteine 2.2 2.3 2.2 – 1.8

Histidine 2.5 2.2 2.4 – 2.3

Lysine 5.7 3.7 2.8 – 2.5

Methionine 2.3 1.8 2.4 – 1.8

Phenylalanine 4.3 4.9 4.5 – 4.4

Minerals (mg/100 g)

Calcium 18 33 7 33 25

Copper 1.1 0.5 0.3 0.5 0.4

Iron 2.2 3.6 2.7 2.7 3.6

Magnesium 231 133 127 121 124

Phosphorus 347 264 210 374 332

Zinc 2.4 2.8 2.2 3.7 2.8

Proximate (%)

Carbohydrates 72.9 73.5 74.3 69.8 71.1

Fibers 8.5 17.3 7.3 14.6 11.2

Lipids 7.4 2.3 4.7 2.5 2.5

Moisture 10.0 9.4 10.4 10.9 10.9

Proteins 12.0 12.5 9.4 14.8 13.7

Nutraceuticals

Flavonoids (lg/g)

Catechin 31.3 – – – –

Epicatechin 203.5 – – – –

Orientin 8.6 – – – –

Quercetin 4.5 – – – –

Rutin 176.5 – – – –

Vitexin 17.8 – – – –

Vitamins (mg/100 g)

Niacin 6.15 4.61 3.63 4.27 5.71

Pyridoxine 0.58 0.32 0.62 0.29 0.34

Riboflavin 0.19 0.29 0.21 0.25 0.11

Thiamin 0.42 0.65 0.39 0.32 0.51
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Buckwheat is said to have been originated in

temperate Central Asia (Morris 1947 and Tsve-

toukhine 1952). The oldest remains of buckwheat

were found in China (Yururi and Zhongging 1984;

Ahmad et al. 2018) and are known to have been

cultivated in 1st and 2nd centuries BC (Li and Yang

1992) on the contrary to Hunt (1910) who believed

them to be not so ancient. In (1957), Nakao ascertained

De Candolle’s (1883) hypothesis on origin of buck-

wheat in Northern China or Siberia which was

contradictory to Steward’s (1930) distribution of wild

Fagopyrum species as reported by Ohnishi (1995). In

(1992), Li and Yang suggested Yunnan region as the

origin of common buckwheat and Jiang and Jia (1992)

reported Daliangshan region as the origin of tartary

buckwheat. Ohnishi (1995) ascertained two hot spots

for differentiation of Fagopyrum species; the Yunnan

province and the upper Min river basin. As stated by

Campbell (1976), F. cymosum is not the ancestor of

cultivated buckwheat but is distantly related, stating F.

esculentum ssp. ancestralis Ohnishi as the wild

ancestor of common buckwheat and F. tataricum

ssp. potanini Batalin as the wild ancestor of tartary

buckwheat (Ohnishi 1998). The studies related to

allozyme analysis and DNA polymorphism revealed

possibility of F. megaspartanium and F. pilus as the

progenitors of common buckwheat and tartary buck-

wheat, respectively (Chen et al. 2004; Li et al. 2013).

Domestication of common and tartary buckwheat took

place in the western Yunnan and Sichuan region of

China (Ahmad et al. 2018). With the availability of

draft genome, the evaluation of genome-wide diver-

sity using genotyping-by-sequencing has resulted in

elucidating the evolutionary history of buckwheat

suggesting multiple origins pertaining to Asian and

European continents (Yasui et al. 2016; Mizuno and

Yasui 2019).

Buckwheat is widely distributed in the intricated

geographical environment of South-West China.

Common buckwheat was first cultivated in inland

South-East Asia from where it was expanded to

Central Asia, Europe, Middle East and Tibet via

Fig. 2 Buckwheat gene pool
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Russia (Kreft 2001; Woo et al. 2010; Ahmad et al.

2018). From South-West China it was distributed to

Bhutan, Nepal, India and Pakistan (Kreft 2001). From

Northern China via Korean peninsula, buckwheat was

introduced in Japan (Nagatomo 1984 and Ohnishi

1995). Later, from Asia and Europe, buckwheat

cultivation was started in Argentina, Brazil, Canada,

South Africa and USA (Kreft 2001). Dispersal around

the globe was completed by 2006 (Ahmad et al. 2018).

