RESEARCH ARTICLE

Haplotype analysis of molecular markers linked to stem rust resistance genes in Ethiopian improved durum wheat varieties and tetraploid wheat landraces

Jemanesh K. Haile · Karl Hammer · Ayele Badebo · Ravi P. Singh · Marion S. Röder

Received: 21 February 2012/Accepted: 21 June 2012/Published online: 22 July 2012 © Springer Science+Business Media Dordrecht 2012

Abstract The recent emergence of wheat stem rust race Ug99 (TTKSK) and related strains threaten Ethiopian as well as world wheat production because they overcome widely used resistance genes that had been effective for many years. The major cause which aggravates the ineffectiveness of Ethiopian wheat varieties against stem rust is the narrow genetic base on which the breeding for resistance has been founded, however, little is known about the resistance genotypes of Ethiopian durum wheat varieties and

Electronic supplementary material The online version of this article (doi:10.1007/s10722-012-9880-0) contains supplementary material, which is available to authorized users.

J. K. Haile (⊠) · M. S. Röder Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany e-mail: kifetew@ipk-gatersleben.de

K. Hammer

Department of Agrobiodiversity, Institute of Crop Sciences, University of Kassel, 37213 Witzenhausen, Germany

A. BadeboEthiopian Institute of Agricultural Research,Debre-Zeit Agricultural Research Centre,P.O. Box 32, Debre-Zeit, Ethiopia

R. P. Singh

International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico, DF, Mexico

tetraploid wheat landraces. The objective of the study was to identify stem rust resistance genes that are present in the Ethiopian tetraploid wheat landraces and improved durum wheat varieties using molecular markers and assess which genes are effective for current Ethiopian stem rust races of Puccinia graminis f. sp. tritici including Ug99. The investigated 58 tetraploid wheat accessions consisted of 32 (Triticum durum s.l. incl. Triticum aethiopicum Jakubz., Triticum polonicum) landraces and 22 registered T. durum varieties released in Ethiopia between 1966 and 2009 and four T. durum varieties from ICARDA. A total of 17 molecular markers (SSR, EST and InDel) linked or diagnostic for stem rust resistance genes Sr2, Sr13, Sr22 and Sr35 were used for genotyping. Haplotype analysis indicated that only few of the Ethiopian durum wheat varieties carried Sr13. The resistant variety 'Sebatel' showed a haplotype for Sr2 and Sr22 and variety 'Boohai' for Sr22, however further evaluation is needed for the diagnostic value of these haplotypes. This study is the first report on the presence of stem rust resistance (Sr) genes in Ethiopian durum wheat varieties and tetraploid wheat landraces based on linked or associated molecular markers. Thus it might help in the identification of varieties carrying resistant alleles that provide valuable genetic material for the development of new improved varieties in further breeding programmes.

Keywords Diagnostic molecular markers \cdot Haplotype \cdot *Sr* gene \cdot Stem rust \cdot Tetraploid wheats

Abbreviations

Beltsville Agriculture Research Center								
Base pair								
Coefficient of infection								
International Maize and Wheat								
Improvement Center								
CentiMorgan								
Denbi								
Debre-Zeit								
Expressed sequence tags								
Growth stage								
Gatersleben wheat microsatellite								
International Center for Agricultural								
Research in the Dry Areas								
Insertion-deletion								
Infection response								
Infection type								
Landrace								
Marker-assisted selection								
Main season								
Off season								
Polymerase chain reaction								
Puccinia graminis f. sp. tritici								
Field severity								
Stem rust resistance								
Simple sequence repeat								
Wheat microsatellite consortium								

Introduction

Wheat is one of the most important cereals cultivated in Ethiopia. It ranks fourth after Teff [Eragrostis tef (Zucc.) Trotter), Maize (Zea mays L.) and Sorghum (Sorghum bicolor (L.) Moench] in area coverage and third in total production (CSA 2009). The average per capital consumption of wheat in Ethiopia was estimated to be 39 kg/year during 1994-1997 and 331,000 t of wheat imported to meet the national wheat requirements during 1995-1997 (CIMMYT 2000). In the country, more than 70 bread and 30 durum wheat varieties have been released for production since 1940s. However, the national average yield of wheat is still 1.4 tons/ha (FAOSTAT 2003). Demand of wheat has steadily increased in the last decades in Ethiopia particularly due to the emergence of many food processing industries. Wheat in Ethiopia is represented by hexaploid (2n = 6X = 42) and tetraploid (2n = 4X = 28) species. Bread wheat is widely grown hexaploid wheat (*Triticum aestivum* L.), while durum wheat (*Triticum durum* s.l. incl. *Triticum aethiopicum*.) and emmer wheat (*Triticum dicoccon* Schrank) are the two cultivated tetraploid wheats.

The enormous genetic variability of the cultivated tetraploid wheats makes Ethiopia the Center of diversity for cultivated tetraploid wheats (Vavilov 1929). In Ethiopia, there are numerous accessions of wheat germplasm (about 12,000 accessions) that has been collected and maintained mainly in the Institute of Biodiversity Conservation (Addis Ababa, Ethiopia). These wild and cultivated relatives of wheat offer a tremendous potential to be used as a source of stem rust resistance, and to broaden the genetic basis of wheat cultivars. Landraces have priority, as they may be used as starting population for cultivar development (Lakew et al. 1997; Teklu and Hammer 2009), specific adaptation to the different environmental conditions in their regions of growth, and as sources for the introgression of genes and quantitative trait loci conferring resistance to biotic (Huang et al. 1997; Mujeeb-Kati and Rajarm 2000) and abiotic stresses (Forster et al. 2000). Despite these valuable features, the use of landraces has been discouraged in many developing countries on the basis that they have low yield potential (Teklu and Hammer 2009).

Even if over 30 fungal diseases of wheat have been identified in Ethiopia, stem rust caused by Puccinia graminis Pers. f. sp. tritici (Pgt) is a major production constraint in most wheat growing areas of the country and causes up to 100 % yield losses in epidemic outbreaks (Admassu et al. 2004). The country also considered as one of the hot spot areas for the development of the present wheat stem rust complex (Leppik 1970). The disease has become a major threat of wheat production after the epidemics of 1974 and 1993 that drove two bread wheat varieties, 'Lacketch' and 'Enkoy', out of production (Badebo 2002; Beteselassie et al. 2007). A new virulent stem rust race, Ug99, was first identified in Uganda in 1999 (Pretorius et al. 2000), then it spred to Kenya in 2001 and to Ethiopia in 2003 following the migration path suggested by Singh et al. (2006). Due to Ug99 and its variants widely used major stem rust resistance genes became ineffective (Singh et al. 2006; Jin et al. 2007, Yu et al. 2011). Therefore, from the identified 50 stem rust resistance genes, only a few are effective against Ug99. *Sr2*, *13*, *22*, *25*, *26*, *35*, *39* and *Sr40* were reported genes to be effective against Ug99 (Singh et al. 2006, 2008; Yu et al. 2010, 2011).

The major cause for the ineffectiveness of wheat varieties against stem rust is the narrow genetic base on which the breeding for resistance has been founded (Beteselassie et al. 2007). Earlier works on stem rust in Ethiopia concentrated on occurrence of Pgt physiologic races on hexaploid wheat (Temam 1984; Masresha 1996). Badebo et al. (1990) postulated yellow rust resistance genes (Yr) in hexaploid wheat varieties. However, little work has been done on gene postulations on Ethiopian tetraploid wheat accessions. Dawit (2008) postulated Yr genes in Ethiopian hexaploid and durum wheat varieties. Beteselassie et al. (2007) postulated the stem rust (Sr) genes of Ethiopian tetraploid and emmer wheat accessions through multipathotype testing. The basis for genetic analysis and gene postulation for the past studies is resistancespecificity of the host, as expressed by distinct qualitative disease reactions on seedlings, i.e. infection types (ITs), when challenged by a series of pathogen isolates.

As an alternative to gene postulation, presence of resistance genes can be determined by testing host cultivars with molecular markers linked to resistance genes. This approach overcomes gene interactions and plant stage depending gene expression problems associated with traditional gene postulation (Vanzetti et al. 2011). In recent times there have been advances in development and mapping of molecular markers that are diagnostic for major Sr genes (Saal and Wricke 1999; Spielmeyer et al. 2003; Hayden et al. 2004; Mago et al. 2005, 2011; Tsilo et al. 2008; Babiker et al. 2009; Wu et al. 2009; Hiebert et al. 2010; Olson et al. 2010; Liu et al. 2010; Yu et al. 2010; Zhang et al. 2010; Admassu et al. 2011; Simons et al. 2011). However, there are no reports on identification of stem rust resistance genes in Ethiopian durum wheat varieties and tetraploid wheat landraces by reported linked or diagnostic molecular markers.

Objectives of this work were therefore (1) to identify stem rust resistance genes that are present in the durum wheat varieties and tetraploid wheat landraces using molecular markers, (2) to assess which Sr genes are effective for current Ethiopian stem rust races of Pgt including Ug99 based on the response of the accessions against field stem rust evaluation.

Materials and methods

Plant materials

A set of 58 tetraploid wheat accessions were used in this study. The materials consisted of 22 durum wheat (T. durum Desf.) varieties that were released in Ethiopia between 1966 and 2009 and 32 Ethiopian tetraploid wheat landraces (T. durum Desf. s.l., incl. T. aethiopicum, T. turgidum L. and T. polonicum L.). Additionally four durum varieties from ICARDA were included in the study. These accessions were obtained from Debre-Zeit Agricultural Research Center, Ethiopia, which also provided the taxonomical classification based on morphological characters. Lists of varieties and landraces with their stem rust response are presented in Supplemental Tables 1 and 2. More information about the varieties were presented in Haile et al. (2012b). Sr gene carrying differentials W2691SR13 (Sr13), SWSR22TB (Sr22), W3763-SR35 (Sr35) and Kingbird#1 (stem rust resistant line carrying the Sr2 complex and other unknown genes based on phenotype, Singh et al. 2009) were used as reference lines for molecular markers analysis.

