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Abstract

Extracellular vesicles (EVs) are membrane-delineated particles secreted by most types of cells under both normal and
pathophysiological conditions. EVs are believed to mediate intercellular communication by serving as carriers of different
bioactive ingredients, including proteins, nucleic acids and lipids. Glycoconjugates are complex molecules consisting of
covalently linked carbohydrate with proteins or lipids. These glycoconjugates play essential roles in the sorting of vesicular
protein and the uptake of small extracellular vesicles (30—-100 nm, SEVs) into recipient cells. Glycosphingolipids (GSLs),
one subtype of glycolipids, which are ubiquitous membrane components in almost all living organisms, are also commonly
distributed on SEVs. However, the study of functional roles of GSLs on sEVs are far behind than other functional cargos. The
purpose of this review is to highlight the importance of GSLs on sEVs. Initially, we described classification and structure
of GSLs. Then, we briefly introduced the essential functions of GSLs, which are able to interact with functional membrane
proteins, such as growth factor receptors, integrins and tetraspanins, to modulate cell growth, adhesion and cell motility. In
addition, we discussed analytical methods for studying GSLs on sEVs. Finally, we focused on the function of GSLs on sEVs,
including regulating the aggregation of extracellular a-synuclein (a-syn) or extracellular amyloid-f (Af) and influencing
tumor cell malignancy.
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Abbreviations ESI-IT-MS  Electrospray ionization ion trap mass
sEVs Small extracellular vesicles spectrometry
GSLs Glycosphingolipids LC-MS Liquid chromatograph-
GalCer Galactose-Ceramide TLC Thin layer chromatography
GlcCer Glucose-Ceramide CTB Cholera toxin B subunit
GFRs Growth factor receptors PD Parkinson disease
EGFR Epidermal growth factor receptor AD Alzheimer disease
FGFR Fibroblast growth factor receptor o-syn a-Synuclein
PDGFR Platelet derived growth factor receptor SI1P1R Sphingosine 1-phosphate receptor 1
CPI Carbohydrate-to-protein Gi Inhibitory G-protein
CCI Carbohydrate-to-carbohydrate interaction Ap Amyloid-p
Gal-3 Galectin-3 Gap GM1-bound AP
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Extracellular vesicles (EVs) are membrane-delineated parti-
cles secreted by most types of cells and are present in all body
fluids under both normal and pathophysiological conditions
! Key Laboratory of Resource Biology and Biotechnology [1]. Although the study of EVs is constantly increased, the
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Exosomes are ranging from 40-120 nm, microvesicles are
50-1000 nm and apoptotic bodies are 500-2000 nm in
diameter [1]. And the term “small extracellular vesicles”
(sEVs) refers to a heterogeneous population of EVs less
than 200 nm in diameter.

sEVs have been conspicuously recognized for their role
in mediating intercellular communication by serving as car-
riers of different bioactive ingredients, including proteins,
RNAs(miRNA, long non-coding RNA and others)and lipids
from donor cells to surrounding and distant recipient cells
[2]. Recently, many studies have revealed that sEVs derived
from tumor cells play critical roles in key progressions asso-
ciated with tumor development and metastasis [3, 4].

Similar to cell membrane, sEVs are heavily covered by
glycoconjugates, which are shown in Fig. 1 [5]. Glycocon-
jugates are complex molecules consisting of covalently
linked carbohydrate with proteins or lipids. The glycocon-
jugates on which carbohydrates linked protein are termed
either glycoproteins or proteoglycans. Glycoproteins are
proteins which contain carbohydrates covalently attached
to amino acids, usually by nitrogen or oxygen linkages, also
known as N-glycosylation and O-glycosylation, respec-
tively. Compared to glycoproteins, proteoglycans have a very
high carbohydrate content, which are covalently linked to
small polypeptides. The conjugates in which saccharides
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Fig.1 The related-structures of
N-glycan, O-glycan, ganglio-
sides and other glycans on sEVs
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covalently attached to lipids are glycolipids [6]. These gly-
coconjugates play essential roles in the sorting of vesicular
protein and the uptake of sEVs into recipient cells [7-10].
For example, high level of bisecting GlcNAc modification,
one specific N-Glycan structure, significantly diminished
the pro-metastatic functions of sEVs derived from breast
cancer cells [7].

Glycosphingolipids (GSLs) are the major subclass of gly-
colipids, which are ubiquitous membrane compo-
nents in almost all living organisms, and also commonly dis-
tributed on sEVs [11-14]. However, the study of functional
roles of GSLs on sEVs are far behind than those of proteins,
nucleic acids and other functional cargos. In this review, we
briefly introduced the background of GSLs, and summarized
the studies of GSLs on sEVs.