With passage of time, it became an important crop in

mountainous regions of China, India, Kazakhstan,

Russia, Ukraine and parts of Canada, Japan, Korea and

Nepal (Wei et al. 2003; Stibilj et al. 2004; Sangma and

Chrungoo 2010). In India, the important segments of

buckwheat cultivation are Jammu & Kashmir, Hima-

chal Pradesh and Uttarakhand in the North; Arunachal

Pradesh, Manipur, Meghalaya and West Bengal in the

East; and parts of Nilgiri and Palani hills in the south

(Rana et al. 2012).

Genetic resources and ex situ conservation

Buckwheat genetic resources are comprised of

released cultivars, advanced breeding lines, landraces

and wild species which are distributed globally. With

the dawn of modern agriculture, replacement of local

landraces by other high yielding crop varieties and

adverse effects of changing climate, these have

become prone to genetic erosion. Food and Agricul-

ture Organization (FAO) in 1945 was the first body to

perceive the danger of genetic erosion of valued

resources and consequently started conservation activ-

ities to prevent it. In 1974, FAO established Interna-

tional Board for Plant Genetic Resources (IBPGR)

with the mandate for conservation and sustainable use

of genetic diversity. Subsequently, germplasm con-

servation activities have been undertaken at Regional,

National and International levels.

Many global gene banks are actively involved in

the conservation of buckwheat resources like Crops

Genetic Resources Institute of Chinese Academy of

Agricultural Sciences (CAAS), China (largest repos-

itory with[ 2800 accessions); Genebank of the Crop

Research Institute (CRI), Czech Republic; National

Bureau of Plant Genetic Resources (NBPGR), India;

National Agriculture Genetic Resource Centre

(NAGRC), Nepal; and N.I. Vavilov Research Institute

of Plant Industry (VIR) in Russia (Suvorova and Zhou

2018). These genetic resources are conserved in long-

term storage (LTS) (-20 �C and 5% RH) or mid-term

storage (MTS) (5 �C and 35% RH) depending on their

usability. In 1980s, CAAS began to collect buckwheat

germplasm with other institutes in 24 provinces and

stored them in its gene bank with current holding

of[ 2800 accessions (Tang et al. 2016). Simultane-

ously, NBPGR in India also started buckwheat intro-

duction, collection and conservation activities

resulting in 1050 germplasm collections stored in the

LTS at New Delhi as base collection and the same set

of germplasm storage at its regional station in Shimla

as working collection. The list of global gene bank

holding the buckwheat germplasm has been presented

in Table 2.

Although on-farm conservation of buckwheat

germplasm has been initiated globally, detailed reports

regarding the same are still limited except studies in

Indian Himalayan region (Rana et al. 2016), Nepal

(Luitel et al. 2017) and South-West China (Huang

et al. 2017b; Song et al. 2019, 2020). These studies

have revealed that traditional farming systems are of

utmost importance for maintenance of local genetic

diversity along with sustainable livelihood and food

security. Nevertheless, general awareness camps and

brainstorming sessions at grass root level can aid in

successful conservation of buckwheat genetic

resources along with initiation of new breeding

initiatives.

Germplasm characterization and evaluation

The characterization and evaluation of genetic

resources is a pre-requisite for conducting a successful

crop improvement programme with a view to intro-

gress desired traits for developing potential cultivars.

Buckwheat germplasm has been characterized glob-

ally for various qualitative and quantitative traits using

the plant descriptors jointly developed by Interna-

tional Plant Genetic Resources Institute (IPGRI), now

Bioversity International, NBPGR and others. A wide

range of variability has been observed in germplasm

for different yield contributing characters worldwide

(Ujihara 1983; Choi et al. 1992; Baniya et al. 1995;

Rana and Sharma 2000; Rana 2004). Countries like

China, India, Japan, Nepal and North Korea have

evaluated agronomic traits of buckwheat such as plant

height, number of branches, number of flowers,
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1000-seed weight, plant type, stem color, flower color,

seed color and seed shape along with important quality

characters (Chauhan et al. 2010).

Buckwheat varieties usually differ from each other

in plant type, stem color, leaf color, flower color, grain

color, grain shape etc., thus, abundant diversity has

been reported in various accessions pertaining to F.

esculentum and F. tataricum (Yang 1992; Baniya et al.