Phenotyping

For the varieties, seven field trials were carried out during three consecutive years (2008, 2009 and 2010) at two wheat growing locations (Debre-Zeit, 2000 m a.s.l. and black soil; and Denbi, 1800 m a.s.l. with light sandy soil, abbreviated as DZ and DN, respectively) of Ethiopia. DZ is one of the hot spot locations and an internationally selected site for stem rust evaluation. At this location we have evaluated the materials twice a year, i.e. main season (July–October, rain-fed) and off-season (January–April, irrigated). So it was possible to expose the tested varieties to all the year round available stem rust races of Ethiopia. But the landraces were tested only in 2009 off-season at DZ.

The accessions were sown in two rows of 1 m length and 0.20 m spacing between rows. To facilitate and optimize the natural infection, the nursery was enclosed by spreader rows comprising 'PBW343' (bread wheat with the gene *Sr31*) (Das et al. 2006), 'Morocco' (susceptible bread wheat), 'local red' (susceptible durum wheat) and 'Arendeto' (susceptible Ethiopian tetraploid wheat variety) in 2:11:11 ratio, respectively. In addition to the natural infection, the

trial was also artificially inoculated with *Pgt* urediniospores. Urediniospores from Ug99, bread and durum bulks were mixed in 1:1:1 ratio and about 2 mg/ml of spores was suspended in distilled water and then a drop of Tween 20 was applied per 10 ml of suspension and inoculated using a syringe. Inoculation started at stem elongation growth stage and was repeated 2–3 times every week.

For scoring stem rust severity in the field, the modified Cobb Scale (Peterson et al. 1948) was used to determine the percentage of tissue infected with rust. The host response to infection in the field was scored using "R" or resistant (small uredinia surrounded by chlorosis or necrosis); "MR" or moderately resistant (medium sized uredinia surrounded by chlorosis or necrosis); "MS" or moderately susceptible (mediumlarge compatible uredinia without chlorosis and necrosis); and "S" or susceptible (large, compatible uredinia without chlorosis and necrosis). Disease severity and host response data were combined in a single value called the coefficient of infection (CI). The average coefficient of infection (ACI) and CI for the improved varieties and the landraces was calculated by multiplying the mean (seven environments) and one season severity %, respectively times a constant for host response: immune = 0.0, R = 0.2, MR = 0.4, MS = 0.8 and S = 1.0.

Marker analyses

Genomic DNA was extracted from 2 weeks old fresh leaves that were harvested and pooled from five seedlings of each accession and stored at -80 °C. Extraction from frozen leaves was performed using the modified CTAB method described by Doyle and Doyle (1990).

A total of 17 PCR markers [SSRs (simple sequence repeats), InDels (insertion–deletion polymorphisms) and EST (expressed sequence tags)] that are linked/ associated with four reported major Sr genes (Sr2, Sr13, Sr22 and Sr35) were included in this study. Primer names, forward and reverse primer sequences and references from Sr genes associated markers are detailed in Supplemental Table 3. PCR reactions and amplifications of these markers were performed using procedures described at UCDavis website (http://maswheat.ucdavis.edu/protocols/stemrust/) and Yu et al. (2010).

PCR reactions contained 50–100 ng template DNA, 250 nM Cy5-labelled forward primer, 250 nM

unlabelled reverse primer, 0.2 mM dNTPs, 2.5 µL PCR buffer (10x), 1.5 mM MgCl₂ and 1 U Taq DNA Polymerase in a total volume of 25 µL. Fragment detection was performed as described by Röder et al. (1998). For SSR markers, fragments were detected by an automated laser fluorescence (ALF express) sequencer (Amersham Biosciences Europe GmbH, Freiburg, Germany) using a short gel cassette. Fragment sizes were calculated using the computer program Fragment Analyzer Version 1.02 (Amersham Biosciences) by comparison with the internal and external size standards. The EST and InDel markers were resolved in 2.0 % agarose gels for amplification and the amplified fragments were stained with ethidium bromide and photographed. To clearly detect the fragment sizes for these InDel and EST markers, the analysis of fragment sizes was repeated on an AdvanCE FS96 microcapillary fragment analyzer system by loading 25 µL PCR products.

Results

Phenotyping

Stem rust severity (%), infection response and ACI for the varieties tested at DZ and DN during 2008-2010 and for landraces tested at DZ during 2009 are presented in Supplemental Tables 1 and 2, respectively. Of the 26 tested varieties, only 'Sebatel' showed a moderately resistant (MR) type of response with an ACI of 2. Varieties 'Yerer', 'Ude', 'Boohai', 'Leliso', 'Ld-357, 'Ginchi', 'Robe', 'Bichena', 'Gerardo', 'Foka', 'Oda', 'Quamy', 'Assassa' and 'Cham-1' showed a MS type of response with an ACI of 8–28 whereas the rest of varieties showed a susceptible (S) type of reaction with 30-55 ACI (Supplemental Table 1). Landraces LR2, LR3, LR4, LR8, LR10, LR19, LR25, LR28, LR29 and LR32 showed a MS reaction with 8-40 ACI values. For the rest of the tested landraces a S type of reaction with up to 70 ACI was recorded (Supplemental Table 2).

Identification of stem rust resistance genes using molecular markers

Initially we screened 25 molecular markers that are associated with *Sr2*, *Sr13*, *Sr22* and *Sr35*. But we used

only 17 of the markers which showed polymorphism and clear fragments for haplotyping the genes in the present study (Tables 1, 2). Haplotypes were sorted for each stem rust resistance gene by the size of their fragments. Similar haplotypes for each gene were grouped together and compared to the original source of the gene based on the reference lines.

Sr2 is the only catalogued adult plant stem rust resistance gene in wheat (McIntosh et al. 2003). It is located on the short arm of chromosome 3B (Hare and McIntosh 1979). Spielmeyer et al. (2003) reported that the SSR marker GWM533 was linked to Sr2 on chromosome 3B with a map distance of approximately 2 cM. Spielmeyer et al. (2003) also showed that a 120 bp PCR fragment was amplified in most lines carrying Sr2. The diagnostic PCR fragment for GWM533-120 bp was detected in 'Sebatel', 'Hitosa', LR25, LR10, LR26, LR27, LR28, LR32, LRW and in the Sr2 containing line 'KINGBIRD#1'. BARC133, the other marker associated with Sr2, amplified a fragment size of 122 bp in 'Sebatel', 'Hitosa', LR25, LR3, LR7 and in the Sr2 containing line 'KINGBIRD#1'. These markers amplified various sizes of PCR fragments in the rest of the varieties and landraces. Some varieties produced similar haplotypes as reported by Yu et al. (2010) for Sr2 positive lines i.e. 117 bp (for GWM533) and 120 bp (for BARC133). haplotype *GWM533*—120 bp Thus, the and BARC133-122 bp was considered to be indicative for *Sr2* positive lines (Table 1).

Sr13 is a stem rust resistance gene present in several T. durum cultivars. Its main sources are the Ethiopian land race ST464 and the *T. dicoccon* (emmer wheat) germplasm Khapli (Klindworth et al. 2007). It is located on the long arm of chromosome 6A. EST marker BE403950; and SSRs DUPW167, WMC580, BARC104b and BARC104c were used for haplotyping Sr13 in this study. These markers showed null alleles and also produced different fragment sizes in the tested varieties and landraces. BE403950, DUPW167, BARC104b, WMC580 and BARC104c amplified fragment sizes of 691 bp, 243 bp, 273 bp, 316 bp and 175 bp, respectively, in varieties 'Sebatel', 'Quamy' and 'Boohai'. The same fragment sizes amplified also in 'Cocorit-71' and 'Cham-1' by markers BE403950, DUPW167 and BARC104b. 'Tob-66' revealed fragment sizes of 243 bp, 273 bp and 316 bp for DUPW167, BARC104b, WMC580, respectively. 'Robe' and 'Bichena' revealed similar fragment sizes for *DUPW167* and *BARC104b*, and 'Yerer' for *BARC104b* and *BARC104c*. Therefore, a five-marker combination with fragment sizes of "691-243-273-316-175" was considered as a haplotype for *Sr13* in this study based on the reference line W2691SR13 (Table 1).

Sr22 was mapped on the long arm of chromosome 7A (Khan et al. 2005). Three linked markers, CFA2019, CFA2123 and BARC121, were used for haplotyping this locus by Yu et al. (2010). Olson et al. (2010) produced a new set of lines with reduced alien fragments and found that the closest markers flanking Sr22 in these lines are WMC633 and CFA2123. In this study we have used CFA2019, CFA2123, WMC633 and BARC121 to haplotype this locus. Markers CFA2019, CFA2123 and WMC633 produced 168, 234 and 119 bp fragments and BARC121 170 and 197 bp fragments in the Sr22 carrying line SESR22TB. CFA2019 and WMC633 produced a haplotype of 168 bp and 119 bp fragment sizes in LR1. Additionally, CFA2019 amplified a fragment size of 168 bp in 'Sebatel', 'Boohai', 'Mamouri', 'JennahKhetifa', LR12 and LR25. CFA2123 produced a fragment size of 234 bp in LR14, LR15 and LR30. But BARC121 and WMC633 did not amplify the fragment sizes that have been amplified in the Sr22 carrying line (170 + 197 bp and 119 bp). A fragment size of 215 bp, reported in a similar study by Yu et al. (2010) was amplified in LR25, LR22 and LR24 (Table 2).

The stem rust resistance gene Sr35 was originally transferred from Triticum monococcum to hexaploid wheat (McIntosh et al. 1984) and is effective against the TTKSK (Ug99) race of P. graminis. f. sp. tritici (Jin et al. 2007) and its variants, TTKST and TTTSK. It is mapped on the long arm of chromosome 3A between markers BF483299 and CJ656351 in a region of 2.2–3.1 cM, depending on the population (Zhang et al. 2010) and is located 41.5 cM from the centromere (McIntosh et al. 1995). Some of the markers that were found on the T. monococcum fragment containing Sr35 which are useful for marker assisted selection are CFA2193, BE423242, WMC559, BF485004, CFA2170, AK335187, CFA2076, BE405552, WMC169 and GWM480 (http://maswheat.ucdavis.edu/protocols/Sr35/ index.htm).

We have employed these 10 SSR/EST-derived molecular markers to test for the presence of this gene in our accessions. But *WMC559*, *WMC169*, *AK335187* and *CFA2076* produced monomorphic fragments.

