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and forms the core fucosylation (CF) structure. CF modifi-
cation has been closely related to physiological processes 
[4] and regulation of cancer-related processes, including the 
proliferation of human gastric cancer cells [5], progression 
of prostate cancer [6], and metastasis of melanoma [7]. A 
comprehensive understanding of the CF glycoproteome and 
its regulation is expected to reveal novel biological mecha-
nisms or disease targets.

Although methods for glycopeptide enrichment and mass 
spectrometry (MS) sequencing [8–14] have been developed 
to improve the efficiency of glycopeptide identification, the 
microheterogeneity of glycoforms still causes low-abun-
dance intact glycopeptides that either do not trigger fragment 
spectra acquisition during tandem mass spectrometry (MS/
MS) sequencing or trigger whereas with low quality spec-
tra [15]. It is possible to simplify the structural complexity 
of the N-glycans by glycosidase treatment. PNGase F treat-
ment of intact glycopeptides has been used, however, the 
difference between CF glycoforms and non-CF glycoforms 
would be lost [16, 17]. Treatment by single or combina-
tion of exo- or endoglycosidases, which left with the sim-
plified glycopeptides containing disaccharide (fucosylated 
N-acetyl glucosamine, FucHexNAc), were used to study the 

Introduction

Glycosylation is widely involved in regulating protein 
folding, signal transduction, immune recognition, and 
intracellular transport of nascent proteins [1, 2]. Fucose 
modifications are catalyzed by thirteen fucose glycosyltrans-
ferases (FUTs), in which α-1,6-fucose glycosyltransferase 
(FUT8) transfers fucose to the innermost N-acetylglucos-
amine (GlcNAc) of the N-glycan pentasaccharide core [3], 
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Abstract
Alpha-1,6 fucosylation of N-glycans (core fucosylation, CF) represents a unique form of N-glycans and is widely involved 
in disease progression. In order to accurately identify CF glycoproteins, several approaches have been developed based on 
sequential cleavage with different glycosidases to truncate the N-glycans. Since multi-step sample treatments may intro-
duce quantitation bias and affect the practicality of these approaches in large-scale applications. Here, we systematically 
evaluated the performance of the single-step treatment of intact glycopeptides by endoglycosidase F3 for CF glycopro-
teome. The single-step truncation (SST) strategy demonstrated higher quantitative stability and higher efficiency compared 
with previous approaches. The strategy was further practiced on both cell lines and serum samples. The dysregulation of 
CF glycopeptides between preoperative and postoperative serum from patients with pancreatic ductal adenocarcinoma was 
revealed, and the CF modifications of BCHE_N369, CDH5_N112 and SERPIND1_N49 were found to be potential prog-
nostic markers. This study thus provides an efficient solution for large-scale quantitative analysis of the CF glycoproteome.

Keywords  Core fucosylation · Glycoproteome · Mass spectrometry · Pancreatic ductal adenocarcinoma · Endo F3

Received: 7 April 2023 / Revised: 14 June 2023 / Accepted: 19 July 2023 / Published online: 5 August 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Differential analysis of core-fucosylated glycoproteomics enabled by 
single-step truncation of N-glycans

Yao Min1,3 · Jianhui Wu2 · Wenhao Hou3 · Xiaoyu Li3 · Xinyuan Zhao3 · Xiaoya Guan2 · Xiaohong Qian3 · Chunyi Hao2 · 
Wantao Ying1,3

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10719-023-10130-x&domain=pdf&date_stamp=2023-8-4


Glycoconjugate Journal (2023) 40:541–549

CF glycoproteome [16, 18–20]. In addition, different MS 
parameters were also evaluated to improve the identification 
of CF glycoproteins. Examples include the combination of 
higher-energy collisional dissociation (HCD) and electron 
transfer dissociation (ETD) [21], the use of stepped normal-
ized collision energy (stepped NCE) [22, 23], and the refer-
ence of Y1F/Y1 ratios at 20% and lower HCD energies [24].