1995). The CAAS has identified important agronomic

characters in 964 F. esculentum accessions (Yang and

Lu 1992) and Baniya et al. (1995) evaluated them in

309 accessions. Similarly, Yang (1995) reported

variability in 550 F. tataricum accessions while Joshi

et al. (2011) also reported the same in 192 accessions

for different agro-morphological characters. Recently,

a study by Rauf et al. (2020) led to characterization of

251 F. esculentum accessions demonstrating high

diversity pertaining to seed color, 80% maturity, and

1000-seed weight under the spring cultivation. Like-

wise, the wild species of buckwheat harbors rich

genetic diversity in terms of nutritional and medicinal

composition viz. amino acids, carbohydrates, flavo-

noids, minerals and proteins. Reports have suggested

that wild F. cymosum contains highest amount of

amino acids, minerals, proteins and vitamins among

buckwheat species (Lu et al. 1996; Zhang et al. 1999;

Zhao et al. 2002; Tang et al. 2011). Common

buckwheat contains 18 kinds of amino acids which

differ significantly in terms of content as reported by

Yang (1992) who also observed variation in minerals

(0.054–3682 ppm) and vitamins (0.09–9.84 mg/

100 g) among 906 accessions of F. esculentum.

Furthermore, tartary buckwheat is a rich source of

various nutrients including amino acids, lipids, min-

erals, proteins, vitamins and bioactive substances.

Chinese researchers in early 1990s have measured the

contents of amino acids and trace elements like Ca,

Mn, P, Se, Zn etc. in[ 500 F. tataricum accessions

which ranged from 7040 to 15,830 mg/100 g for

amino acids and 0.05–3762 ppm for minerals. Zheng

et al. (2011) reported the presence of Se in buckwheat

(0.0406 mg/g) which imparts resistance to various

cancers and cardiovascular diseases among humans,

thereby making buckwheat an ideal candidate for

exploiting Se to make biofortified products to promote

nutritional security. Further, rutin being the major

marker compound in buckwheat known for various

pharmacological properties has been measured in F.

esculentum and F. tataricum. Park et al. (2004)

reported that highest rutin content was observed in

flowers and lowest in roots among both Fagopyrum sp.

Similarly, Jiang et al. (2006) demonstrated the vari-

ation in rutin content along with antioxidant activity

decreasing from F. tataricum to F. esculentum.

Results have also shown that the rutin content of F.

tartaricum is more than that of F. esculentum ranging

from 6–30 lg/mg and 0.145–0.189 lg/mg in F.

tataricum and F. esculentum, respectively (Kitabaya-

shi et al. 1995; Campbell 1997; Yan et al. 2004; Gupta

et al. 2012). Gupta et al. (2011) found that the

germplasm with high rutin content is stable, thus

implying the importance of genetic differences in F.

tartaricum accessions which can be used for develop-

ing elite buckwheat chemotypes. Reports have

Table 2 Buckwheat genetic resources conserved in the major global gene banks

Organization Country Germplasm collection References

Crop Genetic Resources Institute of

Chinese Academy of Agricultural Science (CAAS)

China 2804 Zhou et al. (2018a, b)

Genebank of the Crop Research Institute (CRI) Czech Republic 170 Cepková et al. (2009)

National Bureau of Plant Genetic Resources (NBPGR) India 1050 Rana et al. (2016)

National Institute of Agro-biological Sciences (NIAS) Japan 226 Katsube-Tanaka (2016)

Central Plant Breeding and Biotechnology Division Nepal 172 Arora et al. (1995)

National Agricultural Research Council (NARC) Nepal 488 Arora et al. (1995)

National Hill Crops Research Program Nepal 411 Arora et al. (1995)

N.I. Vavilov Research Institute of Plant Industry (VIR) Russia 2230 Romanova et al. (2018)

Podillya State Agricultural University Ukraine 900 Zhou et al. (2018a, b)

V.Y Yuryev Institute of Plant Production Ukraine 1600 Zhou et al. (2018a, b)
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revealed that metabolite contents of buckwheat

germplasm vary due to environmental factors (Nam

et al. 2018), sowing time (Hyun et al. 2018), varietal

changes (Kiprovski et al. 2015) and so on. A study by

Yu et al. (2019) showed significant variation in rutin

and quercetin contents in F. tataricum accessions,

suggesting effect of geographical location on the

same. Further, among F. esculentum germplasm, 10

accessions with high rutin content (* 0.35 lg/mg)

and 3 accessions with high quercetin content

(* 0.01 lg/mg) have also been reported in recent

times (Rauf et al. 2020). Overall, trait-specific acces-

sions of buckwheat germplasm for different agro-

morphological and biochemical characteristics have

been identified over the years (Table 3). In general,

characterization and evaluation of buckwheat germ-

plasm has led to screening and identification of novel

buckwheat genetic resources which have immense

potential for their utilization in buckwheat breeding.

