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Abstract Recent studies have shown that novel

genetic variation for resistance to pests and diseases

can be detected in plant genetic resources originating

from locations with an environmental profile similar to

the collection sites of a reference set of accessions with

known resistance, based on the Focused Identification

of Germplasm Strategy (FIGS) approach. FIGS com-

bines both the development of a priori information

based on the quantification of the trait-environment

relationship and the use of this information to define a

best bet subset of accessions with a higher probability

of containing new variation for the sought after

trait(s). The present study investigates the develop-

ment strategy of the a priori information using

different modeling techniques including learning-

based techniques as a follow up to previous work

where parametric approaches were used to quantify

the stem rust resistance and climate variables rela-

tionship. The results show that the predictive power,

derived from the accuracy parameters and cross-

validation, varies depending on whether the models

are based on linear or non-linear approaches. The

prediction based on learning techniques are relatively

higher indicating that the non-linear approaches, in

particular support vector machine and neural net-

works, outperform both principal component logistic

regression and generalized partial least squares.

Overall there are indications that the trait distribution

of resistance to stem rust is confined to certain

environments or areas, whereas the susceptible types

appear to be limited to other areas with some degree of

overlapping of the two classes. The results also point

to a number of issues to consider for improving the

predictive performance of the models.
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Introduction

Stem rust caused by the fungi Puccinia graminis f. sp.

tritici, has re-emerged as major threat to wheat

(Triticum aestivum L. and Triticum turgidum ssp.

durum L.) following the appearance of new virulent

races. Ug99, a particularly virulent strain (or TTKSK

using North American race notation) of stem rust, was

found in Uganda in 1999 and has increased the

vulnerability of the global wheat yields (CIMMYT

2005; Vurro et al. 2010; Fehser et al. 2010). This

virulent strain is spreading and has already taken its

toll on wheat production in Sub-Saharan East Africa,

Yemen and Iran and is now threatening Central Asia

and the Caucasus; an area that accounts for 37% of

global wheat production (Vurro et al. 2010; Fehser

et al. 2010). Because of its virulence and spread it has

attracted both public and research community atten-

tion worldwide and global efforts to track and monitor

its expansion are underway to counter its potential

impact (Kolmer 2005; Vurro et al. 2010; Hodson and

DePauw 2011). Plants usually react to virulent strains

through the so-called R (resistance) genes group

(Eckardt 2001). In the case of wheat, there are about

45–50 genes, known as Sr genes, which confer

resistance to different races of stem rust (McIntosh

et al. 2008, 2010; Vurro et al. 2010). Deployment of

new sources of resistance to stem rust has been made a

top priority by the Borlaug Global Rust Initiative that

was established in 2005 (http://www.globalrust.org).

The appearance of a new virulence for a crop

disease is a typical recurring scenario in agricultural

production that can lead to severe yield losses (Qualset

1975; Leonard and Szabo 2005; Vurro et al. 2010;

Fehser et al. 2010). Utilizing novel disease resistance

genes found in ex situ germplasm collections, or

genebanks, can help to avert these losses (Qualset

1975). Genetic resources, such as crop landraces and

wild relatives, represent potential sources for pest and

disease resistance critical for the stability and sustain-

ability of global production (Dinoor 1975; Bonman

et al. 2005). However such novel variation is often rare

and may not be captured in a representative or fixed

collections of germplasm such as core collections

(Brown and Spillane 1999; Polignano et al. 2001;

Gepts 2006; Dwivedi et al. 2007; Pessoa-Filho et al.

2010; Xu 2010). The need to rationalize the search for

rare adaptive variation has led to the use of alternative

approaches including the development of specific or

thematic genetic resource collections (Gollin et al.

2000; Gepts 2006; Dwivedi et al. 2007; Pessoa-Filho

et al. 2010; Xu 2010). Recent trait-based approaches to

selecting germplasm from genebanks have shown that

they are more likely to provide useful and novel genes

(Street et al. 2008; Mackay and Street 2004;

El-Bouhsini et al. 2009, 2010; Bhullar et al. 2009).

By using the eco-geographical data of a reference

dataset of accessions with resistance to the sought after

adaptive trait, such as resistance to either diseases or

pests, the Focused Identification of Germplasm Strat-

egy (FIGS) has successfully helped to identify a

number of novel genes in germplasm from environ-

mentally similar sites to those of the reference/

template dataset (Mackay 1995; Mackay and Street

2004; El-Bouhsini et al. 2009, 2010; Bhullar et al.

2009). Relationships between adaptive traits and

collection site environmental parameters have also

been revealed by recent studies using multi-variate

and multi-way models such as N-PLS (multi-linear

Partial Least Squares) (Endresen 2010; Endresen et al.

2011). Modeling of stem rust resistance using geo-

graphical information system (GIS) approaches has

also led to the detection of a relationship between

geographical areas and incidence of resistance to stem

rust (Bonman et al. 2007). Furthermore, some of the

traits that have been found to carry strong climatic

signals in wild species are being used to model the

impact of climate changes (Barboni et al. 2004; Webb

et al. 2010). However, although there have been trait-

environment studies in the past, they were generally

limited to a single or a small group of environmental

variables (Pakeman et al. 2009).

