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Abstract The accumulation of various heat shock

proteins (HSPs) and their relationship with the inbuilt

cold tolerance observed in Kashmir Basmati was

studied. Five Basmati rice verities (Oryza sativa),

Basmati-370, Basmati-Pak, Basmati-198, Basmati-

385 and Kashmir Basmati were given temperature

shock of 45 and 50�C. Temperature shocks were

given for 16 h in incubator preheated to 45 and 50�C

and 85% relative humidity. Proteins were extracted

and separated on 10% acrylamide gels with 1 mm

thickness and visualized for protein fractions. Accu-

mulation of 40 kDa HSPs were observed in all the

cultivars, and 20 kDa HSPs specifically in Kashmir

Basmati. Small amounts of high molecular weight

HSPs were observed in un-treated (control) plants of

Kashmir Basmati, and it increased considerably after

heat shock. The 20 kDa HSP was only expressed in

heat-treated Kashmir Basmati. Differences in the

expression of heat shock proteins in the tested

varieties have been described in detail.
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Introduction

For the last about two decades, climatic conditions

have been changed unpredictably in temperature and

rainfall patterns. It has seriously affected cultivation

and quality of Basmati rice varieties. To cope with this

situation, new varieties have been released that can

retain the traditional grain quality of Basmati rice, for

different climatic conditions of the country. Kashmir

Basmati is one such variety that has originated as a

radiation induced mutant from the world’s finest

quality Basmati rice variety Bas-370. It is an early

flowering (Awan et al. 1977) variety that requires only

130 days to mature (Awan and Cheema 1985) hence;

it is 30 days early than the parent with the grain

quality and plant height similar to that of Basmati 370.

Kashmir Basmati is recommended for cultivation in

the cold mountainous Kashmir valley where climatic

conditions are drastically different from the traditional

rice growing areas in the province of Punjab, Pakistan.

The differences in day/night temperatures is much

wider in Kashmir compared to that prevailing in

Punjab especially when the crop reaches near matu-

rity. In the Punjab rice growing areas, the day

temperature may rise above 40 degree while the night

temperature seldom drops below 20�C. In Kashmir

the day temperature seldom rise above 40 degrees but

the night temperature may drop to less than 10�C. The

conditions are ideal for ripening of Basmati varieties

provided; they can fit into the short growing season

and tolerate ice cold water for irrigation.
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Vierling (1991) reported that when plant species

adapted to heightened temperate are grown at elevated

temperatures, expression of 20–40 different Heat Shock

Proteins (HSPs) is induced. Heat shock may also be

induced in response to a variety of other cellular stresses

such as heavy metals stress (Bauman et al. 1993),

oxidative stress (Drummond and Steinhardt 1987), and

salinity and drought stress (Pareek et al. 1995). A

number of genes that respond to such environmental

changes have also been identified (Bartels et al. 1997;

Bray 1997; Shinozaki and Yamaguchi-Shinozaki 1997)

they are thought to protect cells from damage, confer

tolerance, and maintain homeostasis. Heat shock pro-

teins that are induced in response to low temperatures

have been also identified in spinach (Neven et al. 1992;

Anderson et al. 1994) and soybean (Cabané et al. 1993)

and those of HSP-90 are induced in Brassica napus L.

emend. Metzg. and rice in response to low temperature

(Krishna et al. 1995). Small heat shock proteins (sHSPs)

of the sizes ranging between 15 and 30 kDa have been

reported in many species (Scharf et al. 2001) with some

related to cold acclimation of plants (Jakob et al. 1993).

In the present study, we have induced HSPs in

Basmati rice varieties. The objective was to study the

response of different basmati varieties against heat

shock and to see whether or not a relationship exists

between the induced heat shock proteins and the

observed cold tolerance in Kashmir Basmati.

Materials and methods

Seedling growth

Plant material used in this study comprised Basmati-

370 (Bas-370), Kashmir Basmati (Kash-Bas), Bas-

mati Pak (Bas-Pak), Basmati-198 (Bas-198) and

Basmati-385 (Bas-385). Agronomic characteristics

of these varieties are presented in Table 1. Seeds

were sown in Petri plates lined with moist filter paper

and placed at 30�C in the incubator. Germinated

seeds were allowed to grow for 10 days when

seedlings were selected for heat shock treatments at

45 and 50�C. For this purpose growth incubators were

preheated to the required temperatures, maintained at

relative humidity of about 85%, and heat shocks were

given for 16 h. Controls were kept in the growth

incubator maintained at 33 ± 2�C.