Development of cultivars and germplasm

registration

The need for recognition of improved crop genotypes

is widely considered as an important aspect for

sustainable utilization of genetic resources in crop

improvement. This becomes critically imperative

during changing global scenario in view of Intellectual

Property Rights’ (IPRs) regimes. Recent years have

seen rapid advances in development and registration

of buckwheat genotypes worldwide. Globally, Belarus

had registered 12 buckwheat varieties while Russia

had registered 48 (Suvorova and Zhou 2018). China

registered high yielding perennial tartary buckwheat

varieties ‘Gui Duoku 003’, ‘Gui Duoku 60’ and ‘Gui

Duoku 74’ developed by wide hybridization between

tartary buckwheat variety ‘Daku No. 1’ and perennial

buckwheat variety ‘Hongxin Jinqiaomai’ having low

shattering, high seed number and better genetic

stability (Chen et al. 2018). Japan had registered 32

varieties of common buckwheat between the years

1919–2010 (Hayashi 2011). Ukraine had registered 20

varieties based on genetic recombination and pheno-

typic selection criteria (Taranenko et al. 2004). Two

accessions, IC3789 and IC3823 from Eastern Ukraine

are considered as the most resistant accessions for

shedding (Joshi and Paroda 1991).

In India, buckwheat varieties ‘Himpriya’ and

‘Himgiri’ were developed by NBPGR Regional Sta-

tion, Shimla as a pure line selection from IC13374 and

EC321978 in 1991. Further, ‘VLUGAL 7’ variety was

developed in 1991 by Vivekanand Parvatiya Krishi

Anusandhan Sansthan (VPKAS), Almora, India

through mass selection (Joshi and Rana 1995). In

1997, ‘PRB 1’ developed for high seed yield was

registered by GB Pant University of Agriculture and

Technology, Pantnagar, India. Then, an easy dehulling

accession IC258233 was registered by NBPGR

Regional Station, Shimla in 2004. Later in 2005,

Himachal Pradesh Agriculture University

(CSKHPKV), Palampur, India developed variety

‘Sangla B1’ through pure line selection for high seed

yield (Rana et al. 2016). Earlier, Joshi and Paroda

(1991) evaluated 108 accessions of buckwheat from

Himalayan region and considered accession IC13145

Table 3 Sources of useful traits identified in buckwheat germplasm

Trait of interest Value Species References

Days to flowering \ 40 days F. tataricum Chauhan et al. (2010)

Days to maturity \ 80 days F. esculentum, F. tataricum Rana et al. (2016), Rauf et al. (2020)

Seed yield per plant [ 100 g F. tataricum Rana et al. (2016)

1000-seed weight [ 25 g F. esculentum, F. tataricum Chauhan et al. (2010), Rauf et al. (2020)

Lysine content [ 4.50% F. tataricum Zheng et al. (2011), Rana et al. (2016)

Total phenols [ 1.60% F. cymosum, F. tataricum Rana and Sharma (2000), Zhao et al. (2002)

Total proteins [ 14% F. cymosum, F. esculentum Przybylski and Gruczynska (2009), Tang et al. (2011)

Quercetin content [ 0.2 lg/mg F. esculentum, F. tataricum Yu et al. (2019), Rauf et al. (2020)

Rutin content [ 17 lg/mg F. tataricum Gupta et al. (2012), Yu et al. (2019)
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as F. himalianumwhich was later listed by IPGRI as F.

tataricum var. himalianum.

NBPGR initiatives—mainstreaming buckwheat

landraces into production system

The study was focused on on-farm conservation and

mainstreaming of important crop landraces which are

becoming extinct due to climate change and onslaught

of cash crops. In this direction, efforts were made to

promote buckwheat landraces belonging to cold desert

regions of India.

