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Introduction

Despite a number of efforts to demonstrate tumor-specific 
antigens using murine and human tumor systems, no clear 
tumor-specific antigens had been reported for a long time. 
There were many studies on tumor antigens using murine 
leukemias and sarcomas [1–6], since genetic back grounds 
of experimental mice were complete and easy to be used 
for immunological reaction to tumor cells [7]. During these 
studies, many differentiation antigens and allogeneic anti-
gens on immune cells were defined [7]. Then, various stud-
ies to reveal tumor-specific antigens in human cancers were 
performed. The most reasonable strategy to define tumor-
specific antigens might be “autologous typing” performed 
by Old’s group with serological approach. They proposed 
three classes of tumor-antigens recognized by host immune 
systems of cancer patients (Table 1). Namely, class 1, indi-
vidual antigens that are present only in the patient’s sample 
analyzed; class 2 shared antigens that can be found only in 
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Abstract
Immunotherapy of malignant cancers is now becoming one of representative approaches to overcome cancers. To con-
struct strategies for immunotherapy, presence of tumor-specific antigens should be a major promise. A number of cancer 
specific- or cancer-associated antigens have been reported based on various experimental sets and various animal systems. 
The most reasonable strategy to define tumor-specific antigens might be “autologous typing” performed by Old’s group, 
proposing three classes of tumor-antigens recognized by host immune systems of cancer patients. Namely, class 1, indi-
vidual antigens that is present only in the patient’s sample analyzed; class 2, shared antigens that can be found only in 
some group of cancers in some patients, but not in normal cells and tissues; class 3, universal antigens that are present in 
some cancers but also in normal cells and tissues with different densities. Sen Hakomori reported there were novel car-
bohydrates in cancers that could not be detected in normal cells mainly by biochemical approaches. Consequently, many 
of class 2 cancer-specific antigens have been revealed to be carbohydrate antigens, and been used for cancer diagnosis 
and treatment. Not only as cancer markers, but roles of those cancer-associated carbohydrates have also been recognized 
as functional molecules in cancer cells. In particular, roles of complex carbohydrates in the regulation of cell signaling 
on the cell surface microdomains, glycolipid-enriched microdomain (GEM)/rafts have been reported by Hakomori and 
many other researchers including us. The processes and present status of these studies on cancer-associated glycolipids 
were summarized.
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often resulted in marked changes in the phenotypes of cul-
tured cells and animals [47]. Although the causing genes 
and resulting output are apparent, molecular mechanisms 
intervening between them are frequently obscure. This is 
because modulation of some glyco-gene generally affects all 
structures present along the synthetic pathways. Therefore, 
we need to access which specific glycosphingolipid species 
in the pathway is responsible for the resulting phenotypes.

Unique neutral glycolipids, globo-series 
glycolipids

Globo-series glycolipids have been well known for a long 
time, but their real functions are recently getting to be 
disclosed.

Many glycosphingolipids except galactosylceramide 
and sulfatides are synthesized from glucosylceramide as 
a first glycolipid structure via lactosylceramide (Fig.  1). 
Among neutral glycosphingolipids, glycosphingolipids 
not containing ganglio-core, globo-series glycolipids have 
actually been known to exhibit unique distribution in the 
body, and have been expected to play important roles in 
some cell lineages (Fig. 2). In fact, globo-series glycolipids 
were enriched in human erythrocytes as shown by Yamak-
awa et al. [48, 49]. Globotetraosylceramide (Gb4) is highly 
enriched in any types of human erythrocytes except Pk and P 
blood group individuals [50, 51]. On the other hand, globo-
series glycolipids with extended chains were reported to be 
embryonal stem cell (ES) markers [52], and they have been 
used as ES markers even now. In particular, SSEA3 (Gb5) 
is now utilized as an ES marker in regenerative medicine 
[53]. In the Oncology field, globotriaosylceramide (Gb3) 
was reported to be specific for Burkitt’s lymphomas [40]. 
Roles of Gb3 in the apoptosis of immature B cells were 
reported [54], although the action mechanisms have not 
been well understood. Gb3 was also detected in metastatic 
tissues of colon cancers [55], breast cancers [56], and gas-
tric cancers [57]. Monosialy-Gb5 was reported to be a kid-
ney cancer marker, while disiayl-Gb5 was reduced in cancer 
cells [58]. Recently, globo-H has been considered as a tar-
get of immune-therapy for breast cancers [59]. To clarify 
the actual in vivo functions of globo-series glycolipids, we 
isolated cDNA of Gb3 synthase [60], a key enzyme for the 
synthesis of all globo-series glycolipids, and analyzed roles 
of Gb3 and its derivatives in cultured cells [61] and in mice. 
The knockout mice of Gb3 synthase (A4galt-1) lacking all 
globo-series glycolipids exhibited no apparent abnormal 
phenotypes. As expected, A4galt-1 KO mice showed com-
plete resistance to pathogenic E. coli O157-derived vero-
toxins [62]. Using this KO mouse line, we identified TLR4/
MT2 as an endogenous ligand molecule of Gb4 for the first 