Table 1 Haplotype diversity of stem rust resistance genes Sr2 and Sr13 using linked molecular markers in Ethiopian durum wheat varieties and tetraploid wheat landraces. Numeric values are the fragment sizes (bp) of PCR amplicons for the respective marker and wheat line. *NA* null allele. Amplicons with same

size were sorted together as a haplotype group and coded as follows: *gray* highlight the haplotypes similar to the known gene resources, numeric values in *bold* indicate fragment size reported by Yu et al. (2010) in a similar study and on UCDavis website (http://maswheat.ucdavis.edu/protocols/stemrust/)

		Sr2				Sr13				
Wheat line	SR	GWM533	BARC133	Wheat line	SR	BE403950	DUPW167	BARC104b	WMC580	BARC104c
KINGBIRD#1	5MR-MS	120	122	W2691SR13	Sr13	691	243	273	316	175
Sebatel	5MR	120	122	Sebatel	5MR	691	243	273	316	175
Hitosa	408	120	122	Quamy	20MS	691	243	273	316	175
LR25	40MS	120	122	Boohai	20MS	691	243	273	316	175
LR25	10MS	132	122	Cocorit-71	305	691	243	273	290	177
LR7	608	132	122	Cham-1	20MS	691	243	273	290	177
LR10	30MS	120	NA	Tob-66	358	NA	243	273	316	177
LR26	408	120	NA	Robe	30MS	737	243	273	293	177
LR27	408	120	NA	Bichena	25MS	NA	243	273	290	177
LR28	20MS	120	NA	Yerer	10MS	737	227	273	293	175
LR32	50MS	120	NA	Oda	30MS	691	247	271	312	NA
LRW	40S	120	120	Mamouri	50S	691	247	271	312	177
Boohai	20MS	117	120	LR2	40MS	691	247	271	293	177
Robe	30MS	117	120	LR14	50S	691	247	253	293	177
Mamouri	50S	117	120	LR16	50S	691	247	253	293	177
Ejersa	40S	117	124	LR17	60S	691	247	NA	293	NA
Ude	15MS	117	124	LR19	20MS	691	253	271	290	177
Foka	30MS	117	126	LR31	40S	691	249	NA	293	NA
Denbi	40S	117	126	Leliso	20MS	NA	243	NA	290	NA
Oda	30MS	117	NA	Ginchi	25MS	NA	243	267	293	NA
Klinto	40S	117	118	Gerardo	15MS	NA	243	271	314	177
Assassa	35MS	117	126	LR1	50S	737	245	273	293	177
Cocorit-71	308	117	126	LR25	40MS	739	245	273	293	177
LR1	50S	117	NA	LR33	30S	NA	245	273	293	177
LR2	40MS	117	NA	Ld-357	25MS	737	247	265	316	177
LR4	20MS	117	NA	JennahKhetifa	40S	737	Null	NA	316	177
LR6	40S	117	NA	Assassa	35MS	737	227	NA	290	175
LR8	30MS	117	NA	LR30	20S	NA	227	NA	293	175
LR16	50S	117	NA	LRW	40S	NA	227	NA	293	175
LR18	60S	117	NA	LR3	10MS	661	245	NA	293	177
LR19	20MS	117	NA	LR22	60S	737	245	NA	293	NA
LR20	40S	117	NA	DZ04	50S	737	249	NA	314	177
LR24	50S	117	NA	LR24	50S	NA	249	271	290	177
LR31	40S	117	NA	Kristal	55S	737	227	NA	293	177
LR33	30S	117	118	Denbi	40S	NA	247	269	293	NA
Bakalcha	30S	132	120	LR4	20MS	687	247	NA	293	177
Tob-66	358	132	120	LR6	40S	737	247	NA	293	177
Gerardo	15MS	132	120	LR8	30MS	797	247	NA	293	177
LR12	70S	132	120	LR10	30MS	659	253	NA	293	177
LR13	60S	132	120	LR12	70S	689	247	253	293	177
LR14	50S	132	120	LR13	60S	NA	247	253	293	177
LR15	40S	132	120	LR15	40S	791	247	253	293	177
LR17	60S	132	120	LR18	60S	NA	247	NA	293	NA
LR21	60S	132	120	LR21	60S	689	247	NA	293	NA
LR23	60S	132	120	LR23	60S	NA	247	253	293	177
				LR26	40S	NA	251	253	293	177
				LR27	405	NA	251	269	293	NA
				LR29	20MS	689	251	253	293	NA
				LR32	50MS	NA	247	271	293	177
				LRP	50S	NA	241	NA	293	NA

Table 2 Haplotype diversity of stem rust resistance genes *Sr22* and *Sr35* using linked molecular markers in Ethiopian durum wheat varieties and tetraploid wheat landraces. Numeric values are the fragment sizes (bp) of PCR amplicons for the respective marker and wheat line. *NA* null allele. Amplicons with same

size were sorted together as a haplotype group and coded as follows: gray highlight the haplotypes similar to the known gene resources, numeric values in *bold* indicate fragment size reported by Yu et al. (2010) in a similar study