In a series of studies, we have focused on the enrich-
ment and identification of CF glycoproteins with increased 
performance. In 2009, Jia et al. [25] established a neutral 
loss-dependent MS3 scanning method following lectin 
enrichment and molecular weight cutoff application with 
Endo F3 treatment to simplify the glycans. Cao et al[22], 
for the first time, implemented the “stepped NCE” scanning 
approach to obtain high-quality spectra for glycopeptides 
and identified a total of 477 CF proteins from human plasma. 
Zhao et al. [26] used hydrophilic interaction chromatogra-
phy (HILIC) enrichment followed by serial treatment with 
Endo H and Endo F3, to obtain the site-specific CF occupa-
tion ratios of glycopeptides. However, current approaches 
are still challenging to perform due to the long experimental 
duration and potential quantitative variation caused by the 
multi-steps of pH adjustment and enzymatic treatment. Both 
of these issues are detrimental for the analysis of large-scale 
clinical samples. We reasoned further optimization and sim-
plification of the experimental procedure may be possible 
for quantitative analysis of site-specific CF glycopeptides in 
large scale applications by the single-step truncation (SST) 
strategy, using only Endo F3 to eliminate the heterogene-
ities of N-glycans. In the present work, we first chose the 
HeLa cell line as a model and evaluated the SST strategy for 
CF glycopeptide identification and quantification and then 
compared it with previously reported methods.

Pancreatic adenocarcinoma, commonly referred to pan-
creatic ductal adenocarcinoma (PDAC), accounts for more 
than 85% of all pancreatic malignancy cases. Only 15-20% 
of pancreatic cancer patients can undergo radical surgical 
resection, with an overall five-year survival rate of less than 
10% [27, 28]. Study showed that dysregulated CF glycopro-
teins could be used to distinguish healthy individuals and 
patients with chronic pancreatitis from patients with pan-
creatic cancer [29] and were associated with metastasis of 
PDAC [30, 31]. Therefore, we practiced our SST strategy 
on two PDAC cell lines with different gemcitabine sensitiv-
ity and on 9 paired pre- and postoperative serum samples 
from PDAC patients. We found that CF modification of 
BCHE, CDH5 and SERPIND1 were associated with poor 
prognosis in PDAC and may be used as potential prognostic 
biomarkers.

Results and discussion

Characterization of CF glycopeptides based on the 
single-step truncation (SST) strategy

We intend to develop a straightforward and facile strategy 
for the quantitative analysis of CF glycoproteome. Immuno-
globulins (IgGs), which contain high mannose glycoforms 
as well as complex and hybrid N-glycan chains, with bi-
antennae glycans on the EEQYNSTYR and EEQFNSTFR 
motifs as the dominant glycoforms were first used to verify 
the efficiency and feasibility of the SST strategy based on 
matrix-assisted laser desorption/ionization–time of flight 
(MALDI-TOF) MS (Fig. S1). HILIC enrichment signifi-
cantly enhanced the signals from glycopeptides, indicat-
ing that other non-glycosylated peptides were effectively 
removed. Upon Endo F3 treatment, the signals from intact 
glycopeptides were eliminated along with the presence of 
peaks from the simplified CF glycopeptide, which proved 
the successful cleavage of the peripheral glycans (Fig. 1A).

Furthermore, we compared the two approaches to 
cleave the glycan chain, means only Endo F3 (SST) and 
the sequential cleavage by Endo F3 followed by Endo H 
(HEE) [22, 26], using total lysate from the HeLa cell line, 
and followed by mass spectrometric-based glycoproteomics 
analysis. With the SST strategy, a total of 661 CF glycopep-
tides were identified in three replicates. We also detected 
90 glycopeptides bearing only one N-acetyl glucosamine 
(named HN glycopeptides), which may have been gener-
ated by the cleavage of non-CF glycans by Endo F3. Addi-
tionally, the break of O-glycosidic bond between fucose and 
GlcNAc due to in-source fragmentation may also generate 
HN glycopeptide. With the HEE approach, similar to the 
SST strategy, a total of 740 CF glycopeptides were identi-
fied, while 1305 HN glycopeptides were detected (Fig. 1B, 
Fig. S2). Since Endo H cleaves high-mannose and hybrid 
glycoforms, it contributed limited incremental on CF-gly-
copeptides (79 here). Thus we can reasoned that most of the 
peptides with CF modifications were complex glycoforms, 
and the 1305 HN glycopeptides indicated high mannose and 
hybrid glycoforms were highly expressed in HeLa cells, 
which is consistent with a previous report [32].

