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Abstract
Glycosphingolipids, including gangliosides, are representative lipid raft markers that perform a variety of physiological roles 
in cell membranes. However, studies aimed at revealing their dynamic behavior in living cells are rare, mostly due to a lack 
of suitable fluorescent probes. Recently, the ganglio-series, lacto-series, and globo-series glycosphingolipid probes, which 
mimic the behavior of the parental molecules in terms of partitioning to the raft fraction, were developed by conjugating 
hydrophilic dyes to the terminal glycans of glycosphingolipids using state-of-art entirely chemical-based synthetic techniques. 
High-speed, single-molecule observation of these fluorescent probes revealed that gangliosides were scarcely trapped in 
small domains (100 nm in diameter) for more than 5 ms in steady-state cells, suggesting that rafts including gangliosides 
were always moving and very small. Furthermore, dual-color, single-molecule observations clearly showed that homodimers 
and clusters of GPI-anchored proteins were stabilized by transiently recruiting sphingolipids, including gangliosides, to form 
homodimer rafts and the cluster rafts, respectively. In this review, we briefly summarize recent studies, the development of 
a variety of glycosphingolipid probes as well as the identification of the raft structures including gangliosides in living cells 
by single-molecule imaging.
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Previous studies on the dynamic behavior 
of glycosphingolipids in cell membranes

Glycosphingolipids perform a variety of physiological roles 
and are involved in many pathological processes in cell mem-
branes, despite being much less abundant than phospholip-
ids and cholesterol [1–7]. Gangliosides are a family of gly-
cosphingolipids containing one or more N-acetylneuraminic 
acid (sialic acid) molecules in the carbohydrate chain. Over a 
hundred different gangliosides exist, and these molecules can 
be classified into several series (hemato-, ganglio-, globo-, 

isoglobo-, lacto-, and neolacto-) based on their carbohydrate 
structure. Gangliosides specifically associate with membrane 
receptors, such as EGF receptor [8–11], insulin receptor [12], 
and AMPA receptor [13], to regulate their activity. Ganglio-
sides also play critical roles in the adhesion between cells 
[2, 14, 15] and in the invasion of microbial toxins [16, 17], 
viruses [18], and bacteria [19] into cells. Furthermore, gan-
gliosides are important for promoting the molecular assem-
bly of amyloid β in cell membranes [20–23]. In many cases, 
sialic acid from gangliosides is known to be involved in asso-
ciation and dissociation of molecular assembly [24–26]. As 
gangliosides are composed of carbohydrates and ceramide 
containing long saturated fatty acids (usually from C16:0 to 
C24:0), gangliosides are representative raft markers in cell 
plasma membranes (PMs) [27–29].

Although glycosphingolipids (including gangliosides) have 
key roles in important cellular functions, our knowledge of 
their spatial distributions, interactions with membrane recep-
tors, clustering, and dynamic behavior in living cells remains 
very limited. Ganglioside-binding proteins, such as cholera 
toxin subunit B (CTXB), have been used to detect the location 
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of GM1, but CTXB crosslinks five GM1 molecules, which 
can change their distribution [30–32]. Multivalent proteins 
such as toxins, lectins, and antibodies cannot be used for 
observation procedures. Even after chemical fixation with 
4% paraformaldehyde and 0.3% glutaraldehyde, lipids in 
cell PMs continue to move [33, 34]. As the glycosphingolip-
ids are moving, staining with multivalent antibodies would 
induce cluster formation and change their distribution in cell 
PMs. Therefore, the observation of fluorescent analogs of 
glycosphingolipids in living cell PMs appears to be the best 
way to perform detailed investigations of their spatial distribu-
tion, clustering, and dynamics. To address these issues, many 
ganglioside probes conjugated with fluorescent compounds 
have been synthesized. Examples include GM1 and GM2 ana-
logs conjugated with 7-nitrobenz-2-oxa-1,3-diazol (NBD) in 
the alkyl chain [35], a GM1 analog with ATTO647N in the 
sugar chain or alkyl chain [36, 37], and a GM1 analog with 
Alexa 568 in the carbohydrate chain [38]. However, it has 
been found these ganglioside probes did not behave in the 
same way as their parental molecules in terms of partition-
ing into the liquid ordered (Lo) phase in giant unilamellar 
vesicles (GUVs) and into Lo-like phase in giant plasma mem-
brane vesicles (GPMVs) [39, 40] and in terms of their binding 
affinity to cholera toxin subunit B (CTXB) [38]. Therefore, 
the development of true ganglioside probes that mimic the 
behavior of the parental molecules is anticipated.