some group of cancers in some patients’ samples, but not 
in normal cells and tissues; class 3, universal antigens that 
are present in some cancers but also in normal cells and tis-
sues with different densities. Then, many of class 2 antigens 
have been elucidated to be carbohydrate epitopes. A repre-
sentative example might be ganglioside GD2 detected by 
the serum of patient “AH” [8]. Here, GD2 was shown to 
be expressed in melanoma and glioma cell lines, but not in 
normal cells except fetal tissues. Combined with monoclo-
nal antibody technique of mouse [9, 10] and human [11, 12], 
various cancer-associated glycosphingolipids were defined 
so far. Efforts to find and apply monoclonal antibodies reac-
tive with gangliosides to clinical use were made by many 
researchers [13]. Some of them showed excellent achieve-
ments [14, 15].

Sen Hakomori reported aberrant glycosylation in trans-
formed cells that were not present in normal cells with 
biochemical analysis [16]. Then, he achieved a number of 
studies on the comprehensive aspects of cancer specific car-
bohydrates mainly with biochemical approaches [17].

Cancer-associated glycolipid antigens

The cancer-associated carbohydrate antigens might almost 
correspond to the “class 2” antigens defined by Old [7]. In 
a long pathway for searching cancer specific antigens [7], 
there have been many reports on carbohydrate antigens that 
are found only in cancer cells, but not in normal cells [17, 
18]. They were named as cancer-associated carbohydrate 
antigens, and have been utilized for the diagnosis and treat-
ment of various cancers [19, 20]. Generally, those carbohy-
drates are present on membrane proteins or lipids named 
mucins or ceramides, respectively. Some of those carbohy-
drate epitopes are carried in common on both proteins and 
ceramides. In particular, gangliosides, sialic acid-containing 
glycosphingolipids have been considered to be tumor mark-
ers of neuroectoderm-derived cancers such as malignant 
melanomas [9, 10, 21–23], neuroblastomas [24, 25], and gli-
omas [26–29]. They are also detected in osteosarcomas [30, 
31], small cell lung carcinomas [32, 33], T-cell leukemias 
[34–37], and breast cancers [38, 39]. On the other hand, one 
of neutral glycosphingolipids, globotriaosylceramide (Gb3) 
was identified as a marker of Burkitt’s lymphomas [40].