In summary, the results demonstrated that the treatment 
of glycopeptides with Endo F3 could cover majority of the 
CF glycopeptides and it’s feasible to obtain the CF glyco-
proteome using only single-step enzymatic cleavage of the 
glycoforms.
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Comparison of three strategies for site-specific CF 
glycoprotein profiling

Several different schemes have been established and tested 
by our laboratory or other laboratories [22, 25, 26, 33–35] 
(Table S1). In addition to the HEE approach, another multi-
step treatment approach in which the second enzyme is 
PNGase F (named as HEP approach) was included in sys-
tematic comparison for qualitative and quantitative analysis 
of CF glycopeptides in the Hela cells [34, 36].

Since both HEE and HEP need two steps of pH-adjust-
ment and glycosidase treatment, which are laborious and 

may introduce bias for quantitation. This could be a huge 
challenge when a large cohort of samples will be analyzed. 
Here we performed a thorough comparison among SST, 
HEE and HEP approaches as to their efficiency and quanti-
tative performance for CF glycoproteome (Fig. 2A). Firstly, 
the sample treatment duration of SST strategy is only about 
36 h, which is in direct comparison to 53 h for HEE and 52 h 
for HEP. The number of identified CF glycosites was quite 
close for SST (772 glycosites) and HEE (715 glycosites) 
methods, while the HEP method provided 605 identifica-
tions (Fig. 2B-C).

Fig. 1  Validation of the single-
step truncation strategy to 
profile the CF glycoproteome. A, 
MALDI spectra of tryptic pep-
tides of IgGs (top), glycopeptides 
enriched by HILIC (middle), and 
CF glycopeptides detected after 
Endo F3 cleavage of the enriched 
glycopeptides (bottom). The 
blue squares indicate N-acetyl-
glucosamine, the green circles 
indicate mannose, the yellow 
circles indicate galactose, and 
the red triangles indicate fucose. 
B, Numbers of identified CF 
glycopeptide by single-step Endo 
F3 or sequential Endo F3-Endo 
H treatment of three biological 
replicates
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SST strategy showed the best quantitative stability. The 
violin plot (Fig.  2E) shows that the SST method had the 
best reproducibility, with a median CV of 23.02%, and 
that the HEP method had the lowest reproducibility, with a 
median CV of 28.54%. While for inter-strategy correlation 

We further evaluated the stability of the three strategies 
for the quantification of CF glycopeptides. The average 
intra-strategy Spearman correlation coefficients were 0.940, 
0.916, and 0.916 in the triplicate analyses for the SST, HEE, 
and HEP strategies, respectively (Fig. 2D). Obviously, the 

Fig. 2  Comparison of the three 
strategies for the simplification 
and identification of CF glyco-
proteome. A, The Endo F3-only 
cleavage is named as SST, the 
sequential Endo F3-18O-assisted 
PNGase F cleavage is named as 
HEP and the sequential Endo 
H-Endo F3 cleavage is named 
as HEE. CF glycopeptide 
identification results of three 
strategies (B) and the overlaps 
among them (C). D, Correlation 
analysis on the quantification 
of CF glycopeptide from three 
bioreplications by SST, HEE and 
HEP. E, Coefficient of variations 
of CF glycopeptides quantitation. 
(** denotes P < 0.01, ns denotes 
P > 0.05)
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down-regulated in PANC-1 cells (Fig. S6B-C). Gene Ontol-
ogy (GO) analysis showed that the differential CF glycopro-
teins are localized mainly on the cell membrane and with 
functions such as cell adhesion and signaling (Fig. S6D), 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis indicated that these proteins are closely 
related to the cell adhesion, ECM-receptor interaction, axon 
guidance and phosphatidylinositol 3-kinase (PI3K)/AKT 
signaling pathways (Fig. S6E). The PI3K/AKT pathway 
may promote metastasis, invasiveness and drug resistance in 
pancreatic cancer [39, 40], and the axon guidance pathway 
has been shown in many studies to be closely associated 
with infiltration, metastasis and poor prognosis in pancre-
atic cancer [41–43]. In summary, alteration of CF glycosyl-
ation widely existed between the gemcitabine-sensitive and 
gemcitabine-resistant pancreatic cancer cells.