Development of raft‑associated 
glycosphingolipid probes

Komura et al. [40, 41] synthesized GM3 probes tagged with 
fluorescent dyes at the C9 position of sialic acid or at the 
C6 position of galactose. Interestingly, GM3 labeled with 
tetramethylrhodamine (TMR) at the C6 position of galactose 
(TMR-G6-GM3) was almost completely soluble in 1% cold 
Triton X-100, whereas GM3 with TMR at the C9 position 
(TMR-S9-GM3) was not. This result suggests that the fluo-
rescent labeling of GM3 at the C9 position of sialic acid 
may cause a less detrimental reduction in the raft affinity 
of the probe than labeling at the C6 position of galactose. 
They subsequently examined the raft affinity of GM3 probes 
labeled with several different fluorescent dyes (fluorescein 
[Fl], ATTO488, TMR, ATTO594, ATTO647N) at the C9 
position. ATTO647N-S9-GM3 completely partitioned into 
the liquid-disordered (Ld)-like domains in GPMVs, whereas 
TMR-S9-GM3 partitioned into both the Lo-like and Ld-like 
domains. Furthermore, Fl-S9-GM3, ATTO488-S9-GM3, 
ATTO594-S9-GM3 (Fig. 1a) mainly partitioned into the Lo-
like domains [40]. As the hydrophilicity of the dyes follows 
the order Fl ≅ ATTO488 ≅ ATTO594 > TMR > ATTO647N, 
these results indicate that the hydrophilic dyes should be 
conjugated at the C9 position of sialic acid of GM3 to retain 

the raft affinity [42]. For simplicity, Fl-S9-GM3, ATTO488-
S9-GM3, and ATTO594-S9-GM3 are referred to as Fl-GM3, 
488-GM3, and 594-GM3 (Fig. 1a), respectively.

Using the same strategy, Komura et al. [40, 41] synthe-
sized 594-GM1 and 594-GM2, which mainly partitioned 
into the cold Triton X-100-insoluble fraction and Lo-like 
domains in GPMVs. Furthermore, GM1 conjugated with 
ATTO594 at the C6 position of another terminal glycan, 
galactose (called 594-termG6-GM1) showed high raft 

Fig. 1   a (top) Chemical structure of the GM3 analog conjugated with 
ATTO594 at the C9 position of sialic acid. (bottom) Chemical struc-
tures of ATTO594 (left) and ATTO488 (right). b Schematic represen-
tation of glycosphingolipid probes that partition into the detergent-
resistant membrane (DRM) fraction and liquid ordered (Lo)-like phase 
of giant plasma membrane vesicles (GPMVs). Here, the glycosphin-
golipids are classified into three major series: Ganglio-series (bule), 
Globo-series (green), and Lacto-series (magenta). A fluorescent dye, 
ATTO594, was conjugated with terminal glycans such as sialic acid, 
galactose, or GalNAc. The only the exception is Globo-H, in which 
galactose next to fucose was conjugated with ATTO594. ATTO594 
can be replaced by ATTO488
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affinity, and so GM2 was conjugated with ATTO594 at the 
C6 position of terminal N-acetylgalactosamine (GalNAc) 
(called 594-GN6-GM2) (Fig. 1b). The GD1b analog tagged 
with ATTO594 at the C6 position of terminal galactose 
(594-termG6-GD1b) also exhibited high raft affinity. These 
results explicitly indicate that the hydrophilic dyes should 
be conjugated at the terminal sugar groups of gangliosides 
to retain raft affinity (Fig. 1b).