Classification and structure of GSLs

GSLs are classified as neutral and acidic. The former does
not contain sialic acid and is frequently called cerebroside.
The latter could be further divided into two subgroups, sul-
fatide and ganglioside. The amount of sialic acids in sul-
fatide is less than in gangliosides [11]. The core structure
of GSLs includes the glucose-ceramide (GlcCer) or the
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galactose-ceramide (GalCer). Furthermore, GlcCer is gen-
erally classified as globo-series, lacto-series and ganglio-
series (a-series, b-series, c-series, o-series). The categories
of globo-series and lacto-series are related to the covalent
bond between Gal and Galp4GlcpCer. The ganglio-series is
related to the number of sialic acids. The main structures and
synthesized processes of GSLs have been summarized and
discussed by Professor S. Hakomori and other scientists in
several reviews (Table 1) [15-18], and will not be discussed
in detail here.

The essential functions of GSLs

GSLs at the cell surface membrane are able to interact
with functional membrane proteins, such as growth fac-
tor receptors (GFRs), integrins and tetraspanins, to modu-
late cell growth, cell adhesion, and cell motility [15, 19].
It is well known that the GFRs, which include epidermal
growth factor receptor (EGFR), fibroblast growth factor

Table 1 The major structures of GSLs

receptor (FGFR) and platelet derived growth factor recep-
tor (PDGFR), is related to cell growth and cancer progres-
sion. In epidermoid carcinoma A431 cells, exogenous GM3
inhibited autophosphorylation of EGFR [20]. The possible
mechanism is that GM3 inhibits EGFR tyrosine kinase by
binding to GlcNAc residues of N-glycans on EGFR, which
is required for EGFR function [21]. And the order of rela-
tive binding of gangliosides with EGFR was as follows:
GM3 > >GM2, GD3, GM4 > GM1, GDla, GD1b, GT1b,
GD2, GQ1b > lactosylceramide [22]. In human lung embry-
onal fibroblast WI38, GM3 interacts specifically with FGFR,
which is closely associated with c-Src, to inhibit tyrosine
kinase [23]. In addition, GM1, GD1a and GT1b had stronger
inhibitory effects on PDGF in mouse Swiss 3T3 cells [24].

GSLs affect cell adhesion in two ways: carbohydrate-to-
protein interaction (CPI) and carbohydrate-to-carbohydrate
interaction (CCI) [25]. In CPI way, GSLs could bind to a
carbohydrate-binding protein, galectin-3 (Gal-3) [26]. High
concentration of Gal-3 could downregulate cellular adhe-
sion to the extracellular matrix proteins [27]. GSLs could
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also bind to E-selectin and support E-selectin—-mediated
tethering and rolling [28, 29]. The lacto-series structure,
sialyl-Le*, has been regarded as the essential epitope for
E-selectin—dependent adhesion [17]. In CCI way, GSLs on
cell membranes may interact side-by-side (cis-interaction) or
interact through their carbohydrate heads between two inter-
facing membranes (trans-interaction). Both cis- and trans-
interaction display proper specificity and affinity required for
cell adhesion. And the characteristic feature of CCI is that
it relies on bivalent cations in the adhesion process, particu-
larly Ca®* [17]. Ca®* may lock the glycoside residues in an
optimal configuration, or they may link the hydroxyl groups
of adjacent molecules to enhance the adhesion force [30].
The complex of GSLs and tetraspanins could regulate cell
motility by inhibiting integrin receptors [30]. The complex
exists on the special membrane microdomain: glycosyn-
apse [31]. The function of integrin, including a-subunit and
B-subunit, is affected by N-glycosylation and by interaction
with GSLs or tetraspanins [32]. GM3 and GM2 are the most
well studied GSLs in the glycosynapse. The complex of GM3
and CD9 interacts with integrin a3 were demonstrated by
confocal microscopy, and the complex was able to inhibit cell
motility by regulating laminin-5 [33]. Moreover, the formation
of GM3/CD9/a5p1 complex inhibited motility and invasive-
ness in chicken and mouse fibroblasts by reversion of the Jun-
induced oncogenic phenotype [34]. Hakomori and coworkers
also demonstrated that the complex of GM2 and CD82 inter-
acted with c-Met, which inhibited the interaction between inte-
grin a3p1 and c-Met, whereby c-Met tyrosine phosphorylation
was suppressed and cell invasiveness was inhibited [35].
GSLs are also associated with malignant properties of
tumor. Glucosylceramide synthase (GCS) is the rate-limiting
enzyme in the GSL-biosynthesis pathway and overexpressed
in hepatocellular, breast, cervix and non-small cell lung can-
cer [36]. In colorectal cancer, Gb3 promotes cell invasive-
ness and tumor growth [37]. Exogenous Gb4 activates EGFR
and induces the ERK pathway [38]. GbS5 promotes prolif-
eration in vivo [39]. GM1 and GD1a are closely related to
anticancer effects of anti-EpCAM mADb, treatment of which
significantly inhibited the growth of colon tumors [40]. In
breast cancer, globo-H promotes cell invasion and reduces
apoptosis [41]. GD3 promotes metastasis in vivo [42]. GM2
higher expression is associated with breast cancer cell
stemness [43]. In Leukemia, Lc3, GM3 and nL.c4 upregulate
in patients’ bone marrow, and are possibly involved in initia-
tion and differentiation of acute myeloid leukemia [44]. GD2
is overexpressed in neuroectoderm-derived tumors and is
considered as a marker in melanoma, glioblastoma and neu-
roblastoma [45]. It was first identified as a target for immu-
notherapy, and dinutuximab was an FDA-approved anti-GD2
monoclonal antibody for the treatment of neuroblastoma
[46]. Therefore, GSLs as targets for immunotherapy could
expand the range of anticancer pharmaceutical targets.