CF glycoproteome of pre- and postoperative serum 
from patients with PDAC

To investigate the CF glycoproteins related to the develop-
ment of PDAC, paired pre- and postoperative serum sam-
ples from nine PDAC patients were analyzed at both the 
CF glycoproteome and the total proteome levels. A prob-
lem occurred with the 63 H MS data acquisition; thus, we 
excluded the related results from the subsequent data analy-
sis. We identified 869 CF glycopeptides derived from 456 
proteins (Fig. S7A). Spearman correlation analysis of the 
CF glycopeptides was performed to give a glimpse on the 
relationship among the patients in the cohort and between 
pre- and postoperative samples from individual patients 
(Fig.  3A). For six of the patients, surgery distinctively 
changed the CF patterns, as manifested by deviation in the 
correlation value intra pre- or post-operative group (Fig. 3). 
However, for patients 27 and 66, surgery led to only minor 
alteration in the CF patterns, as manifested by the close cor-
relations of the pre- and postoperative serum from these 
two patients with the entire cohort of preoperative samples. 
Further analysis of the survival status showed that patients 
27 and 66 were among the patients with the worst progno-
sis (Fig. 3B-C, Table S2). These results indicated that the 
homeostasis of the serum CF modification may be used as 
prognosis biomarkers.

Further exploration of the differentially regulated CF gly-
copeptides revealed 44 upregulated and 62 downregulated 
CF glycopeptides in the preoperative group. Clustering 
analysis clearly discriminated the pre- and post-operative 
groups (Fig. 3D, Fig. S7D). Again, the postoperative sam-
ples from patients 27 and 66 retained most of the preop-
erative features, whereas added with partial of the features 
caused by surgery.

coefficients, the HEP method exhibited the lowest values, 
with all values less than 0.8. This was probably caused by 
the large change in the pH value (from 4.5 to 8.0) between 
the Endo F3 and the PNGase F cleavage steps. In addition, 
we compared the two sequential cleavage strategies (HEE 
and HEP) in terms of site-specific CF occupation ratio 
(CFratio) [26], which are quite stable among replicates of 
each strategy whereas lower between the HEE and HEP 
strategies (Fig. S3), indicating potential quantification bias 
caused by the treatment of different glycosidases.

Since it is reported that Endo F3 has enzymatic activity 
only for complex N glycoforms and low activity for tri- and 
tetra-antennary glycans [37], we checked the identification 
of intact glycopeptides with complex glycoforms by the 
SST method (Fig. S4). Only eight intact glycopeptides with 
potential CF group were identified in the three replicates, 
of which four were triple-antennae and four were tetra-
antennae, indicated majority of glycans containing CF were 
effectively released from the glycopeptides.

Clearly, we demonstrated that the SST method was the 
most time-efficient, with the highest number of identifica-
tions and the best quantitative reproducibility. In summary, 
the SST strategy can be used as a powerful tool for the quan-
tification of site-specific CF modifications in large-scale 
application.