Since cDNAs of glycosyltransferases responsible for 
the synthesis of cancer-associated glycosphingolipids were 
cloned [41–45] and became available for the genetic engi-
neering at the levels of cultured cells and experimental 
animals, a number of glyco-remodeling experiments have 
been performed. These efforts brought about big progress 
in understanding of their functional aspects [46]. In many 
cases, genetic engineering of glycosyltransferase genes 
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gangliosides, particularly disialylated structures with tan-
dem mode often confer malignant phenotypes in normal 
cells, and/or enhancement of malignant properties of cancer 
cells [64] in various kinds of tumors (Figs. 1 and 3). For 
example, gangliosides GD3 and GD2 are involved in the 
enhancement of cancer phenotypes such as increased pro-
liferation, invasion, cell adhesion to extracellular matrices, 
and cell motility. However, the effects of those gangliosides 
on the phenotypes are not necessarily same, and the modes 
of action also seem to be not identical among cancer lin-
eages [65]. Depending on the molecular profiles expressed 
on the cell membrane and in the cytoplasm of the individual 
cells and tissues, the expression of cancer-associated gan-
gliosides affects the features of membrane microdomains, 
glycolipid-enriched microdomain (GEM)/rafts [66, 67], and 
modulates the nature of individual cells [68].

In the case of melanoma cells, we reported that adaptor 
molecules such as p130Cas, paxillin, and focal adhesion 
kinase (FAK) were phosphorylated at tyrosine residue, and 
elucidated that they are actually involved in the increased 
cell proliferation and invasion under GD3 expression [69, 
70]. Furthermore, during cell adhesion, integrins was also 
involved in the regulation of cell signaling via FAK and 
Src family kinase [71]. The tight linkage of integrins and 
FAK was also previously reported in small cell lung can-
cer (SCLC) cells. Anti-ganglioside GD2 monoclonal anti-
bodies induced apoptosis of SCLC cells based on anoikis 
[33]. SCLC cells treated with anti-GD2 monoclonal anti-
bodies showed reduced phosphorylation levels of FAK 
during the cell detachment from culture plates [72]. On the 
other hand, osteosarcoma cells showed increased cell inva-
sion and motility under expression of GD3 and GD2 [30]. 
Interestingly, cell adhesion to extracellular matrix such as 
collagen 1 was strongly reduced in GD3/GD2-expressing 
cells, reflecting their high motility. This was contrastive 
with results of melanomas with high expression of GD3 
[69]. Indeed, melanoma cells showed increased cell adhe-
sion under GD3 expression [71].

Involvement of monosialyl 
glycosphingolipids in the suppression of 
cancer phenotypes

As for effects of monosialylated glycosphingolipids (or 
a-series gangliosides) on the cell phenotypes, similar sup-
pressive effects on the cell signals were shown in various 
tumor systems (Figs. 1 and 3). First of all, a rat pheochro-
mocytoma line, PC12, showed contrastive effects on the 
neural differentiation and NGF-TrkA signaling between 
GM1 expression [73] and GD3 expression [74]. In a mouse 
fibroblast cell line, SWISS-3T3, expression of GM1/GD1b 

time. Since TLR4/MT2 is well known receptor of lipopoly-
saccharides (LPSs), complex formation of Gb4 with TLR4/
MT2 resulted in the disturbance of LPS toxicity on the sur-
face of endothelial cells [63] (Fig. 2). This fact means that 
Gb4 could protect TLR4/MT2-mediated signals leading to 
NF-kB activation and resultant inflammatory cytokine pro-
duction such as TNFα and IL-6. These functions of Gb4 
were also observed to protect septic shock in mice [63]. The 
complex formation seemed to occur in membrane lipid rafts 
based on the selective binding of TLR4/MT2 with Gb4 con-
taining only saturated fatty acids.

Diverse effects of disialyl glycosphingolipids 
on cancer phenotypes

During function analyses of cancer-associated glyco-
sphingolipids, it has been elucidated that disialylated 

Table 1  Classes of cell surface antigens of human cancers defined by 
autologous typing

Characteristics Distribution
Class 1 Individually distinct (unique) 

tumor antigens
Restricted to autolo-
gous tumor cells

Class 2 Shared tumor antigens Present on autolo-
gous and some allo-
geneic tumor cells

Class 3 Normal cell surface antigens
Heterologous serum components

Widely distributed 
on normal and tumor 
cells

Modified from ref. 7

Fig. 1  Synthetic pathway of glycosphingolipids. Deleted structures 
in knockout mice are Indicated by squires. Contrastive functions of 
monosialyl and disialyl structures are shown
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phenotypes. A virus-induced osteosarcoma study showed 
that GD1a also suppressed malignant properties [78], sug-
gesting a-series gangliosides generally exert suppressive 
actions similarly with monosialylated gangliosides (Fig. 3).