The study was focused on systems-level analysis of

substantial intensification of agriculture with partici-

patory farm household resources and economic envi-

ronments for conservation and management of

traditional buckwheat landraces. Biochemical profil-

ing for the identification of bioactive substances

responsible for nutritional and health benefits was

also done for identification of elite plant material,

thereby generating knowledge paradigm among farm-

ing communities. It was shown that protein content in

F. esculentum and F. tataricum seeds was 115 mg/g

and 105 mg/g, respectively while starch activity was

4.8 U/lM/30 min. and 6 U/lM/30 min., respectively.

Similarly, high performance liquid chromatography

(HPLC) analysis showed presence of 3 mg/g flavo-

noid in F. esculentum seeds as compared to 20.5 mg/g

in F. tataricum seeds. The cultivated buckwheat

varieties, F. esculentum and F. tataricum were also

documented for registration with the Protection of

Plant Varieties and Farmers’ Rights Authority

(PPVFRA), New Delhi to record the unique landrace

diversity carrying important trait of interest. The

results demonstrated integration of on-farm conserva-

tion for traditional landraces along with biochemical

analysis, registration of farmers’ varieties and estab-

lishment of Community Seed Banks (CSBs) which

will aid in systems level analysis for long term

sustainability of plant genetic resources from cold-arid

agro-ecosystem for achieving nutritional security

under changing climate scenario. Hence, creating seed

chain system through on-farm conservation and CSBs

vis-à-vis characterization and evaluation of elite

farmers’ varieties for novel traits will bring the

potential crops in general and buckwheat in particular

under mainstream agriculture, thus strengthening their

sustainable conservation and utilization (Fig. 3;

unpublished data).

Progress in breeding strategies

Buckwheat breeding program has always been asso-

ciated with numerous problems pertaining to apo-

mixis, low seed availability, self/cross-

incompatibility, shattering, sterility etc. Despite such

breeding barriers, different plans aimed at buckwheat

genetic improvement were initiated by various inter-

national organizations. The major breeding advance-

ments in buckwheat have been summarized in

Table 4. In 1938, the first buckwheat variety ‘Bogatyr’

was released and developed through mass selection

from Russian landrace populations (Suvorova and

Zhou 2018). Studies aimed at broadening the genetic

base of buckwheat along with improvement of exist-

ing varieties and introgression of new characters were

started when interspecific crosses were attempted.

Morris (1951) reported a cross between F. esculentum

and F. tataricum which resulted in immature embryos

if F. tataricum was used as the female parent. The first

interspecific hybrid, F. giganteum Krotov was

obtained by crossing F. cymosum and F. tataricum

(Krotov and Golubeva 1973). Because of the self-

incompatibility of F. esculentum, several attempts

were made to obtain its hybrids through ovule culture

(Ujihara et al. 1990). Later in 1995, with the identi-

fication of wild progenitor F. homotropicum, self

fertile species extended the possibilities of interspeci-

fic crossing of common buckwheat. This led to a

successful interspecific cross between F. esculentum

Fig. 3 Buckwheat on-farm conservation site in Sangla valley

of Himachal Pradesh, India
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and F. homotropicum (Campbell 1995). After several

breeding efforts, a common buckwheat breeding line

‘Norin-PL1’ was developed by crossing F. esculentum

cv. Botansoba and F. homotropicum accession from

Yunnan followed by recurrent backcrossing of F1
hybrid with F. esculentum (Matsui et al. 2008).

Subsequently, various crosses of F. cymosum x F.

esculentum and F. esculentum x F. tataricum were

developed using embryo rescue technique (Hirose

et al. 1995; Woo et al. 1999, 2008), although certain

reports on unsuccessful interspecific crosses are

available in literature (Wagatsuma and Un-no 1995;

Wang and Campbell 1998). Despite the difficulty of

embryo abortion in F. esculentum and F. tataricum

crosses, researchers continued the search to overcome

the incompatibility barriers. To improve the success of

interspecific hybridization between the two cultivated

species, Samimy et al. (1996), Wang et al. (2002),

Niroula et al. (2006), and Azaduzzaman et al. (2009)

carried out various hybridization experiments inde-

pendently. A hybrid was produced using polyethylene

glycol-mediated fusion of mesophyll protoplasts of F.

esculentum and hypocotyl protoplast of F. tataricum

(Samimy et al. 1996). Then, more than 30 embryos

were produced by crossing F. esculentum and F.