@ Springer

GSLs change in central nervous system with aging and
neurodegenerative diseases, including Parkinson disease
(PD), Alzheimer’s disease (AD). In the aging human brain
and PD, levels of GlcCer, lactosylceramide and GM1a
are elevated, while levels of GD1a, GD1b and GT1b are
decreased [47]. AD model mice could be generated in the
genetic background of GD3 synthase knockout [48], or
GM2 synthase knockout [49]. The abnormal aggregation of
amyloid-f peptide (Af) has been considered an important
risk factor for AD, which would induce the death of neurons.
Previous articles reported that GM1-bound AP (GA) serves
as the endogenous seed for the assembly of amyloid fibrils,
which continuously promotes the accumulation of AP to
form insoluble protein plaques [50, 51]. However, there are
also evidence showed that GM1 exhibited neuroprotective
and neurorestorative effects [52—55]. In physiological level
of GM1 (2-4 mol%), AP binding to GM1 does not cause
aggregation of Af40 monomers, whereas high density GM1
(> 20 mol%) facilitates fibril formation [53]. Thus, the per-
turbation of GSL metabolism in the aging brain may affect
neurodegenerative disorders.

Identification of GSLs on sEVs

The leading technology to identify gangliosides is Lipid-
mics. The Electrospray ionization ion trap mass spectrom-
etry (ESI-IT-MS) and the liquid chromatograph-mass spec-
trometer (LC-MS) are also widely used [56—-58]. In addition,
thin layer chromatography (TLC) is commonly applied for
the detection of gangliosides on sEVs [59, 60]. Using spe-
cific GSLs’ antibodies or high affinity substrates were able
to effectively identify the specific gangliosides on the SEVs,
including GM3, GM2, GM1, GD3 and GT1b [12, 61-63].
Cholera Toxin B (CTB), which is ligand for GM1, was
expected to be incorporated in SEVs. Previous studies have
confirmed that SEVs of mesenchymal stem cell were derived
from the endocytosis at the lipid rafts of plasma membrane
and the inhibition of sphingomyelinases reduced CTB-
binding sEVs, indicating that GM1 was enriched in SEVs [64].
Furthermore, the lipidomes of the metastatic prostate cancer
cell line, PC-3, and their released sEVs were analyzed by
shotgun analysis on MS. This analysis revealed that hexo-
sylceramides and GSLs (Gb3, GD1, GM1-3) in sEVs were
much higher than in PC-3 cells [57]. sEVs isolated from a
panel of human neuroblastoma cell lines (HTLA-230, IMR-
32, SH-SYSY and GILI-N) and sEVs isolated from healthy
blood cells were analyzed by cytofluorimetric assay. The
result indicated that GD2 was detected in sEVs derived from
all neuroblastoma cell lines but not from normal blood cells
[65]. According to ExoCarta, which is a manually curated
Web-based compendium of exosomal proteins, RNAs and
lipids, sEVs membranes contain GSLs, including GD3,
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GM1, GM3, GT1b and GTl1c [66]. In addition, GSLs are
located at the outer leaflet of membrane and are easily
detected by antibodies, which could be novel potential bio-
markers of sEVs [57, 67].

The function of GSLs on sEVs

sEVs are circulating structures in body fluids, such as
blood and urine, and involve in intercellular communica-
tion [1]. Thus, GSLs on sEVs may release in the extracel-
lular matrix and partition into different cells and tissues.
When GSLs remodeled in disease states, SEVs were able to
transfer different biological information through the altered
GSLs. Increasing numbers of studies have supported that
GSLs on sEVs play critical roles in diseases, including PD,
AD and cancer (Fig. 2).

