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Abstract Fluorescence in situ hybridization was

used to investigate the physical location of oligo-Am1

and (TTG)6 trinucleotide repeats in the metaphase

chromosomes of seven diploid species (AA or CC

genomes), seven tetraploid species (AABB or AACC

genomes), and two hexaploid species (AACCDD

genomes) belonging to the genus Avena. The oligo-

Am1 probe produced signals that were particularly

enriched on almost whole C-genome chromosomes,

whereas the (TTG)6 probe was located in the pericen-

tromeric (M), and, occasionally, their telomeric

(T) chromosome regions, but showed low matching

to C genome. All the species possessed (TTG)6 loci in

M regions, and the CC, AABB, and AACCDD species

also possessed (TTG)6 loci in T regions. The (TTG)6
signal number is constant in both the AA and CC

species but slightly differs in signal intensity, whereas

the (TTG)6 signal pattern shows wide diversity in the

AABB, AACC and AACCDD species. The probe

hybridization results provide key information that can

be used in the physical assignment of genome

sequences to chromosomes.

Keywords Avena � Chromosome markers � FISH �
Signal distribution � (TTG)6

Abbreviations

DAPI 4,6-Diamidino-2-phenylindole

FAM 6-Carboxyfluorescein

TAMRM 6-Carboxytetramethylrhodamine

FISH Fluorescence in situ hybridization

GISH Genomic in situ hybridization

GBS Genotyping-by-sequencing

M Pericentromic

T Telomeric

Introduction

The genus Avena contains approximately 30 species,

which are widespread throughout Europe, Asia and

northwest Africa (Baum 1977). This genus can be

divided into diploids, tetraploids, and hexaploids with

a base chromosome number of seven. The diploid

species have AA or CC genomes, while the tetraploids
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have AABB or AACC genomes, and the hexaploids

have AACCDD genomes. There are five variants of

the A genome (Ac, Al, Ad, As, and Ap), whereas the C

genome exhibits two different variants (Cp and Cv)

(Loskutov and Rines, 2011). The A genome differs

distinctly from the C genome but is closely related to

both the B and D genomes (Chen and Armstrong

1995). Probable A-genome and C-genome ancestors

are relative clear, but the origins of the B and D

genomes remain an open question.

The As genome exhibits the highest cytogenetic and

molecular similarity to those of the hexaploids (Jellen

et al. 1994; Yan et al. 2016a). The Ac genome might be

the closest diploid genome to the ancestral D genome

donor (Craig et al. 1974). Both Cp and Cv have been

proposed as contributors to the C genome in

hexaploids (Yan et al. 2016a). Among the four species

with the AB genomes, Avena agadiriana Baum et

Fedak is cytogenetically distinct from the other three

species (Badaeva et al. 2010a). In addition, A.

agadiriana shares certain similarities with species

possessing the Ac genome (Hayasaki et al. 2001), the

AC genomes (Alicchio et al. 1995) and the ACD

genomes (Badaeva et al. 2010b) and crosses easily

with hexaploids, which might suggest that A. agadiri-

ana participated in the evolution of hexaploids

(Thomas 1989). Among the three species with the

AC genomes, Avena insularis Ladiz. is morphologi-

cally similar to Avena sterilis L. (Ladizinsky1998).

Avena magna Gdgr. is thought to have derived from

Avena canariensis Baum Raj. et Samp. and Avena

ventricosa Bal. ex Coss. (Rajhathy and Thomas 1974).

Information on differences in chromosome struc-

ture among closely related species has been recorded

based on cytogenetic approaches, such as C-banding

(Chaffin et al. 2016; Jellen and Bill 1996), genomic

in situ hybridization (GISH) (Chen and Armstrong

1994), and fluorescence in situ hybridization (FISH)

(Luo et al. 2014). The cytogenetic positions of specific

repetitive sequences, such as AS-1 (Fabijanski et al.

1990), pAvKB30 (Katsiotis et al. 1996), pAs120a

(Irigoyen et al. 2002), 5S and 45S rDNA (Badaeva

et al. 2010b), A336 (Luo et al. 2015), CCS1 Avena-

700 (Tomás et al. 2016), (AC)10 (Fominaya et al.

2017), and (ACT)6 (Luo et al. 2018) have been useful

in revealing the structural evolution of the chromo-

somes of Avena species. The detection of the above

repetitive sequences, ranging from 18 to 700 bp, via

FISH allowed the identification of certain homologous

regions. However, these reported findings are insuffi-

cient to clarify the complex homology associations

within Avena. Although the hexaploid oat seed

transcriptome was annotated by Gutierrez-Gonzalez

et al. (2013) and a genotyping-by-sequencing (GBS)

marker was used for genomic discovery in cultivated

oat by Huang et al. (2014), none of the genome

sequences of Avena species have been published to

date. Thus, the chromosome distributions of DNA

sequences are needed and might provide further clues

with respect to this topic.