As for malignant melanoma, a B16 mouse melanoma sub-
line B78 was transfected with GM2/GD2 synthase cDNA, 
resulting in the reduced proliferation [79]. In human mela-
noma cells, GM1/GD1b synthase cDNA was introduced in 
SK-MEL-73 melanoma cell line, leading to the reduced cell 
growth and invasion activity. They also showed dispersed 
ganglioside distribution on the cell surface compared with 
the parent line that expressed mainly GD3 and GD2 [80]. 
Thus, not only GM2 and GM1, but GM3 also suppressed 
tumor cell mobility and malignancy [81].

All these findings observed in various cancer cells or 
normal cells indicated that the expression of monosialylated 
gangliosides (or a-series gangliosides) often lead cells to 
less malignant or milder phenotypes [64]. In particular, 
expression of GM1 results in the attenuation of malignant 
cell signals and malignant phenotypes as shown in Fig. 3. 
Suppressive function of GM1 on the signal activation was 
also observed in the isolated molecular clusters in vitro in 
addition to the phenotypic changes of cells [82]. Regulatory 
functions of the individual gangliosides were comprehen-
sively compared using various glyco-remodeling melanoma 
lines originated from a subline of SK-MEL-28 [83]. These 
results were recently also recapitulated using genetically 
modified mice of ganglioside synthase genes [84, 85].

Membrane microdomains such as lipid rafts 
and GEM

In order to investigate molecular mechanisms of biological 
functions of glycosphingolipids, it seems critical to identify 
molecules that interact with and/or physically associate with 
glycosphingolipids. This is because glycosphingolipids are 
expressed on the outer layer of lipid bilayer membrane, 
lacking intra-cytoplasmic region [86].

Kai Simons proposed unique membrane microdomains, 
lipid rafts consisting of cholesterol, sphingomyelin, and 
GPI-anchored proteins [87]. This membrane microdo-
mains are resistant to non-ionic detergent such as Triton 
X-100, and majority of glycosphingolipids are enriched 
in this lipid rafts. Hakomori defined this microdomain as 
glycolipid-enriched microdomain (GEM), and reported that 
GEM plays important roles as a platform of cell signaling 
[88, 89] (Fig. 4). For example, ganglioside GM3 exists in 
GEM/rafts, forming complexes with various tetraspanins 
[90]. Although mechanisms for molecular clustering in 
GEM/rafts are not completely understood, dynamic behav-
iors of raft-constituent molecules were demonstrated [91]. 

synthase resulted in the suppressed cell growth and platelet-
derived growth factor (PDGF)-induced signals with changes 
of lipid rafts localization of PDGF receptor [75].

In a mouse Lewis lung cancer cell line, P29, transfection 
of GM2/GD2 synthase cDNA resulted in the neo-expres-
sion of GM2, leading to the reduced tumor phenotypes and 
suppressed activation levels of FAK [76]. By establish-
ing high-metastatic Lewis lung cancer sublines, Zhang et 
al. found that high-metastatic sublines expressed reduced 
levels of GM1/GD1a compared with the low-metastatic 
parent line. Functional roles of GM1 in the suppression of 
metastasis were demonstrated using GM1-suppressed trans-
fectants with RNAi-expression plasmid [77]. The reduced 
GM1 level resulted in the recruitment of MMP-9 and inte-
grin molecules to GEM/rafts, leading to more aggressive 

Fig. 3  Disialylated gangliosides enhance malignant properties, and 
monosialylated gangliosides suppress malignant properties of cancer 
cells

 

Fig. 2  Globo-series glycosphingolipids. A, Synthetic pathway of 
globo-series glycolipids via Gb3 with A4GALT. B, Main globo-series 
glycolipids with unique expression and/or functions reported so far
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and other molecules with physical association on the cell 
membrane (in a horizontal manner), and also with vertical 
connection has been elucidated so far. Enzyme-mediated 
activation of radical sources (EMARS), that was developed 
by Honke and Kotani [96], is a very efficient approach to 
identify neighboring molecules that exist around cancer-
associated glycosphingolipids within 100 ~ 300 nm on the 
cell membrane (Fig. 6, upper). This approach has enabled us 
to raise candidate molecules that could be physically associ-
ated with the cancer-associated glycolipids in the vicinity on 
the membrane of living cells [97].