CF glycoproteome differences between 
gemcitabine-sensitive and gemcitabine-
resistant pancreatic cancer cells

A recent study reported that FUT8 may promote drug resis-
tance and cell migration in pancreatic cancer [31], thus we 
first implemented the SST method to explore the differ-
ences in CF modification between the gemcitabine sensi-
tive cells BxPC-3 and gemcitabine-resistant cells PANC-1. 
Our recent proteomics analysis showed that PANC-1 cells 
expressed higher level of mesenchymal markers, while 
BxPC-3 cells showed a more epithelial phenotype [38]. The 
MS spectra suggested that PANC-1 bears mostly high-man-
nose and hybrid glycans, while BxPC-3 showed more com-
plex N-glycan pattern (Fig. S5A-B). In BxPC-3 cells, 900 
CF glycopeptides were identified, much higher than the 666 
identified in PANC-1 cells (Fig. S5C-D), which was in good 
concordance with the glycan patterns. The high correlation 
among replicate experiments from each cell line indicated 
good reproducibility (Fig. S5E-F). Principal component 
analysis (PCA) of the CF glycopeptide intensity clearly 
separated the two cell lines (Fig. S6A), indicating excellent 
discrimination of the CF glycoproteome.

Differential analysis identified 287 dysregulated CF gly-
copeptides, of which 131 were up-regulated and 156 were 
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with hepatocellular carcinoma (HCC) and its decrease upon 
surgery was considered a good prognostic marker for HCC 
patients [48]. In addition, the serum SERPIND1 level was 
used to assess the therapeutic benefits in patients with acute 
lymphoblastic leukemia [49].

We also performed differential analysis of the total pro-
teome. Of the 587 proteins identified (Fig. S7G), 24 were 
upregulated and 26 were downregulated in the preoperative 
group. GO analysis indicated that the proteins were local-
ized mostly in the secreted granule lumen and associated 
with biological processes such as the immune response 
and coagulation (Fig. S7I-L). In contrast to the fluctuation 
in their CF levels, the protein levels of BCHE, CDH5 and 

The site-specific CF glycopeptide features, includ-
ing BCHE_N369_CF (DJNSIITR_2), CDH5_N112_CF 
(LDREJISEYHLTAVIVDK_5) and SERPIND1_N49_CF 
(JLSMPLLPADFHK_1), that over-expressed in all the pre-
operative sample and postoperative from patients 27 and 66, 
could be used as potential prognostic biomarkers (Fig. 4).

High serum levels were recently shown to be signifi-
cantly associated with worsened overall survival (OS) in 
ovarian cancer [44, 45]. High serum CDH5 levels were 
found to be significantly associated with poor progression-
free survival and OS in metastatic breast [46] and gastric 
cancers [47]. SERPIND1 was found to be significantly 
upregulated in preoperative serum exosomes from patients 

Fig. 4  Pre- and postoperative 
paired plots at the CF glyco-
peptides and the protein levels 
of serum from PDAC patients. 
(** denotes P < 0.01, ns denotes 
P > 0.05)

 

Fig. 3  CF glycoproteome landscape of pre- and postoperative serum 
from patients with PDAC. (A) Correlation, among the CF glycopro-
teome (* marked on patients with poor prognosis). (B/C) The average 
Spearman correlation of CF glycoproteome of each sample with all the 
preoperative serum (the vertical coordinate) along with the increas-
ing in recurrence-free survival (RFS) (the horizontal coordinate) (B) 

or overall survival (OS) (the horizontal coordinate) (C). (D) Differ-
entially expressed CF glycopeptides between pre- and postoperative 
group, Q indicates pre-operative and H indicates post-operative. (The 
title of the heat map rows is the CF glycopeptide sequences, in which 
letter J was used to replace N on the glycosites)
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SERPIND1 did not show significant difference between the 
pre- and postoperative groups (Fig. 4).

Conclusion

By comparing different strategies for CF glycoproteome 
analysis, we presented the facile SST strategy, which pro-
vided the best reproducibility with the fewest operation 
procedures and more economic. The strategy was evalu-
ated with both cell lines and serum samples from patients 
with PDAC. The CF glycoproteome revealed distinctive 
differences in the CF modification patterns between the 
pre- and postoperative serum samples. Further exploration 
found that the consistently high levels of BCHE_N369_CF, 
CDH5_N112_CF and SERPIND1_N49_CF before and 
after surgery may serve as potential biomarkers for worse 
prognosis. We hope to validate and extend our discovery 
in a large patient cohort in the next step. Nevertheless, our 
study provides a promising strategy for large-scale CF gly-
coproteome, and potentiate its clinical practicability.
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