Number Series			Sr22				Sr35							
SWNSE275/22110108109W376-SMS5/.57117109NA335148, 13302LRI508108127109NA108127109NA355148, 13302Bohan2015108129223224Denbi408172100NA345148, 13NABohan2016108102100100100NA446148, 13NABohanha408108223223124Bahaha306172100NA446148, 247NABanahhkefi408168233234234Gendo15M5172100NA448148, 247NALR12408168233234234Gendo15M5172100833183, 213128128LR14505235234234Cendo30M5172100551585138148, 243128302LR15408235234233238Cendo1008172100550258148, 313302LR36408235245233236Cendo1008172100550158138303LR37408235246233230Cendo1008172100550158138304LR36408235246 <td>Wheat line</td> <td>SR</td> <td>CFA2019</td> <td>CFA2123</td> <td>WMC633</td> <td>BARC121</td> <td>Wheat line</td> <td>SR</td> <td>GWM480</td> <td>CFA2170</td> <td>BF485004</td> <td>BE405552</td> <td>CFA2193</td> <td>BE423242</td>	Wheat line	SR	CFA2019	CFA2123	WMC633	BARC121	Wheat line	SR	GWM480	CFA2170	BF485004	BE405552	CFA2193	BE423242
LRI Sol LRS Sol NA LRS SARE SARE </td <td>SWSR22TB</td> <td>Sr22</td> <td>168</td> <td>234</td> <td>119</td> <td>170, 197</td> <td>W3763-SR35</td> <td>Sr35</td> <td>172</td> <td>160</td> <td>NA</td> <td>355</td> <td>148, 213</td> <td>392</td>	SWSR22TB	Sr22	168	234	119	170, 197	W3763-SR35	Sr35	172	160	NA	355	148, 213	392
LR1 508 168 227 228 CNGBRD Mas 172 160 NA 555 147 NA Bochai 2085 168 229 223 228 Cannol 2005 172 160 NA 435 48,213 NA Bochai 408 168 2253 223 2241 Bochai 2005 172 160 NA 441 142,27 306 LR12 705 168 227 7241 Bochai 2505 172 160 NA A 181 307 306 LR14 505 233 2247 1244 Bochai 3005 172 160 530 145,21 324 235 LR14 505 245 243 223 2404 Kisai 507 160 530 145,213 326 LR15 408 235 245 233 240 Kisai 172 160								5MR-			NA			
Sehale5MR108208223223228Chan-2008172100NA435471NAMamori60511682292232240Rakan2008172100NA474148,217AJennahkhetin40811682232232240Rakan2008172100NA478148,217120Jennahkhetin4081232232244Rakan2008172100NA478148,217120LR1240810810310210058112312412312012312012312012312012312012312012312012012058312312012012012012312012	LR1	50S	168	237	119	232	KINGBIRD#1	MS	172	197		355	148, 213	392
Booha 1088 108 108 108 107 108 N 48.7.18 N Jamantis 095 108 229 223 220 Balaha 2588 172 108 N 43.8 143.27 A Jamatika 108 108 223 223 223 60.00 172 108 N 133 143.27 33.3 LR1 4005 123 124 123 124 123 124 123 124 123 124 123 124 123 124 123 124 123 124 123 124 123 124 123 124 123 124 123 124 124 124 124 124 124	Sebatel	5MR	168	249	223	228	Denbi	40S	172	160	NA	355	247	NA
Mamouni508108108122109NA340148, 247304Lanalkkeni708108108227224Bichan25MS1212100NA148, 247306LR1270810810822372431224Bichan25MS1101608.14142, 24128LR145082332342232244Role30MS1172100160585148, 247128LR15408235233NA223234Role30MS1172100550155148, 247NLR15408235233NA223230Iansikkeik4051172100550555245323328Bitos4082352452332231231001005117210055055348, 247302Cala30MS235245233224816063081172100548449231302Cala30MS235245233223123816061072106548449247306Cala30MS235245233238160612581106548449247302Leis30MS235245233238160612581106548449145.14305Leis30MS2	Boohai	20MS	168	259	233	238	Cham-1	20MS	172	160	NA	404	148, 213	NA
Jennah/Kneifi 408 168 273 224 Bichenn 258 172 100 NA 418 148, 247 306 LR2 038 168 237 743 224 Gerndo 1585 172 160 8A NA 233 396 LR14 508 233 223 224 Robe 30M5 172 160 581 355 148, 247 NA LR30 086 235 223 223 223 Jennah/Kniff 4058 172 160 556 055 148, 213 302 Denh 408 235 245 233 223 Verr 1058 172 160 556 055 160 555 163 148, 243 302 Coh 3585 245 233 2248 Kinsa 555 172 160 558 441 432, 31 302 Caliso 3585 245 243 <t< td=""><td>Mamouri</td><td>50S</td><td>168</td><td>259</td><td>233</td><td>240</td><td>Bakalcha</td><td>30S</td><td>172</td><td>160</td><td>NA</td><td>346</td><td>148, 247</td><td>NA</td></t<>	Mamouri	50S	168	259	233	240	Bakalcha	30S	172	160	NA	346	148, 247	NA
LR12 108 108 100 NA P12 100 NA P23 P230 LR25 4085 108 223 224 R23 2041 Rec 2004 Rec 100 581 355 148, 271 128 LR14 508 233 224 R23 2244 Rec 2004 Rec 100 581 355 148, 271 Rec 355 454 735 355 355 355 355 355 355 355 355 355 355 355 356 355 356 355 356 357 355 356 357 355 356 357 356 357 356 357 356 357 356 357 356 357 356 357 356 357 356 357 356 357 356 357 356 357 356 357 356 357 356 357 356	JennahKhetifa	40S	168	253	227	234	Bichena	25MS	172	160	NA	418	148, 247	396
LR24 OMS 172 Ido 581 355 148, 247 128 LR14 505 233 224 223 234 Role 30045 172 160 583 355 148, 247 N LR30 205 235 224 NA 230 Immahkheii 408 172 160 583 355 148, 243 N LR30 205 2245 233 238 Verc 1005 172 160 550 510 148, 243 303 Oda 3058 235 245 233 244 Krat 555 172 160 552 516 48, 323 303 Assasa 35M5 235 245 233 2248 180k 208 172 160 583 48, 237 N Leiso 2055 261 233 2248 180k 172 160 581 48, 31 N Leisoa	LR12	70S	168	237	243	234	Gerardo	15MS	172	160	NA	NA	233	396
LR14 505 233 234 234 Robe 30M5 172 160 581 355 148, 271 N LR30 205 235 234 NA 230 234 NA 3008 172 160 581 355 148, 213 362 LR30 205 235 245 233 238 Ude 15M8 172 160 505 351 148, 213 362 Denbi 405 235 245 233 234 Kristal 355 172 160 552 536 148, 213 305 Assasa 35M5 235 245 233 238 Bohai 30M5 172 160 548 449 231 362 Verer 10M5 235 243 233 238 Bohai 20M5 148, 247 NA Eigraa 405 235 243 233 238 Goccrir-1 30M5 1472<	LR25	40MS	168	237	NA	215	Leliso	20MS	172	160	581	355	148, 247	128
LR15408237234Assass30MS172160581355148, 247NALR30208235235245233238Ude15MS172160546355323362Denbi408235245233238Verc10MS172160550535148, 213396Oda30MS235245233238Verc10MS172160552535148, 213396Assasa35MS235245233240Foka30MS172160558635233328Yerc10MS235245233238Ginchi25MS172160548439136365Bakahah30S235249233238Ginchi25MS172160584449137NALeiso20MS235263233238Georic7130S172160581448148, 217NALabro25M235261233238Ceoric7130S172160581385148, 217NATob-6d35S235261233232Kinto40S172197NANA247NALabro35M235261233240Labro50K172197NANA148, 213NALabro15	LR14	50S	233	234	223	234	Robe	30MS	172	160	583	355	148, 231	128
LR30 Q9S 223 Q24 NA Q230 JennahkNeim 40S 172 160 556 0352 148, 245 338 Denbi 40S 235 245 233 238 Verer 10MS 172 160 550 552 148, 245 392 Oda 30MS 225 245 233 240 Kristal 55S 172 100 552 535 148, 245 392 Assassa 35MS 235 245 233 240 Roka 30MS 172 160 548 522 47 362 Leliso 20MS 235 245 233 238 Bohin 25MS 160 548 452 447 362 Leliso 23MS 235 263 233 238 Marrori 508 172 160 581 432 NA Leliso 25MS 235 261 233 238 Bo	LR15	40S	237	234	237	234	Assassa	30MS	172	160	581	355	148, 247	NA
Hitosa 408 235 245 233 238 Ude 15M8 172 160 550 352 148, 213 302 Ocha 30MS 235 245 233 240 Kristal 558 172 160 552 335 148, 213 396 Assasa 35MS 235 245 233 240 Foka 30MS 172 160 552 353 148, 213 396 Assasa 35MS 235 245 255 238 Hitosa 40N 172 160 548 349 231 362 Leliso 20MS 235 263 233 238 Banuri 508 172 160 548 4459 148, 247 356 Laiso 255 263 233 238 Cocori-71 308 172 160 581 353 148, 233 302 Gerardo 15MS 235 261 233	LR30	20S	235	234	NA	230	JennahKhetifa	40S	172	160	546	355	245	358
Denbi 408 235 248 233 233 Yerer 10MS 172 160 396 541 148, 243 396 Asassa 35MS 235 245 233 240 Foka 30MS 172 160 552 536 148, 213 396 Yerer 10MS 235 245 255 238 Hitosa 40S 172 160 548 449 231 362 Bakalcha 30S 235 263 233 238 Bochai 20MS 172 160 548 449 148, 247 NA Ld-357 25MS 235 263 233 238 Cocori-17 30S 172 160 548 448, 231 NA Ld-357 25MS 235 261 233 2328 Kitnito 40S 172 197 548 543 148, 231 NA Ederato 15MS 235 261 233	Hitosa	40S	235	245	233	238	Ude	15MS	172	160	550	352	148, 213	362
Oda 30MS 235 245 233 240 Krisul 558 172 160 552 556 148, 213 396 Assassa 35MS 235 245 233 240 Poka 30MS 172 160 552 552 237 398 Vercr 10MS 235 247 233 238 Boohai 20MS 172 160 548 449 231 362 Ejersa 40S 235 249 233 238 Gonchi 25NS 172 160 548 448 148, 231 NA Ejersa 40S 235 263 233 233 233 233 233 234 106a 541 448, 247 NA Dabe6 355 235 261 233 232 Kintol 408 172 197 NA NA 247 NA Dabe6 355 235 261 233	Denbi	40S	235	245	233	238	Yerer	10MS	172	160	396	541	148, 245	392
Assassa 35MS 235 245 233 240 Foka 30MS 172 197 NA 355 247 398 Yerer 10MS 235 246 255 238 Hinosa 408 172 160 548 449 231 362 Bakalcha 30S 235 249 233 238 Ginchi 25MS 172 160 583 418 44,9 373 362 La/57 25MS 235 263 233 238 Cocorit-71 305 172 160 581 346 148,247 NA La/57 25MS 235 263 233 240 Oda 30MS 172 197 NA NA 247 NA Gerardo 15MS 235 261 233 240 Cocorit-71 30S 148,233 NA Quamy 20MS 235 261 233 240 LR3 30MS <td>Oda</td> <td>30MS</td> <td>235</td> <td>245</td> <td>233</td> <td>240</td> <td>Kristal</td> <td>55S</td> <td>172</td> <td>160</td> <td>552</td> <td>536</td> <td>148, 213</td> <td>396</td>	Oda	30MS	235	245	233	240	Kristal	55S	172	160	552	536	148, 213	396
Yerer 10MS 235 245 255 238 Hitosa 40S 172 160 548 552 247 362 Leliso 20MS 235 261 233 238 Ginchi 25MS 172 160 548 548 148 148, 231 NA Ejersa 40S 235 263 233 238 Genchi 50S 172 160 548 449 148, 247 NA Tob-66 35S 235 263 233 240 Oda 30MS 172 160 548 432 148, 233 MA Bichena 25MS 235 261 233 223 Klinto 40S 172 197 588 355 148, 231 NA Cast 30MS 235 261 233 240 Ld-357 25MS 176 160 583 355 148, 231 NA Cast 235 237 NA	Assassa	35MS	235	245	233	240	Foka	30MS	172	197	NA	355	247	398
Leliso 20MS 235 261 233 238 Bochai 20MS 172 160 548 4449 231 362 Bakalcha 308 235 249 233 238 Ginchi 25MS 172 160 583 448 449 148, 247 356 Ld-357 25MS 235 265 233 238 Cocori-71 30S 172 160 584 449 148, 247 NA Tob-66 358 235 261 233 238 Cocori-71 30S 172 195 88 543 48, 233 392 Gerardo 15MS 235 261 233 240 Ld-357 25MS 176 160 581 355 148, 231 NA L822 605 235 261 233 240 L4-357 25MS 176 160 581 365 148, 231 NA L823 065 235	Yerer	10MS	235	245	255	238	Hitosa	40S	172	160	548	352	247	362
Bakalchan 305 235 249 233 238 Ginchin 25MS 172 160 583 418 148, 247 335 Ejersa 405 235 265 233 238 Cocorit-71 305 172 160 541 4459 148, 247 NA Tob-66 355 235 263 233 2240 Oda 30MS 172 197 NA NA 247 NA Bichena 25MS 235 261 233 228 Khinto 405 172 197 NA NA 247 NA Gearado 15MS 235 261 233 240 LA357 25MS 176 160 583 355 148, 231 NA Quamy 20MS 235 261 233 240 LR10 30MS 176 197 NA 148, 247 NA LR3 10MS 235 257 175 16	Leliso	20MS	235	261	233	238	Boohai	20MS	172	160	548	449	231	362
Ejersa 40s 23s 23s Mamouri 50s 172 160 544 44s, 247 1356 Ld-357 25Ms 235 226 233 238 Cocorit-71 30s 172 160 NA NA 247 NA Bichena 25Ms 235 2261 233 238 Sebatel 5MR 172 197 NA NA 247 NA Gerardo 15Ms 235 261 233 232 Klinto 40s 172 197 NA 148, 237 NA Foka 30MS 235 261 233 240 Ld-357 25Ms 160 581 355 148, 213 NA Quamy 20Ms 235 261 233 240 LR8 30MS 176 197 NA 346 148, 213 NA LR3 00Ms 235 237 743 232 Quamy 20MS 172 1	Bakalcha	30S	235	249	233	238	Ginchi	25MS	172	160	583	418	148, 231	NA