Through this strategy, Konishi et al. developed fluores-
cent probes for b-series gangliosides of GD3 and GQ1b 
[43], which are abundant in central nervous tissues and 
play an important role in nerve processes [44, 45]. The 
b-series gangliosides are also highly expressed in human 
gliomas, facilitating the malignant properties of these cells 
[46, 47]. GD3 and GQ1b were conjugated with the hydro-
philic dye, ATTO594, at the C9 position of terminal sialic 
acid (Fig. 1b). High raft affinity was found for 594-GD3 
and 594-GQ1b [43]. Furthermore, Yamaguchi et al. success-
fully synthesized a GD2 probe by conjugating GD2 at the 
C6 position of N-acetylgalactosamine (GalNAc) (Fig. 1b) 
and showed the GD2 probe partitioned into the cold Triton 
X-100-insoluble fraction [48].

Moreover, Asano et al. developed the fluorescent probes 
for the globo-series glycosphingolipids, of SSEA-3, 
SSEA-4 (ganglioside), and Globo-H [49]. The globo-series 
glycosphingolipids are stage-specific embryonic antigens 
that are specifically expressed in human-induced pluripotent 
stem cells [50] and cancer cells [51]. They play important 
roles in many biological processes, such as cell recognition, 
cell adhesion, and signal transduction. SSEA-3 and SSEA-4 
were conjugated with the hydrophilic dye, ATTO594, at 
the terminal galactose C3 position and terminal sialic acid 
C9 position, respectively (Fig. 1b). Meanwhile, Globo-H 
was labeled with ATTO594 at the C3 position of galactose 
between the terminal fucose and N-acetylgalactosamine 
(GalNAc) (Fig. 1b). All the globo-series glycosphingolipids 
predominantly partitioned into the cold Triton X-100-insol-
uble fraction and Lo-like phase in GPMVs [49], indicat-
ing that they are true raft markers. Although the galactose 
tagged with ATTO594 is not a terminal glycan in Globo-H 
(the terminal glycan is fucose), the conjugated ATTO594 
is far from the membranes, which may mitigate the detri-
mental effects to raft affinity.

Furthermore, Takahashi et al. recently synthesized 
fluorescent probes for lacto-series glycosphingolipids of 
NeuAcLc4Cer and Lc4Cer [52]. The lacto-series glycosphin-
golipids are known to be involved in several serious diseases 
such as lung and digestive system cancers and human glio-
mas [53]. However, the detailed mechanisms remain unclear. 
NeuAcLc4Cer and Lc4Cer were conjugated with ATTO594 
at the terminal sialic acid and terminal galactose, respec-
tively (Fig. 1b). These lacto-series glycosphingolipid probes 
mainly partitioned into the cold Triton X-100 insoluble 

fraction and Lo-like phase in GPMVs [52], indicating that 
they are true raft markers.

High‑speed, single‑molecule imaging 
of ganglioside probes in steady‑state cell 
PMs

Previous studies using stimulated emission depletion micros-
copy with fluorescence correlation spectroscopy (STED-
FCS) showed that the GM1 probes tagged with hydropho-
bic ATTO647N were temporally confined in small domains 
(of 20 nm in diameter) for 10–20 ms and for 60%–70% 
of the time fraction in epithelial Ptk2 cell PMs, whereas 
ATTO647N-dipalmitoylphosphatidylethanolamine (DPPE), 
a control lipid probe, was trapped in such a small domain for 
a much shorter period [36, 54]. Other studies using FCS also 
demonstrated that the GM1 probe tagged with hydrophobic 
Bodipy-FL at the alkyl chain was confined in domains of 
60–120 nm for 20 ms and for 70% of the time fraction in 
COS-7 cell PMs, unlike the control lipid probe PC-Bodipy-
FL [55, 56]. These studies also showed that the GM1 probe 
underwent simple Brownian diffusion at 0.5–1.3 µm2/s out-
side of the temporal confinement area.