Among molecules that are detected both in lipid rafts and 
GD3-targeted EMARS-labeled groups in melanoma cells, 
only Neogenin was identified in GD3-positive cells [97]. 
Neogenin was found in lipid rafts of only GD3-expressing 
cells, but not of GD3-negative cells. GD3 expression resulted 
in the recruitment of Neogenin, and also of γ-secretase to 
lipid rafts, leading to the increased levels of intracytoplasmic 
domain (ICD) of Neogenin [98]. These results demonstrated 
the mechanisms by which cancer-associated GD3 enhances 
malignant phenotypes via promoting expression of various 
signaling molecule genes by the action of Neogenin ICD as 
a transcription factor [98] (Fig. 6, lower). In glioma cells, 
PDGF-Rα was identified as a GD3-associated membrane 
molecule by EMARS-MS approach [99]. Cooperation of 
GD3 and PDGF-Rα resulted in the activation of Yes kinase 
and subsequent activation of paxillin [99]. In SCLC cells, 
ASCT2 was identified as a GD2-associated molecule and 
localized in lipid rafts, leading to the activation of p70S6K1 
and S6 etc. [100]. Actually, co-immunoprecipitation com-
bined with immunoblotting revealed formation of molecular 
complexes consisting of the target glycosphingolipids and 
associated membrane molecules on the cell surface, and 
also intra-cytoplasmic proteins such as FAK, and Src-family 
kinases.

Thus, EMARS/MS approach has enabled us to clarify the 
molecular complex formation on the cell surface in a hori-
zontal manner. It can, however, also provide us with trigger-
ing cue to clarify vertical molecular sequences beginning 
from cancer-associated glycosphingolipids.

Application of results of signal studies for 
the cancer treatments

As described previously, a number of trials have been per-
formed to apply mouse and/or human monoclonal antibod-
ies reactive with cancer-associated gangliosides [11, 14] for 
melanoma treatment. Anti-GD3 mAb, R24, was the first 
example to be administrated in patients with malignant mel-
anomas [13]. Some cases showed excellent results. Human 
anti-ganglioside mAbs were also tried to treat melanoma 

Ultra-high-resolution imaging revealed that dimer forma-
tion of identical gangliosides might be a primary unit for the 
formation of GEM/rafts [92].

Analyses of intracellular localization of glycolipid-asso-
ciated membrane molecules revealed that combination of 
extracellular stimulations and glycosphingolipids expressed 
on the membrane determine their location inside/outside of 
GEM/rafts (Fig. 5). In particular, differences in fine struc-
tures of sugar moiety seem to modulate the localization of 
membrane molecules inside/outside of GEM/rafts. They 
seem to be critical for the regulation of the composition of 
the microdomains [71, 93], leading to the determination of 
the quality and quantity of cell signaling and resulting cell 
fates [94] (Fig. 5).