Ld-357 25M 225 265 233 238 Cocorit-71 306 172 100 581 346 148, 247 NA Tob-66 358 235 263 233 234 Oda 30MS 172 197 NA NA 247 NA Bichena 25MS 235 261 233 238 Sebatel 5MR 172 197 581 355 148, 233 392 Gerardo 15MS 235 261 233 232 Klinto 408 172 197 581 355 148, 231 NA Quamy 20MS 235 261 233 240 LA-357 25NS 176 160 583 355 148, 231 NA Quamy 20MS 235 261 233 240 LR10 30MS 176 197 NA 346 148, 213 NA LR10 30MS 235 237 175 164 LR10 30MS 172 197 581 418 148, 213	Ejersa	40S	235	263	233	238	Mamouri	50S	172	160	544	459	148, 247	356
Tob-66 358 225 263 233 240 Oda 30MS 172 197 NA NA 247 NA Bichena 25MS 235 261 233 238 Sebatel 5MR 172 195 581 335 148, 233 392 Gerardo 15MS 235 261 233 222 Klinto 40S 172 197 581 3355 148, 247 NA Gerardo 30MS 235 261 233 240 Ld-357 25MS 160 583 355 148, 247 NA Quamy 20MS 235 261 233 240 LR10 30MS 176 195 NA 148, 213 NA LR3 10MS 235 237 243 234 LR19 20MS 172 197 581 418 148, 247 NA LR10 30MS 235 237 243 232 LR3	Ld-357	25MS	235	265	233	238	Cocorit-71	30S	172	160	581	346	148, 247	NA
Bichena 25MS 235 261 233 238 Sebarel 5MR 172 195 388 543 148, 233 392 Gerardo 15MS 235 261 233 232 Klinto 408 172 197 581 355 148, 247 NA LR2 60S 235 261 233 240 Lc4357 25MS 176 160 581 3355 148, 231 NA Quamy 20MS 235 261 233 240 LR8 30MS 176 197 NA 346 148, 213 NA Quamy 20MS 235 261 233 240 LR10 30MS 176 197 NA 346 148, 213 NA LR3 10MS 235 231 261 234 LR19 20MS 172 197 581 418 148, 247 NA LR16 50S 235 237 243	Tob-66	35S	235	263	233	240	Oda	30MS	172	197	NA	NA	247	NA
Gerardo ISMS 235 261 233 232 Klinto 405 172 197 581 3355 148, 247 NA Foka 30MS 235 261 233 240 Ld-357 25MS 176 160 581 355 148, 233 NA Quamy 20MS 235 261 233 240 LR8 30MS 176 100 581 348, 213 NA Cocorit-71 30S 235 261 233 240 LR10 30MS 176 197 NA NA 148, 213 NA LR1 30MS 235 237 175 164 LR19 20MS 172 197 NA 188 148, 247 NA LR10 30MS 235 237 243 232 Quamy 20MS 172 197 581 418 148, 247 NA LR16 50S 235 237 243 232	Bichena	25MS	235	261	233	238	Sebatel	5MR	172	195	388	543	148, 233	392
Foka 30MS 235 261 233 240 Ld-357 25MS 176 160 581 355 148,233 NA LR22 60S 235 231 NA 215 Tob-66 35S 176 160 583 355 148,233 NA Quamy 20MS 235 261 233 240 LR8 30MS 176 195 NA 346 148,213 NA Cocorit-71 30S 235 257 175 164 LR19 20MS 176 197 NA 346 148,213 NA LR3 10MS 235 237 243 234 LR19 20MS 172 197 581 418 148,214 NA LR16 50S 235 237 243 232 LR2 40MS 172 197 583 346 148,211 398 LR16 60S 235 237 243	Gerardo	15MS	235	261	233	232	Klinto	40S	172	197	581	355	148, 247	NA
LR22 608 235 237 NA 215 Tob-66 358 176 160 583 335 148, 233 NA Quamy 20MS 235 261 233 240 LR8 30MS 176 195 NA 346 148, 213 NA Cocorit-71 305 235 257 175 164 LR19 20MS 176 197 NA NA 148, 213 NA LR10 30MS 235 231 261 234 Ejersa 40S 172 197 581 418 148, 247 NA LR16 508 235 237 243 232 Quamy 20MS 172 197 581 418 148, 247 NA LR17 60S 235 237 243 232 LR32 50MS 172 197 583 346 148, 211 396 LR17 60S 235 237 243 232 LR32 50MS 176 197 NA 346 148, 211 3	Foka	30MS	235	261	233	240	Ld-357	25MS	176	160	581	355	148, 231	NA
Quamy 20MS 235 261 233 240 LR8 30MS 176 195 NA 346 148, 213 NA Cocori-71 30S 235 235 237 175 164 LR19 30MS 176 197 NA 148, 213 NA LR10 30MS 235 235 231 261 234 Ejersa 408 172 197 581 4418 148, 247 NA LR10 30MS 235 237 243 232 Quamy 20MS 172 197 581 4418 148, 247 NA LR16 50S 235 237 243 232 LR2 40MS 172 199 143 346 148, 213 NA 346 148, 213 NA LR16 50S 235 237 243 232 LR2 40MS 176 197 NA 346 148, 211 396 LR19 <td>LR22</td> <td>60S</td> <td>235</td> <td>237</td> <td>NA</td> <td>215</td> <td>Tob-66</td> <td>35S</td> <td>176</td> <td>160</td> <td>583</td> <td>355</td> <td>148, 233</td> <td>NA</td>	LR22	60S	235	237	NA	215	Tob-66	35S	176	160	583	355	148, 233	NA
Cocorit-71 30S 235 261 233 240 LR10 30MS 176 197 NA NA 148, 213 NA LR3 10MS 235 257 175 164 LR19 20MS 176 197 NA 346 148, 213 NA LR10 30MS 235 231 261 234 Ejersa 40S 172 197 581 418 148, 247 NA LR16 50S 235 237 243 232 Quamy 20MS 172 197 581 418 148, 247 NA LR16 50S 235 237 243 232 LR1 40MS 172 197 583 346 148, 211 398 LR16 60S 235 237 243 232 LR2 40MS 176 197 NA 346 211 396 LR19 20MS 235 237 267	Quamy	20MS	235	261	233	240	LR8	30MS	176	195	NA	346	148, 213	NA
LR3 10MS 235 257 175 164 LR19 20MS 176 197 NA 3346 148, 213 NA LR10 30MS 235 231 261 234 Ejersa 408 172 197 581 418 148, 247 NA LR13 60S 235 237 243 232 Quamy 20MS 172 197 581 418 148, 247 NA LR16 50S 235 237 243 232 Quamy 20MS 172 199 143 346 148, 247 NA LR16 60S 235 237 243 232 LR1 50S 172 199 143 346 148, 213 M36 LR16 60S 235 237 243 232 LR32 50MS 172 197 NA 4452 148, 211 396 LR19 20MS 235 237 243 232 LR1 50S 176 197 NA 346 148, 211 NA <td>Cocorit-71</td> <td>30S</td> <td>235</td> <td>261</td> <td>233</td> <td>240</td> <td>LR10</td> <td>30MS</td> <td>176</td> <td>197</td> <td>NA</td> <td>NA</td> <td>148, 213</td> <td>NA</td>	Cocorit-71	30S	235	261	233	240	LR10	30MS	176	197	NA	NA	148, 213	NA
LR10 30MS 235 231 261 234 Ejersa 408 172 197 581 418 148, 247 NA LR13 608 235 237 243 232 Quamy 20MS 172 197 581 418 148, 247 NA LR16 508 235 237 243 232 Quamy 20MS 172 199 181 346 213 398 LR17 608 235 237 243 232 LR32 50MS 172 199 183 346 148, 211 396 LR18 608 235 237 243 232 LR32 50MS 172 197 NA 452 148, 211 396 LR19 20MS 235 237 243 232 LR16 40S 176 193 NA 346 211 362 LR20 40S 235 237 NA 232 LR23 60S 176 197 NA 346 148, 211 NA <td>LR3</td> <td>10MS</td> <td>235</td> <td>257</td> <td>175</td> <td>164</td> <td>LR19</td> <td>20MS</td> <td>176</td> <td>197</td> <td>NA</td> <td>346</td> <td>148, 213</td> <td>NA</td>	LR3	10MS	235	257	175	164	LR19	20MS	176	197	NA	346	148, 213	NA
LR13 608 235 237 243 232 Quamy 20Ms 172 197 581 418 148, 247 NA LR16 508 235 237 243 234 LR2 40Ms 172 199 143 346 213 398 LR17 608 235 237 243 232 LR32 50Ms 172 199 143 346 148, 211 396 LR16 608 235 237 243 232 LR1 505 176 197 NA 452 148, 211 396 LR18 608 235 237 243 232 LR1 505 176 197 NA 452 148, 211 396 LR19 20Ms 235 237 267 234 LR18 605 176 197 NA 346 148, 211 NA LR20 408 235 237 NA 232 LR23 605 176 197 NA 346 148, 213 128	LR10	30MS	235	231	261	234	Ejersa	40S	172	197	581	418	148, 247	NA
LR16 50S 23S 237 243 234 LR2 40MS 172 199 143 346 213 3398 LR17 60S 235 237 243 232 LR32 50MS 172 197 583 346 148,211 396 LR18 60S 235 237 243 232 LR1 50S 176 197 NA 452 148,211 396 LR19 20MS 235 237 243 232 LR1 50S 176 197 NA 452 148,211 396 LR19 20MS 235 237 243 232 LR1 60S 176 197 NA 4452 148,211 362 LR20 40S 235 237 243 232 LR20 60S 176 197 NA 346 211 NA LR21 60S 235 237 NA 232 LR23 60S 176 197 NA 148,213 128 LR24	LR13	60S	235	237	243	232	Quamy	20MS	172	197	581	418	148, 247	NA
LR17 608 235 237 243 232 LR32 50Ms 172 197 583 346 148, 211 336 LR18 608 235 237 243 232 LR1 508 176 197 NA 452 148, 211 336 LR19 20Ms 235 237 243 232 LR1 508 176 197 NA 452 148, 211 336 LR19 20Ms 235 237 237 234 LR6 408 176 197 NA 346 211 N362 LR20 408 235 237 267 234 LR18 60S 176 197 NA 346 148, 211 NA LR21 60S 235 237 NA 232 LR23 60S 176 197 NA 346 148, 213 128 LR23 60S 235 237 NA 232 LR20 40S 176 197 583 346 148, 213 128	LR16	50S	235	237	243	234	LR2	40MS	172	199	143	346	213	398
LR18 60S 235 237 243 232 LR1 50S 176 197 NA 442 148, 211 336 LR19 20MS 235 233 237 234 LR6 40S 176 193 NA 346 211 336 LR20 40S 235 237 267 234 LR18 60S 176 197 NA 346 211 NA LR21 60S 235 237 267 234 LR18 60S 176 197 NA 346 148, 211 NA LR21 60S 235 237 NA 232 LR23 60S 176 197 NA 346 148, 211 NA LR23 60S 235 237 NA 232 LR20 40S 176 197 583 346 148, 213 128 LR24 40S 235 237 NA 234 IR20 60S 176 197 583 346 148, 213 362	LRI7	60S	235	237	243	232	LR32	50MS	172	197	583	346	148, 211	396
LR19 20MS 235 233 237 234 LK6 405 176 193 NA 346 211 362 LR20 40S 235 237 267 234 LR18 60S 176 197 NA 346 211 NA LR21 60S 235 237 NA 232 LR23 60S 176 197 NA 346 148,211 NA LR23 60S 235 237 NA 232 LR20 40S 176 197 NA 346 148,211 NA LR23 60S 235 237 NA 232 LR20 40S 176 197 NA 346 148,213 128 LR26 40S 235 237 NA 234 LC2 60S 176 197 583 346 148,213 362 LR26 40S 235 237 NA 234 LC2 60S 176 197 583 346 148,213 362 L	LRI8	608	235	237	243	232	LRI	508	176	197	NA	452	148, 211	396
LR20 40S 235 237 267 234 LR18 60S 176 197 NA 346 211 NA LR21 60S 235 237 NA 232 LR23 60S 176 197 NA 346 148,211 NA LR23 60S 235 237 243 232 LR20 40S 176 197 NA 346 148,211 NA LR26 40S 235 237 NA 232 LR20 40S 176 197 583 346 148,213 128 LR26 40S 235 237 NA 234 LC 60S 176 197 583 346 148,213 362 LR27 40S 235 237 NA 234 LC 60S 176 197 583 346 148,213 362 LR28 20MS 235 237 NA 234 LC LC LC LC LC LR31 40S 235 253 NA <td>LR19</td> <td>20MS</td> <td>235</td> <td>253</td> <td>237</td> <td>234</td> <td>LR6</td> <td>408</td> <td>176</td> <td>193</td> <td>NA</td> <td>346</td> <td>211</td> <td>362</td>	LR19	20MS	235	253	237	234	LR6	408	176	193	NA	346	211	362
LR21 60S 235 237 NA 232 LR25 60S 176 197 NA 346 148, 211 NA LR23 60S 235 237 243 232 LR20 40S 176 197 NA 346 148, 211 NA LR26 40S 235 237 243 232 LR20 40S 176 197 583 346 148, 213 128 LR26 40S 235 237 NA 238 LR22 60S 176 197 583 346 148, 213 362 LR27 40S 235 237 NA 234 362 148, 213 362 363 346 148, 213 362 <td>LR20</td> <td>405</td> <td>235</td> <td>237</td> <td>267</td> <td>234</td> <td>LR18</td> <td>608</td> <td>176</td> <td>197</td> <td>NA</td> <td>346</td> <td>211</td> <td>NA</td>	LR20	405	235	237	267	234	LR18	608	176	197	NA	346	211	NA
LR23 60S 235 237 243 232 LR20 40S 176 197 383 346 148, 213 128 LR26 40S 235 237 NA 238 LR22 60S 176 197 583 346 148, 213 128 LR27 40S 235 237 NA 238 234 148 197 583 346 148, 213 362 LR27 40S 235 237 NA 234 246 166 197 583 346 148, 213 362 LR28 20MS 235 237 NA 234 24 260 166 197 583 346 148, 213 362 LR29 20MS 235 237 NA 234 240 260	LR21	605	235	237	NA 242	232	LR23	605	176	197	NA	346	148, 211	NA 129
LR20 405 235 237 NA 238 LR22 605 176 197 385 346 148,213 362 LR27 408 235 237 NA 234 362 LR28 20MS 235 237 NA 234 </td <td>LR23</td> <td>605</td> <td>235</td> <td>237</td> <td>243</td> <td>232</td> <td>LR20</td> <td>405</td> <td>176</td> <td>197</td> <td>283</td> <td>346</td> <td>148, 213</td> <td>128</td>	LR23	605	235	237	243	232	LR20	405	176	197	283	346	148, 213	128
LK27 405 255 257 NA 234 Image: Constraint of the state of the stat	LK20	405	235	237	INA	238	LK22	005	1/6	19/	583	546	148, 213	302
LK20 20MS 235 257 NA 234 Image: Constraint of the second	LR2/	405 20MC	235	237	INA	234								
LK22 20013 203 203 IAA 200 IAA 200 LR31 408 235 253 211 232 Image: Constraint of the second seco	LR20	201915 201915	235	257	INA NA	234								
LKS1 TOS LS5 LS5 LS2 LS2 LS2 LR32 50MS 235 229 NA 232 LR33 30S 235 237 NA 234 LRP 50S 235 237 NA 234 LR24 50S 237 NA 234	LR29	201015	235	200	1N/A 211	238								
LKS2 JOINS 255 227 NA 232 Image: Constraint of the state of th	LKJI I D 32	50119	235	200	211 NA	232								
LKSD 505 235 237 NA 234 Image: Constraint of the state of the	1 0 3 3	308	235	229	NA	232								
IR24 505 207 277 277 NA 215	IRP	505	233	237	NΔ	234								
	LR24	505	235	237	NA	215								