tataricum (Suvorova 2001). To improve the seed

setting and shattering, ‘Hongxin Jinqiao’, a tetraploid

variety was developed in 2007 using F. cymosum

accessions with less shattering (Chen et al. 2018). A

tri-species hybrid of F. cymosum, F. esculentum and F.

homotropicum was obtained as a result of multiple

crossing and ovule rescue technique (Suvorova

2001, 2010). The plants obtained were vigorous in

growth but were not able to produce mature seeds

without ovule culture. Lastly, a new species F. tartri-

cymosum was obtained by interspecific cross between

F. cymosum and F. tataricum (Ren and Chen 2016).

Earlier, Mukasa (2011) standardized hot water emas-

culation in common buckwheat (42 �C for 5 min) and

tartary buckwheat (44 �C for 3 min) for artificial

hybridization and large scale production of hybrids.

In India, buckwheat breeding programs is being

carried out under AICRP on potential crops to obtain

improved breeding materials (Hore and Rathi 2002).

Several attempts were made to hybridize buckwheat

using different protocols but limited success has been

achieved till now. NBPGR Regional Station, Shimla

has attempted to hybridize two registered buckwheat

Table 4 Progress of breeding in buckwheat

Study/Problem Organ

used

Result References

Anther culture Anther Induction of haploid or diploid plants Bohanec et al. (1993)

Interspecific

hybridization using

embryo rescue

Embryo Successful production of interspecific hybrids from crosses

between F. cymosum 9 F. esculentum and F. esculentum 9 F.
tataricum

Woo et al. (1995), Woo et al.

(2002), Niroula et al.

(2006)

Gametophyte selection Pollen Pollen competition influenced genetic structure and vigor of

buckwheat mapping population

Bjorkman (1995)

Self-incompatibility in

interspecific crosses

Pollen Occurrence of unilateral incompatibility and dimorphic self-

incompatibility

Hirose et al. (1995)

In vitro germination

and viability

Pollen Temperature and flower age influenced pollen longevity Adhikari and Campbell

(1998)

Inflorescence Pollen Light affected photosynthetic rate and flowering time Quinet et al. (2004)

Cytogenetics Pollen Crossing autotetraploid plants with diploid parent produced

autotriploid and trisomic progenies

Chen et al. (2007)

Embryo development

in interspecific

crosses

Pollen Highly compatible pollination occurred between F.
esculentum 9 F. cymosum and F. esculentum 9 F.
homotropicum

Woo et al. (2008)

Enhanced seed

development by

backcross

Pollen Desirable agronomic traits from wild F. homotropicum
transferred to cultivated F. esculentum

Shin et al. (2009)
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varieties, ‘Himpriya’ and ‘Shimla B1’ using two

emasculation techniques viz. hot water treatment and

hand emasculation. Result showed development of

viable hybrid seeds using hand emasculation which is

under further analysis (unpublished data). Neverthe-

less, more efficient and reliable breeding methods are

required for genetic improvement of buckwheat to

cope with changing world.

Progress in biotechnological interventions

During the last 20 years, the application of modern

biotechnology in buckwheat research has attracted the

concern of scientists globally. The development and

use of molecular markers has significantly addressed

various aspects of molecular genetics which forms the

basis for utilization of DNA polymorphism (Cullis

2002). Different genome-wide markers have been

employed to study the diversity and evolutionary

history of buckwheat gene pool. The origin of

common buckwheat has been studied by using random

amplified polymorphic DNA (RAPD) markers (Murai

and Ohnishi 1996) and amplified fragment length

polymorphism (AFLP) markers (Konishi et al. 2005).

Lately, the development of simple sequence repeat

(SSR) markers led to significant genetic differentia-

tion among common buckwheat cultivars (Iwata et al.

2005), although only few SSR markers are reported in

buckwheat (Konishi et al. 2006; Joshi et al. 2006; Ma

et al. 2009). Thereafter, Yasui et al. (2008) constructed

a bacterial artificial chromosome (BAC) library for

rapid enrichment of buckwheat genetic resources.

