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Abstract Recent advances in genetic technologies

have given researchers the ability to characterize

genetic marker data for large germplasm collections.

While some studies are able to capitalize on entire

germplasm collections, others, especially those that

focus on traits that are difficult to phenotype, instead

focus on a subset of the collection. Typically, subsets

are selected using phenotypic or geographic data. One

major hurdle in identifying favorable subsets is

selecting a criterion that can be used to quantify the

value of a subset. This study compares two such

criteria, polymorphism information content, and a new

criterion based on kinship matrices, which will be

called the mean of transformed kinships. These criteria

were explored in terms of their ability to select subsets

that are favorable for genomewide association studies,

and in their ability to select subsets that contain a high

number of rare phenotypes. Using phenotypic and

genotypic data that has been amassed from the USDA

Barley Core Collection, evidence was found to support

the hypotheses that subsets based on the mean of

transformed kinships were well-suited to select sub-

sets intended for genome-wide association studies, but

the same was not found for polymorphism information

content. Inversely, evidence was found to support the

hypothesis that subsets based on polymorphism infor-

mation content were well-suited to select subsets

intended for rare-phenotype discovery, but the same

was not found for subsets selected using the mean of

transformed kinships criterion. Tools to select subsets

using these two criteria have been released in the R

package ‘‘GeneticSubsetter.’’
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Introduction

Global efforts to preserve the genetic diversity of

agriculturally important crops have resulted in a range

of valuable germplasm collections. Projects screening

germplasm collections for novel phenotypes and genes

often do not have the resources to sample every

accession in a given collection. Therefore, subsets of

the total collections are made. Until recently, these

subsets were generally made on the basis of phenotype

and geographic origin of accessions, with the goal of

maximizing genetic diversity (Holbrook et al. 1993;

Mahajan et al. 1996; Upadhyaya et al. 2001, 2009;

Zewdie et al. 2004). However, with the advent of high-

throughput genotyping, complete sets of genotypic

data are increasingly common for large germplasm

collections (Muñoz-Amatraı́n et al. 2014). This
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enables researchers to directly observe genetic diver-

sity, as opposed to estimating it with phenotypic or

geographic information.

Two principal components to any subsetting tech-

nique are the criterion used to quantify the value of a

specific subset, and the method used to find the

optimum subset, as judged by that criterion. For

smaller collections, the method used to identify a

favorable subset could be to simply test all possible

subsets. However, this quickly becomes unfeasible as

population sizes grow. For instance, in a circumstance

where 100 accessions need to be chosen from a

collection of 1000 accessions, there could be

6.385 9 10139 possible subsets. Given the large

number of subset combinations, alternative methods

are needed to reach a satisfactory, or ideally the best,

subset for a given criterion. Without proper subsetting

techniques, important phenotypes could be omitted,

making them unavailable to breeders.

To quantify a population’s diversity, polymorphism

information content (PIC) values were calculated with

the following equation:

PIC ¼ 1� 1

m

Xm

l¼1

Xn

i¼1

f 2li

where fli is the frequency of the lth locus for m loci,

and the ith allele for n alleles. This equation was

modified from an equation described by Smith et al.

(1997). This equation is also used to calculate

heterozygosity, which in inbred accessions is gener-

ally used to describe the probability that two random

accessions would have different alleles at a random

locus. Generally speaking, for bi-allelic markers,

mean PIC values for a population can range from 0,

where all markers are monomorphic, to 0.5, where the

frequency of both alleles is 0.5 for every marker.

While PICs are most frequently used to quantify the

diversity of an existing set of genotypes, they have

also been used to identify informative subsets in the

program PowerMarker (Liu and Muse 2005), and in a

study characterizing the USDA Barley Core Collec-

tion (Muñoz-Amatraı́n et al. 2014). Because a com-

plete description of the methods used by PowerMarker

to identify subsets is no longer available, it will not be

evaluated in this study.