FIGS is a trait-based and user-driven approach to

select potentially useful germplasm for crop improve-

ment. It searches for specific sought-after traits, using

as surrogate the environment, based on the hypothesis

that the germplasm is likely to reflect the selection

pressures of the environment from which it was

originally sampled (Mackay 1990, 1995; Mackay and

Street 2004). The FIGS approach addresses the lack of

available evaluation data as well as the temporal (the

moment when the accession is evaluated) issue of

evaluation as reported by Koo and Wright (2000). In a

simulation of the economic impact of disease mani-

festation Koo and Wright (2000) found that it was

faster to develop an improved variety by incorporating
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novel resistant traits, provided the source of the

resistance gene has already been identified. In terms of

searching genetic resource collections for useful traits,

Gollin et al. (2000) developed a theoretical model

based on resistance to diseases and insects, including

the Russian wheat aphid (RWA). The model high-

lighted that the search for a desirable trait is of equal

importance to the process of transferring it into

improved backgrounds. In their findings a focused

search approach, which they called a specialized

knowledge case, contributes positively to expected net

benefits due to the increased probability of finding the

desirable material and the associated cost savings.

FIGS as a focused approach combines both the

development of a priori information (dataset template

or specialized knowledge as per Gollin et al. (2000))

based on the quantification of the trait-environment

relationship and the use of this information to define a

subset of accessions with a higher probability of

containing the sought after genetic variation for

adaptive traits (Mackay 1995; Mackay and Street

2004).

The distribution patterns of the adaptive trait might

be, as in the case for taxonomic species distributions,

the result of ecological and evolutionary factors,

including, but not limited to, environmental factors,

natural selection and local selection pressures that are

hard to quantify, such as interactions with humans.

However, according to Qualset (1975) and Dinoor

(1975), disease resistance traits are more likely to be

influenced by natural selection and thus have a

restricted distribution. In this context, Hakes and

Cronin (2011) assert that trait distribution patterns are

not random and could be geographically and spatially

structured. Compared to species distribution patterns,

very few studies have been undertaken to identify key

factors that influence specific trait distribution patterns

(Chuine 2010). Furthermore, recent studies have

shown that modeling the distribution for specific traits

can improve the quality and predictive performance of

plant species distribution models (Hanspach et al.

2010).

The objective of this research was to detect whether

there is a link between stem rust resistance and

climate, the results of which will be used to (1)

develop a subset of germplasm accessions with an

increased probability of finding resistance to stem rust

and (2) develop algorithms to use in subsequent

applications of FIGS for ‘trait mining’ of large

germplasm collections. Five modeling techniques

were tested to quantify the hypothesized link. These

included both parametric and non-parametric

approaches as well as machine learning methods.

The overall assumption is that the novel genetic

variation will be confined to areas with similar

environmental profiles to sites where stem rust resis-

tance has been previously found.

Methods

The R language (R Development Core Team 2011)

was used as a platform for the preparation and analysis

of data. The data consisted of stem rust scores for

bread and durum wheat accessions (trait data) and

environmental or site data (climate data) describing

where the accessions were originally sampled.

The trait data

The stem rust trait data used in this paper to develop

the FIGS a priori information was taken from The

United States Department of Agriculture (USDA)

National Genetic Resources Program (NGRP) GRIN

database. The data is an accumulation of results over

six different years (during 1988–1994) in two different

research stations in USA; the University of Minnesota

Agricultural Research Station (44�5901700 N, 93�10048

W) and the Rosemount USDA Agricultural Research

Station north of USA (44�4300100 N, 93�0505600 W). Dr

Don V. McVey made all of the trait observations for

both locations (Bonman et al. 2007; Endresen et al.

2011).

The accessions screened for stem rust originated

from 2013 collection sites as one site was removed

from the original data of 2,014 sites. Some of the sites

lacking geographical coordinates were geo-referenced

at ICARDA based on a description of the original

collecting sites. The probability distribution for the

disease scores shows that the number of susceptible

accessions is more dominant than the number of

resistant accessions. Cross-tabulation was carried out

to assign a site’s (i) trait attributes using the expected

frequency (eik) of each score per site times the actual

score count (yik) per site of each of the scores, k, (0–9)

across all sites. The sites were then compared based on

the frequency of either resistant accessions (0–4

scores) or susceptible accessions (5–9 scores).
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Yi ¼ 1;
P4

k¼0

eikyik�
P9

k¼5

eikyik

0; otherwise

8
<

:

This was based on the results reported by Endresen

et al. (2011) where they reclassified the trait states into

2 groups from 9 groups and used single sites as

observations such that the score that is most common

would be the score that is attributed to each site.

The climate data

The climate data was extracted from climatic maps

generated from station data by co-splining (Hutchin-

son and Corbett 1995), a local interpolation method.

The ‘thin-plate smoothing spline’ method of Hutch-

inson (1995), as implemented in the ANUSPLIN

software (Hutchinson 2000), was used to convert the

point climate data into climate surfaces. This is a

smoothing interpolation technique in which the degree

of smoothness of the fitted function is determined

automatically from the data by minimizing a measure

of the predictive error of the fitted surface, as given by

the generalized cross-validation (GCV). The GCV is

calculated by removing each data point and calculat-

ing the residual from the omitted data point of a

surface fitted to all other data points using the same

smoothing parameter value. The thin-plate smoothing

spline method including GCV has been proven to be

effective as it improves the accuracy of the interpo-

lation similar to that of cokriging interpolation when

the appropriate variogram is well selected (Wood

2000; Tait and Turner 2005; Wratt et al. 2006).