However, it has been established that these GM1 probes 
actually partitioned into Ld phase in GUVs and are therefore 
not true raft markers, likely because the conjugated dyes are 
hydrophobic [39, 40]. Therefore, Komura et al. investigated 
whether the true raft markers of ganglioside probes that they 
developed were trapped in small domains in steady-state cell 
PMs [40]. This observation was performed in HBSS with-
out the presence of any ligands and growth factors. Single-
fluorescent molecule imaging at high temporal resolution 
(0.5 ms/frame) revealed that all 594-GM1, 594-GM3, and 
ATTO594-conjugated dioleoylphosphatodylethanolamine 
(594-DOPE, non-raft marker) molecules underwent sim-
ple Brownian diffusion and were scarcely trapped in small 
domains (of 100 nm in diameter) for more than 5 ms in all 
the examined cells (PtK2, T24, NRK, and COS7) at 23 ˚C. 
Furthermore, Kinoshita et al. reported that single molecules 
of other representative raft marker probes of sphingomyelin 
(SM) and distearoylphosphatidylcholine (DSPC), of which 
choline was conjugated with ATTO594 via a nonaethylene 
glycol linker (594neg-SM and 594neg-DSPC, respectively), 
were scarcely trapped in small domains of 100 nm for more 
than 5 ms in PtK2 and T24 cells at 23 ˚C and 37 ˚C, respec-
tively [57, 58]. These results explicitly indicate that true 
raft–lipid markers are scarcely confined in tiny domains, but 
undergo apparent simple Brownian diffusion when observed 
at 0.5 ms/frame.
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Diffusional behavior of gangliosides inferred 
from the anchored protein picket model

Single-particle tracking (SPT) of 40 nm gold bound to 
phospholipids, GPI-anchored proteins, or transmembrane 
proteins at high temporal resolution (20–100 μs/frame) 
revealed that all phospholipids [59–61], GPI-anchored 
proteins [62], and transmembrane proteins [59, 61, 63] 
underwent temporally confined diffusion in small domains 
(30–200 nm), occasionally hopped to adjacent compart-
ments, again being confined in the compartment, and 
repeated this process, which is called “hop diffusion” 
(Fig.  2). Phospholipids, GPI-anchored proteins, and 
transmembrane proteins underwent free simple Brownian 
diffusion within the compartment, and the microscopic 
diffusion coefficients in the time window of 100 μs were 
5–9 �m2/s [59, 61, 63]. Meanwhile, macroscopic diffusion 
coefficients in the time window of 100 ms were 0.3–0.5 
µm2/s and the ratio of microscopic diffusion coefficients to 
microscopic diffusion coefficients was more than 10 [59, 
61, 63]. Large differences were not found in the trajecto-
ries of the membrane molecules on the membrane blebs 
lacking cortical actin filaments [59, 60]. Rapid-freeze 
deep-etch electron microscopic tomography revealed the 
three-dimensional structure of cortical actin filaments in 
the cytoplasmic membrane surface and showed that the 
average mesh size made of cortical actin was comparable 
with that of the compartment size determined by SPT [64]. 
These results indicate that hop diffusion of membrane 

molecules was induced by cortical actin filaments. Fur-
thermore, many SPT experiments, combined with Monte 
Carlo simulation, suggested that transmembrane pickets 
anchored to the actin filaments can retard the diffusion of 
phospholipids, GPI-anchored proteins, and transmembrane 
proteins and induce their compartmentalization into small 
domains (Fig. 2) [33, 65–68]. Furthermore, high-speed 
single-fluorescent molecule imaging also supported this 
notion [61]. This model is called the “anchored protein 
picket model”.

Single-fluorescent molecule imaging at a time resolution 
of 0.5 ms showed that ganglioside probes exhibited apparent 
simple Brownian diffusion in PtK2, T24, NRK, and COS7 
cell PMs [40]. However, this was a result of the time reso-
lution of the observation. The average compartment size 
in PtK2, T24, NRK, and COS7 cells was estimated to be 
43, 110, 230, and 56 nm, respectively, and the average resi-
dency time in each compartment was estimated to be 1.1, 
8.9, 13, and 2.8 ms by SPT of 40 nm gold particles bound to 
phospholipids [60]. Single molecules of ganglioside probes 
recorded at 0.5 ms resolution resided in the compartments 
in PtK2, T24, NRK, and COS7 cells for only 2, 17, 26, and 
5 frames, respectively. As the microscopic diffusion coef-
ficient inside of the compartment is approximately 9 �m2/s 
[59], the distance moved in one frame (0.5 ms) can be esti-
mated to be approximately 130 nm. Therefore, ganglioside 
probes frequently collide with the boundary of the compart-
ments during 0.5 ms, and single molecules of ganglioside 
probes appear to be localized at the center of the compart-
ments [69]. These results indicate that 0.5 ms/frame is not 