Trials to identify interacting molecules with 
cancer-associated gangliosides

Importance of gangliosides in the regulation of membrane 
organization and function has been reported [95]. Molec-
ular clustering of cancer-associated glycosphingolipids 

Fig. 5  Molecular complex formation at membrane lipid rafts, regulat-
ing cell signaling. An example of ganglioside GD3 in melanoma cells

 

Fig. 4  Fundamental structure of lipid rafts. Glycosphingolipids regu-
late architecture and functions of lipid rafts, cell signaling and finally 
cell fates. Various molecules enriched in lipid rafts are shown. Mem-
brane receptors sometimes shift their location (Receptor a/b) depend-
ing on the conditions of lipid rafts (mainly glycolipids)
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malignant properties, can be targets for molecular therapy 
of cancers [107]. As fundamental studies for the substantial 
basis for anti-glyco-machinery therapy, anti-GD3 synthase 
study was tried by using siRNA and shRNAi expression 
plasmids of GD3 synthase gene in lung cancer cells [108]. 
Even cell apoptosis could be induced by the transfection of 
anti-GD3 synthase siRNA, and slower tumor growth was 
observed in vivo in severe combined immunodeficiency 
mice by introduction of the expression vector of shRNAi of 
GD3 synthase [108].

siRNA(s) mixed with atello-collagen was applied for the 
treatment of human malignant melanomas grafted on nu/nu 
mice [109]. Combined siRNAs against p130Cas and paxil-
lin were more effective than single gene siRNA to reduce 
the tumor size in mice. Thus, novel cancer therapy target-
ing various molecules forming signaling domains of cancer-
associated gangliosides will be tried in the near future [110, 
111].

Future scope

Although antibody therapies towards cancer-associated 
glycolipids have been tried for various cancers such as 
malignant melanomas, neuroblastomas, and lung cancers, 
resultant effects are not very good as expected [112]. The 
reason for these unsatisfactory results seems to be due to 

patients [101]. Anti-GD2 mAbs have been rigorously stud-
ied for their effects in the treatments of mouse melanomas 
[102], human neuroblastomas [103, 104], and human mela-
nomas [105]. As for neutral glycolipids, globo H has been 
shown to be a crucial glycolipid in breast cancers, and vac-
cine therapy with globo H-KLH has been rigorously tried 
[104]. They showed good results in some cases, but not in 
all cases tried. Anti-GD2 mAbs showed significant effects in 
extending remission intervals of neuroblastoma cases when 
administrated during maintenance period of the remission 
[103].

Generally, immune therapy of cancers toward cancer-
associated glycosphingolipid antigens can be justified by 
the tumor-specific expression patterns [7], e.g. class1 and 
class 2 group. Therefore, tumor-specific carbohydrate struc-
tures exclusively found on malignant cells alone have been 
required [7], although relatively high levels in malignant 
cells have been also accepted as shown in anti-CD20/CD19 
therapy of B-cell malignancies [106].

To eradicate malignant tumors, various novel strategies 
have been constructed based on the expression and func-
tion analyses of cancer-associated glycosphingolipids, and 
been challenged. GD3 and GD2 play roles with individual 
cooperative membrane molecules, and specifically activate 
various signals that are essential for the malignant pheno-
types of cancers. Therefore, any signaling molecules that 
are located under cancer-associated gangliosides to promote 

Fig. 6  EMARS/MS analysis 
to define glycolipid-associated 
molecules on the living 
membrane. A, A schema for 
EMARS/MS. B, an example of 
Neogenin defined by GD3-
targeted EMARS
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leading to escape from antibody attack. Therefore, a num-
ber of trials to increase the efficiency of antibody therapies 
have been challenged [113]. In order to overcome these 
defects of antibody therapies, more efficient immunological 
effecter cells have been expected. One of solutions for these 
difficulties might be immune therapy using chimeric anti-
gen receptor (CAR)-expressing T cells or NK cells toward 
cancer-associated glycolipids [114].

Now, cancer-associated carbohydrate antigens are con-
sidered to be included in class 2 tumor antigens defined 
by Old [7]. Merit of class 2 antigens as targets of cancer 
immunotherapy can be summarized as follows; (1) Easy to 
construct therapeutic strategy because of common presence 
among similar cancers compared with class 1 individual 
antigens, i.e., neo-antigens. (2) It is possible to consider as 
targets of therapy depending on the relative abundance of 
antigens on cancers, while those antigens are expressed in 
particular sites, stage of life, or at lower levels in normal 
tissues. (3) Actually, many successful examples have been 
reported or on-going.
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