Therefore, we have employed only markers *CFA2193*, *CFA2170*, *GWM480*, *BE423242*, *BF485004* and *BE405552* to haplotype our accessions. Using these six marker combination, a haplotype of 172-160-NA-355-148/213-392 bp was detected in the *Sr35* carrying line, W3763-SR35, and in 'KINGBIRD#1'

(except *CFA2170* produced a different fragment of 197 bp). Among the tested materials, no variety or landrace showed this haplotype. But 'Denbi' showed a haplotype of 172-160-NA-355 bp and 'Cham-1', 'Bakalcha' 'Bichena' and 'Gerardo' revealed a haplotype of 172-160-NA. The rest of the varieties

showed a haplotype of 172-160 bp for *GWM480* and *CFA2170*. Only our two resistant varieties, 'Sebatel' and 'Yerer', produced a fragment size of 392 bp (similar to the *Sr35* carrying line) for marker *BE423242* (Table 2). We have also tested Mq(2)5*G2919, a line carrying *Sr35*, but it produced different fragment sizes for all of the markers except for *BE423242* and *BE405552* in comparison to W3763-SR35 (data not shown).

Discussion

Molecular markers are used in wheat resistance breeding for identification of designated resistance genes in genotypes where the genetic background has not yet been clarified like most durum wheat varieties of Ethiopia. Closely linked markers provide a means for the selection and identification of important genes in breeding programs and, in the case of diseases resistance, this can be done in the absence of pathogens (Babiker et al. 2009).

Resistance gene Sr2, in addition to other unknown minor genes derived from variety 'Hope' commonly known as the 'Sr2-complex' (McIntosh 1988; Singh et al. 2006) is the basis for the effectiveness of Sr2(Singh et al. 2006). This stem rust resistance gene has provided durable, broad-spectrum resistance and has been used as an effective control measure against wheat stem rust in modern wheat breeding. The use of Sr2 in CIMMYT wheat improvement program resulted in the release of several popular varieties worldwide carrying this gene (Singh et al. 2009). This resistance gene is currently effective against all isolates of Pgt throughout wheat-growing regions of the world (Sunderlund and Roelfs 1980).

Even if Spielmeyer et al. (2003) reported a 120 bp PCR fragment amplified in most lines carrying Sr2, there are some exceptions as reported by Mago et al. (2011) where the 120 bp allele also occurred in many North American and CIMMYT lines which are considered not to have Sr2. Thus *GWM533* is complicated to use because there are two different *GWM533* loci on 3BS. But Spielmeyer et al. (2003) showed by DNA sequence that the two 120 bp PCR fragments amplified by the microsatellite marker *GWM533* from wheat lines known to carry Sr2, and those without the resistance gene differed by the number of dinucleotide repeat units that formed the compound microsatellite motif. Based on this report, it is difficult to conclude that all the accessions that showed a 120 bp fragment size for this marker carry Sr2. Therefore it is important to apply the pair of STM markers developed by Mago et al. (2011) to exploit the DNA sequence variation within the microsatellite repeat.

Some varieties and landraces also showed the haplotype fragments 117 bp (*GWM533*) and 120 (*BARC133*). Similar fragment sizes were reported by Yu et al. (2010) as haplotypes for Sr2 positive lines for these markers. But it is difficult to conclude whether the lines carrying this haplotype in our study also possessed Sr2, since it is a different genetic background. A major QTL for resistance to stem rust including Ug99 was reported for chromosome 3BS close to the genomic region of Sr2 in a mapping population derived from 'Sebatel' as resistance source (Haile et al. 2012a). This observation supports the conclusion that Sr2 is present as effective resistance gene in 'Sebatel'.

Sr13 is present in several T. durum varieties. Despite being a frequent gene in durum varieties, Sr13 was not detected in most of the Ethiopian durum wheat varieties in the present study. But this might be the reason that most of the markers we have used to haplotype this locus are not diagnostic in all the genetic backgrounds. These markers can be used to follow the Sr13 resistant alleles in segregating populations including some of the parental lines with known Sr13 sources, but the markers may fail to predict the presence of Sr13 in an unknown set of germplasm for example in landraces. The resistance in some of the durum wheat varieties that showed the haplotype for this gene, such as 'Sebatel', 'Quamy', 'Boohai', 'Cocorit-71' and 'Cham-1' might be due to other Sr genes. Using a mapping population developed from 'Kristal' and 'Sebatel', in our previous study, we have identified QTL for resistance to race Ug99 about 17.4 cM from Sr13 flanking markers (Haile et al. 2012a). Therefore, the resistance in these varieties could be due to the action of an allele of Sr13 since the Ethiopian stem rust pathotype is high on Sr13.