Protein extraction

Leaves from the treated and control seedlings were

collected and pulverized in pestle and mortar in the

presence of 0.08 M Tris–HCl buffer (pH 8.5)

containing 1% SDS and 5% 2-Mercaptoethanol.

Slurry obtained after grinding and homogenization

was heated for 20 min at 60�C with occasional

shaking followed by centrifugation at 14,000 rpm for

10 min. Clear supernatants were collected and pro-

tein concentration was measured by the dye-binding

method of Bradford (1976) using bovine serum

albumin as control. For easy loading and tracking

of electrophoretic run, 10% glycerol and 0.0001%

bromophenol blue were added to the samples. About

15–20 ll of the sample was used ensuring uniform

amount of protein loading for every sample.

Preparation of acrylamide gels

For electrophoretic separation of proteins, 10% acryl-

amide gels with 1 mm thickness were used following

dissociating and discontinuous buffer system (Laemmli

1970). Protein bands were visualized by silver staining

protocol described by Blum et al. (1987). Gels were

fixed in methanol acetic acid solution washed with

distilled water sensitized with sodium thiosulfate and

washed again. Gels were than impregnated with silver

nitrate and formaldehyde solution and washed before

developing with sodium carbonate and formaldehyde.

When the bands were of desired intensity reaction was

stopped with methanol acetic acid solution.

Results

Protein profiles of Kash-Bas, Bas-370, Bas-Pak and

Bas-385 (Fig. 1) indicated that both heat shock

treatments successfully induced HSPs in some of the

varieties, and also affected the constituted fractions in

others. Profiles of the control plants of all the varieties,

in general showed higher concentrations of low

molecular weight (LMW) proteins except Basmati

385, which exhibited significantly lower concentration

of these fractions compared to Bas-Pak, Bas-370, Bas-

198, and Kash-Bas. Generally, concentration of LMW

fractions decreased after heat shocks especially in Bas-

370 and Bas-pak (Fig. 1). Contrary to this, high

molecular weight proteins were either completely
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absent (Bas-385) or present in very low quantities

(Bas-370 and Bas-pak). For example HMV fractions

of about 100, 90, 70 and 60 kDa (marked with *) were

absent in the profiles of control plants of Bas-Pak, Bas-

385 and in Basmati-370 (Fig. 1). These fractions,

however, appeared after a heat shock of 45�C given to

Bas-Pak and Bas-370 while 100 kDa fraction

appeared after heat shock of 50�C in Bas-370

(Fig. 1). In Bas-385, all these fractions appeared after

heat shock of 50�C (Fig. 1, 2). In addition to that, a

fraction of 40 kDa appeared in all the Basmati

cultivars but its intensity was significantly higher in

Bas-385 and Kash-Bas as compared to Bas-Pak, Bas-

370 and Bas-198. In all the Basmati cultivars, this

particular fraction appeared after a heat shock of 50�C

except in Bas-198 where this fraction was observed in

untreated plants. However, the intensity was compar-

atively lower than that observed in the treated plants.

The profile of Kash-Bas appeared different from

others in three respects. Firstly, unlike others, the HMW

fractions of 100, 90, 70 and 60 kDa appeared as

constitutive fractions as they were observed in the

profile of untreated control plants. Nevertheless, com-

pared to the induced fractions observed in treated plants,

intensities of the constitutive fractions were consider-

ably low (Fig. 1). Secondly, a 20 kDa fraction of protein

appeared after heat shock of 50�C (Fig. 2), which is not

visible in any of the Basmati varieties both in control as

well as in treated plants. Thirdly, the protein band at

*50 kDa does not show considerable increase in

intensity like the other Basmati varieties (Fig. 1).

Discussion

The responses of plants to various stresses have been

documented invariably in many plants (Millar and

Dennis 1996; Feder 1999; Scharf et al. 2001) with one

common feature that is: inductions and/or increased

synthesis of heat shock proteins. An entire family of

these proteins, now known as stress proteins (com-

prising both constitutive and induced fractions) rang-

ing between 15 and 110 kDa in molecular weight, has

since been identified (Morimoto 1997). These proteins

are known to be induced under the influence of a

variety of cellular stresses such as heavy metals

(Bauman et al. 1993), oxidative stress (Drummond

and Steinhardt 1987), change in temperature, pH,

water availability (Cellier et al. 1998), osmolarity,

radiation (Boreham and Mitchel 1994) and partial gas

pressure (Polla 1998) in the atmosphere.