Oligonucleotides have been widely used as FISH

probes for the cytogenetics of many genera (Pedersen

et al. 1996; Zhao et al. 2016; Du et al. 2017) but

seldomly for oats, except for Fominaya et al. (2017)

and Luo et al. (2018). Previously, Yan et al. (2016a)

reported the ancestral genomes of Avena species and

identified the D-genome chromosomes of hexaploid

oat using a GBS marker; these authors obtained

approximately 587,510 bp sequences and identified

regions of 4D-genome chromosomes showing the

strongest differential matching (low matching to the A

and C genomes and high matching to the CD

genomes). TTG was the trinucleotide that was

repeated most often in the above sequence. The

oligo-Am1 was an oligonucleotide containing a 51-bp

fragment and was developed from pAm1 repeats, a

464-bp fragment described by Fominaya et al. (1995),

which was exclusive to whole C-genome chromo-

somes. The objectives of this study were to locate

(TTG)6 trinucleotide repeats and oligo-Am1 in the

chromosomes of sixteen Avena species and to explore

whether their D-genome origin might allow (TTG)6
repeats to be used as a genome-specific probe in FISH

experiments.

Methods

Plant materials and chromosome preparation

Five diploid species with the AA genomes (A.

longiglumis, A. nuda, A. brevis, A. canariensis, and

A. strigosa), two diploid species with the CC genomes

(A. eriantha and A. ventricosa), four tetraploid species

with the AABB genomes (A. barbata, A. vaviloviana,

A. abyssinica and A. agadiriana), three tetraploid

species with the AACC genomes (A. magna, A.

murphyi, and A. insularis), and two hexaploid species
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with the AACCDD genomes (A. sativa and A. fatua)

were obtained from the oat germplasm collections of

the American National Plant Germplasm System

(Pullman, WA, USA) and Plant Gene Resources of

Canada (Saskatoon, SK, Canada).

The locations, accession numbers and genomic

constitutions of the sixteen Avena species are given in

Table 1. All accessions were karyotyped with probes

labelled with oligo-Am1 and (TTG)6 DNA. The

metaphase chromosomes of all species were prepared

from root tips taken from random young seedlings.

The excised root tips were pretreated with nitrous

oxide for 4 h and then stored in 70% ethanol (Kato

et al. 2004). Approximately 1 mm of the root-tip

meristem was cut and treated with cellulose and

pectinase (2:1); the suspension was then dropped onto

slides (Komuro et al. 2013). After air drying, the slides

were examined using an Olympus CX21 microscope

(Olympus, Japan) and stored at - 20 �C prior to use.

Probe DNA preparation

Two probes were used for the in situ hybridization

analyses. The oligo-Am1 probe was an oligonu-

cleotide containing a 51-bp fragment with the

sequence 50-GATCCATGTGTGGTTTGTGGAAA-
GAACACACATGCAATGACTCTAGTGGTT-30 and
was developed from a 464-bp fragment described by

Fominaya et al. (1995). The (TTG)6 probe consisted of

the trinucleotide repeat, corresponding to an 18-bp

fragment from 4D-genome chromosomes, was first

tested in Avena. The two probes were synthesized by

Sangon Biotech Co., Ltd. (Shanghai, China). The

synthetic oligo-Am1 was 50 end-labelled with 6-car-

boxytetramethylrhodamine (TAMRM), whereas the

(TTG)6 was 5
0 end-labelled with 6-carboxyfluorescein

(FAM).

FISH analysis

Probe hybridization and signal detection were carried

out according to the protocol published by Hao et al.