Fig. 2   Schematic diagram of the anchored protein picket model. (left) 
Top view from outside the cell. A variety of transmembrane proteins, 
which are anchored to and aligned along the actin-based membrane 
skeleton (MSK), form diffusion barriers and compartment boundaries 
resulting from the hydrodynamic friction-like effects of immobile obsta-

cles. (right) Oblique top view of expanded schematic diagram near the 
compartment boundaries. Transmembrane proteins, GPI-anchored pro-
teins, and phospholipids occasionally “hop” across the compartment 
boundaries that are formed by rows of anchored protein pickets
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sufficient time resolution to observe free diffusion in the 
compartments or hop diffusion beyond many compartments 
in these cell PMs. As mentioned above, ganglioside should 
be tagged with hydrophilic dyes and ATTO594 is one of 
the brightest dyes of the suitable molecules. However, it is 
very hard to observe single molecules of ATTO594 at a time 
resolution higher than 0.2 ms/frame, e.g., 50 μs/frame using 
illumination with higher power lasers because ATTO594 
blinks frequently. In the future, if hydrophilic dyes that do 
not blink when imaged at high-time resolution observation 
are developed, it would be possible to observe the hop dif-
fusion of ganglioside probes in cell PMs.

Formation of GPI‑anchored protein 
homodimer rafts and cluster rafts 
by recruiting glycosphingolipids

The behaviors of GPI-anchored proteins, which are repre-
sentative raft markers, in cell PMs have been investigated 
because they occupy an important position in the history 
of raft research. Single-molecule observations of many 
types of GPI-anchored proteins revealed that they formed 
transient homodimers with a lifetime of 150–280 ms eve-
rywhere in the cell PMs [70–74]. Single-molecule imag-
ing also revealed that homodimer formation was induced 
by specific ectodomain protein interactions, and was stabi-
lized by cooperative lipid interactions in steady-state cell 
PMs. Furthermore, CD59, a GPI-anchored protein that is 
a complement regulatory protein, was shown to form sta-
ble homo-oligomers containing up to four CD59 molecules 
upon stimulation with the natural ligand, membrane attack 

complex (MAC) consisting of C5b, C6, C7 and C8 [75–78]. 
The stimulation of CD59 with MAC is an actual biological 
event. The stable CD59 homo-oligomers diffused slowly 
(~ 0.02 µm2/s) and were temporarily immobilized, on aver-
age, for 0.6 s and 36% of the time. The immobilization of 
CD59 clusters was called STALL (Stimulation induced 
Temporary Arrest of LateraL diffusion). The CD59 clusters 
recruited raft-associated signaling molecules such as G � i2 
and Lyn at the STALL site, and activated Lyn phosphoryl-
ated an as-yet unknown protein, which induced recruitment 
of PLC� 2 and triggered the intracellular Ca2+ response [75, 
76]. The STALL sites were proposed to be a signaling plat-
form for intracellular signaling.

As described above, in steady-state cell PMs, ganglioside 
probes continuously diffused and exhibit almost no transient 
trapping in immobile domains. Subsequently, it was investi-
gated whether gangliosides reside in moving rafts. Although 
homodimers and clusters of GPI-anchored proteins are stabi-
lized by cholesterol, as described above, homodimers were still 
found to diffuse in PMs [70, 74–76]. It is not known if clus-
ters of raft-associated molecules recruit other raft molecules, 
although it has been shown that simultaneously crosslinked 
two different raft molecules coalesce with each other [27]. It 
was also unknown if these secondary non-crosslinked raft ele-
ments can be recruited to clustered raft molecules. To address 
these issues, Komura et al. examined if the ganglioside probes 
594-GM1 and 594-GM3 were recruited to diffusing CD59 
homodimers tagged with ATTO488 via ACP-tag in CHO-K1 
cell PMs by simultaneous two-color, single-molecule imaging 
[40]. Indeed, these ganglioside probes were recruited to CD59 
homodimers for approximately 80 ms, but to CD59 mono-
mers with a lifetime of only approximately 50 ms (Fig. 3). 