The generation of climatic maps was based on the

use of terrain variables as auxiliary variables in the

interpolation process, whereby these variables were

first converted into digital elevation models (DEM)

using GIS software. In contrast to the climatic target

variables themselves, which are only known for a

limited number of sample points, terrain variables

have the advantage to be known for all locations in

between. In addition, some climatic variables, such as

temperature and precipitation, are highly correlated

with elevation, which increases the precision of the

interpolated values significantly (De Pauw et al.

2000).

The DEM used to generate the climate surfaces was

GTOPO30, a global DEM with 30 arc-second

(approximately 1 km) resolution (Gesch and Larson

1996). Parameter estimation was undertaken over a

regular grid with the same dimensions and resolution

as the user-provided DEM. The combination of point

climatic data and terrain, in the form of a DEM, allows

generating spatially or temporally linked derived

variables, such as potential evapotranspiration (pet)

and aridity (ari) index (Table 1). From the climate

maps a total of 60 climatic variables were extracted

for the georeferenced 2,013 locations, where acces-

sions scored for stem rust, were originally sampled.

These 60 variables represent monthly average mini-

mum temperature (tmin), monthly average maximum

temperature (tmax), monthly average precipitation

(prec), monthly average evapo-transpiration (pet) and

monthly average aridity index (ari) (Table 1).

Data preparation and data exploration

Prior to the analysis of the climate data each variable

was examined individually. The climate variables

appear to be mostly right- skewed and transformations

were performed to tackle both the skewness and the

different measurement scales to avoid the discrepancy

between large and small values. Normality was not

necessarily a prerequisite for some of the modeling

techniques explored. Among the transformations used

was the Box–Cox transformation, which is a power

transformation included in Tukey’s original family of

transformations that use logarithmic transformations

when the power value is equal to 0 (Tukey 1957;

Osborne 2010). The Box–Cox transformation algo-

rithm was applied individually to the aridity (ari), the

precipitation (prec) and the evapo-transpiration (pet)

monthly variables based on the equation:

fkðxÞ ¼
xk�1

k k 6¼ 0

logðxÞ k ¼ 0

�

where k power (of x) value is chosen to reduce non-

normality by maximizing the l(k) function:

lðkÞ ¼ � n

2
loge

1

n

X
xk

j � �xk
� �2

� �

þ ðk

� 1Þ
Xn

j¼1

logeðxjÞ

�xk is defined as the average of the newly transformed

variables (Box and Cox 1964; Osborne 2010).
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Through this process the best option is selected from a

range of transformations (Osborne 2010).

As a result of the Box–Cox transformation

process the aridity variables were transformed with

k values ranging from 0.12 to 0.42, the precipitation

variables with k values ranging from 0.17 to 0.56

and the evapo-transpiration variables with k values

ranging from -0.40 to 0.3 (Table 1). Only the best

value of k, not tabulated here, for each of the 60

variables were used. Figure 1 demonstrates the

effectiveness of this transformation. Mean annual

temperatures (tmax and tmin) were not transformed

since their distribution was approximately normal

(Fig. 1).

All variables were standardized to a mean of zero

and a standard deviation of 1. After the transformation

the data was standardized and a comparison made

between the transformed and non-transformed data.

This data pre-processing was systematically and

automatically carried out through the different

models.

Uni-variate analysis (ANOVA) was carried out to

detect the discriminating ability for each variable

individually. In the ANOVA, the trait data (stem rust

scores Y) was used as an independent variable while

climate variables (X) were as dependent variables.

Most of the variables taken individually showed

significant discrimination between the different stem

rust trait groups. Collinearly among the variables (X)

was expected as indicated by its extremely high

condition number value, which is equal to the square

root of the largest eigenvalue divided by the smallest

eigenvalue (Belsley 1991).

Table 1 The environment variables used in the study

Variable type Variable name Variable description Unit Number Transformation

(power value k)a

Climatic pet Monthly potential evapo-transpiration mm 12 [-0.40, 0.3]

ari Monthly moisture index (ari) 12 [0.12, 0.42]

prec Monthly precipitation cm mm 12 [0.17, 0.56]

tmin Monthly minimum temperature �C 12 –

tmax Monthly maximum temperature �C 12 –

Geographic/topographic lon Longitude � 1 –

lat Latitude � 1 –

alt Elevation m 1 –

a The transformation are based on the Box–Cox power transformation carried out for the skewed variables (prec, pet and ari)
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Fig. 1 Frequency histograms of climate (aridity/moisture

index) variable before transformation (above) and after trans-

formation with k = 0.13 (below)
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Modeling framework

The modeling framework refers to the context as well

as the processes, ranging from training and tuning to

testing and assessing the modeling techniques for their

predictive power. The models are based on the

paradigm that the value of the stem rust resistance

state (Y) depends on the climatic variables (X), where

X = (x1,…, xn). At first, the assumption is that Y is

normally distributed with the mean being a linear

function of X with a constant variance of r2
� ,

Yi�N b0 þ
Xn

i¼1

biXi;r
2
�

 !

where bi are coefficients. When the trait state is

considered as resistant or susceptible, Y can take 2

possible values; either 0 (susceptible) or 1 (resistant)

and thus the distribution of Yi becomes

Yi�B 1;U b0 þ
Xn

i¼1

biXi

 ! !