Further, reports by Chauhan et al. (2010) and Rana

et al. (2016) suggested the use of expressed sequenced

tags (ESTs) for rapid development of molecular

markers in buckwheat. They also reported identifica-

tion of rutin biosynthetic pathway genes in F. escu-

lentum and F. tataricum by utilizing comparative

genomics approach. Lately, the substantial advances

in genomics applications led to development of high

quality reference genomes of F. esculentum (Yasui

et al. 2016) and F. tataricum (Zhang et al. 2017) with

genome sizes of 1.2 Gb and 0.48 Gb, respectively

followed by two chloroplast genome sequences (Liu

et al. 2016; Wang et al. 2017). The studies related to

marker-assisted selection in buckwheat have been

summarized in Table 5.

The comprehensive analysis of the association

between agronomic traits for marker-assisted selection

and quantitative trait loci (QTLs) is primarily associ-

ated with genetic maps (Chauhan et al. 2010). The

availability of genetic maps for common buckwheat

(Yasui et al. 2004; Pan and Chen 2010) and tartary

buckwheat (Xiaolei et al. 2013) led to identification of

QTLs governing photoperiod sensitivity (Hara et al.

2011) and stem length (Yabe et al. 2014), but limited

efforts have been made till date to generate genetic

mapping populations of buckwheat in terms of rapid

advancements made in other crops associated with

production of Multiple Advanced Generation Inter-

cross (MAGIC), Nested Associated Mapping (NAM)

and Recombinant Inbred Lines (RILs) population. Of

late, speed breeding has also been deployed for rapid

cultivar development in major crop species to manage

six crop cycles per year than one or two cycles under

normal conditions (Watson et al. 2018). Since growing

season of buckwheat lasts 3–4 months (Joshi et al.

2019), this technique could be helpful in achieving six

crop cycles annually. Besides, an immediate thrust is

required for enhancing buckwheat production by

integrating genomics-assisted breeding approaches.

Although the potential of genomic selection to com-

plement mass selection in buckwheat has been

demonstrated recently (Yabe et al. 2018), utilization

of CRISPR/Cas9-mediated genome editing will aid in

improving nutraceutical value and yield in buckwheat.

The last decade has also witnessed the use of

transcriptome-based gene expression profiling for

characterization of the candidate genes regulating

various biological processes (Kumar et al. 2016). In

buckwheat, comprehensive transcriptome analysis for

floral structure, aluminum toxicity and salt tolerance

have been reported by Logacheva et al. (2011), Xu

et al. (2017) and Wu et al. (2017), respectively. Huang

et al. (2017a) identified 11,676 differentially

expressed genes by transcriptome analysis of seed

development stages in tartary buckwheat. Moreover,

proteomics-based analysis of buckwheat has also

helped in better understanding of developmental

processes to facilitate deeper analysis by functional

genomics (Lee et al. 2016). Likewise, hairy root

culture-induced metabolic profiling of tartary buck-

wheat led to increase production of flavonoids along

with the identification of 47 secondary metabolites by

gas chromatography-mass spectrometry (GC–MS)

analysis (Thwe et al. 2013, 2016).
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Further, due to its immense nutraceutical impor-

tance, there is a greater significance for in vitro

production of plant metabolites in buckwheat. Vege-

tative propagation of many economic plants has so far

been achieved through tissue culture methods (Mur-

ashige and Skoog 1977). Previous results showed that

isolated hypocotyls and cotyledons of buckwheat

could be induced to develop calluses, with the capacity

for organogenesis and restoration of plantlets (Ya-

mane 1974). Moreover, research was conducted on

common buckwheat to develop a plant regeneration

system for future application of genetic transformation

(Woo et al. 2000a, b). Somatic embryogenesis has also

been reported by culturing of immature embryos of

common buckwheat (Neskovic et al. 1987; Rumyant-

seva et al. 1989) and tartary buckwheat (Lachmann

and Adachi 1990; Rumyantseva et al. 1989). Research

on somatic embryogenesis and plant regeneration has

been carried out using hypocotyl segments as explant

of the cultivated buckwheat species F. esculentum to

develop an efficient protocol for plant regeneration for

common buckwheat (Kwon et al. 2013). Several

studies have also been conducted to develop a

potential technique for the isolation of viable proto-

plasts from egg cells (Woo et al. 1999) so that egg cells

of buckwheat can be fused with somatic protoplasts

and other gametoplasts because of their biological

function; a technique has also been developed for the

isolation of viable protoplasts from sperm cells (Woo

et al. 2000a, b). Additionally, genetic engineering

through A. tumefaciens and A. rhizogenes-mediated

transformation is well established in both common and

tartary buckwheat as suggested by findings of Kojima

et al. (2000), Kim et al. (2001, 2010) and Gabr et al.