Admassu et al. (2011) reported that Sr13 is the only known gene effective against race TTKSK (Ug99) and its variants (TTKST and TTTSK) and other Ethiopian wheat stem rust races of Pgt. However, this result is based on a study of hexaploid wheat. In another study Admassu et al. (2009) also showed that the effectiveness of Sr13 in Ethiopia is regional. Thus, it is important to note that some virulent races other than Ug99 are reported to overcome Sr13 in some countries (Huerta-Espino 1992; McIntosh et al. 1995) and Ethiopia particularly on durum wheat (Olivera et al. 2011). Olivera et al. (2011) identified race JRCQC from 38 single-pustule isolates at Debre-Zeit from a 2009 durum screening nursery of Ethiopia that possesses a virulence overcoming the resistance gene Sr13. Therefore, it can best be used in combination with other genes through gene pyramiding particularly in Ethiopia where there is a current virulent Pgt race on durum wheat for this gene.

Stem rust resistance gene Sr22 was originally identified in the diploid wheat species Triticum boeoticum Boiss. accession G-21 (Gerechter-Amitai et al. 1971) and T. monococcum accession RL5244 (Kerber and Dyck 1973)). It was then transferred to tetraploid and hexaploid wheat through interspecific hybridizations. But so far no one has found it in durum. There may be occasional out-crossing between tetraploid wheat and T. monococcum and therefore we may find the gene from T. monococcum in tetraploid wheat (Ravi Singh personal comm.). But the use of this gene in wheat breeding is limited due to a yield penalty and a delay in heading date associated with the T. monococcum chromosome segment carrying this gene (Olson et al. 2010). But recently hexaploid lines with Sr22 which have reduced T. monococcum genome have been produced due to the effectiveness of this gene against Ug99 (Olson et al. 2010). Therefore, the varieties and landraces that showed haplotype loci for the diagnostic markers of this gene will be utilized in further breeding program to combat Ug99 and related races of Pgt.

Haplotype analysis of markers associated with *Sr22* indicated the presence of the *Sr22* gene in varieties and landraces which showed susceptibility response in the field testing. But only variety 'Sebatel' and 'Boohai' showed a MR and MS, respectively response to *Pgt* race Ug99 during the field testing and showed the haplotype for this gene. The presence of *Sr22* in 'Sebatel' was indicated by a minor QTL in the respective genomic region in the 'Kristal' × 'Sebatel' mapping population (Haile et al. 2012a). Therefore, based on the current study, the markers used to haplotype *Sr22* are not completely diagnostic and thus may produce false positive result as reported in UCDavis website (http://maswheat.ucdavis.edu/protocols/Sr22/Dis-

ease_rust_Sr22.htm) or *Sr22* may be only partially effective for resistance to Ug99.

Sr35 originated from T. monococcum and is effective against Pgt races of TTKSK (Ug99) and its variants TTKST and TTKSK. There is no clear report where Sr35 was transferred to durum wheat. But since the source of resistance in some of the Ethiopian tetraploid wheat varieties is not clearly known, we have employed markers that are associated with Sr35 BE423242, (CFA2193, CFA2170, GWM480, BF485004 and BE405552) to check the presence of this gene. Based on the reference line, most of the tetraploid wheat varieties of Ethiopia including the susceptible ones showed the haplotype for this gene which is unlikely since Sr35 is considered as one of the most highly effective genes against the new African race Ug99 (Jin et al. 2007). We have also observed that all markers used to haplotype Sr35 produced the same fragment size for 'KINGBIRD#1' and for the line carrying Sr35 (W3763-SR35). Therefore, KINGBIRD might also carry Sr35 in addition to Sr2.

Admassu (2010) reported, based on testing for stem rust resistance genes in Ethiopian wheat varieties, that it was difficult to postulate the resistance gene(s) responsible for their resistance. The author indicated in his study that varieties 'Cocorit-71', 'Ld-357', 'Kilinto', 'Bichena', 'Tob-66', 'Quamy', 'Robe', 'Ude', 'Yerer', 'Oda', 'Bakelcha' and 'Leliso' displayed low ITs against all the Pgt races they have used, which made it difficult to postulate the type of genes present in these genotypes. Thus, they concluded that either a single gene or a combination of genes may be responsible for the resistance displayed by these varieties. Therefore, the subject requires further analysis with more molecular markers accompanied by gene postulation based on wider virulence spectra races.

Conclusion

The tetraploid wheat has been a source of resistance genes Sr2, 9d, 9e, 12, 13, 14 (Roelfs et al. 1992). According to Bechere et al. (2000) Ethiopian tetraploid wheat accessions were noted for their good source of resistance to stem rust. The presence of some genes in the landraces, in this study, also strengths this fact and showed that Ethiopian cultivated tetraploid wheat accessions are still good sources of stem rust

resistance. Beteselassie et al. (2007) reported the same scenario by postulating the *Sr* genes in Ethiopian tetraploid wheat accessions through multipathotype testing.

Most of the genes that are catalogued were transferred to bread wheat from alien sources. Sr2 and Sr13 were transferred to bread wheat from tetraploid emmers and Sr35 was transferred from T. monococcum. It is reported on UCDavis website (http://maswheat.ucdavis.edu/protocols/stemrust/), that most of the molecular markers linked to Sr resistance genes are not diagnostic. This might be one of the reasons why we did not identify these genes in most of the tested durum wheat varieties. Dominance for the undesirable allele, lack of amplification, amplification of the wrong locus, recombination between the marker and the gene, and lack of polymorphism between the source and recurrent parents are also some of the reasons because of which markers can fail to predict the presence of a gene (Yu et al. 2010).

Sr22 and Sr35 are rarely used genes (Yu et al. 2010) that have been confirmed to be resistant to Ug99 (Jin et al. 2007). But some susceptible varieties and landraces showed a haplotype for these genes. For example, LR1 and Mamouri (50S) showed a haplotype for Sr22. Based on the reference line, W3763-SR35, most durum wheat varieties of Ethiopia showed similar fragment size for the tested diagnostic markers. Even some susceptible (40S) varieties, 'Denbi', 'JennahKhetifa' and 'Hitosa', showed a haplotype for Sr35. As a result, these haplotypes may not be diagnostic for Sr22 and Sr35 and further evaluation is needed. Using more molecular markers closely linked to the gene of interest could be useful for distinguishing the false positives.

Based on the result of this study, the resistance against race Ug99 (TTKSK) of Pgt in 'Sebatel' might be due to combinations of Sr resistance genes Sr2 and Sr22. The other resistant Ethiopian durum wheat varieties, 'Yerer', 'Boohai', 'Ude' and 'Gerardo', which also showed a MS reaction to Pgt race of Ug99 (TTKSK) might be due to Sr35. It was not possible to accompany the findings with pedigree tracking since the source of resistance genes in these varieties is not clearly known. Moreover, it is likely that these varieties also had resistant genes not detected because of a limited number of Sr genes with diagnostic markers available for durum wheat. Therefore, it will be helpful to accompany this approach with

association analysis combined with pedigree and rust race reaction for better gene identification and postulation. But, as this study is the first report on the presence of Sr genes in Ethiopian durum wheat varieties and tetraploid wheat landraces based on linked or associated molecular markers, it gives some preliminary information for further research.

Acknowledgments The first author was supported by a scholarship from the Deutscher Akademischer Austauschdienst (DAAD), Germany, to conduct this research. We would like to thank the Ethiopian Institute of Agricultural Research for providing leave of absence for Jemanesh K. Haile to carry out the research and providing experimental plots and funding for the field trials. Authors are thankful to Anette Heber, Rosemarie Czihal, Sonja Allner, Chuchu Kebede and Betelhem Hibdo for excellent technical assistance. Dr. Yue Jin (USDA-ARS Cereal Disease Laboratory) and CIMMYT Bread Wheat Section are acknowledged for providing stem rust differential lines and related information. We also would like to thank Dr. Miloudi Nachit for providing the ICARDA durum wheat varieties and Dr. Zewdie Abate (UCDavis) for his helpful comments.

References

- Admassu B (2010) Genetic and virulence diversity of *Puccinia* graminis f. sp. tritici populations in Ethiopia and stem rust resistance genes in wheat. Ph.D. thesis, Giessen University, Cuvillier Verlag Göttingen, Germany
- Admassu B, Embet F, Zerihun K (2004) Physiological races and virulence diversity of *Puccinia graminis* f. sp. *tritici* on wheat in Ethiopia. In: 12th regional wheat workshop for Eastern, Central, and Southern Africa, Nakuru, Kenya, 22–26 November 2004, pp 145–150
- Admassu B, Lind V, Friedt W, Ordon F (2009) Virulence analysis of *Puccinia graminis* f. sp. *tritici* populations in Ethiopia with special consideration of Ug99. Plant Pathol 58:362–369
- Admassu B, Perovic D, Friedt W, Ordon F (2011) Genetic mapping of the stem rust (*Puccinia graminis* f. sp. *tritici* Eriks. & E. Henn) resistance gene Sr13 in wheat (*Triticum aestivum* L.). Theor Appl Genet 122:643–648
- Babiker E, Ibrahim A, Yen Y, Stein J (2009) Identification of a microsatellite marker associated with stem rust resistance gene Sr35 in wheat. Aust J Crop Sci 3:195–200
- Badebo A (2002) Breeding bread wheat with multiple disease resistance and high yield for the Ethiopian highlands: broadening the genetic basis of yellow rust and tan spot resistance. Ph.D. thesis, Georg-August University, Gottingen, Germany
- Badebo A, Stubbs RW, Van Ginkel M, Getinet G (1990) Identification of resistance genes to *Puccinia striiformis* in seedlings of Ethiopian and CIMMYT bread wheat varieties and lines. Neth J Plant Pathol 96:199–210
- Bechere E, Kebede H, Belay G (2000) Durum wheat in Ethiopia: an old crop in an ancient land. Institute of Biodiversity