The above equation describes a random Bernoulli

function (Gollin et al. 2000), of which the standard

normal output is the Probit model and the logistic

distribution is the Logit model (Feelders 1999). Such

relationships between the trait(s) and the environment

can be modeled in a multiple regression framework,

including the logistic regression (Webb et al. 2010)

where the response variable Y is adjusted to a response

vector logit(p) with p = P(Y = 1). The logit stands

for the logarithmic equation (Pohlmann and Leitner

2003):

logitðpÞ ¼ ln p=1� pð Þ ¼ b0 þ
Xn

i¼1

biXi

which in turn leads to the mathematical expression of

p ¼
exp b0 þ

Pn
i¼1 biXi

� �

1þ exp b0 þ
Pn

i¼1 biXi

� �

and this transformation assumes a linear relationship

between the logit of the probability of Y = 1 and the

climate variables. However, trait-based approach

linear regression analysis may be more appropriate

for exploratory data analysis (Webb et al. 2010). As a

follow up to the early work by Endresen et al. (2011)

this study was extended to a non-parametric frame-

work where the phenomena are expected to be non-

linear using the original response Y. The non-linear

framework refers here to learning based techniques,

which aim to overcome the problem of restrictive

parametric paradigms on one hand and the prerequisite

distribution assumptions on the other (Drake et al.

2006).

The accuracy of the models (or predictive power)

was measured based on the ability of a model to

accurately predict the number of times the fitted

model classifies correctly the response for each of the

two descriptor states (resistant or susceptible). The
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Fig. 2 Model performance for both logistic regressions (PCLR

and GPLS) versus number of components using AUC (left
graph) and Kappa (right graph). PCLR reaches AUC = 0.7

with less components (LVs = 20) while PCLR needs 45 PCs.

With fewer components (less than 10) GPLS performs better

that PCLR. Both models with LVs and PCs that explain only

95% of variance the performance is below accepted values.

PCLR model is represented by the continuous line and GPLS as

the dashed line
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modeling framework also includes a tuning process for

optimal accuracy. The quality of the models was

measured using cross-validation algorithms where the

data is split into two subsets, the algorithms developed

on the training test were used to predict for trait states

in the test set.

Modeling techniques

The five modeling techniques that were assessed to

quantify the hypothesized trait-environment relation-

ship are described in the following sections (Table 2).

In the two first techniques the response variable was

adjusted to take into account that it is a binary variable

and that the trait-environment relationship is described

in terms of probability of Y = 1 instead of Y.

Multiple linear regression using principal component

logistic regression (PCLR)

A PCLR analysis was performed on the transformed

climatic variables and the stem rust trait prediction Ŷ

(value estimate of the probability that Yi = 1) was

generated from the PCA component scores (Spca)

instead of the original transformed climate variables

(X). It is based on the PCLR equation logit(p) = Sp-

caB ? E, where B consists of maximum likelihood

estimates of the logistic regression coefficients (Aguil-

era et al. 2006). The approach aims to both reduce the

number of predictor variables (multi-collinearity) and

adjust the outcome or response variable. The predic-

tion was initially carried out using the number of

components (PCs) that account for 95% of explained

variance. The optimization process of PCLR model

was based on the accuracy measures which were

examined by adding the components stepwise based

on the PCs contribution to the overall explained

variance, starting with those that explain a large

amount of variance (Fig. 2). The components with

high predictive value will lead to an increase of these

accuracy measures while those that are largely

‘‘noise’’ will lead to their decrease.

Multiple linear regression using generalized partial

least squares (GPLS)

PCLR as an extension of PCA approach eliminates

only the collinearity but might not identify the

optimum subset of candidate variables that can be

used as predictors since their decomposition is carried

out independently of the trait dataset. Thus a GPLS

regression as an extension of PLS was used since PLS

not only retains the original structure but also involves

a decomposition into a product of factors and their

loadings (regression coefficients), of both the envi-

ronmental dataset and trait dataset simultaneously

(Wold et al. 1984; Abdi 2010). GPLS as an extension

to PLS it retains the rationale of PLS (Bastien et al.

2005). While PCA maximizes the variance of the

scores PLS maximizes the covariance between the

scores and the response variable. GPLS latent vari-

ables (LVs) would be thus more relevant for trait

prediction as was demonstrated by Arif et al. (2007)

for PLS to assess the correlation between morphology

Table 2 Models used in the study

Model Tuning parameters Librarya (R

language)

References

Principal component logistic

regression (PCLR)

Number of principal components (PCs)

(ncomp)

pls/stats

(glm)

Mevik and Wehrens (2006)/R Core

team (2011)

Generalized partial least

squares (GPLS)

Number of latent variables (LVs) gpls Ding and Gentleman (2005)

Random forests (RF) Number of trees (n.tree) number of predictors

chosen at each node (mtry)

randomForest Breiman (2001), Cutler et al.

(2007), Prasad et al. (2006)

Neural networks (NN) Number of hidden layers (number of

perceptrons): size decay value (e)
nnet Venables and Ripley (2002)

Support vector machines

(SVM)

gamma/sigma, cost (C) svm (e1071) Dimitriadou et al. (2010)

ksvm

(kernalab)

Karatzoglou et al. (2006)

a Caret library (Kuhn 2008), which stands for classification and regression training, was used across models
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and climate variables. The optimization of the number

of components selected in the prediction for this model

followed the same procedure as that of the PCLR

model.

Random forest (RF)

RF is a type of recursive partitioning algorithm where

the data is recursively split into groups of observations

with similar response values, a procedure that does not

require normality assumptions and deals well with a

large number of variables (Strobl et al. 2009). It differs

from standard tree classifier in that it ‘‘grows’’ many

classification trees in the process. An object from an

input vector is classified by all trees in the forest. Each

tree gives a classification, and we say the tree ‘‘votes’’

for that class. The forest chooses the classification of a

given object having the most votes over all the trees in

the forest. This approach has led to higher classifica-

tion accuracy that can outperform other classifiers

(Breiman 2001).