One shortcoming of the PIC criterion is that it does

a poor job at removing similar genotypes from a

population, when the similar genotypes contain alleles

that are sufficiently rare in the population. To address

this, an alternative approach has been developed based

specifically on kinship matrices, where kinship values

are risen to the power of ten in order to increase the

weight of pairs of similar genotypes. Subsets are

compared by simply comparing the mean of these

modified kinship values, or the mean of transformed

kinships (MTK).

Our objectives in this study were to assess the utility

of these subsetting criteria, both in terms of their

ability to select subsets that are favorable for genome-

wide association studies (GWAS), and in their ability

to select subsets that contain a high number of rare

phenotypes. The functions used to identify favorable

subsets in this study are available in the R package

‘‘GeneticSubsetter.’’

Materials and methods

Description of functions

To calculate the MTK for a set of genotypes, a kinship

matrix was made using the ‘‘A.mat’’ function in the R

package rrBLUP (Endelman 2011), using the default

options. Due to the way the A.mat function calculates

kinship matrices, negative kinship values are created,

and the cell describing an accession’s kinship with

itself has a degree of variability. To remove negative

values, the kinship matrix was scaled to values ranging

from zero to two (where the relative distance between

kinship values were constant, and zero and two were

the lowest and highest kinship values for the particular

set of genotypes, respectively). Due to the method

used to calculate the kinship matrix by A.mat,

diagonal values (the values describing an accession’s

kinship with itself) were not constant across the

population. To avoid this inconsistency from becom-

ing a major factor in which accessions were eliminat-

ed, these diagonal values were replaced with zero.

Each value in the kinship matrix was raised to the

power of ten to accentuate similarities between

accessions. Finally, the mean of the values in the

resulting transformed kinship matrix was calculated,

to find MTK, which quantifies the extent to which a

subset contains closely related accessions. To make

this criterion computationally feasible for subsetting,

transformed kinship values were calculated once using
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the whole population. Then subsets of the matrix are

used to calculated MTK for subsets of genotypes.

The core functions, ‘‘SubsetterPIC’’ and ‘‘Subset-

terMTK,’’ in the R package GeneticSubsetter, remove

one genotype at a time, on the basis of which

genotype’s removal will result in the highest PIC, or

the lowest MTK, respectively. These functions return

a list of ranked genotypes, from which subsets of any

size can be obtained by taking the top accessions. The

SubsetterPIC function returns a list identical to the list

returned by the Excel macro discussed in Muñoz-

Amatraı́n et al. (2014). However, the SubsetterPIC

function uses amore efficient algorithm to identify this

ranking, giving it a considerable advantage in com-

puting time over the Excel macro.

Currently, these functions are only designed for

homozygous, bi-allelic markers. However, the con-

cepts used to calculate PIC and MTK in these

functions could be applied for heterozygous and

poly-allelic markers.

Description of germplasm

Data from the USDA Barley Core Collection was used

to test these subsetting criteria. This collection con-

tains 2417 landraces, breeding lines, and cultivars that

have been collected from around the world (Muñoz-

Amatraı́n et al. 2014). This collection was selected

from the larger National Small Grains Collection

(NSGC) for barley, by randomly selecting accessions

based on the logarithm of the total number of entries

from each country of origin, ensuring that a minimum

of one accession from each country be included in the

core collection (Muñoz-Amatraı́n et al. 2014).

Analysis of effect on GWAS

The PIC and MTK criteria were evaluated using a

hybrid data set, which consisted of real heading date

data and genotypic data from the USDA Barley Core

Collection, and was modified to include simulated

quantitative trait loci (QTL). This allowed us to

leverage the advantages of using simulated data

(including control over the number and magnitude of

QTL, and reduced ambiguity regarding the true effects

of loci), with a realistic estimation of the effect

population structure has on phenotypic data. To create

the simulated QTL, 20 single nucleotide polymor-

phisms (SNPs) from the barley iSelect Illumina SNP

platform (Muñoz-Amatraı́n et al. 2014) were chosen at

random, and the heading date data for one of the two

genotypes was increased by 5 days. Subsets made

using these criteria were assessed by their ability to

identify simulated QTL using GWAS. Genotypes

were ranked using the SubsetterPIC and Subset-

terMTK, and 200 times randomly, to make a total of

202 set of nested subsets (SNSs). Each of these SNSs

consisted of a series of subsets, one for each multiple

of 50 genotypes between 150 and 1800 genotypes (a

total of 35 subsets for each SNS), where each

accession in a given subset was also present in the

subsets that were larger than it in the given SNS.