(2013). The preparations were counterstained with

4,6-diamidino-2-phenylindole (DAPI; Vector Labora-

tories, Inc., Burlingame, VT, USA). The slides were

then examined, and selected metaphase plates were

photographed with an Olympus BX-63 microscope

attached to a Photometric SenSys Olympus DP70

CCD camera (Olympus, Japan). The raw images were

processed with Photoshop ver. 7.1 (Adobe Systems

Table 1 List of studied Avena species locations and their accession numbers

Species Locations Accessions number Genome

Avena brevis Roth Canada, Ontario Clav 9013 AsAs

Avena longiglumis Dur. Canada, Ontario Clav 9071 AlAl

Avena nuda L. Netherlands PI 401795 AsAs

Avena canariensis Baum Raj. et Samp. Spain, Canary Island CAV 7101 AcAc

Avena strigosa Schreb. Spain PI 573584 AsAs

Avena eriantha Dur. Spain, Madrid PI 367381 CpCp

Avena ventricosa Bal. ex Coss. Morocco PI 657337 CvCv

Avena agadiriana Baum et Fedak Morocco PI 657588 AABB

Avena abyssinica Hochst. Ethiopia Clav 2519 AABB

Avena vaviloviana (Malz.) Mordv. Ethiopia, Tigre PI 412729 AABB

Avena barbata Pott ex Link Israel PI 287199 AABB

Avena magna Gdgr. Morocco PI 657552 AACC

Avena murphyi Ladiz. Morocco PI 657364 AACC

Avena insularis Ladiz. Tunisia TMP-13616 AACC

Avena sativa L. Australia, South Australia PI 584783 AACCDD

Avena fatua L. Russian Federation, St. Petersburg Clav 1779 AACCDD

The taxonomy of all species used in this study is according to Baum (1977). Ac, Al, As, Cp, and Cv are used to provide detailed

descriptions of subtle chromosomal alterations (Rajhathy and Thomas 1974)
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Incorporated, San Jose, CA, USA), only using func-

tions that affected the entire image equally. Three to

five metaphases were used to FISH analysis for each

species.

Results

In situ hybridization with the (TTG)6
and oligo-Am1 probes

Hybridization of the (TTG)6 probe to the chromo-

somes of five AA species revealed six green signals

located on three A chromosome pairs in pericen-

tromeric regions, whereas two CC species revealed

four green signals located on two C chromosome pairs

in pericentromeric or telomeric regions (Figs. 1, 4).

Six faint signals were located on the A. brevis

chromosomes (Fig. 1a); four relative strong signals

and two weak signals were located on the A. strigosa

chromosomes (Fig. 1b); four strong and two weak

signals were observed on the A. canariensis chromo-

somes (Fig. 1c); two strong and four relative weak

signals were observed on the A. longiglumis chromo-

somes (Fig. 1d); and six relatively strong signals were

found on the A. nuda chromosomes (Fig. 1e); two of

the weak signals were located in the pericentromeric

regions, whereas the other two small signals were

located in the telomeric regions of the A. eriantha and

A. ventricosa chromosomes (Fig. 1f, g).

Hybridization of the (TTG)6 probe to the chromo-

somes of the tetraploid A. barbata, A. vaviloviana, A.

abyssinica, and A. agadiriana revealed eight to

fourteen green signals located on four to seven

chromosome pairs in their pericentromeric, and,

occasionally, telomeric regions (Fig. 2). Eight clear

signals (including multi-point signals located on two

chromosomes) were located on the A. barbata chro-

mosomes in pericentromeric regions (Fig. 2a). Ten

signals (six pericentromeric and four telomeric) were

observed on the A. vaviloviana chromosomes

(Fig. 2b). Fourteen signals (ten pericentromeric and

four telomeric) were observed on the A. abyssinica

chromosomes (Fig. 2c). Ten signals (two large, six

normal, and two weak signals) were located on the A.

agadiriana chromosomes in pericentromeric regions

(Fig. 2d).

Hybridization of the (TTG)6 probe to chromosomes

of three AACC species and two AACCDD species

revealed eight to 12 green signals located on 4–6 AC

chromosome pairs in pericentromeric regions

(Fig. 3a–c), and 16–18 green signals located on 8–9

chromosome pairs in pericentromeric and telomeric

regions (Fig. 3d, e). The oligo-Am1 probe produced

red signals that were particularly enriched on C-gen-

ome chromosomes (Fig. 3). Eight A–C minor translo-

cations were observed on A. magna and A. murphyi

chromosomes (Fig. 3a, b), and six A–C minor translo-

cations were observed on A. insularis chromosomes

(Fig. 3c). Eight (TTG)6 signals (2 very large, 2

relatively small, and 4 very small) were located on

the A chromosomes and four very small (TTG)6
signals were located on the C chromosomes of A.

magna (Fig. 3a). Eight (TTG)6 signals (6 relatively

large and 2 small) were located on the A chromosomes

and two very small (TTG)6 signals were located on the

C chromosomes of A. murphyi (Fig. 3b). Eight (TTG)6
signals (2 very large and 6 very small signals) were

located on the A chromosomes of A. insularis

(Fig. 3c).