The data in the RF module is split intrinsically into

a ‘‘training set’’ as a result of bootstrap sampling with

replacement; the data that is not sampled to be part of

the training set is referred to as the out-of-bag (OOB)

set. The OOB set is used to test the predictive power of

the RF module. A number, mtrv, is specified, which is

less than the number of input variables (in this case the

climatic parameters), such that at each node of the tree

a mtrv number of variables are selected at random

from the original variable set and the best split on these

randomly selected variables is used to split the node.

Each tree in the ‘‘forest’’ is grown to the largest extent

possible without pruning until there are, ntree, number

of trees. Varying the mtrv and ntree values is how the

model is optimized. The optimization of the two mtry

and ntree parameters is driven by monitoring the

magnitude of the mean square prediction error (rate of

classification error) observed in the OOB set; that is,

the ability of each iteration to correctly classify a site

as resistant or susceptible.

Neural network (NN)

In the NN model a neuron is described by its weight wk

and transfer function f(x) that receives a set of numbers

xk as input, in this case climate variables, and

generates a number, y, as output (Golden 1996; Bari

et al. 2003), in this case the trait. Similar to a nervous

system, NN consists of many processor (PE) units

linked to communicate in a many-to-many connection

structure where the computations are carried out in

parallel by the units independently from each other.

This parallelism and high connectivity are the char-

acteristics of neural networks that help in overcoming

the assumptions that are usually required in the case of

linearity. In comparison to the human brain they were

originally designed to identify patterns, even in the

presence of noise (Warner and Misra 1996).

If the trait-climate relationship falls within a

General Linear Model (GLM) context the NN weight

wk would correspond to the bi coefficients. NN do not

require an assumption of linearity between the trait

variable (dependent variable) and climate variable

(independent variables), it is the data that defines the

functional form of this relationship (Warner and Misra

1996). After the climate data was transformed and

scaled it was fed to the NN model [nnet model R

library (Venables and Ripley 2002)]. Prior to the use of

the NN model the tuning process was performed to

define the number of neurons (NN size) and the decay

parameter (e) that measures the trade-offs between the

weights (wk) and the prediction error. The weights

keep changing through the back-propagation iterative

process until the reduction in error is optimized.

Support vector machines (SVM)

Support Vector Machines (SVM) is also a learning-

based technique that maps input data to a high-

dimensional space, and then optimally separates it into

respective classes by isolating those inputs which fall

close to the data boundaries (Cortes and Vapnik 1995;

Principe et al. 2000). In this study SVM was used with

a radial basis function (RBF) as the kernel function.

RBF uses Gaussian transfer functions, the centres and

widths of which are determined by unsupervised

learning rules. RBF first carries out unsupervised

clustering using a k-nearest neighbor algorithm, and

then applies a supervised classification using the

cluster number and width (radius, hence the name

‘‘radial’’). Thus the sites are first split into k clusters

and the size of each cluster is obtained from the

structure of the input data. The centres of the clusters

give the centres of the RBFs, while the distance

between the clusters provides their widths (Silipo

1999; Bari et al. 2003).
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SVM-RBF first assigns a ‘‘score’’ or a label to the

combination of input variables, in this case the site

climatic variables, during the unsupervised procedure

and then the value of the label is matched with the

actual Y value, in this case the trait value. The results

of this comparison are fed back to the system and

adjustments are made to the labels until the error

between the predicted and the actual are minimized.

Tuning the SVM involves adjusting the SVM param-

eters (c) of the kernel function (RBF) and the cost

(C) value chosen to be 0.1 and 1, respectively. SVM

model was tuned by supplying parameter ranges for

both parameters and the best values above were

chosen by minimizing the error on the training data

set.

Tuning the models and comparing outputs

Comparisons between models were made using the

metric parameters derived from a confusion-matrix

table and the Area Under the Curve (AUC) of the

Receiver Operating Characteristics (ROC) (Swets

et al. 2000; Fawcett 2006). The confusion matrix

parameters are derived from a 2 by 2 contingency table

(Table 3). The comparison process involves two

groups of algorithms for two different types of cross-

validation, sensitivity and specificity.

Sensitivity, defined by a/ (a ? c), and specificity,

defined by d/(b ? d), are indicators of the models

ability to correctly classify observations as either

susceptible or resistant. The higher the values of

sensitivity and specificity the lower the error and thus

the better the discriminating power of the model. The

errors occur when resistance (R = 1) is classified as

susceptible and vice versa. The former is a conditional

probability notated by P(R* = 0|R = 1) while the

latter is notated by P(R* = 1|R = 0). Thus sensitivity

can be defined by P(R* = 1|R = 1) and specificity by

P(R* = 0|R = 0).

The Kappa statistic was used to assess improve-

ment over chance and measures the specific agreement

in the confusion matrix table. A value of Kappa below

0.4 is an indication of poor agreement and a value of

0.4 and above is an indication of good agreement

(Landis and Koch 1977). Thus a high value is an

indication that the models performance is adequate for

prediction purposes (Scott et al. 2002). A 90%

confidence interval for the Kappa statistic was also

used since it is asymptotically normally distributed.