GWAS was conducted for each subset in each of the

202 SNSs. GWAS was conducted using the ‘‘GWAS’’

function in the R package rrBLUP, using the default

parameters (Endelman 2011).

Within each subset size (of 35 subset sizes), SNSs

were assigned a rank based on how many simulated

QTL were detected, relative to subsets of that size

within other SNSs. The mean of a SNS’s ranks across

all 35 tested subset sizes was used to quantify a

particular SNS’s performance against other SNSs.

Simple methods for combining p values would not be

appropriate here, as two subsets of a similar size from

a single SNS are not independent from each other.

While many random SNSs can be obtained from this

collection, the SubsetterPIC and SubsetterMTK func-

tions are determinate in nature, and were only able to

return one SNS each. To test if a particular subsetting

function returned a SNS that was better than a random

SNS (with p\ 0.05), the non-random SNS was

compared to the 200 random SNSs. A non-random

SNS performing either better or worse than 97.5 % of

the random subsets would correspond to p\ 0.05, in

which case it would be decided that there was a

significant difference between the SNSmade using the

particular criterion and the random SNSs, within the

context of this collection.

Analysis of effect on rare phenotype discovery

Eleven extreme phenotypes were identified, where

extreme phenotypes were defined as either the highest

or lowest *2 % of accessions for each given trait

(Table 1). For example, the trait ‘‘plant height’’ had

two sets of accessions that held an extreme phenotype:

the 25 accessions that were shorter than 66 cm, and the

23 accessions that were taller than 117.5 cm. These
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extreme phenotypes were used to test whether these

subsetting criteria were beneficial for the discovery of

rare phenotypes. To circumvent the limitations of only

having access to one large collection with extensive

phenotypic and genotypic data available, we used

1099 genotypes with thorough phenotypic information

available to make 1000 random ‘‘mini-sets’’ of 100

accessions. While these mini-sets have similar popula-

tion structures, pairs of mini-sets share an average of

only 9.1 % of their genotypes, making their results

essentially independent from each other. Each mini-

set was further subsetted three times to a subset size of

ten genotypes, once using the SubsetterMTK function,

once using the SubsetterPIC function, and once

randomly. Each 10-genotype subset was quantified

by how many of the original ten rare alleles were

present in the final subset. Paired t tests were used to

determine if either the SubsetterPIC or the Subset-

terMTK functions were able to identify subsets with

more rare alleles than randomly selected subsets.

Phenotypic and genotypic information

To test the PIC and MTK criteria, we used phenotypic

and genotypic data collected from the USDA Barley

Core Collection. The collection was previously geno-

typed, using a barley iSelect Illumina SNP platform,

which included 7842 SNPs (Muñoz-Amatraı́n et al.

2014). Heading date data were collected in Corvallis,

Oregon in 2012 (Muñoz-Amatraı́n et al. 2014). All

other phenotypic data were collected from the USDA-

ARS Germplasm Resources Information Network

website. A total of 1852 accessions had complete

heading date and genotypic data available. A total of

1099 accessions had complete information available

for genotypic data, and each of the eleven rare

phenotypes included in the analysis of these criteria’s

effect on rare-trait discovery.

Results

Gwas

A SNS made using SubsetterMTK performed better

than 199 out of the 200 random SNSs (Fig. 2). This

corresponds to a p value of approximately 0.01,

providing strong evidence that subsets made using the

MTK criterion are more favorable for GWAS within

the context of the USDA Barley Core Collection.

A SNS made using SubsetterPIC performed better

than 131 out of the 200 random SNSs, corresponding

to a p value of approximately 0.69. While this presents

no evidence that subsets made using the PIC criterion

are more favorable for GWAS for this specific

germplasm collection, given the extremely low power

of this test, this criterion may still have a benefit to

subsetting for GWAS that was undetectable in this

study.