Fig. 3   Schematic image of the transient recruitment of glycosphingolipids 
to CD59 homodimers and CD59 clusters, which induce CD59 homodi-
mer rafts and cluster rafts (domains shown in magenta). Glycosphingolipid 
probes transiently associated with CD59 monomers for short periods, but 
with CD59 homodimers and liganded CD59 clusters for prolonged peri-

ods. The prolonged interaction was dependent on cholesterol, yet independ-
ent of the presence of glycan in the glycosphingolipids, which indicated 
that glycosphingolipid probes were recruited to CD59 homodimers and 
clusters by raft–lipid interactions
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Meanwhile, single molecules of the non-raft unsaturated phos-
pholipid probe, 594-DOPE, were colocalized with fluorescent 
spots of CD59 homodimers with a lifetime of only approxi-
mately 40 ms. Furthermore, Takahashi et al. found that both 
594-NeuAcLc4Cer and 594-Lc4Cer were recruited to CD59 
homodimers for longer periods (approximately 80 ms) than to 
CD59 monomers in CHO-K1 cell PMs, whereas 594-DOPE 
was colocalized with both CD59 homodimers and mono-
mers for very short periods (lifetime of approximately 40 ms) 
(Fig. 3) [52]. Interestingly, the colocalization lifetimes of lacto-
series glycosphingolipids with CD59 homodimers were inde-
pendent of the presence of sialic acid. Consistent with these 
results, other representative raftophilic lipid probes, 594neg-
SM and 594neg-DSPC, were preferentially recruited to CD59 
homodimers rather than the monomers in CHO-K1 cell PMs 
[57, 58], and the colocalization lifetime of 594neg-SM with 
CD59 homodimers was comparable with those of 594-GM1, 
594-GM3, 594-NeuAcLc4Cer, and 594-Lc4Cer. Therefore, 
the recruitment of these glycosphingolipid probes to CD59 
homodimers is induced by raft–lipid interactions, but not by 
specific interactions involving glycans (Fig. 3). Furthermore, 
individual fluorescent spots of 594neg-SM or 594neg-DSPC 
were colocalized with each other with the lifetimes of approxi-
mately 50 ms [57], which is much shorter than the homodi-
mer lifetime of CD59 [70]. These results explicitly indicate 
that CD59 homodimers serve as primary core molecules to 
transiently recruit other raftophilic lipids, thereby driving the 
formation of CD59 homodimer rafts.

CD59 clusters formed upon stimulation also transiently 
recruited 594-GM1 and 594-GM3 in T24 cell PMs, and 
the colocalization lifetime was approximately 100  ms 
(Fig. 3) [40]. Cholesterol depletion and the replacement of 
GPI-anchoring chain of CD59 with the non-raft transmem-
brane domain of the LDL receptor dramatically shortened 
the colocalization lifetimes and reduced the colocalization 
frequency. Similar lipid dependency was also observed in 
the recruitment of other representative raft–lipid probes, 
594neg-SM and 594neg-DSPC, to CD59 clusters [57, 58]. 
These results indicate that the CD59 clusters transiently 
recruited raft lipids and formed “CD59 cluster rafts” 
(Fig. 3). As mentioned above, the CD59 clusters recruited 
raft-associated signaling molecules such as Lyn and G � i2 
into the inner leaflets of the PMs [75]. Therefore, both the 
outer and inner leaflets of PMs underneath the CD59 clus-
ters may be enriched in raft-lipids. However, it is not known 
how the signaling molecules in the inner leaflets of PMs 
are enriched underneath GPI-anchored protein clusters in 
the outer leaflets; this is described in the following section.