GM1 and GM3 on sEVs from neuroblastoma cells have
been verified to accumulate extracellular a-Synuclein
(a-syn) [68]. The aggregated a-syn formed fibrils, which
is the most crucial cause of neurodegeneration in PD [69].
The extracellular a-syn also targets the gangliosides on
recipient cells to drive the sphingosine 1-phosphate recep-
tor subtypel (S1P1R) out of the lipid rafts, resulting in the
uncoupling of SIP1R from inhibitory G-protein (Gi) [70].
Subsequently, the blocked Gi signal inhibits exosomal cargo
release (including a-Syn), which may increase the cellular

Fig.2 The major functions of
specific GSLs GM1, GM3 and
GD3 on sEVs
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content of a-syn and facilitate the aggregation of a-syn to
promote the development of PD.

The recent evidences implicated that GM1 on sEVs could
promote the fibrillation of AP by facilitating its conforma-
tional transition [71, 72]. When CTB (a specific GM1 bind-
ing ligand) or 4396C (a specific antibody to GA) was used
to block GM1 on sEVs, the extracellular Ap assembly was
strongly reduced, indicating that GM1 may induce A fibril
formation on the surface of sEVs [14, 73]. Interestingly,
when neuron-derived sEVs were internalized by micro-
glia, sSEVs may play roles in the uptake of A} amyloid by
microglia, aiding AP degradation. This suppression was only
related to oligomeric A, but not related to sEVs-mediated
AP fibrils [73]. In addition, through antibody-array based
surface plasmon resonance imaging assay, GM1 was found
to be more abundant on the membrane of CD171-positive
sEVs [62]. CD171 is one of the most commonly used neu-
ronal markers for sEVs, and CD171-containing sEVs could
devote to the investigation of AD and PD [74, 75]. Further-
more, CD171 positive SEVs were able to stimulate the motil-
ity, proliferation, and invasiveness of glioblastoma cells [76].

Acidosis is a fundamental feature of the tumor micro-
environment, which could increase tumor cell invasion,
proliferation and drug resistance [77]. Low pH microen-
vironment also plays an important role in regulating the
release of SEVs and the uptake of cancer cells [78]. Acidic
sEVs, which GM3 were more enriched in, are intrinsically
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endowed with negative charge. When they released in a low
pH condition, sEVs were positively charged and fused better
with cells [78]. The fusion efficiency of sEVs is higher in
metastasis tumors than in primary tumors, thus the enrich-
ment of GM3 on sEVs may become a key factor to affect
the tumorigenesis. On the other hand, at a low pH condi-
tion, the rate of a-syn aggregation increases dramatically
[79, 80]. These findings provide new insights into possible
mechanisms of GM3 in PD. In addition, GM3 plays a crucial
role in enveloped virus entry and trafficking. GM3 binds
to macrophages and dendritic cells by recognizing CD169
(also termed Siglec1) [81-83]. The GM3-CD169 recogni-
tion could drive virus to transmit to T cell targets through
macrophages and dendritic cells [84]. The GM3-CD169
interaction could also accumulate exogenous virus particles
in intracellular compartments, which are the virus-contain-
ing compartments and considered an ideal reservoir for the
virus to evade the host’s immune system [85]. Therefore,
GM3-presenting artificial virus nanoparticles can be used as
a platform for delivering antiretroviral drugs to intracellular
compartments to selectively targeting virus. Furthermore, it
was reported that the GM3-enriched sEVs were positively
correlated with the severity of COVID-19 patients [13].

Another ganglioside on sEVs, GD3, has been reported
to be associated with multiple cancers and contributed to
immunosuppression [86, 87]. When normal melanocyte cells
were transfected with GD3 synthase gene (ST8Sia I), mel-
anocytes shed their SEVs enriched in GD3. The sEVs further
partition into recipient cells and modify the behavior of nor-
mal cells. And the sEVs produced by GD3 overexpressing
cells was able to stimulate cell migration in parental mel-
anocytes [88]. In addition, GD3 on sEVs is also associated
with immunosuppression and functional arrest of T cells.
Several studies have shown that GD3 induces apoptosis of
T cells, and high levels of GD3 could inhibit NKT cell acti-
vation in ovarian cancer [89, 90]. Study also revealed that
GD3 directly inhibits T cells activation, rather than other
cargos in sEVs [12]. This inhibition could be impaired by
antibody blockade of GD3 or sialidase treatment, indicating
that both GD3 and sialic acid on sEVs represent potential to
be therapeutic targets for enhancing the antitumor activity
of T cells in ovarian cancer [12].

Perspective

This review introduced the background of GSLs, and focuses
on the function of GSLs on sEVs. sEVs are believed to play
crucial roles in a wide range of biological processes and
contain several bioactive molecules, including lipids, pro-
teins and nucleic acids. However, the study of functional
roles of GSLs on sEVs are far behind than other functional
cargos. It is fairly crucial that new technologies and methods

@ Springer

for isolation and characterization of GSLs on sEVs should
be developed and improved. More researches are needed to
clarify the relationship between GSLs on sEVs and disease
with an aim to find potential therapeutic targets.
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