Rare phenotypes

We found significant evidence that subsets identified

using the PIC criterion were more likely to contain rare

phenotypes than random subsets in the USDA Barley

Core Collection (p\ 0.0001). However, we found no

evidence that the same was true for subsets identified

using the MTK criterion (p = 0.83). On average,

Table 1 Rare phenotypes

used in this study, the

criteria to define the rare

phenotypes, and the number

of accessions that fit these

criteria in the set of 1099

genotypes used to compare

the abilities of subsetting

criteria in rare-phenotype

discovery

Trait Definition of phenotype Rare phenotype frequency

Spot blotch resistance \4 on a 1–9 scale 32

Russian wheat aphid resistance \7 on a 1–9 scale 14

Early heading \31 days after first heading date 18

Low plant height \66 cm 25

High plant height [117.5 cm 23

Low beta-glucan \3.34 % 20

High beta-glucan [7.04 % 20

Low protein \9.075 % 20

High protein [18.15 % 20

Low kernel weight \31.75 mg 23

High kernel weight [60.25 mg 19
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random subsets of ten genotypes from the USDA

Barley Core Collection contained 1.97 rare or extreme

phenotypes. In contrast, subsets of ten genotypes

selected from 100 random genotypes using the Sub-

setterPIC function contained an average of 2.46 rare or

extreme phenotypes, representing a 24 % increase

over random subsetting.

Structure

Principal component analysis (PCA) plots showing the

full collection, a completely random subset, a subset of

200 genotypes made using the PIC criterion, and a

subset of 200 genotypes made using theMTK criterion

(Fig. 1). These figures demonstrate how the PIC and

MTK criteria differ in terms of the resulting popula-

tion structure. While it appears that subsets made

using SubsetterPIC maintain the general structure of

the full collection, the number of individuals in each

group appears to differ from the random subset. This is

likely because the PIC criterion will weight groups by

their contribution to the subset’s diversity, while the

random subset weights groups by purely by how well

they are represented in the full collection. Using

Fig. 1 PCA plots of the USDA Barley Core Collection (top left), a random subset (top right) a 200-genotype subset made using the

SubsetterPIC function (bottom left), and a 200-genotype subset made using the SubsetterMTK function (bottom right)
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SubsetterMTK instead appears to result in a popula-

tion with very little structure. Interestingly, Subset-

terMTK appears to prioritize genotypes that fall in the

middle of the PCA plot, presumably because these

genotypes are in fact the least related to the rest of the

collection (Fig. 2).

Discussion

Within the context of the USDA Barley Core Collec-

tion, these results demonstrate that PIC is an accept-

able subsetting criterion for rare phenotype discovery,

and that MTK is an acceptable subsetting criterion for

GWAS. Both functions were shown to avoid a loss of

power when used to make subsets for their respective

strengths. Due to the limited number of core collec-

tions that have been extensively phenotyped and

genotyped, it is currently difficult to assess these

benefits on other sets of accessions.

For dual-purpose subsets, it may be beneficial to

use a combination of these two criteria (i.e. remove

100 accessions based on MTK, then an additional 100

accessions based on PIC). This approach may be able

to maintain more than half of the benefit of only using

one criteria, because these functions should first

remove the accessions that contribute very little to

the collections diversity, or that are essentially redun-

dant, depending on the criteria used. Alternatively, a

hybrid criterion could be used, which considers how

each accession’s removal would affect both the PIC

and the MTK values for the subset.

These results suggest that the functions presented in

the R package GeneticSubsetter can help to leverage

‘‘big data’’ in a way that substantially increases the

efficiency of GWAS and rare-phenotype discovery:

two tasks which are routinely conducted by plant

breeding programs. While the R package GeneticSub-

setter is currently only equipped to address homozy-

gous accessions, we look forward to building on these

functions to expand this package’s utility to species

that tend to be heterozygous, including humans and

other animals.
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