Conservation and Research (IBCR), Addis Ababa, Ethiopia, p 68

- Beteselassie N, Fininsa C, Badebo A (2007) Sources of resistance to stem rust (*Puccinia graminis* f. sp. *tritici*) in Ethiopian tetraploid wheat accessions. Genet Resour Crop Evol 54:337–343
- CIMMYT (2000)1998/1999 World wheat facts and trends. Global wheat research in a changing world, challenges and achievements. CIMMYT, Mexico
- CSA (2009) Central Statistical Agency, 2009/2010, agricultural sample survey, report on area and production of crops. Statistical bulletin 446, vol IV. Addis Ababa, Ethiopia, p 14
- Das BK, Saini A, Bhagwat SG, Jawali N (2006) Development of SCAR markers for identification of stem rust resistance gene *Sr31* in the homozygous or heterozygous condition in bread wheat. Plant Breed 125:544–549
- Dawit W (2008) Analysis of pathogen virulence and cultivar resistance to yellow rust, *Puccinia striiformis* f. sp. *tritici*, in Ethiopia. Ph.D. thesis, Martin-Luther-Universität Halle-Wittenberg, Germany
- Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15
- FAOSTAT (2003) Crop protection compendium CD. CAB International, UK
- Forster BP, Ellis RP, Thomas WTB, Newton AC, Tuberosa RTD, El-Enein RA, Bahri MH, Ben Salem M (2000) The development and application of molecular markers for abiotic stress tolerance in barley. J Exp Biol 51:19–27
- Gerechter-Amitai ZK, Wahl I, Vardi A, Zohary D (1971) Transfer of stem rust seedling resistance from wild diploid einkorn to tetraploid durum wheat by means of a triploid hybrid bridge. Euphytica 2:281–285
- Haile JK, Nachit MM, Hammer K, Badebo A, Röder MS (2012a) QTL mapping of resistance to race Ug99 of *Puccinia graminis* f. sp. *tritici* in durum wheat (*Triticum durum* Desf.). Mol Breed. doi:10.1007/s11032-012-9734-7
- Haile JK, Hammer K, Badebo A, Nachit MM, Röder MS (2012b) Genetic diversity assessment of Ethiopian tetraploid wheat landraces and improved durum wheat varieties using microsatellites and markers linked with stem rust resistance. Genet Resour Crop Evol. doi:10.1007/s10722-012-9855-1
- Hare RA, McIntosh RA (1979) Genetics and cytogenetics studies of durable adult-plant resistance in 'Hope' and related cultivars to wheat rusts. Z Pflanzenzüchtung 83:350–367
- Hayden MJ, Kuchel H, Chalmers KJ (2004) Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance genes *Sr2* in bread wheat (*Triticum aestivum* L.). Theor Appl Genet 109:1641–1647
- Hiebert CW, Fetch TG Jr, Zegeye T (2010) Genetics and mapping of stem rust resistance to Ug99 in the wheat cultivar Webster. Theor Appl Genet 121:65–69
- Huang XQ, Hsam SLK, Zeller FJ (1997) Chromosomal locations of genes for resistance to powdery mildew in common wheat (*Triticum aestivum* L. em. Thell.). 4. Gene pm24 in Chinese landrace Chiyacao. Theor Appl Genet 95:950–953
- Huerta-Espino J (1992) Analysis of wheat leaf and stem rust virulence on a worldwide basis. Ph.D. thesis, University of Minnesota, USA

- Jin Y, Singh RP, Ward RW, Wanyera R, Kinyua MG, Njau P, Fetch T Jr, Pretorius ZA, Yahyaoui A (2007) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 91:1096–1099
- Kerber ER, Dyck PL (1973) Inheritance of stem rust resistance transferred from diploid wheat (*Triticum monococcum*) to tetraploid and hexaploid wheat and chromosome location of the gene involved. Can J Genet Cytol 15:397–409
- Khan R, Bariana H, Dholakia B, Naik S, Lagu M, Rathjen A, Bhavani S, Gupta V (2005) Molecular mapping of stem and leaf rust resistance in wheat. Theor Appl Genet 111: 846–850
- Klindworth D, Miller J, Jin Y, Xu SS (2007) Chromosomal locations of genes for stem rust resistance in monogenic lines derived from tetraploid wheat accession STS464. Crop Sci 47:1441–1450
- Lakew B, Semeane Y, Alemayehu F, Genre H, Grando S, van Leur JAG, Ceccarelli S (1997) Exploiting the diversity of barley landraces in Ethiopia. Genet Resour Crop Evol 44:109–116
- Leppik EE (1970) Gene centers of plants as a source of disease resistance. Annu Rev Phytopathol 8:323–344
- Liu S, Yu L-X, Singh RP, Jin Y, Sorrells ME, Anderson JA (2010) Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes *Sr25* and *Sr26*. Theor Appl Genet 120:691–697
- Mago R, Bariana HS, Dundas IS, Spielmeyer W, Lawrence GJ, Pryor AJ, Ellis JG (2005) Development of broadly useful PCR-markers for the wheat stem rust resistance genes *Sr24* and *Sr26*. Theor Appl Genet 111:496–504
- Mago R, Brown-Guedira G, Dreisigacker S, Breen J, Jin Y, Singh R, Appels R, Lagudah ES, Ellis J, Spielmeyer W (2011) An accurate DNA marker assay for stem rust resistance gene *Sr2* in wheat. Theor Appl Genet 122:735–744
- Masresha A (1996) Wheat rust races identified in virulence surveys in Ethiopia. In: Tanner DG, Payne TS, Abdalla OS (eds) The ninth wheat regional workshop for Eastern Central and Southern Africa. CIMMYT, Addis Ababa, Ethiopia
- McIntosh RA (1988) The role of specific genes in breeding for durable stem rust resistance in wheat and triticale. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat. CIMMYT, Mexico
- McIntosh RA, Dyck PL, The TT, Cusick J, Milne DL (1984) Cytogentical studies in wheat XIII: Sr35—a third gene from Triticum monococcum for resistance to Puccinia graminis tritici. Z Pflanzenzüchtung 92:1–14
- McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO, Canberra
- McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols for wheat. In: Pogna NE, Romano M, Pogna A, Galterio G (eds) Proceedings of the 10th International Wheat Genetics Symposium, Paestum, Italy
- Mujeeb-Kati A, Rajarm S (2000) Transferring alien genes from related species and genera for wheat improvement. In: Citrus BC, Rajarm S, MacPherson Gomez H (eds) Bread wheat improvement and production. FAO, Rome
- Olivera PD, Rouse M, Badebo A, Abeyo B, Woldeab G, Wanyera W, Jin Y (2011) Races of *Puccinia graminis* f. sp.

tritici in Ethiopia and Kenya. In: McIntosh RA (ed) Proceedings of the Borlaug Global Rust Initiative 2011 technical workshop, June 13–16, St. Paul, MN, USA, p 157

- Olson EL, Brown-Guedira G, Marshall D, Stack E, Bowden RL, Jin Y, Rouse M, Pumphrey MO (2010) Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Sci 50:1823–1830
- Peterson RF, Champbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. Can J Res (C) 26:496–500
- Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene *Sr31* in *Puccinia graminis* f. sp. *tritici* in Uganda. Phytopathology 84:203
- Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023
- Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of diseases management. CIMMYT, Mexico City
- Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (*Seale cereale* L.). Genome 42:964–972
- Simons K, Abate Z, Chao S, Zhang W, Rouse M, Jin Y, Elias E, Dubcovsky J (2011) Genetic mapping of stem rust resistance gene Sr13 in tetraploid wheat (*Triticum turgidum* ssp. *durum* L.). Theor Appl Genet 122:649–658
- Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua MG, Wanyera R, Njau P, Ward RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. Perspect Agric Vet Sci Nutr Nat Resour 1:1–13
- Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Ward WR (2008) Will stem rust destroy the world's wheat crop? Adv Agron 98:271–309
- Singh RP, Huerta-Espino J, Bhavani S, Singh D, Singh PK, Herrera-Foessel SA, Njau P, Wanyera R, Jin Y (2009) Breeding for minor gene-based resistance to stem rust of wheat. In: Proceedings of the Borlaug Global Rust Initiative, C.D. Obregon, Mexico
- Spielmeyer W, Sharp PJ, Lagudah ES (2003) Identification and validation of markers linked to broad-spectrum stem rust

resistance gene *Sr2* in wheat (*Triticum aestivum* L.). Crop Sci 43:333–336

- Sunderlund SD, Roelfs AP (1980) Greenhouse evaluation of the adult plant resistance of *Sr2* to wheat stem rust. Phytopathology 70:634–637
- Teklu Y, Hammer K (2009) Diversity of Ethiopian wheat germplasm: breeding opportunities for improving grain yield potentials and quality traits. Plant Genet Resour 7:1–8
- Temam H (1984) Distribution and prevalence of physiologic races of *Puccinia graminis* f. sp. *tritici* in some parts of Ethiopia and reaction of wheat cultivars to these races. M.Sc. thesis, Addis Ababa University, Ethiopia
- Tsilo TJ, Jin Y, James A, Anderson JA (2008) Diagnostic microsatellite markers for the detection of stem rust resistance gene *Sr36* in diverse genetic backgrounds of wheat. Crop Sci 48:253–261
- Vanzetti LS, Campos P, Demichelis M, Lombardo LA, Aurelia PR, Vaschetto LM, Bainotti CT, Helguera M (2011) Identification of leaf rust resistance genes in selected Argentinean bread wheat cultivars by gene postulation and molecular markers. Electron J Biotechnol 14(3). http:// dx.doi.org/10.2225/vol14-issue3-fulltext-14
- Vavilov NI (1929) Wheats of Ethiopia. Bull Appl Bot Genet Plant Breed 20:324–356
- Wu S, Pumphrey M, Bai G (2009) Molecular mapping of stem rust-resistance gene Sr40 in wheat. Crop Sci 49:1682–1686
- Yu LX, Liu S, Anderson JA, Singh RP, Jin Y, Dubcovsky J, Guidera GB, Bhavani S, Morgounov A, He Z, Huerta-Espino J, Sorrells ME (2010) Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. Mol Breed 26:667–680
- Yu LX, Lorenz A, Rutkoski J, Singh RP, Bhavani S, Huerta-Espino J, Sorrells ME (2011) Association mapping and gene–gene interaction for stem rust resistance in CIMMYT spring wheat germplasm. Theor Appl Genet 123:1257– 1268
- Zhang W, Olson E, Saintenac C, Rouse M, Abate Z, Jin Y, Akhunov E, Pumphrey M, Dubcovsky J (2010) Genetic maps of stem rust resistance gene Sr35 in diploid and hexaploid wheat. Crop Sci 50:2464–2474