Twelve A/D-C translocations (including two large

translocations) were located on the A. sativa chromo-

somes (Fig. 3d), and ten A/D-C translocations were

located on the A. fatua chromosomes (Fig. 3e).

Fourteen (TTG)6 signals were located in pericen-

tromeric regions of the A/D chromosomes of A. sativa

and A. fatua, respectively. Two small (TTG)6 signals

were located in pericentromeric regions of the C

chromosomes of A. sativa and A. fatua, respectively.

Two weak (TTG)6 signals were located in telomeric

regions of the C chromosomes of A. sativa (Fig. 3d).

Four small (TTG)6 signals were located in telomeric

regions of the A/D chromosomes of A. fatua, and two

of these telomeric signals were located in the A/D-C

traditional translocation (Fig. 3e).

Summary of the FISH signal patterns of sixteen

Avena species

The polymorphisms observed in the FISH signal

patterns of the sixteen Avena species based on the

FISH signal patterns (signal number, location, inten-

sity) are illustrated in Fig. 4. Chromosomes carrying

(TTG)6 and/or oligo-Am1 loci are indicated with AA,

CC, AABB, AACC, and AACCDD, representing the

genome affiliations of the respective chromosomes.

To visually display the associations among the
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Fig. 1 FISH using the (TTG)6 trinucleotide repeat probe in the

chromosomes of A. brevis (a), A. strigosa (b), A. canariensis (c),
A. longiglumis (d), A. nuda (e), A. eriantha (g) and A. ventricosa
(h). The chromosomes were probed with the 50-FAM-labelled

(TTG)6 repeat (green) in all images. The (TTG)6 signals are

indicated with white arrows. All chromosomes were counter-

stained with DAPI. Scale bar = 5 lm. (Color figure online)
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species, the probed chromosomes are presented with

the species name.

The (TTG)6 signal number is constant in both the

AA and CC species but differs in signal intensity. The

(TTG)6 signal pattern is diverse in AABB, AACC and

AACCDD species. The AA species possessed six

(TTG)6 signal loci but showed slight differences in

signal location and intensity. The CC species pos-

sessed four (TTG)6 signal loci but slightly differed in

signal intensity. The AABB species showed diversity

in the (TTG)6 signal number, location, and intensity.

Three pericentromeric bands in one pair of chromo-

some and telomeric signal loci allow distinction

between these four AABB species. The AACC species

distinguished by oligo-Am1 labelled A–C transloca-

tion numbers showed variations in the (TTG)6 signal

number, location, and intensity. The (TTG)6 signal

number in the C genome was different among these

Fig. 2 FISHwith the (TTG)6 trinucleotide repeat probe in the chromosomes of A. barbata (a), A. vaviloviana (b),A. abyssinica (c), and
A. agadiriana (d). The chromosomes and signals were visualized by the same method as Fig. 1. Scale bar = 5 lm. (Color figure online)
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three AACC species, whereas the signal intensity in

the A genome greatly differed. The AACCDD species

was differentiated by oligo-Am1 labelled A/D-C

translocation numbers, and translocation size and

showed variations in the (TTG)6 signal number,

location, and intensity. Based on the (TTG)6 signal

number in the C genome, the telomeric signals

differed among these two AACCDD species.

The (TTG)6 signal loci were distributed in peri-

centromeric chromosome regions (M) or in telomeric

chromosome regions (T). Comparison signal patterns

from the AA, AABB, AACC, and AACCDD species

imply that the AA diploid might have provided M to

the AABB, AACC, and AACCDD species. Compar-

ison signal patterns from the CC, AACC, and

AACCDD species imply that the CC species might

Fig. 3 FISH with the (TTG)6 trinucleotide repeat and oligo-

Am1 probes in the chromosomes of A. magna (a), A. murphyi
(b), A. insularis (c), A. sativa (d) and A. fatua (e). The

chromosomes and signals were visualized by the same method

as Fig. 1, except for the chromosomes were probed with the 50-
TAMRA-labelled oligo-Am1 (red) in all images. Scale bar = 5

lm. (Color figure online)
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have providedM for the AACC species andMT for the

AACCDD species. Comparison signal patterns from

all species imply (TTG)6 probe showed low matching

to the C genome. The signal number from the AA and

AABB species indicated that the B genome possessed

(TTG)6 loci, whereas the signal number from the

AACC and AACCDD species indicated that the D

genome possessed (TTG)6 loci.