Enrichment mechanisms of signaling 
molecules underneath domains 
containing GPI‑anchored protein clusters 
and gangliosides

Through dual-color, single-molecule observation at high 
temporal resolution (down to 5 ms), Koyama-Honda et al. 
[79] found that CD59 cluster rafts recruited signaling mol-
ecules such as Lyn and H-Ras in the inner leaflets with the 
colocalization lifetimes of less than 100 ms, and activated 
these signaling molecules. The recruitment was dependent 
on cholesterol and the saturated alkyl chains of Lyn and 
H-Ras. GM1 cluster rafts recruited Lyn and H-Ras as effi-
ciently as CD59 cluster rafts, and deletion mutants of Lyn 
and H-Ras lacking the protein moieties were still recruited 
to the cluster rafts, indicating that transbilayer raft phases 
induced by the cluster rafts in the outer leaflet recruited 
lipid-anchored signaling molecules by lateral raft–lipid 
interactions and participated in signal transduction (Fig. 4).

Using the imaging technique of homo-FRET, i.e., FRET 
between similar fluorophores, Mayor’s group reported that 
GPI-anchored proteins formed clusters by transbilayer inter-
actions with phosphatidylserine clusters anchored to actin 
binding proteins [80]. Here, nonspecific transbilayer inter-
digitation of the fatty acid chains of phosphatidylserine (PS) 
and GPI-anchored proteins was the driving force inducing 
GPI-anchored protein clusters. The diameter of the GPI-
anchored protein clusters was estimated as 360 nm [81].

Arumugam et al. [82] reported that a GM1 probe con-
jugated with Alexa 488 at sialic acid via a peptide linker 
(Alexa488-GM1) partitioned mainly into the Lo phase in 

ligand

Cholesterol

CD59 cluster rafts

Cholera toxin 
subunit B

Lipid-anchored 
signaling molecule

GM1
cluster Transbilayer raft 

Fig. 4   Schematic image of transient recruitment of lipid-anchored sign-
aling molecules to the inner leaflet membrane underneath clusters of 
CD59 or GM1. Upon crosslinking of CD59 or GM1 in the outer leaflet 
of cell PMs, transbilayer raft phase is formed, and subsequently, cyto-
plasmic lipid-anchored signaling molecules such as H-Ras and Lyn are 
recruited to the transbilayer raft phase in the inner leaflet by lateral raft-
lipid interaction
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GPMVs and bound to CTXB as strongly as endogenous 
GM1. Homo-FRET observations and fluorescence anisot-
ropy measurements showed that Alexa488-GM1 containing 
C16:0 formed clusters via transbilayer interactions with PS 
in the inner leaflets of PMs, whereas Alexa488-GM1 con-
taining C16:1 did not form such clusters. The radii (Rmax) of 
the GM1 probe clusters was estimated as 115 and 90 nm for 
C16:0 and C16:1, respectively, by Ripley’s K-function. By 
super-resolution microscopy, the radii of clusters of CTXB-
bound GM1 probe was estimated to be 225 nm, which was 
much larger than that of the GM1 probe. CD59 was recruited 
to the CTXB-bound GM1 clusters, but this was not induced 
by PS in the inner leaflets [82]. These results suggest that the 
GM1 clusters may recruit CD59 by raft–lipid interactions 
in the outer leaflets of the PM, which is consistent with the 
results of Koyama-Honda et al. [79].

Conclusions

A variety of probes for ganglio-, lacto-, globo-series gly-
cosphingolipids, which behave in a similar manner to the 
parental molecules in terms of raft affinity, have recently 
developed. High-speed, single-molecule observation 
in living cell PMs revealed that the ganglioside probes 
were scarcely trapped within small domains of 100 nm in 
diameter for more than 5 ms, but instead were transiently 
recruited to GPI-anchored protein homodimers and clusters 
for 80–100 ms, which demonstrated the formation of GPI-
anchored protein homodimer rafts and cluster rafts. These 
events may be observed irrespective of cell type. In the 
future, single-molecule observations of glycosphingolipids 
conjugated with more photostable and bright dyes at a higher 
time resolution will facilitate the collection of more detailed 
molecular interactions in cell PMs. Furthermore, recently 
developed glycosphingolipid probes can allow us to perform 
simultaneous multi-color, single-molecule observation of 
membrane receptors, downstream signaling molecules, and 
glycosphingolipids, which will help to elucidate the regula-
tory mechanisms of receptor signaling.
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