Since Kappa can be a threshold dependent ‘‘metric’’

parameter we also used the Area Under the Curve

(AUC) of the Receiver Operating Characteristics

(ROC) plots to measure the models accuracy (Free-

man and Moisen 2008). The AUC accuracy assesses

improvement over randomness based on the ROC

curve.

The ROC curve sensitivity, which is the conditional

probability P(R* = 1|R = 1), is plotted against the

conditional probability P(R* = 0|R = 1), which com-

plements the sensibility (1 - P(R* = 0|R = 0)). This

is also known as the plot of true positive rate versus

false positive rate, where the true positive rate is

sensitivity and the false positive rate is 1- specificity.

A ROC curve that rises nearly vertically at the origin

towards the left corner of the graph has high true

positive rate and a small false positive rate. Such a plot

would have high AUC values indicating favorable

model performance (Freeman and Moisen 2008). Thus

in this study, the higher the AUC values the better the

discrimination between collection sites yielding resis-

tant or susceptible classes. An AUC value of 0.5

represents randomness while1represents peak model

performance (Fawcett 2006).

Each model was tuned individually to define the

most appropriate parameters to use for better predic-

tion (Table 2). This involved the examination of the

different errors (e.g. the root-mean-square error

(RMSE) numerically or graphically using optimiza-

tion and tuning algorithms. These algorithms invoke

within cross-validation (10-fold cross-validation)

using 10 random segments or folds, where 9 folds

are used for learning purposes and the reminder

onefold is used for validation purpose.

PCLR and GPLS optimization is based on the

accuracy parameters. For RF, NN and SVM the

parameters were tuned for optimal accuracy using

separate tuning algorithms for each module. A range

was provided for each parameter and the tuning

algorithms selected the best value for each. The cross-

validation was performed 10 times and the averages

Table 3 Confusion matrix (2-by-2 contingency table)

Observed

Resistant Susceptible

Predicted Resistant a b

Susceptible c d
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for the performance indicators are reported in Tables 4

and 5.

The models were then compared based on the AUC

and Kappa indicators for best predictive performance.

The comparisons were based on the test data, which

represents one third of the data (671 sites) while two

thirds of the data (1,342 sites) was used to develop the

five models. The modeling algorithms were left to run

10 times on the test set and the average with their

confidence intervals were reported for AUC, Kappa

and the overall correct classification for each model.

Results

The PCLR, GPLS, and RF models were all able to

correctly classify sites that yield either resistant or

susceptible genotypes with a 76% success rate, SVM

and NNs improved this prediction by 1–2% (Table 5).

The accuracy of the models is illustrated by the ROC

plots shown in Fig. 3. A straight diagonal line is

expected when a model is no better than random.

While all models yielded plots that demonstrate a

better than random performance the curves for the

non-linear models (RF, SVM and NN) tended to be

skewed more towards the left-hand side of the ROC

plots indicating that they tend to classify the resistant

trait relatively more correctly with less false positive

error and thus will perform relatively better than the

parametric models (Fawcett 2006).

These indications are supported by the Kappa and

AUC statistics. The PCLR and GPLS approaches have

relatively low and similar Kappa average value (0.41).

Further, the AUC values are nearly equal to what can

be expected for a robust prediction model (0.7 and

above). The SVM and NN approach had Kappa values

of 0.44 and 0.45, respectively and AUC values of 0.71

and 0.72 with confidence intervals that indicate SVM

and NN are significantly different than those obtained

for the parametric approaches, in particular PCLR for

either one of the accuracy parameters in Table 5.

The prediction density plots (Fig. 3) further support

the inference we draw from the Kappa and AUC

values. For the PCLR and GPLS plots there is higher

degree of overlap between predictions for the two trait

classes, while the non-parametric models yield plots

that show a more pronounced degree of separation

between the two classes.

The results of the tuning process for the PCLR and

GPLS models, summarized in Table 4 and shown in

Fig. 3, are noteworthy. The accuracy (AUC) and the

rate of agreement (Kappa) values increase with the

number of PCs and LVs until they reach a plateau after

which the two models converge. However, GPLS

reaches higher values with fewer components than the

PCLR model. When the models are run with 5 PCs and

6 LVs, which represent 95% of total explained

variance, GPLS performs better than PCLR, whilst

the PCLR model with an AUC value close to 0.5 is

similar to a random outcome. The minimum errors for

both models were reached at 42 PCs and 22 LVs,

respectively. Kappa values have a similar pattern to

the AUC in relation to the number of PCs and LVs.

Thus the GPLS model requires fewer components to

reach a Kappa = 0.4 and AUC close to 0.7.

Discussion

This study allows us to confidently assert that resis-

tance to stem rust in wheat landraces is not randomly

distributed geographically but linked to agro-eco-

climatic factors existing within collection site envi-

ronments. This is supported by the findings of Bonman

Table 4 Model accuracy for PCLR and GPLS model using test data for PCs/LVs representing 95% of variance (PCs = 5 and

LVs = 6) and both cases where PCA and PLS error reached the minimum error (PCs = 45 and LVs = 20) with high accuracy values

Model AUC AUC_La AUC_Ua K K_L K_U O O_L O_U

PCLR(5) 0.56 0.55 0.57 0.15 0.13 0.17 0.69 0.68 0.70

PCLR(45) 0.70 0.68 0.71 0.41 0.39 0.43 0.76 0.75 0.77

GPLS(6) 0.67 0.66 0.67 0.35 0.34 0.37 0.74 0.73 0.75

GPLS(20) 0.70 0.69 0.71 0.41 0.39 0.44 0.76 0.75 0.77

K kappa, O overall correct classification
a (_L, _U) are 95% confidence limits (lower and upper limits)
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et al. (2007) who reported that the distribution of stem

rust resistance in wheat landraces was linked to

regions of origin. Thus, we can hypothesize that the

emergence of resistance to other pathogens are also

likely to be linked to long term environmental trends

acting upon host pathogen systems. This is hardly

surprising given that pathogens generally have opti-

mal environmental conditions within which they will

thrive, thus placing selection pressure on in situ host

populations for the emergence of resistance. The

assertion here is that the environment will strongly

influence gene flow, natural selection and thus spatial/

geographic differentiation for specific traits (Wu et al.