Overall, the hybridization patterns of the oligo-

Am1 and (TTG)6 probes showed that (1) the oligo-

Am1 probe was particularly enriched in C genome,

whereas the (TTG)6 probe was located in the pericen-

tromeric, and, occasionally, telomeric chromosome

regions, but showed low matching to C genome; (2)

loci detected by the (TTG)6 probe were distributed in

the AA, CC, AABB, AACC, and AACCDD species

and were potentially present in the B and D genomes;

(3) all the species possessed (TTG)6 loci in M regions,

and the CC, AABB, and AACCDD species also

possessed (TTG)6 loci in T regions; (4) the (TTG)6
signal number is constant in both the AA and CC

species but slightly differed in signal intensity,

whereas the (TTG)6 signal pattern is highly diverse

in the AABB, AACC and AACCDD species.

Discussion

The (TTG)6 trinucleotide repeat probes were first

tested in Avena species. The 51-bp oligo-Am1 probe

identified the C genome in the present study, indicat-

ing that it functioned similarly to the 464-bp pAm1

(Sanz et al. 2012). The (TTG)6 sequence observed in

4D-genome chromosomes (Yan et al. 2016a) are a

potentially valuable resource for cytogenetic identifi-

cation of the oat D genome. In the present study,

molecular probes coupled with FISH analyses were

successfully used to localize a novel probe (TTG)6
originating from four D-genome chromosomes to

pericentromeric, and, occasionally, telomeric regions

of the chromosomes, showed low matching to C

genome of Avena species. Similarly, the A336 FISH

probe is a 391-bp fragment from chromosome 18D

located in centromeric regions of oat chromosomes

(Luo et al. 2015).

The (TTG)6 signal number is constant in both AA

and CC species but slightly differs in signal intensity.

These results indicate that minor variations occur in

species with the AA and CC species, which is in

agreement with the results reported by other authors

(Loskutov and Rines 2011). The (TTG)6 signal pattern

is highly diverse in the AABB, AACC and AACCDD

Fig. 4 Genetic associations of Avena species with different

genome types based on the FISH signal patterns. Chromosomes

carrying (TTG)6 and/or oligo-Am1 loci are indicated with AA,

CC, AABB, AACC, and AACCDD, representing the genome

affiliations of the respective chromosome. The distributions of

the (TTG)6 signal loci in Avena species chromosomes are

summarized as two different types: M type, the signal is located

in pericentromeric chromosome regions (M), whereas the signal

is located in telomeric chromosome regions (T) in T type. (Color

figure online)
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species. The minor differences in the numbers and loci

(TTG)6 signals observed in A. barbata, A. vaviloviana

and A. abyssinica in the present study are confirmed by

C-banding analysis (Badaeva et al. 2010a) and

Southern hybridization (Irigoyen et al. 2001). FISH

and RAPD analyses showed that A. agadiriana

differed from A. abyssinica, A. vaviloviana, and A.

barbata (Badaeva et al. 2010a). It was previously

shown that A. insularis differs from A. magna and A.

murphyi (Yan et al. 2016a), which is mostly consistent

with our results. However, A. insularis resembles A.

magna, whereas A. murphyi is somewhat distinct from

these two species (Cheng et al. 2003). A. fatua is

genetically distinct from other hexaploids (including

A. sativa) in terms of one unique traditional translo-

cation (Yang et al. 1999), morphological characteris-

tics (Baum 1968) and the differences in the C-banding

patterns of chromosome 5C (Badaeva et al. 2011).

The (TTG)6 signal loci are observed in telomeric

chromosome regions in the CC and AACCDD species

but not in the AACC species, which implies that

chromosome construction has changed gradually

during polyploidization. This variation is the result

of a series of highly active processes, including

chromosomal duplication, deletion, inversion and

translocation, followed by gene loss and genome

rearrangement; the last process often occurs after

polyploidy or hybridization (Kellogg and Bennetzen

2004). Most of the Avena polyploids have suffered

genome downsizing compared with their diploid

ancestors (Yan et al. 2016b). Bennett and Leitch

(2012) indicated that the C genome is larger than the A

genome. The loss of C-genome sequences might be

related to discrepancies in parental genome size in

Avena polyploids (Rodrigues et al. 2017). The signif-

icantly reduced size, intensity, and number of pTa794

(5S) sites in polyploidy Avena species is evidence of

the partial elimination of gene copies at the respective

5S rDNA loci of C-genome chromosomes, and all

polyploid Avena species have lost the characteristic

‘‘in twos’’ distribution of 5S rDNA loci on C-genome

chromosomes (Badaeva et al. 2010b). Indeed, sub-

stantial C genome rRNA sequence elimination has

been recorded through molecular analysis (Nikolou-

dakis and Katsiotis 2008).
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