(2012). These studies have paved the way for devel-

opment of transgenics in buckwheat vis-à-vis produc-

tion of higher amount of flavonoids which can have a

perpetual impact on global food and nutritional

security.

Table 5 Progress of marker-assisted selection in buckwheat

Study Marker

used

Result References

Population genetics of F. esculentum RAPD Construction of phylogenetic trees for landraces

from all over the world

Murai and

Ohnishi

(1996)

Identification of molecular markers linked to the

homostylar (Ho) gene

RAPD Generation of F2 population from an interspecific

cross between F. esculentum and F. homotropicum
Ali et al. (1998)

Origin of F. tataricum RAPD Construction of phylogenetic tree based on RAPD

markers

Tsuji and

Ohnishi

(2000)

PCR-based DNA fingerprinting RAPD Uncovering of species relationship between 28

different accessions belonging to 14 different

species

Sharma and

Jana (2002)

Characterization of interspecific hybrids

between F. esculentum and F. tataricum
RAPD Production of hybrids from interspecific crosses

using ovule rescue method

Asaduzzaman

et al. (2009)

Genetic mapping of F. esculentum RAPD Construction of linkage map involving RAPD

markers

Pan and Chen

(2010)

Conversion of AFLP marker to a simple PCR-

based marker

AFLP Identification of tightly linked markers associated

with cell compatibility

Nagano et al.

(2001)

Identification of AFLP markers linked to non-

seed shattering (Sht 1) locus

AFLP Identification of 5 AFLP markers linked to Sht 1

locus

Matsui et al.

(2004)

AFLP linkage analysis of cultivated F.
esculentum and wild F. homotropicum

SSR Development of interspecific linkage map and SSR

markers

Yasui et al.

(2004)

Development of SSR markers SSR Development of 136 SSR markers in F. esculentum Ma et al. (2009)

Assessment of genetic diversity and population

structure

SSR Low genetic differentiation due to out-crossing and

self-incompatibility

Song et al.

(2011)
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Conclusions and future perspectives

Buckwheat is a nutritionally rich and well suited

pseudocereal crop to diversify our cropping systems

and adapt to changing environments. The increasing

awareness about the nutritional properties, health

benefits and other important uses of buckwheat has

resulted in the renaissance of the crop. The genetic

variability available in the buckwheat gene pool

including traditional crop landraces permits the devel-

opment and improvement of nutritionally rich vari-

eties. The phenotypic diversity for economic traits of

interest are also needed to be assessed using multilo-

cational testing for identifying stability within promis-

ing germplasm resources. Despite the detailed

coverage of almost all aspects of buckwheat resources,

there seems to be a huge gap for mainstreaming and

popularizing this potential crop. With the availability

of crop wild relatives within the Fagopyrum genus,

extensive efforts are required to obtain desirable

agronomical traits and breeding interventions among

buckwheat populations. Similarly, several reports on

biotechnological advancements reviewed recently by

Joshi et al. (2020) have shown significant develop-

ments in buckwheat genomics, but these efforts seem

to be underachieved in comparison to other food crops.

Therefore, multivisionary research is needed for

promoting this potential crop via amalgamation of

high throughput genomics approaches. Further, being

the store house of diverse functional properties in the

form of nutritional profile and bioactive compounds,

buckwheat provides high commercial value and wide

applicability among human population. The compre-

hensive research on biofortification and value addition

along with molecular farming is the need of the hour

for accelerating buckwheat research. The develop-

ment of biofortified buckwheat cultivars and commer-

cial products could result in wide implications to

counteract nutritional deficiencies in the form of

hidden hunger, although some groups have recently

demonstrated effects of biofortification on biochem-

ical and physiological characteristics of buckwheat

(Jiang et al. 2018; Germ et al. 2019). A schema of

integrating multidisciplinary approaches for enhanc-

ing higher genetic gains has been represented in

Fig. 4. Lastly, specific and targeted interventions at

scientific and societal levels are required to make

buckwheat a crop for the future to cope with

nutritional security and climate change. Overall,

diversifying the prosperous legacy of genetic materi-

als nurtured by buckwheat resources can play a vital

role in edifying an economically feasible and resilient

production system to protract food and nutritional

security of changing world.
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