1975; Spieth 1979; Epperson 1990). In the case of

powdery mildew, for example, Paillard et al. (2000)

report that those populations of winter wheat with the

highest level of resistance to powdery mildew origi-

nated from sites where powdery mildew pressure was

high, due to environmental factors, while the reverse

was true of those populations where the pressure was

low. A practical application of this was demonstrated

by Bhullar et al. (2009) where, after applying a FIGS

approach to selecting wheat landraces for an eco-

tilling exercise focused on the Pm3 region, found that

forty percent of the collection sites chosen yielded

genotypes resistant to the isolates used. The study

went on to reveal 7 new resistance alleles for the Pm3

gene.

On the other hand, in a similar study aimed at

investigating taxonomic and biogeographic predictiv-

ity for resistance to 32 pests and diseases of cultivated

potato wild relatives, Spooner et al. (2009) report that

resistance to only six pests and diseases could be

reliably predicted by environmental variables. They

concluded that the more efficient strategy to mining

genetic resource collections is to carefully screen core

collections. They mentioned, however, a number of

factors that could impede their results such as the scale

of climate grids from which the climate variables were

extracted. A recent study by Endresen et al. (2011)

indicated higher predictive performance when using

finer resolutions for the climate data with grid sizes of

1, 4.5, 9.3, and 18.5 km. The grain or grid size has

been an issue in ecological research where it is

acknowledged that further studies are needed on the

resolution (grid size)-dependency paradigm detailed

in the MacArthur and Wilson (1967) bio-geographical

‘‘island theory’’, which originally led to the inclusion

of the size of the area’s paradigm in ecology (Malan-

son and Armstrongy 1990; Mann and Benwell 1995).

Further it is suggested that trait-environment relation-

ships may be influenced by the scale at which both

independent and dependent variables are measured

(Cushman and McGarigal 2004; Tautenhahn et al.

2008). In addition to the issue of scale, and as

illustrated in Fig. 1, climatic variables also tend to be

highly skewed and (in preliminary exploration of the

modeling reported here) the modeling techniques

performed better when the variables were

transformed.

Notwithstanding the above, in preliminary work for

this study it was clear that the predictability of the

models decreased as the number of variables used

decreased. This is supported by Stockwell (2007) who

suggests that additional data layers are required to

produce more efficient ecological models. Stockwell

(2007) further asserts that some entities may not be

modeled using restricted variables. In the study

reported by Spooner et al. (2009), 38 variables were

used including 12 each for rainfall, minimum and

maximum temperatures. In this study 60 variables

were used that include potential evapo-transpiration

and aridity, both of which contain information about

humidity, a factor which is widely reported to be of

critical importance to the development of fungal

pathogens such as stem rust.

Table 5 Model accuracy using test data for the 5 optimized and tuned models

Modela AUC AUC_L AUC_U K K_L K_U O O_L O_U

PCLR 0.70 0.68 0.71 0.41 0.39 0.43 0.76 0.75 0.77

GPLS 0.70 0.69 0.71 0.41 0.39 0.44 0.76 0.75 0.77

RF 0.70 0.69 0.71 0.42 0.40 0.44 0.76 0.75 0.77

SVM 0.71 0.70 0.72 0.44 0.42 0.45 0.77 0.77 0.78

NN 0.72 0.71 0.73 0.45 0.43 0.47 0.77 0.76 0.78

a Tuning parameters values for PCLR: PCs = 45; GPLS: LVs = 20; RF: mtry = 20, ntree = 1,000; SVM: gamma = 0.1,

cost = 1.0; and NN: size = 3, decay = 0.1
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In this context a discussion on the performance of

the models used in this study is warranted. The results

demonstrate that modeling techniques, such as those

reported here, can provide a predictive framework to

quantify trait-environment relationships and as such

can be used to efficiently identify potentially valuable

germplasm from genetic resource collections. The

practical application of this has been clearly
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Fig. 3 ROC plots (left) and

density plots of prediction

for resistance and

susceptible (right) for the 5

models using test set; green
curve (discontinuous line)

indicates the probability

density distribution for

resistance and red curve
(continuous line) indicates

susceptibility. Predictions

fall out of range [0, 1] as a

result of linearity/

interpolation in some of the

models
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demonstrated by El-Bouhssini et al. (2009, 2010) who

have discovered multiple sources of resistances to the

Syrian biotype of Russian wheat aphid and to Sunn

pest in bread wheat for the first time using a FIGS

approach after having unsuccessfully screened thou-

sands of genebank accessions. Thus, the availability of

environmental data provides an opportunity to

improve the use of germplasm through quantifying

such trait-environment relationships. In this context

Webb et al. (2010) consider that the type and quality of

data are so important that they are considered non-

trivial limitations to such trait-based approaches.