Heat shock proteins of 100, 90, 70 and 60 kDa, have

been reported (Singla et al. 1998; Pareek et al. 1995;

Giorini and Galili 1991) to induce in plants growing

under stress conditions, and presently observed frac-

tions of HMW proteins could be considered a contin-

uation of that finding. Heat shock proteins of 100 and

90 kDa families especially HSP-70 have been reported

to play important roles in cell biology and biochem-

istry (Bukau and Horwitch 1998) and small amounts of

these proteins are required for normal cellular func-

tions (James et al. 1994). Kashmir Basmati was the

only variety that showed considerable amounts of 100,

90, 70 and 60 kDa proteins in control plants, which

increased after temperature treatment. HSP-90 chap-

eron complex including HSP-70 and several other such

proteins play important role in keeping the heat shock

transcription factors (HSTFs) in active form (Bhar-

adwaj et al. 1999). Hence, presence of substantial

amounts of HSPs in control seedlings of Kashmir

Basmati suggested that HSTFs and HSP-90 chaperon

complex were active, which might have helped plants

survive under sudden changes of environment similar

to that in acquired thermo-tolerance (AT).

Table 1 Agronomic traits of Basmati rice varieties used in this study

Varieties Plant height

(cm)

Number

of tillers

Grain yield

(Kg-ha)

Days to

flower

Days to

maturity

Significance

Bas-370 175 11 2,239–3,880 112 160 Fine grain, tall, aromatic and late maturing

Bas-Pak 144 14 2,000–3,109 120 168

Bas-198 136 13 2,142–3,000 117 165

Bas-385 150 13 2,200–5,223 102 145 Fine grain, medium tall, medium

maturity and aromatic

Kash-Bas 167 11 2,125–4,843 94 130 Fine grain, tall, aromatic and early maturing

Source Anonymous 1982, 1987; Farooq et al. 1998
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A 20 kDa protein fraction was also observed, for the

first time in rice and among the Basmati varieties, only

in the profiles of treated plants of Kashmir Basmati.

Small heat shock proteins (sHSPs) are important not

only under heat stress, but also during various forms of

oxidative stress and in regulation of differentiation and

apoptosis (Arrigo 1998). Accumulation of 20 kDa

proteins has been reported in Mulberry with seasonal

cold acclimation (Ukaji et al. 1999). Almost all sHSPs

function as chaperones to prevent irreversible protein

aggregation and insolubilization and to interact other-

wise with nonnative proteins (Lee et al. 1995; Plater

et al. 1996; Kim et al. 1998). It can be deduced that

presence of sHSPs in Kashmir Basmati not only

protects the HMW protein fractions from heat induced

insolubilization but also enhance their impact in

chilling tolerance (Adnan et al. 1996).

Kashmir Basmati has long been cultivated suc-

cessfully at higher altitudes and cold conditions of

Kashmir and its success has been attributed to its

early maturity that enabled this variety to be

harvested in October before the onset of dense frost

in November and December: a usual time of

harvesting rice in the planes. Basmati-385: another

early maturing variety was not successful for

cultivation in Kashmir despite the fact that there

was not much difference (*a week) in the 50%

flowering time of Kash-Bas and Bas-385. From the

findings of the present study, it can be inferred that

it is not only the earliness but also the HSPs or the

biochemical response of Kash-Bas that has played

significant role in the success of this variety in

Kashmir. The active HSTFs, HSP-90 chaperon

complex and the activation in Kash-Bas of sHSPs

in response to temperature treatment could be the

reason for its acclimation and tolerance to low night

temperatures in the cold mountainous environment.

The induction of sHSP-20 after heat treatment in

only Kashmir Basmati also suggested its protective

role against chilling injury that has already been

established (Ukaji et al. 1999).

The results being reported in the present study

are of many fold significance. Firstly, they have

provided biochemical evidence of variability in a

mutant, that was earlier selected on morphological

bases (Awan et al. 1977), Secondly, based on

present finding, Kashmir Basmati can be used as

donor parent in the breeding programs aiming at

improvement of rice varieties in general and of

Basmati varieties in particular for cold tolerance.

The HSPs induced in Kashmir Basmati in response

of temperature may provide cross protection to this

variety and other Basmati varieties in a manner

similar to the one described by Pareek et al. (1995)

and Zeng et al. (1997) for drought and/or water

deficiency: another environmental stress that could

prove fatal for Basmati varieties if the present

climatic changes coupled with drought, rising

temperature and low rainfall continue for some

years.

Fig. 1 Protein profiles of

Bas-Pak, Bas-385, Kash-

Bas, and Bas-370,

exhibiting control plant (C)

and those given heat shock

of 45 and 50�C. Asterisk
represent HMW fraction

appeared in different

varieties after heat shock

and their approximate

molecular weights

determined by comparing

with central lane showing

protein molecular weight

marker (M)
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