For the PCLR and GPLS based regression models,

the predictions derived by using the same number of

PCs and LVs that account for 95% of the variance in

the climate variables, are not much different from a

random selection. This was unexpected and has

implication in terms of setting up subsets of accessions

for desirable traits using a PCLR approach to cluster

accessions working within the generally accepted

levels of variance explanation. Adding more PCs or

LVs improved the prediction with both models, GPLS

requiring fewer components than PCLR suggesting

that some of the environmental variables that correlate

with the trait response (resistant or susceptible) were

not captured by PCLR. Common and expected is the

pattern where PLS type of models needs fewer

components than PCA based model as it has been

found, for example, by Wu et al. (2008). Moreover,

PLS logistic regression is more prone to lead to a

coherent model (Bastien et al. 2005). The fact that NN

and SVM perform better than PCA and PLS based

models indicates, however, that a large amount of

variance in the climate data is non-linear (Wu et al.

2008). The out-of-range predictions (presence of

negative values to 0 and positive values greater than

1 indicate that the trait-environment relationship is

more likely to be non-linear (Fig. 3).

The performance of the different models based on

their discriminatory ability indicated by the AUC and

Kappa values is also related to the decomposition of

variables. When both trait and environmental vari-

ables are decomposed together using GPLS, the AUC

and Kappa values are relatively higher indicating that

the models retain relevant structure and information

and thus allow a better discrimination. Similarly,

when the prediction is applied directly to the data

using machine learning techniques, the results of

AUC and Kappa values are higher indicating their

improved potential for discriminating between the

two groups.

Although both AUC and Kappa values of testing

datasets are, as expected, lower than those of the

training data, the results show acceptable values.

Confidence intervals of SVM and NN model in

particular do not overlap with those of PLCR. Overall

non-linear models perform better when compared to

linear models even if all the data structure is retained

for both types of models.

Machine-learning based techniques such as RF, NN

and SVM in combination with fuzzy based approaches

have the potential to yield better predictions (Kamp-

ichler et al. 2010). Such techniques are also more

suited for data with a large number of variables. The

only limitation, as in the case of SVM, may be due to

the range of environmental variables (Drake et al.

2006). RF has the potential to yield better results,

however it is computationally expensive as it requires

large memory and significantly more run time. NNs

are powerful predictive tools although difficult to

interpret (Jeschke and Strayer 2008). SVM is more

rapid and tends to distinguish optimally between

groups and predicts entities while minimizing the loss

of information (Guo et al. 2004; Karatzoglou et al.

2006). The advantage of learning-based techniques is

that they need fewer assumptions and are more

suitable when highly complex non-linear relationships

are expected among input variables (Tirelli et al.

2009).

The results also suggest a number of other issues

that may improve predictive performance. The data

was composed of several taxa of wheat. The parti-

tioning to sub-population or genetic background/

lineages may lead to an increase in model accuracy,

since compact or clumped distributions of population

are easier to model than those of widespread and

scattered distributions (Hernandez et al. 2006; Hansp-

ach et al. 2010). Reclassification of trait states has been

shown in previous work by Endresen et al. (2011) to

improve predictions. Both the assessment of trait

variation and the effect of probability distribution of

the trait are to be further investigated. Trait distribu-

tions vary across any set of accessions and affect the

optimal search process (Gollin et al. 2000). They may

also vary depending on the type and degree of

virulence of races or biotypes in the case of insects.

When optimally tuned all the models reported here

displayed predictive powers superior to a random
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selection and thus are adequate to explore genetic

resource collections for novel sources of resistance to

stem rust, and it is argued, to other pathogens.

However, the indications are that the SVM and NN

algorithms have a higher discriminating power and are

more robust and thus will be used in further explora-

tions of this kind. In fact, it is difficult to envisage

further predictive gains being made through used of

alternate models. Rather it is more likely that gains

will come from an appropriate mixture of independent

variables that are known to influence the selection

pressure in question. For example, this study and that

of Spooner et al. (2007) used maximum and minimum

monthly temperatures. However, since pathogens are

known to respond more to the diurnal temperature

variation or average temperatures than to absolute max

or min temperatures it is possible that greater resolu-

tion would be gained by expressing temperature in

these terms.

Another line of research being explored by the

authors is to consider climatic variables within the

context of site specific growing seasons. For example,

the minimum temperature in a given month may be

important at one location but in another it may have no

relevance because it falls outside of that site’s growing

season. It is proposed here that instead of using long

term climatic averages expressed as monthly values

they could instead be expressed as averages for stages

in a crops development. Thus in the modeling process

the noise created by differences in phenology between

sites would be eliminated facilitating higher resolu-

tions to detect environment—trait linkages. Further

variables could be created by counting the number of

days in a season that meet certain climatic conditions

know to be favorable to the pathogen.

Conclusion

It is concluded here that the FIGS approach will

improve the use of germplasm as a priori information

becomes more available through improved modeling

techniques or other approaches. Gollin et al. (2000)

stated that such information (a priori information) is

extraordinary valuable, so far it is a specialized

knowledge, and the authors expect that technology

will gradually provide further substitutes for such

valuable information. This study demonstrated that

modeling techniques such as those explored here

provide a predictive framework to quantify the trait-

environment relationship that will help in more

effectively using genetic resources. The availability

of environmental data is providing the opportunity to

improve the use of germplasm through the quantifi-

cation of such trait-environment relationships. As

Webb et al. (2010) point out, the type and quality of

data are so important that they must be considered

non-trivial limitations of such trait-based approaches

(Webb et al. 2010).
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